JDHN L. HENNESSY DAVID A. PATTERSON

COMPUTER
ARCHITECTURE

el A Quantitative Approach

<
FIFTH EDITION




In Praise of Computer Architecture: A Quantitative Approach
Fifth Edition

“The 5th edition of Computer Architecture: A Quantitative Approach continues
the legacy, providing students of computer architecture with the most up-to-date
information on current computing platforms, and architectural insights to help
them design future systems. A highlight of the new edition is the significantly
revised chapter on data-level parallelism, which demystifies GPU architectures
with clear explanations using traditional computer architecture terminology.”

—Krste Asanovi¢, University of California, Berkeley

“Computer Architecture: A Quantitative Approach is a classic that, like fine
wine, just keeps getting better. I bought my first copy as I finished up my under-
graduate degree and it remains one of my most frequently referenced texts today.
When the fourth edition came out, there was so much new material that I needed
to get it to stay current in the field. And, as I review the fifth edition, I realize that
Hennessy and Patterson have done it again. The entire text is heavily updated and
Chapter 6 alone makes this new edition required reading for those wanting to
really understand cloud and warehouse scale-computing. Only Hennessy and
Patterson have access to the insiders at Google, Amazon, Microsoft, and other
cloud computing and internet-scale application providers and there is no better
coverage of this important area anywhere in the industry.”

—James Hamilton, Amazon Web Services

“Hennessy and Patterson wrote the first edition of this book when graduate stu-
dents built computers with 50,000 transistors. Today, warehouse-size computers
contain that many servers, each consisting of dozens of independent processors
and billions of transistors. The evolution of computer architecture has been rapid
and relentless, but Computer Architecture: A Quantitative Approach has kept
pace, with each edition accurately explaining and analyzing the important emerg-
ing ideas that make this field so exciting.”

—James Larus, Microsoft Research

“This new edition adds a superb new chapter on data-level parallelism in vector,
SIMD, and GPU architectures. It explains key architecture concepts inside mass-
market GPUs, maps them to traditional terms, and compares them with vector
and SIMD architectures. It’s timely and relevant with the widespread shift to
GPU parallel computing. Computer Architecture: A Quantitative Approach fur-
thers its string of firsts in presenting comprehensive architecture coverage of sig-
nificant new developments!”

—John Nickolls, NVIDIA

www.youseficlass.ir



“The new edition of this now classic textbook highlights the ascendance of
explicit parallelism (data, thread, request) by devoting a whole chapter to each
type. The chapter on data parallelism is particularly illuminating: the comparison
and contrast between Vector SIMD, instruction level SIMD, and GPU -cuts
through the jargon associated with each architecture and exposes the similarities
and differences between these architectures.”

—Kunle Olukotun, Stanford University

“The fifth edition of Computer Architecture: A Quantitative Approach explores
the various parallel concepts and their respective tradeoffs. As with the previous
editions, this new edition covers the latest technology trends. Two highlighted are
the explosive growth of Personal Mobile Devices (PMD) and Warehouse Scale
Computing (WSC)—where the focus has shifted towards a more sophisticated
balance of performance and energy efficiency as compared with raw perfor-
mance. These trends are fueling our demand for ever more processing capability
which in turn is moving us further down the parallel path.”

—Andrew N. Sloss, Consultant Engineer, ARM
Author of ARM System Developer’s Guide

www.youseficlass.ir



Computer Architecture
A Quantitative Approach

Fifth Edition

www.youseficlass.ir



John L. Hennessy is the tenth president of Stanford University, where he has been a member
of the faculty since 1977 in the departments of electrical engineering and computer science.
Hennessy is a Fellow of the IEEE and ACM; a member of the National Academy of Engineering,
the National Academy of Science, and the American Philosophical Society; and a Fellow of
the American Academy of Arts and Sciences. Among his many awards are the 2001 Eckert-
Mauchly Award for his contributions to RISC technology, the 2001 Seymour Cray Computer
Engineering Award, and the 2000 John von Neumann Award, which he shared with David
Patterson. He has also received seven honorary doctorates.

In 1981, he started the MIPS project at Stanford with a handful of graduate students. After
completing the project in 1984, he took a leave from the university to cofound MIPS Computer
Systems (now MIPS Technologies), which developed one of the first commercial RISC
microprocessors. As of 2006, over 2 billion MIPS microprocessors have been shipped in devices
ranging from video games and palmtop computers to laser printers and network switches.
Hennessy subsequently led the DASH (Director Architecture for Shared Memory) project, which
prototyped the first scalable cache coherent multiprocessor; many of the key ideas have been
adopted in modern multiprocessors. In addition to his technical activities and university
responsibilities, he has continued to work with numerous start-ups both as an early-stage
advisor and an investor.

David A. Patterson has been teaching computer architecture at the University of California,
Berkeley, since joining the faculty in 1977, where he holds the Pardee Chair of Computer
Science. His teaching has been honored by the Distinguished Teaching Award from the
University of California, the Karlstrom Award from ACM, and the Mulligan Education Medal and
Undergraduate Teaching Award from IEEE. Patterson received the IEEE Technical Achievement
Award and the ACM Eckert-Mauchly Award for contributions to RISC, and he shared the IEEE
Johnson Information Storage Award for contributions to RAID. He also shared the IEEE John von
Neumann Medal and the C & C Prize with John Hennessy. Like his co-author, Patterson is a
Fellow of the American Academy of Arts and Sciences, the Computer History Museum, ACM,
and IEEE, and he was elected to the National Academy of Engineering, the National Academy
of Sciences, and the Silicon Valley Engineering Hall of Fame. He served on the Information
Technology Advisory Committee to the U.S. President, as chair of the CS division in the Berkeley
EECS department, as chair of the Computing Research Association, and as President of ACM.
This record led to Distinguished Service Awards from ACM and CRA.

At Berkeley, Patterson led the design and implementation of RISC |, likely the first VLSI reduced
instruction set computer, and the foundation of the commercial SPARC architecture. He was a
leader of the Redundant Arrays of Inexpensive Disks (RAID) project, which led to dependable
storage systems from many companies. He was also involved in the Network of Workstations
(NOW) project, which led to cluster technology used by Internet companies and later to cloud
computing. These projects earned three dissertation awards from ACM. His current research
projects are Algorithm-Machine-People Laboratory and the Parallel Computing Laboratory,
where he is director. The goal of the AMP Lab is develop scalable machine learning algorithms,
warehouse-scale-computer-friendly programming models, and crowd-sourcing tools to gain
valueable insights quickly from big data in the cloud. The goal of the Par Lab is to develop tech-
nologies to deliver scalable, portable, efficient, and productive software for parallel personal
mobile devices.

www.youseficlass.ir



Computer Architecture
A Quantitative Approach

Fifth Edition

John L. Hennessy

Stanford University

David A. Patterson

University of California, Berkeley

With Contributions by

Krste Asanovic¢

University of California, Berkeley
Jason D. Bakos

University of South Carolina

Robert P. Colwell

R&E Colwell & Assoc. Inc.

Thomas M. Conte

North Carolina State University

José Duato

Universitat Politécnica de Valéncia and Simula
Diana Franklin

University of California, Santa Barbara
David Goldberg

The Scripps Research Institute

Norman P. Jouppi

HP Labs

Sheng Li

HP Labs

Naveen Muralimanohar

HP Labs

Gregory D. Peterson
University of Tennessee
Timothy M. Pinkston
University of Southern California
Parthasarathy Ranganathan
HP Labs

David A. Wood

University of Wisconsin-Madison
Amr Zaky

University of Santa Clara

Amsterdam ¢ Boston ¢ Heidelberg ¢ London IVI(

= 3s 3 New York  Oxford * Paris * San Diego A e
ELSEVIER San Francisco ¢ Singapore ¢ Sydney ¢ Tokyo

www.youseficlass.ir



Acquiring Editor: Todd Green
Development Editor: Nate McFadden
Project Manager: Paul Gottehrer
Designer: Joanne Blank

Morgan Kaufimann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

© 2012 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the publisher. Details on how to seek permission, further informa-
tion about the Publisher’s permissions policies and our arrangements with organizations such as the
Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods or professional practices, may become
necessary. Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information or methods described herein. In using such information or
methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability, neg-
ligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-383872-8

For information on all MK publications

visit our website at www.mkp.com

Printed in the United States of America
1112131415 10987654321

Typeset by: diacriTech, Chennai, India

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID  q,ph0 Foundation

www.youseficlass.ir


http://www.elsevier.com/permissions
http://www.mkp.com

To Andrea, Linda, and our four sons

www.youseficlass.ir



This page intentionally left blank

www.youseficlass.ir



Foreword

by Luiz André Barroso, Google Inc.

The first edition of Hennessy and Patterson’s Computer Architecture: A Quanti-
tative Approach was released during my first year in graduate school. I belong,
therefore, to that first wave of professionals who learned about our discipline
using this book as a compass. Perspective being a fundamental ingredient to a
useful Foreword, I find myself at a disadvantage given how much of my own
views have been colored by the previous four editions of this book. Another
obstacle to clear perspective is that the student-grade reverence for these two
superstars of Computer Science has not yet left me, despite (or perhaps because
of) having had the chance to get to know them in the years since. These disadvan-
tages are mitigated by my having practiced this trade continuously since this
book’s first edition, which has given me a chance to enjoy its evolution and
enduring relevance.

The last edition arrived just two years after the rampant industrial race for
higher CPU clock frequency had come to its official end, with Intel cancelling its
4 GHz single-core developments and embracing multicore CPUs. Two years was
plenty of time for John and Dave to present this story not as a random product
line update, but as a defining computing technology inflection point of the last
decade. That fourth edition had a reduced emphasis on instruction-level parallel-
ism (ILP) in favor of added material on thread-level parallelism, something the
current edition takes even further by devoting two chapters to thread- and data-
level parallelism while limiting ILP discussion to a single chapter. Readers who
are being introduced to new graphics processing engines will benefit especially
from the new Chapter 4 which focuses on data parallelism, explaining the
different but slowly converging solutions offered by multimedia extensions in
general-purpose processors and increasingly programmable graphics processing
units. Of notable practical relevance: If you have ever struggled with CUDA
terminology check out Figure 4.24 (teaser: “Shared Memory” is really local,
while “Global Memory” is closer to what you’d consider shared memory).

Even though we are still in the middle of that multicore technology shift, this
edition embraces what appears to be the next major one: cloud computing. In this
case, the ubiquity of Internet connectivity and the evolution of compelling Web
services are bringing to the spotlight very small devices (smart phones, tablets)

www.youseficlass.ir



X

Foreword

and very large ones (warehouse-scale computing systems). The ARM Cortex A8,
a popular CPU for smart phones, appears in Chapter 3’s “Putting It All Together”
section, and a whole new Chapter 6 is devoted to request- and data-level parallel-
ism in the context of warehouse-scale computing systems. In this new chapter,
John and Dave present these new massive clusters as a distinctively new class of
computers—an open invitation for computer architects to help shape this emerg-
ing field. Readers will appreciate how this area has evolved in the last decade by
comparing the Google cluster architecture described in the third edition with the
more modern incarnation presented in this version’s Chapter 6.

Return customers of this book will appreciate once again the work of two outstanding
computer scientists who over their careers have perfected the art of combining an
academic’s principled treatment of ideas with a deep understanding of leading-edge
industrial products and technologies. The authors’ success in industrial interactions
won’t be a surprise to those who have witnessed how Dave conducts his biannual proj-
ect retreats, forums meticulously crafted to extract the most out of academic—industrial
collaborations. Those who recall John’s entrepreneurial success with MIPS or bump into
him in a Google hallway (as I occasionally do) won’t be surprised by it either.

Perhaps most importantly, return and new readers alike will get their money’s
worth. What has made this book an enduring classic is that each edition is not an
update but an extensive revision that presents the most current information and
unparalleled insight into this fascinating and quickly changing field. For me, after
over twenty years in this profession, it is also another opportunity to experience
that student-grade admiration for two remarkable teachers.

www.youseficlass.ir



Contents

Chapter 1

Chapter 2

Foreword ix
Preface XV
Acknowledgments XXiii

Fundamentals of Quantitative Design and Analysis

1.1 Introduction 2
1.2 Classes of Computers 5
1.3 Defining Computer Architecture 11
1.4 Trends in Technology 17
1.5 Trends in Power and Energy in Integrated Circuits 21
1.6 Trendsin Cost 27
1.7 Dependability 33
1.8 Measuring, Reporting, and Summarizing Performance 36
1.9  Quantitative Principles of Computer Design 44
1.10 Putting It All Together: Performance, Price, and Power 52
1.11 Fallacies and Pitfalls 55
1.12 Concluding Remarks 59
1.13 Historical Perspectives and References 61

Case Studies and Exercises by Diana Franklin 61

Memory Hierarchy Design

2.1 Introduction 72
2.2 Ten Advanced Optimizations of Cache Performance 78
2.3 Memory Technology and Optimizations 96
2.4  Protection: Virtual Memory and Virtual Machines 105
2.5 Crosscutting Issues: The Design of Memory Hierarchies 112
2.6 Putting It All Together: Memory Hierachies in the
ARM Cortex-A8 and Intel Core i7 113
2.7 Fallacies and Pitfalls 125
xi

www.youseficlass.ir



xii

Contents

Chapter 3

Chapter4

Chapter 5

2.8
2.9

Concluding Remarks: Looking Ahead
Historical Perspective and References
Case Studies and Exercises by Norman P. Jouppi,
Naveen Muralimanohar, and Sheng Li

Instruction-Level Parallelism and Its Exploitation

3.1
3.2
33
34
35
3.6
37
3.8

3.9

Instruction-Level Parallelism: Concepts and Challenges

Basic Compiler Techniques for Exposing ILP

Reducing Branch Costs with Advanced Branch Prediction
Overcoming Data Hazards with Dynamic Scheduling
Dynamic Scheduling: Examples and the Algorithm
Hardware-Based Speculation

Exploiting ILP Using Multiple Issue and Static Scheduling
Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and
Speculation

Advanced Techniques for Instruction Delivery and Speculation

3.10 Studies of the Limitations of ILP
3.11 Cross-Cutting Issues: ILP Approaches and the Memory System
3.12 Multithreading: Exploiting Thread-Level Parallelism to Improve

Uniprocessor Throughput

3.13 Putting It All Together: The Intel Core i7 and ARM Cortex-A8
3.14 Fallacies and Pitfalls

3.15 Concluding Remarks: What's Ahead?

3.16 Historical Perspective and References

Data-Level Parallelism in Vector, SIMD, and GPU Architectures

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell

Introduction

Vector Architecture

SIMD Instruction Set Extensions for Multimedia
Graphics Processing Units

Detecting and Enhancing Loop-Level Parallelism
Crosscutting Issues

Putting It All Together: Mobile versus Server GPUs
and Tesla versus Core i7

Fallacies and Pitfalls

Concluding Remarks

4,10 Historical Perspective and References

Case Study and Exercises by Jason D. Bakos

Thread-Level Parallelism

5.1
52
53

Introduction
Centralized Shared-Memory Architectures
Performance of Symmetric Shared-Memory Multiprocessors

www.youseficlass.ir

129
131

131

148
156
162
167
176
183
192

197
202
213
221

223
233
241
245
247
247

262
264
282
288
315
322

323
330
332
334
334

344
351
366



Chapter6

Appendix A

Appendix B

Contents

5.4 Distributed Shared-Memory and Directory-Based Coherence
5.5 Synchronization: The Basics
5.6 Models of Memory Consistency: An Introduction
5.7 Crosscutting Issues
5.8 Putting It All Together: Multicore Processors and Their Performance
5.9 Fallacies and Pitfalls
5.10 Concluding Remarks
5.11 Historical Perspectives and References
Case Studies and Exercises by Amr Zaky and David A. Wood

Warehouse-Scale Computers to Exploit Request-Level and
Data-Level Parallelism

6.1 Introduction
6.2  Programming Models and Workloads for Warehouse-Scale Computers
6.3 Computer Architecture of Warehouse-Scale Computers
6.4  Physical Infrastructure and Costs of Warehouse-Scale Computers
6.5 Cloud Computing: The Return of Utility Computing
6.6  Crosscutting Issues
6.7 Putting It All Together: A Google Warehouse-Scale Computer
6.8 Fallacies and Pitfalls
6.9 Concluding Remarks
6.10 Historical Perspectives and References
Case Studies and Exercises by Parthasarathy Ranganathan

Instruction Set Principles

A.1  Introduction

A2 (lassifying Instruction Set Architectures

A3 Memory Addressing

A4 Typeand Size of Operands

A.5  Operations in the Instruction Set

A.6 Instructions for Control Flow

A.7  Encoding an Instruction Set

A.8 Crosscutting Issues: The Role of Compilers

A9 Putting It All Together: The MIPS Architecture

A.10 Fallacies and Pitfalls

A.11 Concluding Remarks

A.12 Historical Perspective and References
Exercises by Gregory D. Peterson

Review of Memory Hierarchy

B.1  Introduction
B.2  Cache Performance
B.3  Six Basic Cache Optimizations

www.youseficlass.ir

coe

378
386
392
395
400
405
409
412
412

432
436
441
446
455
461
464
471
475
476
476

A-2

A-3

A-7
A-13
A-14
A-16
A-21
A-24
A-32
A-39
A-45
A-47
A-47

B-2
B-16
B-22



Xiv

Contents

Appendix C

Appendix D
Appendix E

Appendix F

Appendix G

Appendix H
Appendix |
Appendix J

Appendix K
Appendix L

B.4  Virtual Memory

B.5  Protection and Examples of Virtual Memory

B.6  Fallacies and Pitfalls

B.7  Concluding Remarks

B.8  Historical Perspective and References
Exercises by Amr Zaky

Pipelining: Basic and Intermediate Concepts

C.1  Introduction
C.2  The Major Hurdle of Pipelining—Pipeline Hazards
C3  How s Pipelining Implemented?
C4  What Makes Pipelining Hard to Implement?
C5  Extending the MIPS Pipeline to Handle Multicycle Operations
C.6  Putting It All Together: The MIPS R4000 Pipeline
C.7  Crosscutting Issues
C.8  Fallacies and Pitfalls
C9  Concluding Remarks
C.10  Historical Perspective and References
Updated Exercises by Diana Franklin

Online Appendices
Storage Systems

Embedded Systems
By Thomas M. Conte

Interconnection Networks
Revised by Timothy M. Pinkston and José Duato

Vector Processors in More Depth
Revised by Krste Asanovic

Hardware and Software for VLIW and EPIC

Large-Scale Multiprocessors and Scientific Applications
Computer Arithmetic

by David Goldberg

Survey of Instruction Set Architectures

Historical Perspectives and References

References

Index

www.youseficlass.ir

B-40
B-49
B-57
B-59
B-59
B-60

C-2
C-1
C-30
C-43
C-51
C-61
C-70
C-80
C-81
C-81
C-82

R-1
1-1



Preface

Why We Wrote This Book

Through five editions of this book, our goal has been to describe the basic princi-
ples underlying what will be tomorrow’s technological developments. Our excite-
ment about the opportunities in computer architecture has not abated, and we
echo what we said about the field in the first edition: “It is not a dreary science of
paper machines that will never work. No! It’s a discipline of keen intellectual
interest, requiring the balance of marketplace forces to cost-performance-power,
leading to glorious failures and some notable successes.”

Our primary objective in writing our first book was to change the way people
learn and think about computer architecture. We feel this goal is still valid and
important. The field is changing daily and must be studied with real examples
and measurements on real computers, rather than simply as a collection of defini-
tions and designs that will never need to be realized. We offer an enthusiastic
welcome to anyone who came along with us in the past, as well as to those who
are joining us now. Either way, we can promise the same quantitative approach
to, and analysis of, real systems.

As with earlier versions, we have strived to produce a new edition that will
continue to be as relevant for professional engineers and architects as it is for
those involved in advanced computer architecture and design courses. Like the
first edition, this edition has a sharp focus on new platforms—personal mobile
devices and warehouse-scale computers—and new architectures—multicore and
GPUs. As much as its predecessors, this edition aims to demystify computer
architecture through an emphasis on cost-performance-energy trade-offs and
good engineering design. We believe that the field has continued to mature and
move toward the rigorous quantitative foundation of long-established scientific
and engineering disciplines.

XV

www.youseficlass.ir



XVi

Preface

This Edition

We said the fourth edition of Computer Architecture: A Quantitative Approach
may have been the most significant since the first edition due to the switch to
multicore chips. The feedback we received this time was that the book had lost
the sharp focus of the first edition, covering everthing equally but without empha-
sis and context. We’re pretty sure that won’t be said about the fifth edition.

We believe most of the excitement is at the extremes in size of computing,
with personal mobile devices (PMDs) such as cell phones and tablets as the cli-
ents and warehouse-scale computers offering cloud computing as the server.
(Observant readers may seen the hint for cloud computing on the cover.) We are
struck by the common theme of these two extremes in cost, performance, and
energy efficiency despite their difference in size. As a result, the running context
through each chapter is computing for PMDs and for warehouse scale computers,
and Chapter 6 is a brand-new chapter on the latter topic.

The other theme is parallelism in all its forms. We first idetify the two types of
application-level parallelism in Chapter 1: data-level parallelism (DLP), which
arises because there are many data items that can be operated on at the same time,
and task-level parallelism (TLP), which arises because tasks of work are created
that can operate independently and largely in parallel. We then explain the four
architectural styles that exploit DLP and TLP: instruction-level parallelism (ILP)
in Chapter 3; vector architectures and graphic processor units (GPUs) in Chapter
4, which is a brand-new chapter for this edition; thread-level parallelism in
Chapter 5; and request-level parallelism (RLP) via warehouse-scale computers in
Chapter 6, which is also a brand-new chapter for this edition. We moved memory
hierarchy earlier in the book to Chapter 2, and we moved the storage systems
chapter to Appendix D. We are particularly proud about Chapter 4, which con-
tains the most detailed and clearest explanation of GPUs yet, and Chapter 6,
which is the first publication of the most recent details of a Google Warehouse-
scale computer.

As before, the first three appendices in the book give basics on the MIPS
instruction set, memory hierachy, and pipelining for readers who have not read a
book like Computer Organization and Design. To keep costs down but still sup-
ply supplemental material that are of interest to some readers, available online at
http://booksite.mkp.com/9780123838728/ are nine more appendices. There are
more pages in these appendices than there are in this book!

This edition continues the tradition of using real-world examples to demon-
strate the ideas, and the “Putting It All Together” sections are brand new. The
“Putting It All Together” sections of this edition include the pipeline organiza-
tions and memory hierarchies of the ARM Cortex A8 processor, the Intel core i7
processor, the NVIDIA GTX-280 and GTX-480 GPUs, and one of the Google
warehouse-scale computers.

www.youseficlass.ir


http://booksite.mkp.com/9780123838728/

Preface xvii

Topic Selection and Organization

As before, we have taken a conservative approach to topic selection, for there are
many more interesting ideas in the field than can reasonably be covered in a treat-
ment of basic principles. We have steered away from a comprehensive survey of
every architecture a reader might encounter. Instead, our presentation focuses on
core concepts likely to be found in any new machine. The key criterion remains
that of selecting ideas that have been examined and utilized successfully enough
to permit their discussion in quantitative terms.

Our intent has always been to focus on material that is not available in equiva-
lent form from other sources, so we continue to emphasize advanced content
wherever possible. Indeed, there are several systems here whose descriptions
cannot be found in the literature. (Readers interested strictly in a more basic
introduction to computer architecture should read Computer Organization and
Design: The Hardware/Software Interface.)

An Overview of the Content

Chapter 1 has been beefed up in this edition. It includes formulas for energy,
static power, dynamic power, integrated circuit costs, reliability, and availability.
(These formulas are also found on the front inside cover.) Our hope is that these
topics can be used through the rest of the book. In addition to the classic quantita-
tive principles of computer design and performance measurement, the PIAT sec-
tion has been upgraded to use the new SPECPower benchmark.

Our view is that the instruction set architecture is playing less of a role today
than in 1990, so we moved this material to Appendix A. It still uses the MIPS64
architecture. (For quick review, a summary of the MIPS ISA can be found on the
back inside cover.) For fans of ISAs, Appendix K covers 10 RISC architectures,
the 80x86, the DEC VAX, and the IBM 360/370.

We then move onto memory hierarchy in Chapter 2, since it is easy to apply
the cost-performance-energy principles to this material and memory is a critical
resource for the rest of the chapters. As in the past edition, Appendix B contains
an introductory review of cache principles, which is available in case you need it.
Chapter 2 discusses 10 advanced optimizations of caches. The chapter includes
virtual machines, which offers advantages in protection, software management,
and hardware management and play an important role in cloud computing. In
addition to covering SRAM and DRAM technologies, the chapter includes new
material on Flash memory. The PIAT examples are the ARM Cortex A8, which is
used in PMDs, and the Intel Core i7, which is used in servers.

Chapter 3 covers the exploitation of instruction-level parallelism in high-
performance processors, including superscalar execution, branch prediction,
speculation, dynamic scheduling, and multithreading. As mentioned earlier,
Appendix C is a review of pipelining in case you need it. Chapter 3 also sur-
veys the limits of ILP. Like Chapter 2, the PIAT examples are again the ARM
Cortex A8 and the Intel Core i7. While the third edition contained a great deal

www.youseficlass.ir



xviii

Preface

on Itanium and VLIW, this material is now in Appendix H, indicating our view
that this architecture did not live up to the earlier claims.

The increasing importance of multimedia applications such as games and video
processing has also increased the importance of achitectures that can exploit data-
level parallelism. In particular, there is a rising interest in computing using graphi-
cal processing units (GPUs), yet few architects understand how GPUs really work.
We decided to write a new chapter in large part to unveil this new style of com-
puter architecture. Chapter 4 starts with an introduction to vector architectures,
which acts as a foundation on which to build explanations of multimedia SIMD
instrution set extensions and GPUs. (Appendix G goes into even more depth on
vector architectures.) The section on GPUs was the most difficult to write in this
book, in that it took many iterations to get an accurate description that was also
easy to understand. A significant challenge was the terminology. We decided to go
with our own terms and then provide a translation between our terms and the offi-
cial NVIDIA terms. (A copy of that table can be found in the back inside cover
pages.) This chapter introduces the Roofline performance model and then uses it
to compare the Intel Core i7 and the NVIDIA GTX 280 and GTX 480 GPUs. The
chapter also describes the Tegra 2 GPU for PMDs.

Chapter 5 describes multicore processors. It explores symmetric and
distributed-memory architectures, examining both organizational principles and
performance. Topics in synchronization and memory consistency models are
next. The example is the Intel Core i7. Readers interested in interconnection net-
works on a chip should read Appendix F, and those interested in larger scale mul-
tiprocessors and scientific applications should read Appendix I.

As mentioned earlier, Chapter 6 describes the newest topic in computer archi-
tecture, warehouse-scale computers (WSCs). Based on help from engineers at
Amazon Web Services and Google, this chapter integrates details on design, cost,
and performance of WSCs that few architects are aware of. It starts with the pop-
ular MapReduce programming model before describing the architecture and
physical implemention of WSCs, including cost. The costs allow us to explain
the emergence of cloud computing, whereby it can be cheaper to compute using
WSCs in the cloud than in your local datacenter. The PIAT example is a descrip-
tion of a Google WSC that includes information published for the first time in
this book.

This brings us to Appendices A through L. Appendix A covers principles of
ISAs, including MIPS64, and Appendix K describes 64-bit versions of Alpha,
MIPS, PowerPC, and SPARC and their multimedia extensions. It also includes
some classic architectures (80x86, VAX, and IBM 360/370) and popular embedded
instruction sets (ARM, Thumb, SuperH, MIPS16, and Mitsubishi M32R). Appen-
dix H is related, in that it covers architectures and compilers for VLIW ISAs.

As mentioned earlier, Appendices B and C are tutorials on basic caching and
pipelining concepts. Readers relatively new to caching should read Appendix B
before Chapter 2 and those new to pipelining should read Appendix C before
Chapter 3.

www.youseficlass.ir



Preface Xix

Appendix D, “Storage Systems,” has an expanded discussion of reliability and
availability, a tutorial on RAID with a description of RAID 6 schemes, and rarely
found failure statistics of real systems. It continues to provide an introduction to
queuing theory and I/O performance benchmarks. We evaluate the cost, perfor-
mance, and reliability of a real cluster: the Internet Archive. The “Putting It All
Together” example is the NetApp FAS6000 filer.

Appendix E, by Thomas M. Conte, consolidates the embedded material in one
place.

Appendix F, on interconnection networks, has been revised by Timothy M.
Pinkston and José Duato. Appendix G, written originally by Krste Asanovic, includes
a description of vector processors. We think these two appendices are some of the
best material we know of on each topic.

Appendix H describes VLIW and EPIC, the architecture of Itanium.

Appendix I describes parallel processing applications and coherence protocols
for larger-scale, shared-memory multiprocessing. Appendix J, by David Gold-
berg, describes computer arithmetic.

Appendix L collects the “Historical Perspective and References” from each
chapter into a single appendix. It attempts to give proper credit for the ideas in
each chapter and a sense of the history surrounding the inventions. We like to
think of this as presenting the human drama of computer design. It also supplies
references that the student of architecture may want to pursue. If you have time,
we recommend reading some of the classic papers in the field that are mentioned
in these sections. It is both enjoyable and educational to hear the ideas directly
from the creators. “Historical Perspective” was one of the most popular sections
of prior editions.

Navigating the Text

There is no single best order in which to approach these chapters and appendices,
except that all readers should start with Chapter 1. If you don’t want to read
everything, here are some suggested sequences:

m  Memory Hierarchy: Appendix B, Chapter 2, and Appendix D.

m [Instruction-Level Parallelism: Appendix C, Chapter 3, and Appendix H

m  Data-Level Parallelism: Chapters 4 and 6, Appendix G

m  Thread-Level Parallelism: Chapter 5, Appendices F and I

m  Request-Level Parallelism: Chapter 6

m  ISA: Appendices A and K

Appendix E can be read at any time, but it might work best if read after the ISA
and cache sequences. Appendix J can be read whenever arithmetic moves you.

You should read the corresponding portion of Appendix L after you complete
each chapter.

www.youseficlass.ir



XX

Preface

Chapter Structure

The material we have selected has been stretched upon a consistent framework
that is followed in each chapter. We start by explaining the ideas of a chapter.
These ideas are followed by a “Crosscutting Issues” section, a feature that shows
how the ideas covered in one chapter interact with those given in other chapters.
This is followed by a “Putting It All Together” section that ties these ideas
together by showing how they are used in a real machine.

Next in the sequence is “Fallacies and Pitfalls,” which lets readers learn from
the mistakes of others. We show examples of common misunderstandings and
architectural traps that are difficult to avoid even when you know they are lying
in wait for you. The “Fallacies and Pitfalls” sections is one of the most popular
sections of the book. Each chapter ends with a “Concluding Remarks” section.

Case Studies with Exercises

Each chapter ends with case studies and accompanying exercises. Authored by
experts in industry and academia, the case studies explore key chapter concepts
and verify understanding through increasingly challenging exercises. Instructors
should find the case studies sufficiently detailed and robust to allow them to cre-
ate their own additional exercises.

Brackets for each exercise (<chapter.section>) indicate the text sections of pri-
mary relevance to completing the exercise. We hope this helps readers to avoid
exercises for which they haven’t read the corresponding section, in addition to
providing the source for review. Exercises are rated, to give the reader a sense of
the amount of time required to complete an exercise:

[10] Less than 5 minutes (to read and understand)

[15] 5-15 minutes for a full answer

[20] 15-20 minutes for a full answer

[25] 1 hour for a full written answer

[30] Short programming project: less than 1 full day of programming

[40] Significant programming project: 2 weeks of elapsed time

[Discussion] Topic for discussion with others

Solutions to the case studies and exercises are available for instructors who
register at textbooks.elsevier.com.

Supplemental Materials

A variety of resources are available online at http://booksite.mkp.com/9780123838728),
including the following:

www.youseficlass.ir


http://booksite.mkp.com/9780123838728/

Preface XXi

m Reference appendices—some guest authored by subject experts—covering a
range of advanced topics

m Historical Perspectives material that explores the development of the key
ideas presented in each of the chapters in the text

m Instructor slides in PowerPoint
m Figures from the book in PDF, EPS, and PPT formats
m Links to related material on the Web

m List of errata

New materials and links to other resources available on the Web will be
added on a regular basis.

Helping Improve This Book

Finally, it is possible to make money while reading this book. (Talk about cost-
performance!) If you read the Acknowledgments that follow, you will see that we
went to great lengths to correct mistakes. Since a book goes through many print-
ings, we have the opportunity to make even more corrections. If you uncover any
remaining resilient bugs, please contact the publisher by electronic mail
(caSbugs@mkp.com).

We welcome general comments to the text and invite you to send them to a
separate email address at ca5comments @mkp.com.

Concluding Remarks

Once again this book is a true co-authorship, with each of us writing half the
chapters and an equal share of the appendices. We can’t imagine how long it
would have taken without someone else doing half the work, offering inspiration
when the task seemed hopeless, providing the key insight to explain a difficult
concept, supplying reviews over the weekend of chapters, and commiserating
when the weight of our other obligations made it hard to pick up the pen. (These
obligations have escalated exponentially with the number of editions, as the biog-
raphies attest.) Thus, once again we share equally the blame for what you are
about to read.

John Hennessy = David Patterson

www.youseficlass.ir


mailto:ca5bugs@mkp.com
mailto:ca5comments@mkp.com

This page intentionally left blank

www.youseficlass.ir



Acknowledgments

Although this is only the fifth edition of this book, we have actually created ten
different versions of the text: three versions of the first edition (alpha, beta, and
final) and two versions of the second, third, and fourth editions (beta and final).
Along the way, we have received help from hundreds of reviewers and users.
Each of these people has helped make this book better. Thus, we have chosen to
list all of the people who have made contributions to some version of this book.

Contributors to the Fifth Edition

Like prior editions, this is a community effort that involves scores of volunteers.
Without their help, this edition would not be nearly as polished.

Reviewers

Jason D. Bakos, University of South Carolina; Diana Franklin, The University of
California, Santa Barbara; Norman P. Jouppi, HP Labs; Gregory Peterson, Uni-
versity of Tennessee; Parthasarathy Ranganathan, HP Labs; Mark Smotherman,
Clemson University; Gurindar Sohi, University of Wisconsin—-Madison; Mateo
Valero, Universidad Politécnica de Cataluia; Sotirios G. Ziavras, New Jersey
Institute of Technology

Members of the University of California—Berkeley Par Lab and RAD Lab who
gave frequent reviews of Chapter 1, 4, and 6 and shaped the explanation of
GPUs and WSCs: Krste Asanovié¢, Michael Armbrust, Scott Beamer, Sarah Bird,
Bryan Catanzaro, Jike Chong, Henry Cook, Derrick Coetzee, Randy Katz, Yun-
sup Lee, Leo Meyervich, Mark Murphy, Zhangxi Tan, Vasily Volkov, and Andrew
Waterman

Advisory Panel

Luiz André Barroso, Google Inc.; Robert P. Colwell, R&E Colwell & Assoc.
Inc.; Krisztian Flautner, VP of R&D at ARM Ltd.; Mary Jane Irwin, Penn State;

xxiii

www.youseficlass.ir



XXiv

Acknowledgments

David Kirk, NVIDIA; Grant Martin, Chief Scientist, Tensilica; Gurindar Sohi,
University of Wisconsin—-Madison; Mateo Valero, Universidad Politécnica de
Cataluna

Appendices

Krste Asanovi¢, University of California, Berkeley (Appendix G); Thomas M.
Conte, North Carolina State University (Appendix E); José Duato, Universitat
Politecnica de Valencia and Simula (Appendix F); David Goldberg, Xerox PARC
(Appendix J); Timothy M. Pinkston, University of Southern California (Appendix F)

José Flich of the Universidad Politécnica de Valencia provided significant contri-
butions to the updating of Appendix F.

Case Studies with Exercises

Jason D. Bakos, University of South Carolina (Chapters 3 and 4); Diana Franklin,
University of California, Santa Barbara (Chapter 1 and Appendix C); Norman P.
Jouppi, HP Labs (Chapter 2); Naveen Muralimanohar, HP Labs (Chapter 2);
Gregory Peterson, University of Tennessee (Appendix A); Parthasarathy Ranga-
nathan, HP Labs (Chapter 6); Amr Zaky, University of Santa Clara (Chapter 5 and
Appendix B)

Jichuan Chang, Kevin Lim, and Justin Meza assisted in the development and test-
ing of the case studies and exercises for Chapter 6.

Additional Material

John Nickolls, Steve Keckler, and Michael Toksvig of NVIDIA (Chapter 4
NVIDIA GPUgs); Victor Lee, Intel (Chapter 4 comparison of Core i7 and GPU);
John Shalf, LBNL (Chapter 4 recent vector architectures); Sam Williams, LBNL
(Roofline model for computers in Chapter 4); Steve Blackburn of Australian
National University and Kathryn McKinley of University of Texas at Austin
(Intel performance and power measurements in Chapter 5); Luiz Barroso, Urs
Holzle, Jimmy Clidaris, Bob Felderman, and Chris Johnson of Google (the
Google WSC in Chapter 6); James Hamilton of Amazon Web Services (power
distribution and cost model in Chapter 6)

Jason D. Bakos of the University of South Carolina developed the new
lecture slides for this edition.

Finally, a special thanks once again to Mark Smotherman of Clemson Univer-
sity, who gave a final technical reading of our manuscript. Mark found numerous
bugs and ambiguities, and the book is much cleaner as a result.

This book could not have been published without a publisher, of course. We
wish to thank all the Morgan Kaufmann/Elsevier staff for their efforts and support.
For this fifth edition, we particularly want to thank our editors Nate McFadden

www.youseficlass.ir



Acknowledgments XXV

and Todd Green, who coordinated surveys, the advisory panel, development of the
case studies and exercises, focus groups, manuscript reviews, and the updating of
the appendices.

We must also thank our university staff, Margaret Rowland and Roxana
Infante, for countless express mailings, as well as for holding down the fort at
Stanford and Berkeley while we worked on the book.

Our final thanks go to our wives for their suffering through increasingly early
mornings of reading, thinking, and writing.

Contributors to Previous Editions

Reviewers

George Adams, Purdue University; Sarita Adve, University of Illinois at Urbana—
Champaign; Jim Archibald, Brigham Young University; Krste Asanovi¢, Massa-
chusetts Institute of Technology; Jean-Loup Baer, University of Washington; Paul
Barr, Northeastern University; Rajendra V. Boppana, University of Texas, San
Antonio; Mark Brehob, University of Michigan; Doug Burger, University of Texas,
Austin; John Burger, SGI; Michael Butler; Thomas Casavant; Rohit Chandra; Peter
Chen, University of Michigan; the classes at SUNY Stony Brook, Carnegie Mel-
lon, Stanford, Clemson, and Wisconsin; Tim Coe, Vitesse Semiconductor; Robert
P. Colwell; David Cummings; Bill Dally; David Douglas; José Duato, Universitat
Politecnica de Valencia and Simula; Anthony Duben, Southeast Missouri State
University; Susan Eggers, University of Washington; Joel Emer; Barry Fagin, Dart-
mouth; Joel Ferguson, University of California, Santa Cruz; Carl Feynman; David
Filo; Josh Fisher, Hewlett-Packard Laboratories; Rob Fowler, DIKU; Mark Frank-
lin, Washington University (St. Louis); Kourosh Gharachorloo; Nikolas Gloy, Har-
vard University; David Goldberg, Xerox Palo Alto Research Center; Antonio
Gonzilez, Intel and Universitat Politecnica de Catalunya; James Goodman, Univer-
sity of Wisconsin—Madison; Sudhanva Gurumurthi, University of Virginia; David
Harris, Harvey Mudd College; John Heinlein; Mark Heinrich, Stanford; Daniel
Helman, University of California, Santa Cruz; Mark D. Hill, University of Wiscon-
sin—Madison; Martin Hopkins, IBM; Jerry Huck, Hewlett-Packard Laboratories;
Wen-mei Hwu, University of Illinois at Urbana—Champaign; Mary Jane Irwin,
Pennsylvania State University; Truman Joe; Norm Jouppi; David Kaeli, Northeast-
ern University; Roger Kieckhafer, University of Nebraska; Lev G. Kirischian,
Ryerson University; Earl Killian; Allan Knies, Purdue University; Don Knuth; Jeff
Kuskin, Stanford; James R. Larus, Microsoft Research; Corinna Lee, University of
Toronto; Hank Levy; Kai Li, Princeton University; Lori Liebrock, University of
Alaska, Fairbanks; Mikko Lipasti, University of Wisconsin—-Madison; Gyula A.
Mago, University of North Carolina, Chapel Hill; Bryan Martin; Norman Matloff;
David Meyer; William Michalson, Worcester Polytechnic Institute; James Mooneys;
Trevor Mudge, University of Michigan; Ramadass Nagarajan, University of Texas
at Austin; David Nagle, Carnegie Mellon University; Todd Narter; Victor Nelson;
Vojin Oklobdzija, University of California, Berkeley; Kunle Olukotun, Stanford
University; Bob Owens, Pennsylvania State University; Greg Papadapoulous, Sun

www.youseficlass.ir



XXVi

Acknowledgments

Microsystems; Joseph Pfeiffer; Keshav Pingali, Cornell University; Timothy M.
Pinkston, University of Southern California; Bruno Preiss, University of Waterloo;
Steven Przybylski; Jim Quinlan; Andras Radics; Kishore Ramachandran, Georgia
Institute of Technology; Joseph Rameh, University of Texas, Austin; Anthony
Reeves, Cornell University; Richard Reid, Michigan State University; Steve Rein-
hardt, University of Michigan; David Rennels, University of California, Los Ange-
les; Arnold L. Rosenberg, University of Massachusetts, Amherst; Kaushik Roy,
Purdue University; Emilio Salgueiro, Unysis; Karthikeyan Sankaralingam, Univer-
sity of Texas at Austin; Peter Schnorf; Margo Seltzer; Behrooz Shirazi, Southern
Methodist University; Daniel Siewiorek, Carnegie Mellon University; J. P. Singh,
Princeton; Ashok Singhal; Jim Smith, University of Wisconsin—-Madison; Mike
Smith, Harvard University; Mark Smotherman, Clemson University; Gurindar
Sohi, University of Wisconsin—-Madison; Arun Somani, University of Washington;
Gene Tagliarin, Clemson University; Shyamkumar Thoziyoor, University of Notre
Dame; Evan Tick, University of Oregon; Akhilesh Tyagi, University of North Car-
olina, Chapel Hill; Dan Upton, University of Virginia; Mateo Valero, Universidad
Politécnica de Catalufia, Barcelona; Anujan Varma, University of California, Santa
Cruz; Thorsten von Eicken, Cornell University; Hank Walker, Texas A&M; Roy
Want, Xerox Palo Alto Research Center; David Weaver, Sun Microsystems;
Shlomo Weiss, Tel Aviv University; David Wells; Mike Westall, Clemson Univer-
sity; Maurice Wilkes; Eric Williams; Thomas Willis, Purdue University; Malcolm
Wing; Larry Wittie, SUNY Stony Brook; Ellen Witte Zegura, Georgia Institute of
Technology; Sotirios G. Ziavras, New Jersey Institute of Technology

Appendices

The vector appendix was revised by Krste Asanovi¢ of the Massachusetts Insti-
tute of Technology. The floating-point appendix was written originally by David
Goldberg of Xerox PARC.

Exercises

George Adams, Purdue University; Todd M. Bezenek, University of Wisconsin—
Madison (in remembrance of his grandmother Ethel Eshom); Susan Eggers; Anoop
Gupta; David Hayes; Mark Hill; Allan Knies; Ethan L. Miller, University of Cali-
fornia, Santa Cruz; Parthasarathy Ranganathan, Compaq Western Research Labo-
ratory; Brandon Schwartz, University of Wisconsin—-Madison; Michael Scott; Dan
Siewiorek; Mike Smith; Mark Smotherman; Evan Tick; Thomas Willis

Case Studies with Exercises

Andrea C. Arpaci-Dusseau, University of Wisconsin—-Madison; Remzi H. Arpaci-
Dusseau, University of Wisconsin—-Madison; Robert P. Colwell, R&E Colwell &
Assoc., Inc.; Diana Franklin, California Polytechnic State University, San Luis
Obispo; Wen-mei W. Hwu, University of Illinois at Urbana—Champaign; Norman
P. Jouppi, HP Labs; John W. Sias, University of Illinois at Urbana—Champaign;
David A. Wood, University of Wisconsin—Madison

www.youseficlass.ir



Acknowledgments XXvii

Special Thanks

Duane Adams, Defense Advanced Research Projects Agency; Tom Adams; Sarita
Adve, University of Illinois at Urbana—Champaign; Anant Agarwal; Dave Albonesi,
University of Rochester; Mitch Alsup; Howard Alt; Dave Anderson; Peter Ashenden;
David Bailey; Bill Bandy, Defense Advanced Research Projects Agency; Luiz
Barroso, Compaq’s Western Research Lab; Andy Bechtolsheim; C. Gordon Bell;
Fred Berkowitz; John Best, IBM; Dileep Bhandarkar; Jeff Bier, BDTI; Mark Birman;
David Black; David Boggs; Jim Brady; Forrest Brewer; Aaron Brown, University of
California, Berkeley; E. Bugnion, Compaq’s Western Research Lab; Alper Buyuk-
tosunoglu, University of Rochester; Mark Callaghan; Jason F. Cantin; Paul Carrick;
Chen-Chung Chang; Lei Chen, University of Rochester; Pete Chen; Nhan Chu;
Doug Clark, Princeton University; Bob Cmelik; John Crawford; Zarka Cvetanovic;
Mike Dahlin, University of Texas, Austin; Merrick Darley; the staff of the DEC
Western Research Laboratory; John DeRosa; Lloyd Dickman; J. Ding; Susan Egg-
ers, University of Washington; Wael El-Essawy, University of Rochester; Patty
Enriquez, Mills; Milos Ercegovac; Robert Garner; K. Gharachorloo, Compaq’s
Western Research Lab; Garth Gibson; Ronald Greenberg; Ben Hao; John Henning,
Compaq; Mark Hill, University of Wisconsin—-Madison; Danny Hillis; David
Hodges; Urs Holzle, Google; David Hough; Ed Hudson; Chris Hughes, University
of Illinois at Urbana—Champaign; Mark Johnson; Lewis Jordan; Norm Jouppi; Wil-
liam Kahan; Randy Katz; Ed Kelly; Richard Kessler; Les Kohn; John Kowaleski,
Compaq Computer Corp; Dan Lambright; Gary Lauterbach, Sun Microsystems;
Corinna Lee; Ruby Lee; Don Lewine; Chao-Huang Lin; Paul Losleben, Defense
Advanced Research Projects Agency; Yung-Hsiang Lu; Bob Lucas, Defense
Advanced Research Projects Agency; Ken Lutz; Alan Mainwaring, Intel Berkeley
Research Labs; Al Marston; Rich Martin, Rutgers; John Mashey; Luke McDowell;
Sebastian Mirolo, Trimedia Corporation; Ravi Murthy; Biswadeep Nag; Lisa
Noordergraaf, Sun Microsystems; Bob Parker, Defense Advanced Research Proj-
ects Agency; Vern Paxson, Center for Internet Research; Lawrence Prince; Steven
Przybylski; Mark Pullen, Defense Advanced Research Projects Agency; Chris
Rowen; Margaret Rowland; Greg Semeraro, University of Rochester; Bill Shan-
non; Behrooz Shirazi; Robert Shomler; Jim Slager; Mark Smotherman, Clemson
University; the SMT research group at the University of Washington; Steve
Squires, Defense Advanced Research Projects Agency; Ajay Sreekanth; Darren
Staples; Charles Stapper; Jorge Stolfi; Peter Stoll; the students at Stanford and
Berkeley who endured our first attempts at creating this book; Bob Supnik; Steve
Swanson; Paul Taysom; Shreekant Thakkar; Alexander Thomasian, New Jersey
Institute of Technology; John Toole, Defense Advanced Research Projects Agencys;
Kees A. Vissers, Trimedia Corporation; Willa Walker; David Weaver; Ric Wheeler,
EMC; Maurice Wilkes; Richard Zimmerman.

John Hennessy = David Patterson

www.youseficlass.ir



1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13

Introduction

Classes of Computers

Defining Computer Architecture

Trends in Technology

Trends in Power and Energy in Integrated Circuits
Trends in Cost

Dependability

Measuring, Reporting, and Summarizing Performance
Quantitative Principles of Computer Design

Putting It All Together: Performance, Price, and Power
Fallacies and Pitfalls

Concluding Remarks

Historical Perspectives and References

Case Studies and Exercises by Diana Franklin

www.youseficlass.ir



Fundamentals of Quantitative
Design and Analysis

I think it's fair to say that personal computers have become the most
empowering tool we've ever created. They're tools of communication,
they're tools of creativity, and they can be shaped by their user.

Bill Gates, February 24, 2004

Computer Architecture. DOI: 10.1016/B978-0-12-383872-8.00002-1
© 2012 Elsevier, Inc. All rights reserved.

www.youseficlass.ir


http://dx.doi.org/10.1016/B978-0-12-383872-8.00002-1

2

Chapter One Fundamentals of Quantitative Design and Analysis

1.1

Introduction

Computer technology has made incredible progress in the roughly 65 years since
the first general-purpose electronic computer was created. Today, less than $500
will purchase a mobile computer that has more performance, more main memory,
and more disk storage than a computer bought in 1985 for $1 million. This rapid
improvement has come both from advances in the technology used to build com-
puters and from innovations in computer design.

Although technological improvements have been fairly steady, progress aris-
ing from better computer architectures has been much less consistent. During the
first 25 years of electronic computers, both forces made a major contribution,
delivering performance improvement of about 25% per year. The late 1970s saw
the emergence of the microprocessor. The ability of the microprocessor to ride
the improvements in integrated circuit technology led to a higher rate of perfor-
mance improvement—roughly 35% growth per year.

This growth rate, combined with the cost advantages of a mass-produced
microprocessor, led to an increasing fraction of the computer business being
based on microprocessors. In addition, two significant changes in the computer
marketplace made it easier than ever before to succeed commercially with a new
architecture. First, the virtual elimination of assembly language programming
reduced the need for object-code compatibility. Second, the creation of standard-
ized, vendor-independent operating systems, such as UNIX and its clone, Linux,
lowered the cost and risk of bringing out a new architecture.

These changes made it possible to develop successfully a new set of architec-
tures with simpler instructions, called RISC (Reduced Instruction Set Computer)
architectures, in the early 1980s. The RISC-based machines focused the attention
of designers on two critical performance techniques, the exploitation of instruction-
level parallelism (initially through pipelining and later through multiple instruction
issue) and the use of caches (initially in simple forms and later using more sophisti-
cated organizations and optimizations).

The RISC-based computers raised the performance bar, forcing prior archi-
tectures to keep up or disappear. The Digital Equipment Vax could not, and so it
was replaced by a RISC architecture. Intel rose to the challenge, primarily by
translating 80x86 instructions into RISC-like instructions internally, allowing it
to adopt many of the innovations first pioneered in the RISC designs. As transis-
tor counts soared in the late 1990s, the hardware overhead of translating the more
complex x86 architecture became negligible. In low-end applications, such as
cell phones, the cost in power and silicon area of the x86-translation overhead
helped lead to a RISC architecture, ARM, becoming dominant.

Figure 1.1 shows that the combination of architectural and organizational
enhancements led to 17 years of sustained growth in performance at an annual
rate of over 50%—a rate that is unprecedented in the computer industry.

The effect of this dramatic growth rate in the 20th century has been fourfold.
First, it has significantly enhanced the capability available to computer users. For
many applications, the highest-performance microprocessors of today outper-
form the supercomputer of less than 10 years ago.

www.youseficlass.ir



1.1 Introduction 3

100,000

Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)

Intel Core 2 Extreme 2 cores, 2.9 GHz

“714,387.
e AMD Athlon 64, 2.8 GHz - o/ 387 ...
10,000 AMD Athlon, 2.6 GHz s~/ 11:865
Intel Xeon EE 3.2 GHz

Intel DBSOEMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology)

IBM Power4, 1.3 GHz @7*
Intel VC820 motherboard, 1.0 GHz Pentium IIl processor 4l
Professional Workstation XP1000, 667 MHz 21264A
1000 Hveervmemreeeeeee e Digital AlphaServer, 8400 6/375,.575 MHz 21264, g Ttr e eienees. [USTUUREIRUNSURSTSIRSORN . .. ... . .. .

22%l/year

100 ~

Performance (vs. VAX-11/780)

IBM RS6000/540, 30 MHz,
MIPS M2000, 25 MHz

1 o PP ".,.'...'. ..............................................................................................................................

VAX 8700, 22 MHz
AX-11/780, 5 MHz """

____.—-"éS%/yea 1.5, VAX-11/785
1 + T T T T T T

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Figure 1.1 Growth in processor performance since the late 1970s. This chart plots performance relative to the VAX
11/780 as measured by the SPEC benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance
growth was largely technology driven and averaged about 25% per year. The increase in growth to about 52% since
then is attributable to more advanced architectural and organizational ideas. By 2003, this growth led to a difference
in performance of about a factor of 25 versus if we had continued at the 25% rate. Performance for floating-point-ori-
ented calculations has increased even faster. Since 2003, the limits of power and available instruction-level parallel-
ism have slowed uniprocessor performance, to no more than 22% per year, or about 5 times slower than had we
continued at 52% per year. (The fastest SPEC performance since 2007 has had automatic parallelization turned on
with increasing number of cores per chip each year, so uniprocessor speed is harder to gauge. These results are lim-
ited to single-socket systems to reduce the impact of automatic parallelization.) Figure 1.11 on page 24 shows the
improvement in clock rates for these same three eras. Since SPEC has changed over the years, performance of newer
machines is estimated by a scaling factor that relates the performance for two different versions of SPEC (e.g.,
SPEC89, SPEC92, SPEC95, SPEC2000, and SPEC2006).

Second, this dramatic improvement in cost-performance leads to new classes
of computers. Personal computers and workstations emerged in the 1980s with
the availability of the microprocessor. The last decade saw the rise of smart cell
phones and tablet computers, which many people are using as their primary com-
puting platforms instead of PCs. These mobile client devices are increasingly
using the Internet to access warehouses containing tens of thousands of servers,
which are being designed as if they were a single gigantic computer.

Third, continuing improvement of semiconductor manufacturing as pre-
dicted by Moore’s law has led to the dominance of microprocessor-based com-
puters across the entire range of computer design. Minicomputers, which were

www.youseficlass.ir



4

Chapter One Fundamentals of Quantitative Design and Analysis

traditionally made from off-the-shelf logic or from gate arrays, were replaced by
servers made using microprocessors. Even mainframe computers and high-
performance supercomputers are all collections of microprocessors.

The hardware innovations above led to a renaissance in computer design,
which emphasized both architectural innovation and efficient use of technology
improvements. This rate of growth has compounded so that by 2003, high-
performance microprocessors were 7.5 times faster than what would have been
obtained by relying solely on technology, including improved circuit design; that
is, 52% per year versus 35% per year.

This hardware renaissance led to the fourth impact, which is on software
development. This 25,000-fold performance improvement since 1978 (see
Figure 1.1) allowed programmers today to trade performance for productivity. In
place of performance-oriented languages like C and C++, much more program-
ming today is done in managed programming languages like Java and C#. More-
over, scripting languages like Python and Ruby, which are even more productive,
are gaining in popularity along with programming frameworks like Ruby on
Rails. To maintain productivity and try to close the performance gap, interpreters
with just-in-time compilers and trace-based compiling are replacing the tradi-
tional compiler and linker of the past. Software deployment is changing as well,
with Software as a Service (SaaS) used over the Internet replacing shrink-
wrapped software that must be installed and run on a local computer.

The nature of applications also changes. Speech, sound, images, and video
are becoming increasingly important, along with predictable response time that is
so critical to the user experience. An inspiring example is Google Goggles. This
application lets you hold up your cell phone to point its camera at an object, and
the image is sent wirelessly over the Internet to a warehouse-scale computer that
recognizes the object and tells you interesting information about it. It might
translate text on the object to another language; read the bar code on a book cover
to tell you if a book is available online and its price; or, if you pan the phone cam-
era, tell you what businesses are nearby along with their websites, phone num-
bers, and directions.

Alas, Figure 1.1 also shows that this 17-year hardware renaissance is over.
Since 2003, single-processor performance improvement has dropped to less than
22% per year due to the twin hurdles of maximum power dissipation of air-
cooled chips and the lack of more instruction-level parallelism to exploit effi-
ciently. Indeed, in 2004 Intel canceled its high-performance uniprocessor projects
and joined others in declaring that the road to higher performance would be via
multiple processors per chip rather than via faster uniprocessors.

This milestone signals a historic switch from relying solely on instruction-
level parallelism (ILP), the primary focus of the first three editions of this book,
to data-level parallelism (DLP) and thread-level parallelism (TLP), which were
featured in the fourth edition and expanded in this edition. This edition also adds
warehouse-scale computers and request-level parallelism (RLP). Whereas
the compiler and hardware conspire to exploit ILP implicitly without the pro-
grammer’s attention, DLP, TLP, and RLP are explicitly parallel, requiring the

www.youseficlass.ir



1.2 Classes of Computers 5

restructuring of the application so that it can exploit explicit parallelism. In some
instances, this is easy; in many, it is a major new burden for programmers.

This text is about the architectural ideas and accompanying compiler
improvements that made the incredible growth rate possible in the last century,
the reasons for the dramatic change, and the challenges and initial promising
approaches to architectural ideas, compilers, and interpreters for the 21st century.
At the core is a quantitative approach to computer design and analysis that uses
empirical observations of programs, experimentation, and simulation as its tools.
It is this style and approach to computer design that is reflected in this text. The
purpose of this chapter is to lay the quantitative foundation on which the follow-
ing chapters and appendices are based.

This book was written not only to explain this design style but also to stimu-
late you to contribute to this progress. We believe this approach will work for
explicitly parallel computers of the future just as it worked for the implicitly par-
allel computers of the past.

1.2 Classes of Computers

These changes have set the stage for a dramatic change in how we view comput-
ing, computing applications, and the computer markets in this new century. Not
since the creation of the personal computer have we seen such dramatic changes
in the way computers appear and in how they are used. These changes in com-
puter use have led to five different computing markets, each characterized by dif-
ferent applications, requirements, and computing technologies. Figure 1.2
summarizes these mainstream classes of computing environments and their
important characteristics.

Personal Clusters/warehouse-
Feature mobile device  Desktop Server I Embedded
(PMD) scale computer

Price of $100-$1000 $300-$2500  $5000-$10,000,000 $100,000-$200,000,000 $10-$100,000
system

Price of $10-$100 $50-$500 $200-$2000 $50-$250 $0.01-$100
micro-
processor
Critical Cost, energy, Price- Throughput, Price-performance, Price, energy,
system media performance,  availability, throughput, energy application-specific
design performance, energy, scalability, energy ~ proportionality performance
issues responsiveness  graphics
performance

Figure 1.2 A summary of the five mainstream computing classes and their system characteristics. Sales in 2010
included about 1.8 billion PMDs (90% cell phones), 350 million desktop PCs, and 20 million servers. The total number
of embedded processors sold was nearly 19 billion. In total, 6.1 billion ARM-technology based chips were shipped in
2010. Note the wide range in system price for servers and embedded systems, which go from USB keys to network
routers. For servers, this range arises from the need for very large-scale multiprocessor systems for high-end
transaction processing.

www.youseficlass.ir



6

Chapter One Fundamentals of Quantitative Design and Analysis

Personal Mobile Device (PMD)

Personal mobile device (PMD) is the term we apply to a collection of wireless
devices with multimedia user interfaces such as cell phones, tablet computers,
and so on. Cost is a prime concern given the consumer price for the whole prod-
uct is a few hundred dollars. Although the emphasis on energy efficiency is fre-
quently driven by the use of batteries, the need to use less expensive packaging—
plastic versus ceramic—and the absence of a fan for cooling also limit total
power consumption. We examine the issue of energy and power in more detail in
Section 1.5. Applications on PMDs are often Web-based and media-oriented, like
the Google Goggles example above. Energy and size requirements lead to use of
Flash memory for storage (Chapter 2) instead of magnetic disks.

Responsiveness and predictability are key characteristics for media applica-
tions. A real-time performance requirement means a segment of the application
has an absolute maximum execution time. For example, in playing a video on a
PMD, the time to process each video frame is limited, since the processor must
accept and process the next frame shortly. In some applications, a more nuanced
requirement exists: the average time for a particular task is constrained as well
as the number of instances when some maximum time is exceeded. Such
approaches—sometimes called soft real-time—arise when it is possible to occa-
sionally miss the time constraint on an event, as long as not too many are missed.
Real-time performance tends to be highly application dependent.

Other key characteristics in many PMD applications are the need to minimize
memory and the need to use energy efficiently. Energy efficiency is driven by
both battery power and heat dissipation. The memory can be a substantial portion
of the system cost, and it is important to optimize memory size in such cases. The
importance of memory size translates to an emphasis on code size, since data size
is dictated by the application.

Desktop Computing

The first, and probably still the largest market in dollar terms, is desktop comput-
ing. Desktop computing spans from low-end netbooks that sell for under $300 to
high-end, heavily configured workstations that may sell for $2500. Since 2008,
more than half of the desktop computers made each year have been battery oper-
ated laptop computers.

Throughout this range in price and capability, the desktop market tends to be
driven to optimize price-performance. This combination of performance (mea-
sured primarily in terms of compute performance and graphics performance) and
price of a system is what matters most to customers in this market, and hence to
computer designers. As a result, the newest, highest-performance microproces-
sors and cost-reduced microprocessors often appear first in desktop systems (see
Section 1.6 for a discussion of the issues affecting the cost of computers).

Desktop computing also tends to be reasonably well characterized in terms of
applications and benchmarking, though the increasing use of Web-centric, inter-
active applications poses new challenges in performance evaluation.

www.youseficlass.ir



1.2 Classes of Computers 7

Servers

As the shift to desktop computing occurred in the 1980s, the role of servers grew
to provide larger-scale and more reliable file and computing services. Such serv-
ers have become the backbone of large-scale enterprise computing, replacing the
traditional mainframe.

For servers, different characteristics are important. First, availability is criti-
cal. (We discuss availability in Section 1.7.) Consider the servers running ATM
machines for banks or airline reservation systems. Failure of such server systems
is far more catastrophic than failure of a single desktop, since these servers must
operate seven days a week, 24 hours a day. Figure 1.3 estimates revenue costs of
downtime for server applications.

A second key feature of server systems is scalability. Server systems often
grow in response to an increasing demand for the services they support or an
increase in functional requirements. Thus, the ability to scale up the computing
capacity, the memory, the storage, and the I/O bandwidth of a server is crucial.

Finally, servers are designed for efficient throughput. That is, the overall per-
formance of the server—in terms of transactions per minute or Web pages served
per second—is what is crucial. Responsiveness to an individual request remains
important, but overall efficiency and cost-effectiveness, as determined by how
many requests can be handled in a unit time, are the key metrics for most servers.
We return to the issue of assessing performance for different types of computing
environments in Section 1.8.

Annual losses with downtime of

Application Cost of downtime 1% 0.5% 0.1%
per hour (87.6 hrs/yr) (43.8 hrs/yr) (8.8 hrs/yr)

Brokerage operations $6,450,000 $565,000,000 $283,000,000 $56,500,000
Credit card authorization $2.600,000 $228,000,000 $114,000,000 $22,800,000
Package shipping services $150,000 $13,000,000 $6,600,000 $1,300,000
Home shopping channel $113,000 $9,900,000 $4,900,000 $1,000,000
Catalog sales center $90,000 $7,900,000 $3,900,000 $800,000
Airline reservation center $89,000 $7,900,000 $3,900,000 $800,000
Cellular service activation $41,000 $3,600,000 $1,800,000 $400,000
Online network fees $25,000 $2,200,000 $1,100,000 $200,000
ATM service fees $14,000 $1,200,000 $600,000 $100,000

Figure 1.3 Costs rounded to nearest $100,000 of an unavailable system are shown by analyzing the cost of
downtime (in terms of immediately lost revenue), assuming three different levels of availability and that down-
time is distributed uniformly. These data are from Kembel [2000] and were collected and analyzed by Contingency

Planning Research.

www.youseficlass.ir



8

Chapter One Fundamentals of Quantitative Design and Analysis

Clusters/Warehouse-Scale Computers

The growth of Software as a Service (SaaS) for applications like search, social
networking, video sharing, multiplayer games, online shopping, and so on has led
to the growth of a class of computers called clusters. Clusters are collections of
desktop computers or servers connected by local area networks to act as a single
larger computer. Each node runs its own operating system, and nodes communi-
cate using a networking protocol. The largest of the clusters are called
warehouse-scale computers (WSCs), in that they are designed so that tens of
thousands of servers can act as one. Chapter 6 describes this class of the
extremely large computers.

Price-performance and power are critical to WSCs since they are so large. As
Chapter 6 explains, 80% of the cost of a $90M warehouse is associated with
power and cooling of the computers inside. The computers themselves and net-
working gear cost another $70M and they must be replaced every few years.
When you are buying that much computing, you need to buy wisely, as a 10%
improvement in price-performance means a savings of $7M (10% of $70M).

WSCs are related to servers, in that availability is critical. For example, Ama-
zon.com had $13 billion in sales in the fourth quarter of 2010. As there are about
2200 hours in a quarter, the average revenue per hour was almost $6M. During a
peak hour for Christmas shopping, the potential loss would be many times higher.
As Chapter 6 explains, the difference from servers is that WSCs use redundant
inexpensive components as the building blocks, relying on a software layer to
catch and isolate the many failures that will happen with computing at this scale.
Note that scalability for a WSC is handled by the local area network connecting
the computers and not by integrated computer hardware, as in the case of servers.

Supercomputers are related to WSCs in that they are equally expensive, cost-
ing hundreds of millions of dollars, but supercomputers differ by emphasizing
floating-point performance and by running large, communication-intensive batch
programs that can run for weeks at a time. This tight coupling leads to use of
much faster internal networks. In contrast, WSCs emphasize interactive applica-
tions, large-scale storage, dependability, and high Internet bandwidth.

Embedded Computers

Embedded computers are found in everyday machines; microwaves, washing
machines, most printers, most networking switches, and all cars contain simple
embedded microprocessors.

The processors in a PMD are often considered embedded computers, but we
are keeping them as a separate category because PMDs are platforms that can run
externally developed software and they share many of the characteristics of desk-
top computers. Other embedded devices are more limited in hardware and soft-
ware sophistication. We use the ability to run third-party software as the dividing
line between non-embedded and embedded computers.

Embedded computers have the widest spread of processing power and cost.
They include 8-bit and 16-bit processors that may cost less than a dime, 32-bit

www.youseficlass.ir



1.2 Classes of Computers 9

microprocessors that execute 100 million instructions per second and cost under
$5, and high-end processors for network switches that cost $100 and can execute
billions of instructions per second. Although the range of computing power in the
embedded computing market is very large, price is a key factor in the design of
computers for this space. Performance requirements do exist, of course, but the
primary goal is often meeting the performance need at a minimum price, rather
than achieving higher performance at a higher price.

Most of this book applies to the design, use, and performance of embedded
processors, whether they are off-the-shelf microprocessors or microprocessor
cores that will be assembled with other special-purpose hardware. Indeed, the
third edition of this book included examples from embedded computing to illus-
trate the ideas in every chapter.

Alas, most readers found these examples unsatisfactory, as the data that drive
the quantitative design and evaluation of other classes of computers have not yet
been extended well to embedded computing (see the challenges with EEMBC,
for example, in Section 1.8). Hence, we are left for now with qualitative descrip-
tions, which do not fit well with the rest of the book. As a result, in this and the
prior edition we consolidated the embedded material into Appendix E. We
believe a separate appendix improves the flow of ideas in the text while allowing
readers to see how the differing requirements affect embedded computing.

Classes of Parallelism and Parallel Architectures

Parallelism at multiple levels is now the driving force of computer design across
all four classes of computers, with energy and cost being the primary constraints.
There are basically two kinds of parallelism in applications:

1. Data-Level Parallelism (DLP) arises because there are many data items that
can be operated on at the same time.

2. Task-Level Parallelism (TLP) arises because tasks of work are created that
can operate independently and largely in parallel.

Computer hardware in turn can exploit these two kinds of application parallelism
in four major ways:

1. Instruction-Level Parallelism exploits data-level parallelism at modest levels
with compiler help using ideas like pipelining and at medium levels using
ideas like speculative execution.

2. Vector Architectures and Graphic Processor Units (GPUs) exploit data-level
parallelism by applying a single instruction to a collection of data in parallel.

3. Thread-Level Parallelism exploits either data-level parallelism or task-level
parallelism in a tightly coupled hardware model that allows for interaction
among parallel threads.

4. Request-Level Parallelism exploits parallelism among largely decoupled
tasks specified by the programmer or the operating system.

www.youseficlass.ir



10

Chapter One Fundamentals of Quantitative Design and Analysis

These four ways for hardware to support the data-level parallelism and

task-level parallelism go back 50 years. When Michael Flynn [1966] studied
the parallel computing efforts in the 1960s, he found a simple classification
whose abbreviations we still use today. He looked at the parallelism in the
instruction and data streams called for by the instructions at the most con-
strained component of the multiprocessor, and placed all computers into one of
four categories:

1.

3.

4.

Single instruction stream, single data stream (SISD)—This category is the
uniprocessor. The programmer thinks of it as the standard sequential com-
puter, but it can exploit instruction-level parallelism. Chapter 3 covers SISD
architectures that use ILP techniques such as superscalar and speculative exe-
cution.

Single instruction stream, multiple data streams (SIMD)—The same
instruction is executed by multiple processors using different data streams.
SIMD computers exploit data-level parallelism by applying the same
operations to multiple items of data in parallel. Each processor has its own
data memory (hence the MD of SIMD), but there is a single instruction
memory and control processor, which fetches and dispatches instructions.
Chapter 4 covers DLP and three different architectures that exploit it:
vector architectures, multimedia extensions to standard instruction sets,
and GPUs.

Multiple instruction streams, single data stream (MISD)—No commercial
multiprocessor of this type has been built to date, but it rounds out this simple
classification.

Multiple instruction streams, multiple data streams (MIMD)—Each proces-
sor fetches its own instructions and operates on its own data, and it targets
task-level parallelism. In general, MIMD is more flexible than SIMD and
thus more generally applicable, but it is inherently more expensive than
SIMD. For example, MIMD computers can also exploit data-level parallel-
ism, although the overhead is likely to be higher than would be seen in an
SIMD computer. This overhead means that grain size must be sufficiently
large to exploit the parallelism efficiently. Chapter 5 covers tightly coupled
MIMD architectures, which exploit thread-level parallelism since multiple
cooperating threads operate in parallel. Chapter 6 covers loosely coupled
MIMD architectures—specifically, clusters and warehouse-scale comput-
ers—that exploit request-level parallelism, where many independent tasks
can proceed in parallel naturally with little need for communication or
synchronization.

This taxonomy is a coarse model, as many parallel processors are hybrids of the
SISD, SIMD, and MIMD classes. Nonetheless, it is useful to put a framework on
the design space for the computers we will see in this book.

www.youseficlass.ir



1.3

1.3 Defining Computer Architecture 11

Defining Computer Architecture

The task the computer designer faces is a complex one: Determine what
attributes are important for a new computer, then design a computer to maximize
performance and energy efficiency while staying within cost, power, and avail-
ability constraints. This task has many aspects, including instruction set design,
functional organization, logic design, and implementation. The implementation
may encompass integrated circuit design, packaging, power, and cooling. Opti-
mizing the design requires familiarity with a very wide range of technologies,
from compilers and operating systems to logic design and packaging.

Several years ago, the term computer architecture often referred only to
instruction set design. Other aspects of computer design were called implementa-
tion, often insinuating that implementation is uninteresting or less challenging.

We believe this view is incorrect. The architect’s or designer’s job is much
more than instruction set design, and the technical hurdles in the other aspects of
the project are likely more challenging than those encountered in instruction set
design. We’ll quickly review instruction set architecture before describing the
larger challenges for the computer architect.

Instruction Set Architecture: The Myopic View of Computer
Architecture

We use the term instruction set architecture (ISA) to refer to the actual programmer-
visible instruction set in this book. The ISA serves as the boundary between the
software and hardware. This quick review of ISA will use examples from 80x86,
ARM, and MIPS to illustrate the seven dimensions of an ISA. Appendices A and
K give more details on the three ISAs.

1. Class of ISA—Nearly all ISAs today are classified as general-purpose register
architectures, where the operands are either registers or memory locations.
The 80x86 has 16 general-purpose registers and 16 that can hold floating-
point data, while MIPS has 32 general-purpose and 32 floating-point registers
(see Figure 1.4). The two popular versions of this class are register-memory
ISAs, such as the 80x86, which can access memory as part of many instruc-
tions, and load-store ISAs, such as ARM and MIPS, which can access mem-
ory only with load or store instructions. All recent ISAs are load-store.

2. Memory addressing—Virtually all desktop and server computers, including
the 80x86, ARM, and MIPS, use byte addressing to access memory operands.
Some architectures, like ARM and MIPS, require that objects must be
aligned. An access to an object of size s bytes at byte address A is aligned if
A mod s =0. (See Figure A.5 on page A-8.) The 80x86 does not require
alignment, but accesses are generally faster if operands are aligned.

3. Addressing modes—In addition to specifying registers and constant operands,
addressing modes specify the address of a memory object. MIPS addressing

www.youseficlass.ir



12 Chapter One Fundamentals of Quantitative Design and Analysis

Name Number Use Preserved across a call?
$zero 0 The constant value 0 N.A.
$at 1 Assembler temporary No
$v0-$v1 2-3 Values for function results and No
expression evaluation

$a0-$a3 4-7 Arguments No
$t0-$t7 8-15 Temporaries No
$s0-$s7 16-23 Saved temporaries Yes
$t8-$t9 24-25 Temporaries No
$k0-$k1 26-27 Reserved for OS kernel No
$gp 28 Global pointer Yes
$sp 29 Stack pointer Yes
$fp 30 Frame pointer Yes
$ra 31 Return address Yes

Figure 1.4 MIPS registers and usage conventions. In addition to the 32 general-
purpose registers (R0-R31), MIPS has 32 floating-point registers (FO-F31) that can hold
either a 32-bit single-precision number or a 64-bit double-precision number.

modes are Register, Immediate (for constants), and Displacement, where a
constant offset is added to a register to form the memory address. The 80x86
supports those three plus three variations of displacement: no register (abso-
lute), two registers (based indexed with displacement), and two registers
where one register is multiplied by the size of the operand in bytes (based
with scaled index and displacement). It has more like the last three, minus the
displacement field, plus register indirect, indexed, and based with scaled
index. ARM has the three MIPS addressing modes plus PC-relative address-
ing, the sum of two registers, and the sum of two registers where one register
is multiplied by the size of the operand in bytes. It also has autoincrement and
autodecrement addressing, where the calculated address replaces the contents
of one of the registers used in forming the address.

Types and sizes of operands—Like most ISAs, 80x86, ARM, and MIPS
support operand sizes of 8-bit (ASCII character), 16-bit (Unicode character
or half word), 32-bit (integer or word), 64-bit (double word or long inte-
ger), and IEEE 754 floating point in 32-bit (single precision) and 64-bit
(double precision). The 80x86 also supports 80-bit floating point (extended
double precision).

Operations—The general categories of operations are data transfer, arithme-
tic logical, control (discussed next), and floating point. MIPS is a simple and
easy-to-pipeline instruction set architecture, and it is representative of the RISC
architectures being used in 2011. Figure 1.5 summarizes the MIPS ISA. The
80x86 has a much richer and larger set of operations (see Appendix K).

www.youseficlass.ir



1.3 Defining Computer Architecture 13

Instruction type/opcode

Instruction meaning

Data transfers

Move data between registers and memory, or between the integer and FP or special
registers; only memory address mode is 16-bit displacement + contents of a GPR

LB, LBU, SB Load byte, load byte unsigned, store byte (to/from integer registers)

LH, LHU, SH Load half word, load half word unsigned, store half word (to/from integer registers)
LW, LWU, SW Load word, load word unsigned, store word (to/from integer registers)

LD, SD Load double word, store double word (to/from integer registers)

L.S,L.D,S.S,S.D Load SP float, load DP float, store SP float, store DP float

MFCO, MTCO Copy from/to GPR to/from a special register

MOV.S, MOV.D Copy one SP or DP FP register to another FP register

MFC1, MTC1 Copy 32 bits to/from FP registers from/to integer registers

Arithmetic/logical Operations on integer or logical data in GPRs; signed arithmetic trap on overflow
DADD, DADDI, DADDU, DADDIU  Add, add immediate (all immediates are 16 bits); signed and unsigned

DSUB, DSUBU Subtract, signed and unsigned

DMUL, DMULU, DDIV, Multiply and divide, signed and unsigned; multiply-add; all operations take and yield
DDIVU, MADD 64-bit values

AND, ANDI And, and immediate

OR, ORI, XOR, XORI Or, or immediate, exclusive or, exclusive or immediate

LUI Load upper immediate; loads bits 32 to 47 of register with immediate, then sign-extends

DSLL, DSRL, DSRA, DSLLYV,
DSRLV, DSRAV

SLT, SLTI, SLTU, SLTIU

Shifts: both immediate (DS__) and variable form (DS__V); shifts are shift left logical,
right logical, right arithmetic

Set less than, set less than immediate, signed and unsigned

Control
BEQZ, BNEZ
BEQ, BNE
BC1T, BC1F
MOVN, MOVZ
J,JR

JAL, JALR
TRAP

ERET

Conditional branches and jumps; PC-relative or through register

Branch GPRs equal/not equal to zero; 16-bit offset from PC + 4

Branch GPR equal/not equal; 16-bit offset from PC + 4

Test comparison bit in the FP status register and branch; 16-bit offset from PC + 4
Copy GPR to another GPR if third GPR is negative, zero

Jumps: 26-bit offset from PC + 4 (J) or target in register (JR)

Jump and link: save PC + 4 in R31, target is PC-relative (JAL) or a register (JALR)
Transfer to operating system at a vectored address

Return to user code from an exception; restore user mode

Floating point

ADD.D, ADD.S, ADD.PS
SUB.D, SUB.S, SUB.PS
MUL.D, MUL.S, MUL.PS
MADD.D, MADD. S, MADD. PS
DIV.D, DIV.S,DIV.PS
CvT. .

C. .D,C. .S

FP operations on DP and SP formats

Add DP, SP numbers, and pairs of SP numbers

Subtract DP, SP numbers, and pairs of SP numbers
Multiply DP, SP floating point, and pairs of SP numbers
Multiply-add DP, SP numbers, and pairs of SP numbers
Divide DP, SP floating point, and pairs of SP numbers

Convert instructions: CVT.x.y converts from type x to type y, where x and y are L
(64-bit integer), W (32-bit integer), D (DP), or S (SP). Both operands are FPRs.

DP and SP compares: “__” = LT,GT,LE,GE,EQ,NE; sets bit in FP status register

Figure 1.5 Subset of the instructions in MIPS64. SP = single precision; DP = double precision. Appendix A gives
much more detail on MIPS64. For data, the most significant bit number is O; least is 63.

www.youseficlass.ir



14

Chapter One Fundamentals of Quantitative Design and Analysis

6. Control flow instructions—Virtually all ISAs, including these three, support

conditional branches, unconditional jumps, procedure calls, and returns. All
three use PC-relative addressing, where the branch address is specified by an
address field that is added to the PC. There are some small differences. MIPS
conditional branches (BE, BNE, etc.) test the contents of registers, while the
80x86 and ARM branches test condition code bits set as side effects of arith-
metic/logic operations. The ARM and MIPS procedure call places the return
address in a register, while the 80x86 call (CALLF) places the return address
on a stack in memory.

Encoding an ISA—There are two basic choices on encoding: fixed length and
variable length. All ARM and MIPS instructions are 32 bits long, which sim-
plifies instruction decoding. Figure 1.6 shows the MIPS instruction formats.
The 80x86 encoding is variable length, ranging from 1 to 18 bytes. Variable-
length instructions can take less space than fixed-length instructions, so a
program compiled for the 80x86 is usually smaller than the same program
compiled for MIPS. Note that choices mentioned above will affect how the
instructions are encoded into a binary representation. For example, the num-
ber of registers and the number of addressing modes both have a significant
impact on the size of instructions, as the register field and addressing mode
field can appear many times in a single instruction. (Note that ARM and
MIPS later offered extensions to offer 16-bit length instructions so as to
reduce program size, called Thumb or Thumb-2 and MIPS16, respectively.)

Basic instruction formats

R | opcode | rs | rt | rd shamt | funct ‘
31 26 25 21 20 16 15 1110 65 0
| | opcode | rs | rt | immediate ‘
31 26 25 21 20 16 15
J | opcode | address ‘
31 26 25
Floating-point instruction formats
FR | opcode | fmt | ft | fs fd funct ‘
31 26 25 21 20 16 15 1110 65 0
Fl | opcode | fmt | ft | immediate ‘
31 26 25 21 20 16 15

Figure 1.6 MIPS64 instruction set architecture formats. All instructions are 32 bits
long. The R format is for integer register-to-register operations, such as DADDU, DSUBU,
and so on. The | format is for data transfers, branches, and immediate instructions, such
as LD, SD, BEQZ, and DADDIs. The J format is for jumps, the FR format for floating-point
operations, and the Fl format for floating-point branches.

www.youseficlass.ir



1.3 Defining Computer Architecture 15

The other challenges facing the computer architect beyond ISA design are
particularly acute at the present, when the differences among instruction sets are
small and when there are distinct application areas. Therefore, starting with the
last edition, the bulk of instruction set material beyond this quick review is found
in the appendices (see Appendices A and K).

We use a subset of MIPS64 as the example ISA in this book because it is both
the dominant ISA for networking and it is an elegant example of the RISC architec-
tures mentioned earlier, of which ARM (Advanced RISC Machine) is the most
popular example. ARM processors were in 6.1 billion chips shipped in 2010, or
roughly 20 times as many chips that shipped with 80x86 processors.

Genuine Computer Architecture: Designing the Organization
and Hardware to Meet Goals and Functional Requirements

The implementation of a computer has two components: organization and
hardware. The term organization includes the high-level aspects of a computer’s
design, such as the memory system, the memory interconnect, and the design of
the internal processor or CPU (central processing unit—where arithmetic, logic,
branching, and data transfer are implemented). The term microarchitecture is
also used instead of organization. For example, two processors with the same
instruction set architectures but different organizations are the AMD Opteron and
the Intel Core i7. Both processors implement the x86 instruction set, but they
have very different pipeline and cache organizations.

The switch to multiple processors per microprocessor led to the term core to
also be used for processor. Instead of saying multiprocessor microprocessor, the
term multicore has caught on. Given that virtually all chips have multiple proces-
sors, the term central processing unit, or CPU, is fading in popularity.

Hardware refers to the specifics of a computer, including the detailed logic
design and the packaging technology of the computer. Often a line of computers
contains computers with identical instruction set architectures and nearly identical
organizations, but they differ in the detailed hardware implementation. For exam-
ple, the Intel Core i7 (see Chapter 3) and the Intel Xeon 7560 (see Chapter 5) are
nearly identical but offer different clock rates and different memory systems,
making the Xeon 7560 more effective for server computers.

In this book, the word architecture covers all three aspects of computer
design—instruction set architecture, organization or microarchitecture, and
hardware.

Computer architects must design a computer to meet functional requirements
as well as price, power, performance, and availability goals. Figure 1.7 summa-
rizes requirements to consider in designing a new computer. Often, architects
also must determine what the functional requirements are, which can be a major
task. The requirements may be specific features inspired by the market. Applica-
tion software often drives the choice of certain functional requirements by deter-
mining how the computer will be used. If a large body of software exists for a
certain instruction set architecture, the architect may decide that a new computer

www.youseficlass.ir



16 Chapter One Fundamentals of Quantitative Design and Analysis

Functional requirements Typical features required or supported

Application area Target of computer

Personal mobile device Real-time performance for a range of tasks, including interactive performance for
graphics, video, and audio; energy efficiency (Ch. 2, 3, 4, 5; App. A)

General-purpose desktop Balanced performance for a range of tasks, including interactive performance for
graphics, video, and audio (Ch. 2, 3, 4, 5; App. A)

Servers Support for databases and transaction processing; enhancements for reliability and
availability; support for scalability (Ch. 2, 5; App. A, D, F)

Clusters/warehouse-scale Throughput performance for many independent tasks; error correction for

computers memory; energy proportionality (Ch 2, 6; App. F)

Embedded computing Often requires special support for graphics or video (or other application-specific

extension); power limitations and power control may be required; real-time
constraints (Ch. 2, 3, 5; App. A, E)

Level of software compatibility Determines amount of existing software for computer

At programming language Most flexible for designer; need new compiler (Ch. 3, 5; App. A)

Object code or binary Instruction set architecture is completely defined—Ilittle flexibility—but no
compatible investment needed in software or porting programs (App. A)

Operating system requirements Necessary features to support chosen OS (Ch. 2; App. B)

Size of address space Very important feature (Ch. 2); may limit applications

Memory management Required for modern OS; may be paged or segmented (Ch. 2)

Protection Different OS and application needs: page vs. segment; virtual machines (Ch. 2)

Standards Certain standards may be required by marketplace

Floating point Format and arithmetic: IEEE 754 standard (App. J), special arithmetic for graphics
or signal processing

1/0 interfaces For /O devices: Serial ATA, Serial Attached SCSI, PCI Express (App. D, F)

Operating systems UNIX, Windows, Linux, CISCO IOS

Networks Support required for different networks: Ethernet, Infiniband (App. F)

Programming languages Languages (ANSI C, C++, Java, Fortran) affect instruction set (App. A)

Figure 1.7 Summary of some of the most important functional requirements an architect faces. The left-hand
column describes the class of requirement, while the right-hand column gives specific examples. The right-hand
column also contains references to chapters and appendices that deal with the specific issues.

should implement an existing instruction set. The presence of a large market for a
particular class of applications might encourage the designers to incorporate
requirements that would make the computer competitive in that market. Later
chapters examine many of these requirements and features in depth.

Architects must also be aware of important trends in both the technology and
the use of computers, as such trends affect not only the future cost but also the
longevity of an architecture.

www.youseficlass.ir



1.4

1.4 Trends in Technology 17

Trends in Technology

If an instruction set architecture is to be successful, it must be designed to survive
rapid changes in computer technology. After all, a successful new instruction set
architecture may last decades—for example, the core of the IBM mainframe has
been in use for nearly 50 years. An architect must plan for technology changes
that can increase the lifetime of a successful computer.

To plan for the evolution of a computer, the designer must be aware of rapid
changes in implementation technology. Five implementation technologies, which
change at a dramatic pace, are critical to modern implementations:

m [Integrated circuit logic technology—Transistor density increases by about
35% per year, quadrupling somewhat over four years. Increases in die size
are less predictable and slower, ranging from 10% to 20% per year. The com-
bined effect is a growth rate in transistor count on a chip of about 40% to 55%
per year, or doubling every 18 to 24 months. This trend is popularly known as
Moore’s law. Device speed scales more slowly, as we discuss below.

m  Semiconductor DRAM (dynamic random-access memory)—Now that most
DRAM chips are primarily shipped in DIMM modules, it is harder to track
chip capacity, as DRAM manufacturers typically offer several capacity prod-
ucts at the same time to match DIMM capacity. Capacity per DRAM chip has
increased by about 25% to 40% per year recently, doubling roughly every
two to three years. This technology is the foundation of main memory, and
we discuss it in Chapter 2. Note that the rate of improvement has continued to
slow over the editions of this book, as Figure 1.8 shows. There is even con-
cern as whether the growth rate will stop in the middle of this decade due to
the increasing difficulty of efficiently manufacturing even smaller DRAM
cells [Kim 2005]. Chapter 2 mentions several other technologies that may
replace DRAM if it hits a capacity wall.

DRAM growth Characterization of impact

CA:AQA Edition Year rate on DRAM capacity
1 1990 60%/year Quadrupling every 3 years
2 1996 60%/year Quadrupling every 3 years
3 2003 40%—-60%/year Quadrupling every 3 to 4 years
4 2007 40%/year Doubling every 2 years
5 2011 25%—-40%/year Doubling every 2 to 3 years

Figure 1.8 Change in rate of improvement in DRAM capacity over time. The first two
editions even called this rate the DRAM Growth Rule of Thumb, since it had been so
dependable since 1977 with the 16-kilobit DRAM through 1996 with the 64-megabit
DRAM. Today, some question whether DRAM capacity can improve at all in 5 to 7
years, due to difficulties in manufacturing an increasingly three-dimensional DRAM
cell [Kim 2005].

www.youseficlass.ir



18

Chapter One Fundamentals of Quantitative Design and Analysis

m  Semiconductor Flash (electrically erasable programmable read-only mem-
ory)—This nonvolatile semiconductor memory is the standard storage device
in PMDs, and its rapidly increasing popularity has fueled its rapid growth rate
in capacity. Capacity per Flash chip has increased by about 50% to 60% per
year recently, doubling roughly every two years. In 2011, Flash memory is 15
to 20 times cheaper per bit than DRAM. Chapter 2 describes Flash memory.

m  Magnetic disk technology—Prior to 1990, density increased by about 30%
per year, doubling in three years. It rose to 60% per year thereafter, and
increased to 100% per year in 1996. Since 2004, it has dropped back to
about 40% per year, or doubled every three years. Disks are 15 to 25 times
cheaper per bit than Flash. Given the slowed growth rate of DRAM, disks
are now 300 to 500 times cheaper per bit than DRAM. This technology is
central to server and warehouse scale storage, and we discuss the trends in
detail in Appendix D.

m  Network technology—Network performance depends both on the perfor-
mance of switches and on the performance of the transmission system. We
discuss the trends in networking in Appendix F.

These rapidly changing technologies shape the design of a computer that,
with speed and technology enhancements, may have a lifetime of three to five
years. Key technologies such as DRAM, Flash, and disk change sufficiently that
the designer must plan for these changes. Indeed, designers often design for the
next technology, knowing that when a product begins shipping in volume that the
next technology may be the most cost-effective or may have performance advan-
tages. Traditionally, cost has decreased at about the rate at which density
increases.

Although technology improves continuously, the impact of these improve-
ments can be in discrete leaps, as a threshold that allows a new capability is
reached. For example, when MOS technology reached a point in the early 1980s
where between 25,000 and 50,000 transistors could fit on a single chip, it became
possible to build a single-chip, 32-bit microprocessor. By the late 1980s, first-level
caches could go on a chip. By eliminating chip crossings within the processor and
between the processor and the cache, a dramatic improvement in cost-performance
and energy-performance was possible. This design was simply infeasible until the
technology reached a certain point. With multicore microprocessors and increasing
numbers of cores each generation, even server computers are increasingly headed
toward a single chip for all processors. Such technology thresholds are not rare and
have a significant impact on a wide variety of design decisions.

Performance Trends: Bandwidth over Latency

As we shall see in Section 1.8, bandwidth or throughput is the total amount of
work done in a given time, such as megabytes per second for a disk transfer. In
contrast, latency or response time is the time between the start and the completion
of an event, such as milliseconds for a disk access. Figure 1.9 plots the relative

www.youseficlass.ir



1.4 Trends in Technology 19

100,000
Microprocessor
10,000 L NI Ly I T arrr.
<
(0]
IS
(]
>
o
Q. B 0c0000009000000009000000009000060000000)/FbE0a000E00000009570Y @OAC0GE0aE00EIEAI0EI0G00AA00300GEAAE03C0
g 1000
<
kel
=
©
2 .
g OO oo o LIRS o
)
=
©
(0]
o
104 I e \ ......... e ——
(Latency improvement
= bandwidth improvement)
1

1 10 100
Relative latency improvement

Figure 1.9 Log-log plot of bandwidth and latency milestones from Figure 1.10 rela-
tive to the first milestone. Note that latency improved 6X to 80X while bandwidth
improved about 300X to 25,000X. Updated from Patterson [2004].

improvement in bandwidth and latency for technology milestones for micropro-
cessors, memory, networks, and disks. Figure 1.10 describes the examples and
milestones in more detail.

Performance is the primary differentiator for microprocessors and networks,
so they have seen the greatest gains: 10,000-25,000X in bandwidth and 30-80X
in latency. Capacity is generally more important than performance for memory
and disks, so capacity has improved most, yet bandwidth advances of 300—
1200X are still much greater than gains in latency of 6-8X.

Clearly, bandwidth has outpaced latency across these technologies and will
likely continue to do so. A simple rule of thumb is that bandwidth grows by at
least the square of the improvement in latency. Computer designers should plan
accordingly.

Scaling of Transistor Performance and Wires

Integrated circuit processes are characterized by the feature size, which is the
minimum size of a transistor or a wire in either the x or y dimension. Feature
sizes have decreased from 10 microns in 1971 to 0.032 microns in 2011; in fact,
we have switched units, so production in 2011 is referred to as “32 nanometers,”
and 22 nanometer chips are under way. Since the transistor count per square

www.youseficlass.ir



20 Chapter One Fundamentals of Quantitative Design and Analysis

Microprocessor 16-bit 32-bit 5-stage 2-way Out-of-order Out-of-order Multicore
address/ address/ pipeline, superscalar, 3-way superpipelined, OOO 4-way
bus, bus, on-chipl & D  64-bit bus superscalar on-chip L2 on chip L3
microcoded microcoded caches, FPU cache cache, Turbo

Product Intel 80286 Intel 80386 Intel 80486 Intel Pentium Intel Pentium Pro  Intel Pentium 4  Intel Core i7
Year 1982 1985 1989 1993 1997 2001 2010
Die size (mm?) 47 43 81 90 308 217 240
Transistors 134,000 275,000 1,200,000 3,100,000 5,500,000 42,000,000  1,170,000,000
Processors/chip 1 1 1 1 1 1 4
Pins 68 132 168 273 387 423 1366
Latency (clocks) 6 5 5 5 10 22 14
Bus width (bits) 16 32 32 64 64 64 196
Clock rate (MHz) 12.5 16 25 66 200 1500 3333
Bandwidth (MIPS) 2 6 25 132 600 4500 50,000
Latency (ns) 320 313 200 76 50 15 4
Memory module DRAM Page mode Fast page Fast page Synchronous Double data DDR3

DRAM  mode DRAM mode DRAM DRAM rate SDRAM SDRAM
Module width (bits) 16 16 32 64 64 64 64
Year 1980 1983 1986 1993 1997 2000 2010
Mbits/DRAM chip 0.06 0.25 1 16 64 256 2048
Die size (mm?) 35 45 70 130 170 204 50
Pins/DRAM chip 16 16 18 20 54 66 134
Bandwidth (MBytes/s) 13 40 160 267 640 1600 16,000
Latency (ns) 225 170 125 75 62 52 37
Local area network Ethernet Fast Gigabit 10 Gigabit 100 Gigabit

Ethernet Ethernet Ethernet Ethernet
IEEE standard 802.3 803.3u 802.3ab 802.3ac 802.3ba
Year 1978 1995 1999 2003 2010
Bandwidth (Mbits/sec) 10 100 1000 10,000 100,000
Latency (usec) 3000 500 340 190 100
Hard disk 3600 RPM 5400 RPM 7200 RPM 10,000 RPM 15,000 RPM 15,000 RPM
Product CDC Wrenl ~ Seagate Seagate Seagate Seagate Seagate

94145-36  ST41600 ST15150 ST39102 ST373453 ST3600057

Year 1983 1990 1994 1998 2003 2010
Capacity (GB) 0.03 1.4 4.3 9.1 734 600
Disk form factor 5.25 inch 5.25 inch 3.5 inch 3.5inch 3.5 inch 3.5 inch
Media diameter 5.25 inch 5.25 inch 3.5 inch 3.0 inch 2.5 inch 2.5 inch
Interface ST-412 SCSI SCSI SCSI SCSI SAS
Bandwidth (MBytes/s) 0.6 4 9 24 86 204
Latency (ms) 48.3 17.1 12.7 8.8 5.7 3.6

Figure 1.10 Performance milestones over 25 to 40 years for microprocessors, memory, networks, and disks. The
microprocessor milestones are several generations of IA-32 processors, going from a 16-bit bus, microcoded
80286 to a 64-bit bus, multicore, out-of-order execution, superpipelined Core i7. Memory module milestones go
from 16-bit-wide, plain DRAM to 64-bit-wide double data rate version 3 synchronous DRAM. Ethernet advanced from
10 Mbits/sec to 100 Gbits/sec. Disk milestones are based on rotation speed, improving from 3600 RPM to 15,000
RPM. Each case is best-case bandwidth, and latency is the time for a simple operation assuming no contention.
Updated from Patterson [2004].

www.youseficlass.ir



1.5

1.5 Trends in Power and Energy in Integrated Circuits 21

millimeter of silicon is determined by the surface area of a transistor, the density
of transistors increases quadratically with a linear decrease in feature size.

The increase in transistor performance, however, is more complex. As feature
sizes shrink, devices shrink quadratically in the horizontal dimension and also
shrink in the vertical dimension. The shrink in the vertical dimension requires a
reduction in operating voltage to maintain correct operation and reliability of the
transistors. This combination of scaling factors leads to a complex interrelation-
ship between transistor performance and process feature size. To a first approxi-
mation, transistor performance improves linearly with decreasing feature size.

The fact that transistor count improves quadratically with a linear improve-
ment in transistor performance is both the challenge and the opportunity for
which computer architects were created! In the early days of microprocessors,
the higher rate of improvement in density was used to move quickly from 4-bit,
to 8-bit, to 16-bit, to 32-bit, to 64-bit microprocessors. More recently, density
improvements have supported the introduction of multiple processors per chip,
wider SIMD units, and many of the innovations in speculative execution and
caches found in Chapters 2, 3, 4, and 5.

Although transistors generally improve in performance with decreased fea-
ture size, wires in an integrated circuit do not. In particular, the signal delay for a
wire increases in proportion to the product of its resistance and capacitance. Of
course, as feature size shrinks, wires get shorter, but the resistance and capaci-
tance per unit length get worse. This relationship is complex, since both resis-
tance and capacitance depend on detailed aspects of the process, the geometry of
a wire, the loading on a wire, and even the adjacency to other structures. There
are occasional process enhancements, such as the introduction of copper, which
provide one-time improvements in wire delay.

In general, however, wire delay scales poorly compared to transistor perfor-
mance, creating additional challenges for the designer. In the past few years, in
addition to the power dissipation limit, wire delay has become a major design
limitation for large integrated circuits and is often more critical than transistor
switching delay. Larger and larger fractions of the clock cycle have been con-
sumed by the propagation delay of signals on wires, but power now plays an even
greater role than wire delay.

Trends in Power and Energy in Integrated Circuits

Today, power is the biggest challenge facing the computer designer for nearly
every class of computer. First, power must be brought in and distributed around
the chip, and modern microprocessors use hundreds of pins and multiple inter-
connect layers just for power and ground. Second, power is dissipated as heat and
must be removed.

Power and Energy: A Systems Perspective

How should a system architect or a user think about performance, power, and
energy? From the viewpoint of a system designer, there are three primary concerns.

www.youseficlass.ir



22

Chapter One Fundamentals of Quantitative Design and Analysis

First, what is the maximum power a processor ever requires? Meeting this
demand can be important to ensuring correct operation. For example, if a proces-
sor attempts to draw more power than a power supply system can provide (by
drawing more current than the system can supply), the result is typically a volt-
age drop, which can cause the device to malfunction. Modern processors can
vary widely in power consumption with high peak currents; hence, they provide
voltage indexing methods that allow the processor to slow down and regulate
voltage within a wider margin. Obviously, doing so decreases performance.

Second, what is the sustained power consumption? This metric is widely
called the thermal design power (TDP), since it determines the cooling require-
ment. TDP is neither peak power, which is often 1.5 times higher, nor is it the
actual average power that will be consumed during a given computation, which is
likely to be lower still. A typical power supply for a system is usually sized to
exceed the TDP, and a cooling system is usually designed to match or exceed
TDP. Failure to provide adequate cooling will allow the junction temperature in
the processor to exceed its maximum value, resulting in device failure and possi-
bly permanent damage. Modern processors provide two features to assist in man-
aging heat, since the maximum power (and hence heat and temperature rise) can
exceed the long-term average specified by the TDP. First, as the thermal temper-
ature approaches the junction temperature limit, circuitry reduces the clock rate,
thereby reducing power. Should this technique not be successful, a second ther-
mal overload trip is activated to power down the chip.

The third factor that designers and users need to consider is energy and
energy efficiency. Recall that power is simply energy per unit time: 1 watt =
1 joule per second. Which metric is the right one for comparing processors:
energy or power? In general, energy is always a better metric because it is tied to
a specific task and the time required for that task. In particular, the energy to exe-
cute a workload is equal to the average power times the execution time for the
workload.

Thus, if we want to know which of two processors is more efficient for a given
task, we should compare energy consumption (not power) for executing the task.
For example, processor A may have a 20% higher average power consumption
than processor B, but if A executes the task in only 70% of the time needed by B,
its energy consumption will be 1.2 x 0.7 = 0.84, which is clearly better.

One might argue that in a large server or cloud, it is sufficient to consider
average power, since the workload is often assumed to be infinite, but this is mis-
leading. If our cloud were populated with processor Bs rather than As, then the
cloud would do less work for the same amount of energy expended. Using energy
to compare the alternatives avoids this pitfall. Whenever we have a fixed work-
load, whether for a warehouse-size cloud or a smartphone, comparing energy will
be the right way to compare processor alternatives, as the electricity bill for the
cloud and the battery lifetime for the smartphone are both determined by the
energy consumed.

When is power consumption a useful measure? The primary legitimate use is
as a constraint: for example, a chip might be limited to 100 watts. It can be used

www.youseficlass.ir



1.5 Trends in Power and Energy in Integrated Circuits 23

as a metric if the workload is fixed, but then it’s just a variation of the true metric
of energy per task.

Energy and Power within a Microprocessor

For CMOS chips, the traditional primary energy consumption has been in switch-
ing transistors, also called dynamic energy. The energy required per transistor is
proportional to the product of the capacitive load driven by the transistor and the
square of the voltage:

Energydyn,‘Lmic o< Capacitive load x Voltage2

This equation is the energy of pulse of the logic transition of 0—1—0 or | -0—1.
The energy of a single transition (0—1 or 1—-0) is then:

Energy 4. namic & 1/2 x Capacitive load x Voltage2

The power required per transistor is just the product of the energy of a transition
multiplied by the frequency of transitions:

Powerdymmrlic o< 1/2 x Capacitive load X Voltage2 X Frequency switched

For a fixed task, slowing clock rate reduces power, but not energy.

Clearly, dynamic power and energy are greatly reduced by lowering the
voltage, so voltages have dropped from 5V to just under 1V in 20 years. The
capacitive load is a function of the number of transistors connected to an output
and the technology, which determines the capacitance of the wires and the tran-
sistors.

Example

Answer

Some microprocessors today are designed to have adjustable voltage, so a 15%
reduction in voltage may result in a 15% reduction in frequency. What would be
the impact on dynamic energy and on dynamic power?

Since the capacitance is unchanged, the answer for energy is the ratio of the volt-
ages since the capacitance is unchanged:

Energy,.,  (Voltage x 0.85)° _ 085 = 072
Ener - 2 e o
&Yold Voltage

thereby reducing energy to about 72% of the original. For power, we add the ratio
of the frequencies

Power,, - 072 % (Frequency switched X 0.85) _ 061

Power Frequency switched

shrinking power to about 61% of the original.

www.youseficlass.ir



24 Chapter One Fundamentals of Quantitative Design and Analysis

As we move from one process to the next, the increase in the number of
transistors switching and the frequency with which they switch dominate the
decrease in load capacitance and voltage, leading to an overall growth in power
consumption and energy. The first microprocessors consumed less than a watt
and the first 32-bit microprocessors (like the Intel 80386) used about 2 watts,
while a 3.3 GHz Intel Core i7 consumes 130 watts. Given that this heat must be
dissipated from a chip that is about 1.5 cm on a side, we have reached the limit
of what can be cooled by air.

Given the equation above, you would expect clock frequency growth to
slow down if we can’t reduce voltage or increase power per chip. Figure 1.11
shows that this has indeed been the case since 2003, even for the microproces-
sors in Figure 1.1 that were the highest performers each year. Note that this
period of flat clock rates corresponds to the period of slow performance
improvement range in Figure 1.1.

10,000
Intel Pentium4 Xeon Intel Nehalem Xeon
Intel Pentium 1l
1000 MHz in 2000
OO0 et e S
Digital Alpha 21164A :
500 MHz in 1996
N n 1%/year
I Digital Alpha 21064
= 150 MHz in 1992 /-
9] P
B 400 e . g R
S MIPS M2000 |
8 25 MHz in 1989 .~
40%/year
10 o/l SUN-ASPARC
Rt 16.7 MHz in 1986
Digital VAX-11/780
5 MHz in 1978
15%l/year
1 T T T T T T T T T T T

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Figure 1.11 Growth in clock rate of microprocessors in Figure 1.1. Between 1978 and 1986, the clock rate improved
less than 15% per year while performance improved by 25% per year. During the “renaissance period” of 52% perfor-
mance improvement per year between 1986 and 2003, clock rates shot up almost 40% per year. Since then, the clock

rate has been nearly flat, growing at less than 1% per year, while single processor performance improved at less than
22% per year.

www.youseficlass.ir



1.5 Trends in Power and Energy in Integrated Circuits 25

Distributing the power, removing the heat, and preventing hot spots have

become increasingly difficult challenges. Power is now the major constraint to
using transistors; in the past, it was raw silicon area. Hence, modern micropro-
cessors offer many techniques to try to improve energy efficiency despite flat
clock rates and constant supply voltages:

1.

3.

Do nothing well. Most microprocessors today turn off the clock of inactive
modules to save energy and dynamic power. For example, if no floating-point
instructions are executing, the clock of the floating-point unit is disabled. If
some cores are idle, their clocks are stopped.

Dynamic Voltage-Frequency Scaling (DVFS). The second technique comes
directly from the formulas above. Personal mobile devices, laptops, and even
servers have periods of low activity where there is no need to operate at the
highest clock frequency and voltages. Modern microprocessors typically
offer a few clock frequencies and voltages in which to operate that use lower
power and energy. Figure 1.12 plots the potential power savings via DVFS
for a server as the workload shrinks for three different clock rates: 2.4 GHz,
1.8 GHz, and 1 GHz. The overall server power savings is about 10% to 15%
for each of the two steps.

Design for typical case. Given that PMDs and laptops are often idle, mem-
ory and storage offer low power modes to save energy. For example,
DRAMs have a series of increasingly lower power modes to extend battery
life in PMDs and laptops, and there have been proposals for disks that have a
mode that spins at lower rates when idle to save power. Alas, you cannot
access DRAMs or disks in these modes, so you must return to fully active
mode to read or write, no matter how low the access rate. As mentioned

100
2.4 GHz

1.8 GHz

80

1 GHz

60

40

Power (% of peak)

20

0 DVS savings (%)
lde 7 14 21 29 36 43 50 57 64 71 79 86 93 100
Compute load (%)

Figure 1.12 Energy savings for a server using an AMD Opteron microprocessor,
8 GB of DRAM, and one ATA disk. At 1.8 GHz, the server can only handle up to two-
thirds of the workload without causing service level violations, and, at 1.0 GHz, it can
only safely handle one-third of the workload. (Figure 5.11 in Barroso and Hélzle [2009].)

www.youseficlass.ir



26

Chapter One Fundamentals of Quantitative Design and Analysis

above, microprocessors for PCs have been designed instead for a more
typical case of heavy use at high operating temperatures, relying on on-chip
temperature sensors to detect when activity should be reduced automati-
cally to avoid overheating. This “emergency slowdown” allows manufac-
turers to design for a more typical case and then rely on this safety
mechanism if someone really does run programs that consume much more
power than is typical.

4. Overclocking. Intel started offering Turbo mode in 2008, where the chip
decides that it is safe to run at a higher clock rate for a short time possibly on
just a few cores until temperature starts to rise. For example, the 3.3 GHz
Core i7 can run in short bursts for 3.6 GHz. Indeed, the highest-performing
microprocessors each year since 2008 in Figure 1.1 have all offered tempo-
rary overclocking of about 10% over the nominal clock rate. For single
threaded code, these microprocessors can turn off all cores but one and run it
at an even higher clock rate. Note that while the operating system can turn off
Turbo mode there is no notification once it is enabled, so the programmers
may be surprised to see their programs vary in performance due to room
temperature!

Although dynamic power is traditionally thought of as the primary source of
power dissipation in CMOS, static power is becoming an important issue because
leakage current flows even when a transistor is off:

Power o< Current x Voltage

static static

That is, static power is proportional to number of devices.

Thus, increasing the number of transistors increases power even if they are
idle, and leakage current increases in processors with smaller transistor sizes.
As a result, very low power systems are even turning off the power supply
(power gating) to inactive modules to control loss due to leakage. In 2011, the
goal for leakage is 25% of the total power consumption, with leakage in high-
performance designs sometimes far exceeding that goal. Leakage can be as high
as 50% for such chips, in part because of the large SRAM caches that need power
to maintain the storage values. (The S in SRAM is for static.) The only hope to
stop leakage is to turn off power to subsets of the chips.

Finally, because the processor is just a portion of the whole energy cost of a
system, it can make sense to use a faster, less energy-efficient processor to
allow the rest of the system to go into a sleep mode. This strategy is known as
race-to-halt.

The importance of power and energy has increased the scrutiny on the effi-
ciency of an innovation, so the primary evaluation now is tasks per joule or per-
formance per watt as opposed to performance per mm? of silicon. This new
metric affects approaches to parallelism, as we shall see in Chapters 4 and 5.

www.youseficlass.ir



1.6

1.6 Trends in Cost 27

Trends in Cost

Although costs tend to be less important in some computer designs—specifically
supercomputers—cost-sensitive designs are of growing significance. Indeed, in
the past 30 years, the use of technology improvements to lower cost, as well as
increase performance, has been a major theme in the computer industry.

Textbooks often ignore the cost half of cost-performance because costs
change, thereby dating books, and because the issues are subtle and differ across
industry segments. Yet, an understanding of cost and its factors is essential for
computer architects to make intelligent decisions about whether or not a new
feature should be included in designs where cost is an issue. (Imagine architects
designing skyscrapers without any information on costs of steel beams and
concrete!)

This section discusses the major factors that influence the cost of a computer
and how these factors are changing over time.

The Impact of Time, Volume, and Commoditization

The cost of a manufactured computer component decreases over time even with-
out major improvements in the basic implementation technology. The underlying
principle that drives costs down is the learning curve—manufacturing costs
decrease over time. The learning curve itself is best measured by change in
vield—the percentage of manufactured devices that survives the testing proce-
dure. Whether it is a chip, a board, or a system, designs that have twice the yield
will have half the cost.

Understanding how the learning curve improves yield is critical to projecting
costs over a product’s life. One example is that the price per megabyte of DRAM
has dropped over the long term. Since DRAMs tend to be priced in close relation-
ship to cost—with the exception of periods when there is a shortage or an
oversupply—rprice and cost of DRAM track closely.

Microprocessor prices also drop over time, but, because they are less stan-
dardized than DRAMSs, the relationship between price and cost is more complex.
In a period of significant competition, price tends to track cost closely, although
microprocessor vendors probably rarely sell at a loss.

Volume is a second key factor in determining cost. Increasing volumes affect
cost in several ways. First, they decrease the time needed to get down the learn-
ing curve, which is partly proportional to the number of systems (or chips) manu-
factured. Second, volume decreases cost, since it increases purchasing and
manufacturing efficiency. As a rule of thumb, some designers have estimated that
cost decreases about 10% for each doubling of volume. Moreover, volume
decreases the amount of development cost that must be amortized by each com-
puter, thus allowing cost and selling price to be closer.

Commodities are products that are sold by multiple vendors in large volumes
and are essentially identical. Virtually all the products sold on the shelves of gro-
cery stores are commodities, as are standard DRAMs, Flash memory, disks,

www.youseficlass.ir



28

Cost of integrated circuit =

Chapter One Fundamentals of Quantitative Design and Analysis

monitors, and keyboards. In the past 25 years, much of the personal computer
industry has become a commodity business focused on building desktop and lap-
top computers running Microsoft Windows.

Because many vendors ship virtually identical products, the market is highly
competitive. Of course, this competition decreases the gap between cost and sell-
ing price, but it also decreases cost. Reductions occur because a commodity mar-
ket has both volume and a clear product definition, which allows multiple
suppliers to compete in building components for the commodity product. As a
result, the overall product cost is lower because of the competition among the
suppliers of the components and the volume efficiencies the suppliers can
achieve. This rivalry has led to the low end of the computer business being able
to achieve better price-performance than other sectors and yielded greater growth
at the low end, although with very limited profits (as is typical in any commodity
business).

Cost of an Integrated Circuit

Why would a computer architecture book have a section on integrated circuit
costs? In an increasingly competitive computer marketplace where standard
parts—disks, Flash memory, DRAMSs, and so on—are becoming a significant
portion of any system’s cost, integrated circuit costs are becoming a greater por-
tion of the cost that varies between computers, especially in the high-volume,
cost-sensitive portion of the market. Indeed, with personal mobile devices’
increasing reliance of whole systems on a chip (SOC), the cost of the integrated
circuits is much of the cost of the PMD. Thus, computer designers must under-
stand the costs of chips to understand the costs of current computers.

Although the costs of integrated circuits have dropped exponentially, the
basic process of silicon manufacture is unchanged: A wafer is still tested and
chopped into dies that are packaged (see Figures 1.13, 1.14, and 1.15). Thus, the
cost of a packaged integrated circuit is

Cost of die + Cost of testing die + Cost of packaging and final test

Final test yield

In this section, we focus on the cost of dies, summarizing the key issues in testing
and packaging at the end.

Learning how to predict the number of good chips per wafer requires first
learning how many dies fit on a wafer and then learning how to predict the per-
centage of those that will work. From there it is simple to predict cost:

Cost of wafer
Dies per wafer x Die yield

Cost of die =

The most interesting feature of this first term of the chip cost equation is its sensi-
tivity to die size, shown below.

www.youseficlass.ir



1.6 Trends in Cost

29

Figure 1.13 Photograph of an Intel Core i7 microprocessor die, which is evaluated in
Chapters 2 through 5. The dimensions are 18.9 mm by 13.6 mm (257 mm?) in a 45 nm
process. (Courtesy Intel.)

Out-of-
order

on —=

5

Core

Core

Core Core

on —=

5

scheduling
&
instruction
commit

Execution
units

Instruction
decode,
register
renaming,
&
microcode

Memory L1
ordering & | data
execution cache

_-UO

Shared L3 BRI ~~
cache ~~

L1 inst
cache
& inst

S~ fetch

Branch

diction

L2 cache
Virtual
memory| interrupt
servicing

Figure 1.14 Floorplan of Core i7 die in Figure 1.13 on left with close-up of floorplan of second core on right.

www.youseficlass.ir



30

Chapter One Fundamentals of Quantitative Design and Analysis

Figure 1.15 This 300 mm wafer contains 280 full Sandy Bridge dies, each 20.7 by
10.5 mm in a 32 nm process. (Sandy Bridge is Intel’s successor to Nehalem used in the
Core i7.) At 216 mm?, the formula for dies per wafer estimates 282. (Courtesy Intel.)

The number of dies per wafer is approximately the area of the wafer divided
by the area of the die. It can be more accurately estimated by

7 X (Wafer diameter/Z)2 _ m X Wafer diameter

Die area /2 X Die area

The first term is the ratio of wafer area (172) to die area. The second compensates
for the “square peg in a round hole” problem—rectangular dies near the periph-
ery of round wafers. Dividing the circumference (7d ) by the diagonal of a square
die is approximately the number of dies along the edge.

Dies per wafer =

www.youseficlass.ir



1.6 Trends in Cost 31

Example

Answer

Find the number of dies per 300 mm (30 cm) wafer for a die that is 1.5 cm on a
side and for a die that is 1.0 cm on a side.

When die area is 2.25 cm?:

nx(30/2°  mx30 _ 7069 942 _
2.25 5 %205 225 212

Since the area of the larger die is 2.25 times bigger, there are roughly 2.25 as
many smaller dies per wafer:

270

Dies per wafer =

2
Dies per wafer = T X (30/2) nx30 _ 7069 942 _ 640

100 . 5x100 1.00 141

However, this formula only gives the maximum number of dies per wafer.
The critical question is: What is the fraction of good dies on a wafer, or the die
vield? A simple model of integrated circuit yield, which assumes that defects are
randomly distributed over the wafer and that yield is inversely proportional to the
complexity of the fabrication process, leads to the following:

Die yield = Wafer yield x 1/(1 + Defects per unit area X Die area)N

This Bose—Einstein formula is an empirical model developed by looking at the
yield of many manufacturing lines [Sydow 2006]. Wafer yield accounts for
wafers that are completely bad and so need not be tested. For simplicity, we’ll
just assume the wafer yield is 100%. Defects per unit area is a measure of the ran-
dom manufacturing defects that occur. In 2010, the value was typically 0.1 to 0.3
defects per square inch, or 0.016 to 0.057 defects per square centimeter, for a
40 nm process, as it depends on the maturity of the process (recall the learning
curve, mentioned earlier). Finally, NV is a parameter called the process-complexity
factor, a measure of manufacturing difficulty. For 40 nm processes in 2010, N
ranged from 11.5 to 15.5.

Example

Answer

Find the die yield for dies that are 1.5 cm on a side and 1.0 cm on a side, assum-
ing a defect density of 0.031 per cm?and N is 13.5.

The total die areas are 2.25 cm? and 1.00 cm?. For the larger die, the yield is
Die yield = 1/(1 +0.031 x2.25)"*7 = 0.40
For the smaller die, the yield is
Die yield = 1/(1 +0.031 x 1.00)">° = 0.66

That is, less than half of all the large dies are good but two-thirds of the small
dies are good.

www.youseficlass.ir



32

Chapter One Fundamentals of Quantitative Design and Analysis

The bottom line is the number of good dies per wafer, which comes from
multiplying dies per wafer by die yield to incorporate the effects of defects. The
examples above predict about 109 good 2.25 cm? dies from the 300 mm wafer
and 424 good 1.00 cm? dies. Many microprocessors fall between these two sizes.
Low-end embedded 32-bit processors are sometimes as small as 0.10 cm?, and
processors used for embedded control (in printers, microwaves, and so on) are
often less than 0.04 cm?.

Given the tremendous price pressures on commodity products such as
DRAM and SRAM, designers have included redundancy as a way to raise yield.
For a number of years, DRAMs have regularly included some redundant memory
cells, so that a certain number of flaws can be accommodated. Designers have
used similar techniques in both standard SRAMs and in large SRAM arrays used
for caches within microprocessors. Obviously, the presence of redundant entries
can be used to boost the yield significantly.

Processing of a 300 mm (12-inch) diameter wafer in a leading-edge technol-
ogy cost between $5000 and $6000 in 2010. Assuming a processed wafer cost of
$5500, the cost of the 1.00 cm? die would be around $13, but the cost per die of
the 2.25 cm? die would be about $51, or almost four times the cost for a die that
is a little over twice as large.

What should a computer designer remember about chip costs? The manufac-
turing process dictates the wafer cost, wafer yield, and defects per unit area, so
the sole control of the designer is die area. In practice, because the number of
defects per unit area is small, the number of good dies per wafer, and hence the
cost per die, grows roughly as the square of the die area. The computer designer
affects die size, and hence cost, both by what functions are included on or
excluded from the die and by the number of 1/O pins.

Before we have a part that is ready for use in a computer, the die must be
tested (to separate the good dies from the bad), packaged, and tested again after
packaging. These steps all add significant costs.

The above analysis has focused on the variable costs of producing a func-
tional die, which is appropriate for high-volume integrated circuits. There is,
however, one very important part of the fixed costs that can significantly affect
the cost of an integrated circuit for low volumes (less than 1 million parts),
namely, the cost of a mask set. Each step in the integrated circuit process requires
a separate mask. Thus, for modern high-density fabrication processes with four to
six metal layers, mask costs exceed $1M. Obviously, this large fixed cost affects
the cost of prototyping and debugging runs and, for small-volume production,
can be a significant part of the production cost. Since mask costs are likely to
continue to increase, designers may incorporate reconfigurable logic to enhance
the flexibility of a part or choose to use gate arrays (which have fewer custom
mask levels) and thus reduce the cost implications of masks.

