H. TROoy NAGLE
J]. DAVID IRWIN
BiLL D. CARROLL

VICTOR P. NELSON

UOOENEERY
WASEEWY

v

CIRCUIT ANALYSIS

DIGITAL LOGIC
& DESIGN

DIGITAL LOGIC
CIRCUIT ANALYSIS
& DESIGN

VICTOR P. NELSON * H. TROY NAGLE * J. DAVID IRWIN * BiLL D. CARROLL

Four highly respected scholars and authors have blended their talents to craft a book that presents the
reader with a clear, comprehensive, and state-of-the-art view of digital design theory and practice.

Features

* Covers topics authoritatively and in-depth but with a minimum of formal mathematics

* Places a strong emphasis on developing and using systematic problem-solving and design approaches
and includes over 250 worked examples, a large number of in-depth design examples, and an entire
chapter of design case projects

e Presents a thorough discussion of CAD issues and practices in an integrated manner, allowing CAD
methods to be applied to the correlative concepts and design principles

¢ Contains two comprehensive chapters describing programmable logic devices and their applications in
implementing digital circuits

* Includes an in-depth introduction to testing and design for testability

e Offers good coverage of hierarchical modular design and standard digital circuit modules

About the Authors

Victor P. Nelson is a professor of Electrical Engineering at Auburn University. Dr. Nelson conducts his
research in the areas of computer architecture and design, fault-tolerant computing, multiprocessor
system architectures, microprocessor applications, and CAD tools for VLSI design. He is the author of
three textbooks and the IEEE Press tutorial, Fault Tolerant Computing: An Introduction.

H. Troy Nagle is a professor of Electrical Engineering at North Carolina State University and Research
Professor of Biomedical Engineering at The University of North Carolina at Chapel Hill. Dr. Nagle is
coauthor of the best selling textbook, Digital Control System Analysis and Design, and currently conducts
research in the areas of design for testability, biomedical microsensors, and medical instrumentation. He
was elected as President of the IEEE for 1994.

J. David Irwin is Professor and Head of the Electrical Engineering Department at Auburn University.
The wide range of Dr. Irwin’s professional activities include active membership in the IEEE Computer
Society and Editor of the IEEE Transactions on Industrial Electronics. Dr. Irwin is the author of more
than fifty publications, including the best selling text, Basic Engineering Circuit Analysis.

Bill D. Carroll is an IEEE Fellow and Professor and Chair of the Department of Computer Science and
Engineering at The University of Texas at Arlington. His research interests are in the areas of fault
tolerant computing, digital systems design, computer architecture, and applications of technology in
education. Widely published, he is coauthor of Fault Tolerant Computing: An Introduction.

PRENTICE HALL
Englewood Cliffs, N. J. 07632

¥

Digital Logic
Circuit Analysis
and Design

Victor P. Nelson

Auburn University

H. Troy Nagle

North Carolina State University

Bill D. Carroll

University of Texas—Arlington

J. David Irwin
Auburn University

Prentice Hall, Upper Saddle River, New Jersey 07458

www.youseficlass.ir

Library of Congress Cataloging—-in-Publication Data

Digital logic circuit analysis and design / Victor P. Nelson ... [et.
al.l
p. cm.

Developed from: Introduction to computer logic. 1974.

Inciudes bibliographical references and index.

ISBN 0-13-463894-8

1. Logic circuits--Design and construction. 2. Electronic digital
computers--Circuits--Design and construction. I. Nelson, Victor P.
(Victor Peter) II. Nagle, H. Troy Introduction
to computer logic.
TK7888.4.D54 1995
621.39'5--dc20 94-35122

CIP
Acquisitions Editor: Don Fowley
Production Editor: Joe Scordato
Copy Editor: Bill Thomas
Designer: Amy Rosen
Cover Designer: Warren Fischbach
Buyer: Bill Scazzero

© 1995 by Prentice-Hall, Inc.
Upper Saddle River, New Jersey 07458

The author and publisher of this book have used their best efforts in preparing this book. These
efforts include the development, research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of any kind, expressed or implied,
with regard to these programs or the documentation contained in this book. The author and pub-
lisher shall not be liable in any event for incidental or consequential damages in connection with,
or arising out of, the furnishing, performance, or use of these programs.

All rights reserved. No part of this book may be reproduced in any form or by any means, with-
out permission in writing from the publisher.

Printed in the United States of America

10 9 8 7

ISBN 0-13-4L3894-8

PRENTICE-HALL INTERNATIONAL (UK) LIMITED, LONDON
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, SYDNEY
PRENTICE-HALL CANADA INC., TORONTO

PRENTICE-HALL HISPANOAMERICANA, S.A., MEXICO
PRENTICE-HALL OF INDIA PRIVATE LIMITED, NEW DELHI
PRENTICE-HALL OF JAPAN, INC., TOKYO

PEARSON EDUCATION ASIA PTE. LTD., SINGAPORE

EDITORA PRENTICE-HALL DO BRASIL, LTDA., RIO DE JANEIRO

-~ www.youseficlass.ir

B Preface XV
B 0 Introduction 1
0.1 History of Computing 1

0.1.1 Beginnings: Mechanical Computers 1

0.1.2 Early Electronic Computers 2

0.1.3 The First Four Generations of Computers 2

0.1.4 The Fifth Generation and Beyond 4

02 Digital Systems - a

0.2.1 Digital vs Analog Systems 4

0.2.2 Digital System Design Hierarchy 5

0.3 Organization of a Stored Program Digital Computer 12

0.3.1 Computer Instructions 13

0.3.2 Information Representation in Computers 13

0.3.3 Computer Hardware 15

0.3.4 Computer Software 17

0.4 Summary 19

® 1 Number Systems and Codes 20
1.1 Number Systems 21

1.1.1 Positional Notation 21

1.1.2 Commonly Used Number Systems 22

www.youseficlass.ir i

iv Contents

1.2 Arithmetic 22
1.2.1 Binary Arithmetic 23
1.2.2 Octal Arithmetic N 27
1.2.3 Hexadecimal Arithmetic 28
1.3 Base Conversions 30
1.3.1 Conversion Methods 31
1.3.2 General Conversion Algorithms 35

1.3.3 Conversion Between Base A and Base B When B = A¥ 36

1.4 Signed Number Representation 37
1.4.1 Sign-Magnitude Numbers 37
1.4.2 Complementary Number Systems 38
1.5 Computer Codes 55
1.5.1 Numeric Codes 55
1.5.2 Character and Other Codes 61
1.5.3 Error Detection Codes and Correction Codes 65
1.6 Summary 73

B 2 Algebraic Methods for the Analysis and Synthesis

of Logic Circuits 78
2.1 Fundamentals of Boolean Algebra 79
2.1.1 Basic Postulates 79

2.1.2 Venn Diagrams for Postulates [2] 80

2.1.3 Duality 81

2.1.4 Fundamental Theorems of Boolean Algebra 84

2.2 Switching Functions 90
2.2.1 Truth Tables 93

2.2.2 Algebraic Forms of Switching Functions 94

2.2.3 Derivation of Canonical Forms 101

2.2.4 Incompletely Specified Functions 103

www.youseficlass.ir,

Contents Vv

2.3 Switching Circuits 104
2.3.1 Electronic Logic Gates 104

2.3.2 Basic Functional Components 108

\ 2.4 Analysis of Combinational Circuits 120
2.4.1 Algebraic Method 120

2.4.2 Analysis of Timing Diagrams 123

2.5 Synthesis of Combinational Logic Circuits 128
2.5.1 AND-OR and NAND Networks 128

2.5.2 OR-AND and NOR Networks 130

2.5.3 Two-Level Circuits 131

2.5.4 AND-OR-invert Circuits 133

2.5.5 Factoring 134

2.6 Applications 136
2.7 Computer-Aided Design of Logic Circuits 140
2.7.1 The Design Cycle 140

2.7.2 Digital Circuit Modeling 140

2.7.3 Design Synthesis and Capture Tools 148

2.7.4 Logic Simulation 152

2.8 Summary 165
B 3 Simplification of Switching Functions 172
3.1 Simplification Goals 173
3.2 Characteristics of Minimization Methods 174
3.3 Karnaugh Maps 175
3.3.1 Relationship to Venn Diagrams and Truth Tables 176

3.3.2 K-Maps of Four or More Variables 177

www.youseficlass.ir

vi Contents

3.4 Plotting Functions in Canonical Form on the K-Map 179

3.5 Simplification of Switching Functions Using K-Maps 185
3.5.1 Guidelines for Simplifying Functions Using K-Maps 187

- 3.5.2 General Terminology for Switching Function

Minimization 187

3.5.3 Algorithms For Deriving Minimal SOP Forms From
K-Maps 188
3.6 POS Form Using K-Maps 197
3.6.1 General Terminology for POS Forms 197

3.6.2 Algorithms For Deriving Minimal POS Forms From
K-Maps 197
3.7 Incompletely Specified Functions 203
3.8 Using K-Maps To Eliminate Timing Hazards 206
3.9 Quine-McCluskey Tabular Minimization Method 21
3.9.1 Covering Procedure 215
3.9.2 Incompletely Specified Functions 218
3.9.3 Systems With Multiple Outputs 219
3.10 Petrick’s Algorithm 222

3.11 Computer-aided Minimization of Switching

Functions - 224
3.11.1 Cube Representation of Switching Functions 227
3.11.2 Algebraic Methods for Determining Prime
Implicants 228
3.11.3 Identifying Essential Prime Implicants 230
3.11.4 Completing a Minimal Cover 231
3.11.5 Other Minimization Algorithms 234
3.12 Summary 234

www.youseficlass.ir

Contents vii

® 4 Modular Combinational Logic

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Top-Down Modular Design

Decoders

4.2.1
4.2.2
4.2.3
424
4.2.5

Decoder Circuit Structures

Implementing Logic Functions Using Decoders
Enable Control Inputs

Standard MSI Decoders

Decoder Applications

Encoders

4.3.1
4.3.2

Encoder Circuit Structures
Standard MSI Encoders

Multiplexers/Data Selectors

44.1
44.2
44.3

Multiplexer Circuit Structures
Standard MSI Multiplexers
Applications of Multiplexers

Demultiplexers/Data Distributors

Binary Arithmetic Elements

4.6.1
4.6.2
4.6.3
4.6.4
4.6.5

Basic Binary Adder Circuits
MSI Binary Adder Modules
High-speed Adder Units
Binary Subtraction Circuits
Arithmetic Overflow Detection

Comparators

Design Example: A Computer Arithmetic Logic Unit

Computer-aided Design of Modular Systems

4.9.1
4.9.2

Design Libraries
Drawing Hierarchical Schematics

www.youseficlass.ir

242
243

245

246
247
249
252
253

259

260
264

268

268
270
277

280

283

283
285
289
294
295

298

302

312

312
314

viii Contents

4.10 Simulation of Hierarchical Systems

4.11 Summary

® 5 Combinational Circuit Design with Programmable

Logic Devices
5.1

5.2

53

5.4

5.5

Semicustom Logic Devices

Logic Array Circuits

5.21
5.2.2
5.2.3
524
5.25
5.2.6
5.2.7

5.31
5.3.2

54.1
54.2
543
5.44
545

Diode Operation in Digital Circuits

AND and OR Logic Arrays

Two-Level AND-OR Arrays
Field-Programmable AND and OR Arrays
Output Polarity Options

Bidirectional Pins and Feedback Lines
Commercial Devices

Field-programmable Logic Arrays

FPLA Circuit Structures
Realizing Logic Functions With FPLAs

Programmable Read-only Memory

PROM Circuit Structures

Realizing Logic Functions With PROMs
Lookup Tables

General Read-only Memory Applications
Read-only Memory Technologies

Programmable Array Logic

5.5.1
5.5.2
5.5.3

PAL Circuit Structures
Realizing Logic Functions With PALSs
PAL Output and Feedback Options

www.youseficlass.ir

317

319

327
329

330

330
332
333
338
341
343
345

347

347
347

350

350
352
358
360
361

362

362
363
366

5.6

5.7

Computer-aided Design Tools for PLD Design
5.6.1 Design Representation with PDL

5.6.2 Processing a PDL Design File

Summary

B 6 Introduction to Sequential Devices

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.1.1 Block Diagram Representation
6.1.2 State Tables and Diagrams

Memory Devices

Latches
6.3.1 Set-Reset Latch

6.3.2 Gated SR Latch
6.3.3 Delay Latch

Flip-Fiops

6.4.1 Master-Slave SR Flip-Flops
6.4.2 Master-Slave D Flip-Flops
6.4.3 Master-Slave JK Flip-Flops
6.4.4 Edge-triggered D Flip-Flops
6.4.5 Edge-triggered JK Flip-Flops

6.4.6 T Flip-flops
6.4.7 Latch and Flip-flop Summary

Other Memory Devices
Timing Circuits

6.6.1 One-shots
6.6.2 The 555 Timer Module

Rapidly Prototyping Sequential Circuits

Su»m mary

www.youseficlass.ir

Contents jx

371

373
379

380

382

383

383
385

387

389
389
396
398

403
404
406
407
409
413
415
417

418

418

418
418

421

425

X Contents

B 7 Modular Sequential Logic
Shift Registers

7.1

7.2

7.3

74

7.5

7.6

7.7

7.8

7.1.1
7.1.2

A Generic Shift Register
Standard TTL Shift-Register Modules

\

Design Examples Using Re\gis_tg[g

7.2.1
7.2.2
7.2.3

Serial Adder Unit ‘7
Serial Accumulators
Parallel Accumulators

Counters

7.3.1
7.3.2
7.3.3
7.34

Synchronous Binary Counters
Asynchronous Binary Counters
Down Counters

Up/Down Counters

Modulo-N Counters

74.1
7.4.2
74.3
744
7.4.5

Synchronous BCD Counters

Asynchronous BCD Counters

Modulo-6 and Modulo-12 Counters
Asynchronously Resetting Modulo-N Counters
Synchronously Resetting Modulo-N Counters

Shift Registers as Counters

751
7.5.2

Ring Counters
Twisted-ring Counters

Multiple-sequence Counters

Digital Fractional Rate Multipliers

771
7.7.2

TTL Modules

Cascading the Digital Fractional Rate Multipliers

Summary

www.youseficlass.ir

432
433

434
436

446

446
448
450

450

451
455
458
460

464

464
467
470
474
477

477

478
482

489

489

491
495

496

Albustani
Rechteck

B 8 Analysis and Synthesis of Synchronous
Sequential Circuits

8.1

Synchronous Sequential Circuit Models

8.1.1 Mealy Model
8.1.2 Moore Model

8.2 Sequential Circuit Analysis

8.3

8.4

8.5

8.6

8.2.1 Analysis of Sequential Circuit State Diagrams
8.2.2 Analysis of Sequential Circuit Logic Diagrams
8.2.3 Summary

Synchronous Sequential Circuit Synthesis

8.3.1 Synthesis Procedure

8.3.2 Flip-flop Input Tables

8.3.3 Application Equation Method for JK Flip-flops
8.3.4 Design Examples

8.3.5 Algorithmic State Machine Diagrams

8.3.6 One-hot Finite-State Machine Design Method

Incompletely Specified Circuits

8.4.1 State Assignment and Circuit Realization

Computer-aided Design of Sequential Circuits

8.5.1 Design Capture and Synthesis
8.5.2 Design Analysis and Verification

Summary

B 9 Simplification of Sequential Circuits

9.1

9.2

Redundant States

9.1.1 State Equivalence
9.1.2 Equivalence and Compatibility Relations

State Reduction in Completely Specified Circui

9.2.1 Inspection

www.youseficlass.ir

Contents xi

502
503
504
505
507
507
508
517
519

520
522
524
526
547
553
555

558

558
559
565

568

576

577

577

579

ts 579
579

xii Contents

9.3

9.4

9.5

9.2.2 Partitioning
9.2.3 Implication Table

State Reduction In Incompletely Specified Circuits

9.3.1 State Compatibility
9.3.2 Minimization Procedure

Optimal State Assighment Methods

9.4.1 Unique State Assignments
9.4.2 State Assignment Guidelines
9.4.3 Partitioning

9.4.4 Optimal State Assignments

Summary

® 10 Asynchronous Sequential Circuits

10.1

10.2

10.3

104

10.5

10.6

Types of Asynchronous Circuits

Analysis of Pulse—-mode Asynchronous Circuits

Synthesis of Pulse-mode Circuits

10.3.1 Design Procedure for Pulse-mode Circuits

Analysis of Fundamental-mode Circuits

10.4.1 Introduction
10.4.2 Tabular Representations
10.4.3 Analysis Procedure

Synthesis of Fundamental-mode Circuits
10.5.1 Synthesis Procedure

Introduction to Races, Cycles, and Hazards

10.6.1 Races and Cycles

10.6.2 Avoidance of Race Conditions
10.6.3 Race-free State Assignments
10.6.4 Hazards

10.6.5 Analysis

www.youseficlass.ir

581
584

588

589
594

602

603
605
614
619

620

624
625

627

632
632

641
643
645
648

648
648

659

660
663
664
671
673

Contents xiii

10.7 Summary 673

® 11 Sequential Circuits With Programmable Logic Devices 686

11.1 Registered Programmable Logic Devices 687
11.1.1 Field-Programmable Logic Sequencers 691
11.1.2 Registered PALs 696
11.1.3 PLDs with Programmable Logic Macrocells 700
11.2 Programmable Gate Arrays 702
11.2.1 Logic Cell Arrays 705
11.2.2 ACT FPGAs 713

11.3 Sequential Circuit Design and PLD Device Selection 715

11.4 PLD Design Examples 717
11.5 Computer-aided Design of Sequential PLDs 723
11.5.1 Sequential Circuit Design Representation with PDL. 723

11.5.2 Processing a PDL Design File 729

11.6 Summary 733
B 12 Logic Circuit Testing and Testable Design 738
12.1 Digital Logic Circuit Testing 739
12.2 Fault Models 740
12.3 Combinational Logic Circuit Testing 741
12.3.1 Test Generation 742

12.3.2 Untestable Faults 751

12.3.3 Multiple Output Networks 752

12.3.4 Fault Detection Test Sets 753

12.3.5 Fault Location and Diagnosis 757

12.3.6 Random Testing 758

www.youseficlass.ir

xiv Contents

12.4

12.5

12.6

12.7

12.8

Sequential Logic Circuit Testing

Design For Testability

12.5.1 Scan Path Design

Built-in Self-test

12.6.1 Pseudorandom Test Vector Generation
12.6.2 Signature Analysis
12.6.3 Built-In Logic Block Observer

Board and System-level Boundary Scan

Summary

B 13 Design Examples

B Index

13.1

13.2

13.3

13.4

Electronic Slot Machine

13.1.1 Problem Definition
13.1.2 System Requirements and Solution Plan
13.1.3 Logic Design

Keyless Auto Entry §¥§;gm

13.2.1 Problem Definition
13.2.2 System Requirements
13.2.3 Logic Design

One-lane Traffic Controller

13.3.1 System Requirements
13.3.2 Logic Design

Grocery Store Cash Register

13.4.1 System Requirements
13.4.2 Logic Design

www.youseficlass.ir

760

763
764

768

769
772
775

777

781

788
789

789
790
792

801
801
803
805

810
813
815

821

823
824

833

Preface

B The Need for This Book

This text has been developed from a previous work, An Introduction to
Computer Logic (1974) by Nagle, Carroll, and Irwin, which was a widely
adopted text on the fundamentals of combinational and sequential logic circuit
analysis and synthesis. The original book was praised for its clarity and teach-
ing effectiveness, and despite rapid changes in the field in the late 70’s and
early 80’s, the book continued to enjoy wide use many years after its original
publication date, underscoring the interesting fact that during most of the pe-
riod since the publication of that book, the mainstream educational approach
to introductory-level courses in digital design evolved quite slowly, even while
major technological changes were rapidly being adopted in industry.

How things have changed! Recently, the astronomical proliferation of
digital circuit applications and phenomenal increases in digital circuit com-
plexity have prompted significant changes in the methods and tools used in
digital design. Very Large Scale Integrated (VLSI) circuit chips now routinely
contain millions of transistors; computer-aided design (CAD) methods, stan-
dard cells, programmable logic devices, and gate arrays have made possible
rapid turnaround from concept to finished circuit, supported by increased em-
phasis on hierarchical, modular designs utilizing libraries of standard cells and
other predesigned circuit modules. We have developed a text which supports
those changes, but we have also worked carefully to preserve the strong cov-
erage of theory and fundamentals.

An effective digital design engineer requires a solid background in fun-
damental theory coupled with knowledge of practical real-world design prin-
ciples. This text contains both. It retains its predecessor’s strong coverage of
fundamental theory. To address practical design issues, over half of the text is
new material that reflects the many changes that have occurred in recent years,
including modular design, CAD methods, and the use of programmable logic,
as well as such practical issues as device timing characteristics and standard
logic symbols.

www.youseficlass.ir xv

xvi Preface

B Intended Audience

This book is intended for sophomore, junior, and senior-level courses in digi-
tal logic circuits and digital systems for engineers and scientists who may be
involved with the design of VLSI circuits, printed circuit boards, multi-chip
modules, and computer circuits.

No particular background in electronic circuits or computer systems is
assumed or required, and thus the text is suitable for a first course in digital
systems. However, the book contains sufficient advanced material and depth
to support the needs of more advanced students. This text has been designed
to allow each instructor the flexibility to select topics according to the needs
of his or her specific course.

This text is also suitable for the reader who wishes to use the self-study
approach to learn digital design, and is useful as a reference for practicing en-
gineers.

B® Significant Features

This book is a unique work representing the combined efforts of the four au-
thors at three universities. In addition to extensive publisher-sponsored re-
viewing, the manuscript was used in courses at all three schools during its de-
velopment, with feedback from students and instructors incorporated into the
book.

Noteworthy features include:

* Solid coverage of fundamental concepts and theory coupled with practical
real-world design methods

» Astrong emphasis on developing and using systematic problem solving and
design methodologies, abundantly supported by over 250 numbered, worked
examples

« Heavy emphasis on visualization, supported by over 600 two-color illustra-
tions

¢ Numerous problems with a wide range of difficulty levels at the ends of the
chapters

» CAD issues integrated in-depth throughout the text without relying heavily on
CAD products from specific vendors

» Coverage of hierarchical modular design and standard digital circuit modules

¢ A chapter containing comprehensive design projects

* Two chapters describing programmable logic devices and their applications in
implementing digital circuits

* An in-depth introduction to testing and design for testability

» Support of both breadboarding labs and CAD-based modeling and simulation
labs

¢ An Instructors’ Manual with fully worked solutions to each problem

www.youseficlass.ir

Preface xvii

B Coverage of Computer-Aided Design

Most modern digital circuit design projects require the use of computer-aided
design methods and tools. For this reason, CAD is covered throughout the text
at the end of each chapter, allowing CAD methods to be applied to the basic
fundamental concepts and design principles presented in that chapter.

The coverage of CAD methods and tools was designed to be generic in
nature, rather than specific to any particular vendor’s tools. This will allow
students to apply these concepts to whichever CAD tools may be available, in-
cluding comprehensive packages running on engineering workstations from
such vendors as Mentor Graphics, Cadence, and Viewlogic, and lower-end
tools designed for use on personal computers. A number of the latter are avail-
able at nominal pricing for students and educators.

The CAD coverage in the chapters
is as follows:

Chapter 2 introduces the computer-aided design process as used in the design
and analysis of digital logic circuits and systems. Topics covered include de-
sign representation with schematic diagrams and hardware description lan-
guages, schematic capture, and logic simulation for design verification and
timing analysis.

Chapter 3 discusses CAD methods for simplification and optimization
of combinational logic circuits. Chapter 4 extends the CAD coverage to sup-
port of hierarchical, modular combinational logic circuit designs. Chapter 5
describes CAD tools for designing and modeling circuits to be implemented in
programmable logic devices, including hardware description languages.

In the sequential circuit section of the book, Chapter 8 discusses CAD
methods used in the design and analysis of sequential logic circuits, including
timing analysis and detection of timing constraint violations. Chapter 11 ex-
tends this discussion to methods used for modeling sequential logic circuits to
be implemented in programmable logic devices.

B Laboratory Support

Courses in digital design often utilize laboratory experiments to reinforce con-
cepts presented in class. In some cases, schematic capture or other CAD tools
are used to model circuits of varying degrees of complexity, and simulation
tools are used to study the operation of these circuits. This text supports both
CAD-based and traditional breadboarding laboratories.

The traditional breadboarding lab usually involves the construction of
digital circuits with standard TTL small scale integrated (SSI) and medium
scale integrated (MSI) circuit modules. Many examples of such modules are
covered throughout the book, discussing the design and operation of each
module and the design of higher-level circuits using these modules.

www.youseficlass.ir

xviii

Preface

In addition to short laboratory exercises, it is often desirable to use com-
prehensive design projects to have students assimilate the different concepts
learned in a course. To illustrate the planning and design steps in such projects,
the final chapter of this text presents four case studies based on projects done
by students at North Carolina State University and Auburn University.

B Chapter Descriptions

The material in this text has been organized into several sections. In each sec-
tion, fundamental concepts and theory are first developed to provide a solid
foundation. Then the theory is applied to the design and analysis of simple cir-
cuits, and extended to the design of optimal circuits. Finally, practical design
issues and methods are discussed, including the use of modular design meth-
ods, computer-aided design techniques, and programmable logic devices.
Extensive examples are presented throughout each section to illustrate and re-
inforce the concepts presented in that section.

Background

Since no particular prerequisites are assumed, the first two chapters present
background material that will aid in the understanding of digital circuit design.

Chapter 0 introduces digital circuits and digital computers, including
the primary software and hardware components of a computer.

Chapter 1 presents number systems and representation of information,
with emphasis on binary codes used to represent numbers and other informa-
tion in digital computers and other circuits. Arithmetic with binary numbers is
also discussed, as a prelude to the design of digital computer circuits that per-
form such operations.

Combinational Logic Circuits

The analysis and design of combinational logic circuits is the topic of the next
section of the book, beginning with fundamentals in chapter 2, and progress-
ing through optimization in Chapter 3, modular design in Chapter 4, and de-
sign with programmable logic in Chapter 5.

Chapter 2 begins with a presentation of Boolean and switching alge-
bras, which form the basis of logic circuit design. Digital logic gates are in-
troduced next, followed by coverage of analysis techniques for circuits con-
structed with basic gates. The synthesis and design of logic circuits from
various types of specifications are presented next. The chapter concludes with
an introduction to computer-aided design of digital logic circuits.

Chapter 3 presents algorithms and methods for simplifying combina-
tional logic circuits. The use of Karnaugh maps and the tabular Quine-

www.youseficlass.ir

Preface xix

McCluskey method are presented in detail, and then computer-aided methods
for simplification of combinational logic circuits are discussed.

Chapter 4 discusses hierarchical, modular design of digital circuits. The
design and use of various modules in such designs are described, including de-
coders, multiplexers, and arithmetic circuits. CAD tool support of hierarchical,
modular design activities is presented to conclude the discussion.

Chapter 5 describes the basic operation of programmable logic devices,
and the implementation of combinational logic circuits with programmable ar-
rays. The three basic device architectures, PLA, PROM, and PAL, are de-
scribed, along with examples of commercially-available modules. CAD tools
to support the modeling of combinational logic circuits to be implemented
with programmable devices are presented.

Sequential Logic Circuits

Sequential logic circuits, which involve memory, are discussed in the next sec-
tion of the book. Chapter 6 describes the memory elements used in sequential
circuits and Chapter 7 examines the design and operation of a number of stan-
dard circuit modules based on these memory elements. Chapter 8§ presents the
fundamentals of synchronous circuit analysis and design, with Chapter 9 dis-
cussing methods for optimizing these circuits. Chapter 10 discusses the unique
problems associated with the analysis and design of asynchronous sequential
circuits. Finally, Chapter 11 describes the use of programmable logic devices
in sequential circuit design.

Chapter 6 begins by introducing sequential logic circuits, including the
role played by memory elements in these circuits. The design and operation of
the two basic types of memory devices, latches and flip-flops, are then dis-
cussed, and the features of a number of commercially-available modules con-
taining such devices are described.

Chapter 7 describes the design and operation of a number of standard
sequential logic circuit modules, including registers, shift registers, and coun-
ters. For each module type, the basic design and theory of operation are pre-
sented, and then the features and use of a number of representative standard
TTL modules are described.

Chapter 8 presents fundamentals and techniques for analysis and syn-
thesis of synchronous sequential logic circuits, including timing diagrams,
state tables, and flip-flop excitation tables. The chapter concludes with an
overview of CAD methods for modeling and simulating the operation of syn-
chronous sequential circuits and for analyzing the unique timing characteris-
tics of such circuits.

Chapter 9 discusses optimization of synchronous sequential logic cir-
cuits. Methods are presented for eliminating redundant states to reduce the
number of memory elements needed to implement a design, and methods for

www.youseficlass.ir

XX

Preface

optimal assignment of state variables to minimize the number of required
combinational logic gates.

Chapter 10 discusses pulse mode and fundamental mode asynchronous
sequential circuits. Methods for analysis and synthesis of each type of circuit
are presented, including the identification of races in fundamental mode cir-
cuits and methods for preventing critical races.

Chapter 11 concludes the sequential circuit section by describing pro-
grammable logic devices used to implement synchronous and asynchronous
sequential circuits, including registered PALs and PLAs, and flexible macro-
cell-based devices. Also covered are field programmable gate arrays. The
chapter includes an overview of CAD methods for modeling sequential cir-
cuits to be synthesized with programmable logic devices.

Testing and Design for Testability

Chapter 12 provides an introduction to faults in digital logic circuits and test-
ing methods, including the process of deriving test sets for logic circuits.
Testing of a digital circuit represents a significant cost, especially as circuits
grow in size. To facilitate testing and minimize testing cost, design for test-
ability is critical. Therefore, this chapter discusses a number of digital circuit
design techniques that can improve testability at the gate and circuit board lev-
els, including the use of built-in testing circuits.

Digital Design Case Studies

Chapter 13 concludes the text by presenting four case studies based on actual
comprehensive digital design projects done by students at North Carolina
State University and Auburn University: a slot machine game, an automobile
keyless entry system, a traffic controller to coordinate two-way traffic on a sin-
gle-lane road, and a cash register controller.

B Suggested Course Outlines

The material in this course may be used in a quarter or semester course, or may
be extended to two quarters. A 10-week quarter course might use the follow-
ing outline.

Chapter 0: General introduction
Chapter 1: Binary number codes and binary arithmetic

Chapter 2: Boolean algebra and switching functions, logic gates, combina-
tional circuit analysis and design

Chapter 3: Minimization—one method (typically K-maps)
Chapter 4: Modular, hierarchical design and standard circuit modules
Chapter 6: Basic operation and design of flip-flops and latches

www.youseficlass.ir

B Acknowledgments

Preface xxi

Chapter 7: Simple sequential shift register and counter modules
Chapter 8: Analysis and synthesis of synchronous sequential circuits

A second 10-week quarter course can spend more time on computer-
aided design, programmable logic, asynchronous circuits, and testing.

A 16-week semester course can simply follow the book outline, adding
the optimization topics in chapters 3 and 9, coverage of programmable logic
devices in chapters 5 and 11, and testing from chapter 12.

The authors are appreciative of the students at Auburn University, North
Carolina State University, and the University of Texas at Arlington, who used
the manuscript in class in lieu of a finished text. Also, colleagues and gradu-
ate assistants who participated in teaching courses from the manuscript offered
many valuable suggestions, including Mr. Bruce Tucker, Mr. Bill Dillard, Prof.
Adit Singh, Prof. Dharma Agrawal, Prof. Alexandra Duel-Hallen, Mr. Kam
Yee, Prof. Hee Yong Youn, and Prof. Vijay K. Raj.

The authors also thank our editor Don Fowley for his many helpful sug-
gestions and contributions in both the preparation of the manuscript and the
design of the textbook. Additional thanks go to Miss Meredith Nelson for her
assistance in typing the initial draft and Mr. Gregory Nelson for his work on
the Solutions Manual.

The comments of several reviewers were valuable in the development of
the manuscript, in particular those of Michael A. Driscoll of Portland State
University, David Bray of Clarkson University, Karan Watson of Texas
A & M, Dong Ha of Virginia Polytechnic Institute, and Kewal Saluja of the
University of Wisconsin-Madison.

Finally, we would like to express our appreciation to our wives,
Margaret, Susan, Marsha, and Edie, for their support and patience during the
seemingly endless process of developing this manuscript.

Victor P. Nelson
H. Troy Nagle
Bill D. Carroll
J. David Irwin

www.youseficlass.ir

RARaRase

We are living in an age that sociologists
have called the computer revolution. Like
any true revolution, it is widespread and all-
pervasive and will have a lasting impact on so-
ciety. It is as fundamental to our present economic
and social order as was the industrial revolution in
the nineteenth century. It will affect the thinking pat-
terns and life-styles of every individual. Whereas the
major effect of the industrial revolution was to aug-
ment our physical powers, the computer revolution is
extending our mental powers.

Computers are composed of electronic, mechan-
ical, and/or optical elements known as the hardware
and of programs and data known as the software. This
book introduces the subject of computer hardware. In
particular, we will study the analysis and design of logic
circuits that form the basis for most computer electronic
hardware. But first, let’s take a closer look at the history
and the organization of the digital computer.

i
&

199Y9)

www.youseficlass.ir

Introcdluction

B 0.1 History of Computing

A computer is a device capable of solving problems or manipulating infor-
mation, according to a prescribed sequence of instructions (or program), us-
ing some mechanical or electrical process. Since people first began solving
problems thousands of years ago, ways have been sought to simplify various
problem-solving tasks. Of primary interest over the millenia has been the au-
tomation of arithmetic operations. The advent of computer technology provided
an inexpensive way to perform simple arithmetic, and, as the technology ma-
tured, computer techniques were rapidly extended to solving complex numeric
problems, storing, retrieving, and communicating information, and controlling
robots, appliances, automobiles, games, manufacturing plants, and a variety
of other processes and machines. What is most amazing is that this computer
revolution has occurred all within the past 50 years! The following is a brief
synopsis of these developments.

0.1.1 Beginnings: Mechanical Computers

The first computer was probably the abacus, which has been used in the Orient
for over 3000 years. This device, still in use today, had little competition until
the 1600s when John Napier used logarithms as the basis for a device that
multiplied numbers. His work led to the invention of the slide rule. Then, in
1642, Blaise Pascal built an adding machine that had geared wheels much like
the modern odometer.

In 1820, Charles Babbage built the first device that used the principles of
modern computers. His machine, the difference engine, evaluated polynomials
by the method of finite differences (see [1]). He also conceived a mechanical
machine that resembled modern-day computers with a store and arithmetic
unit. However, the precision required for constructing the mechanical gears
was beyond the capabilities of the craftsmen of his time.

www.youseficlass.ir 1

2 Chapter 0 Introduction

0.1.2 Early Electronic Computers

The first real progress toward electronic digital computers came in the late 1930s
when Howard Aiken of Harvard University and George Slibitz of Bell Tele-
phone Laboratories developed an automatic calculator using relay networks; the
relay is an electromagnetically controlled switch. Other relay machines were
developed during World War II for artillery ballistic calculations. Although
these machines were relatively slow and comparatively large, they demon-
strated the versatility of the electronic computer. Then, in the early 1940s, John
Mauchly and J. Presper Eckert, Jr., of the University of Pennsylvania designed
and built a vacuum tube computer, which they called the electronic numeri-
cal integrator and calculator (ENIAC); it was completed in 1945 and installed
at Aberdeen Proving Ground, Maryland. ENIAC used 18,000 electron tubes,
which required tremendous amounts of power; its failure rate was high and it
was difficult to program because a plugboard was required.

Three very important discoveries were then made, which began the rapid
evolution toward today’s digital computer. First, John von Neumann proposed
that the program reside in the computer’s memory where it could be changed at
will, solving the programming difficulties of ENIAC; second, in 1947 the tran-
sistor was invented by John Bardeen, Walter H. Brattain, and William Shock-
ley, which drastically reduced the size and power requirements by replacing
the electron vacuum tube; and, third, J. W. Forrester and his associates at the
Massachusetts Institute of Technology developed the magnetic core memory,
which made large amounts of storage feasible.

0.1.3 The First Four Generations of Computers

ENIAC and other vacuum tube computers appearing in the late 1940s and
through the 1950s have been labeled first-generation digital computers. The
advent of transistors in the late 1950s brought about the second generation of
machines, which were smaller in size and faster and featured increased capa-
bilities over their ancestors. In the late 1960s and throughout the 1970s, the
third generation of machines appeared. These machines are characterized by
their use of integrated circuits consisting of subminiature packages of multi-
ple transistor circuits, which provided still another drastic reduction in size.
Improvements in packaging and memory technology also contributed to the
improved third-generation machines.

The late 1960s also brought the emergence of the minicomputer. In addi-
tion to large complex machines, often called mainframes, many manufacturers
offered these smaller, limited-capability, general-purpose computers. Minicom-
puters, which derived their name from their size and cost, have been used in
many diverse applications and have played a major role in popularizing the use
of computers. The minicomputer widely increased computer usage in the sci-
entific and engineering communities. Machines found their way into industrial
and university research laboratories. Computerized process control in industry
became commonplace.

www.youseficlass.ir

Albustani
Rechteck

Section 0.1 History of Computing 3

The fourth generation of computers was ushered in during the late 1970s
and early 1980s with the appearance of machines based on large scale inte-
grated (LSI) and very large scale integrated (VLSI) circuit hardware compo-
nents. VLSI made it feasible to build small but powerful computers known as
personal computers or workstations. The central component of these machines
is the microprocessor, which is an entire central processing unit of a computer
implemented in a single VLSI component. Intel Corporation and Motorola
have led the way in microprocessor technology development. This develop-
ment is illustrated in Fig. 0.1, which shows the evolution over a 20-year period
of the Intel VLSI microprocessor chips used in the IBM and IBM-compatible
personal computers.

10,000,000 g 9%
: s 3
B Parameter § = —180
- =
L D Transistors _?*__ ©— 70
1,000,000 F Clock speed (MHz) § :
‘@ | =] ¥ c.
s [|| Hne
35 100,000 &’&
N . 1
£ : o §
2 - H 30 ©
5]
10000 e 8 © H 20
- S + -
- & * 10
1000 l l 0

4004 B0B0 8085 B8086/8088 80286 80386 80486 Pentium
(1971) (1974) (1976) (1978) (1980) (1986) (1988) (1993)

Figure 0.1 Evolution of the Intel microprocessors.

Perhaps the appearance of personal computers such as the IBM Personal
Computer, based on Intel microprocessors, and the Apple Macintosh, based on
Motorola microprocessors, has had the most dramatic impact on expanding the
range of computer applications than has any other occurrence. Before the per-
sonal computer became widespread, one could safely say that most computers
were used by computer experts. Now computers are commonly used by experts
and nonexperts alike. Computer networks have become commonplace during
the fourth generation as well. Networks have increased access to computers
and have spawned new applications, such as electronic mail.

www.youseficlass.ir

4 Chapter 0 Introduction

0 1 4 The Flfth Generation and Beyond

When w111 the fifth generation of computers begin? Or has it already begun?
Using the classical measure, the switch to a new hardware technology base,
the answer is no. But should hardware technology be the only indicator of
computer generations? Probably not. It is clear that advances in software have
had profound effects on the way computers are used. New user interfaces,
such as voice activation, or new computational paradigms, such as parallel
processing and neural networks, may also characterize the next-generation
machine. Whatever the case may be, it is likely that parallel processing, artificial
intelligence, optical processing, visual programming, and gigabit networks will
play key roles in computer systems of the future. We will likely be in the fifth
generation of computers for some time before it becomes apparent.

Armed with these perspectives, let us now review some important com-
puter terminology that we will need to analyze and design circuits for computers
and other digital systems.

® 0.2 Digital Systems

0 21 Dlgltal versus Analog Systems

A dzgztal system or dev1ce is a system in which information is represented and
processed in discrete rather than continuous forms. Systems based on contin-
uous forms of information are called analog systems or devices. A watch that
displays time with hour, minute, and second hands is an example of an analog
device, whereas a watch that displays the time in decimal digits is a digital
device. Information on traditional audio cassette tapes is recorded in analog
form, whereas compact laser disks hold information in digital form. A more
modern form of audio tape, the digital audio tape (DAT), stores information in
digital form.

For example, Fig. 0.2a shows an analog signal as might be found on a
strip of magnetic audio tape. Figure 0.2b shows the same signal sampled at
uniform time intervals and converted to a discrete number of values. Figure
0.2c shows this information in digital form, with each sample represented by a
binary number written vertically on the tape.

— 0000000000000000

y N 011 1111100000111
AN v 100010001 1111000

/ S— 1011011010001011

(a) (b) ©)

Figure 0.2 Magnetic tape containing analog and digital forms of a signal.
(a) Analog form. (b) Sampled analog form. (¢) Digital form.

www.youseficlass.ir

Section 0.2 Digital Systems 5

Although the modern computer is the most visible example of a digital
system, there are many other examples, including digital watches, traffic light
controllers, and pocket calculators. All these examples (other than the com-
puter) are systems with fixed functionalities that cannot be modified by the
user. On the other hand, the computer is a programmable system; that is, it
can be modified to change the tasks or applications that it performs. In other
words, computers are general-purpose systems, while the other examples are
application specific.

In a rapidly growing trend, computers are being used in place of applica-
tion-specific circuits in such products as automobile engines, home appliances,
and electronic games by developing programs to perform the tasks required
of the application and then embedding the programmed computer within the
product. The ability to program a computer to perform any arbitrary task allows
embedded computers to be used in place of a wide variety of fixed circuits,
usually at a much lower cost.

Analog computers and other analog systems were in use long before
digital devices were perfected. Why then have digital systems supplanted analog
systems in most application areas? There are several reasons.

® In general, digital techniques offer more flexibility than do analog
techniques in that they can be more easily programmed to perform any
desired algorithm.

® Digital circuits provide for more powerful processing capabilities in terms
of speed.

® Numeric information can be represented digitally with greater precision
and range than it can with analog signals.

o Information storage and retrieval functions are much easier to implement
in digital form than in analog.

@ Digital techniques allow the use of built-in error detection and correction
mechanisms.

® Digital systems lend themselves to miniaturization more than do analog
systems.

0.2.2 Digital System Design Hierarchy

Digital systems may be designed and studied at many different levels of abstrac-
tion, ranging from a purely behavioral model, in which no hardware details are
specified, down to the physical level, in which only structures of physical ma-
terials are specified. Several levels of design abstraction are listed in Table 0.1.

The System and Register Levels

At its highest level, a digital system can be viewed as one or more interact-
ing functional modules. The behavior of each module is described without
specifying implementation details. For example, a desktop computer viewed
at the system level comprises a microprocessor, memory modules, and control
circuits for the monitor, keyboard, printer, and other peripheral devices.

www.youseficlass.ir

6 Chapter 0 Introduction

TABLE 0.1 HIERARCHY OF DIGITAL SYSTEM DESIGN

ABSTRACTION
Design Level of Amount
Level Abstraction of Detail Type of Model

System Highest Lowest Behavioral

Register . . Behavioral/structural
Gate . . Structural

Transistor . . Structural

Physical Lowest Highest Structural

At the register level, a digital system is viewed as a collection of elements
called registers that store information, interconnected in some fashion by signal
lines. Information is processed by the system by transferring it between registers
along these signal lines. In some cases the information is transformed during
these register transfers by routing it through one or more functional modules.
Figures 0.3a and b illustrate the system- and register-level models of a digital

Input
Adder
Input
Compute the sum of Register A [~<— Clear
a sequence of |— Store
input numbers
Total Total

(a) (b)

Figure 0.3 Models of a digital system that adds lists
of numbers. (a) system level. (b) register level.

system that computes the sum of a sequence of binary numbers, supplied one
at a time as inputs to the system. At the system level, all that is known is the
basic function of the system, which is to compute:

N
Total = Z Input,
i=1
Attheregister level, as in Fig. 0.3b, it is seen that the system comprises a storage
register, A, and an adder circuit. The Total is computed by first clearing register
A, using control signal Clear, and then adding each input number, Input,, to the
contents of register A, replacing the contents of register A with the new sum,

www.youseficlass.ir

Section 0.2 Digital Systems 7

using control signal Store. Hence, the sum of a list of numbers is computed by
performing the following register transfers in the proper sequence.
Clear: A <0

Store: A <— A + input

The Gate Level

At its lowest level, the behavior of a digital system is specified as a set of logic
equations from switching algebra that can be realized in hardware by logic
circuits. The smallest logical unit of digital hardware is called a gare. Gates
are switching elements that implement the fundamental operators of switching
algebra. Logic equations are realized in hardware by interconnecting gates to
form combinational logic circuits, as illustrated in Fig. 0.4. Note that the circuit
has six gates. The inputs in this example are labeled x,, .. ., x5, and the output
f(x,, ..., x5)is afunction only of the present value of the input signals. Hence,
a distinguishing feature of the combinational logic circuit is that it possesses no
memory of previous input signals. The analysis and design of combinational
logic circuits consume a major portion of this text.

X —
Gl |—
X —t
| 6a
x| —)
x3— G2 (— G6 L-fl-¥1,x2,x3,x4,x5)
X4 —t
| s
XD i
G3 |b—I
xs——

Figure 0.4 A combinational logic circuit with six gates.

All digital computers contain memory devices called registers that serve
as temporary stores for information. These registers and certain parts of the
control unit are called sequential logic circuits. A sequential logic circuit is,
in general, a combinational logic circuit with memory, as modeled in Fig. 0.5.
Unlike combinational logic circuits, the outputs of a sequential logic circuit are
functions of not only the present value of the input signals, but also depend on
the past history of inputs, as reflected by the information stored in the registers.
Sequential logic circuit analysis and design comprise the second focal point of
this text. Only after readers have mastered the fundamentals of combinational
and sequential circuits can they proceed with the design and construction of
digital systems hardware.

www.youseficlass.ir

8 Chapter 0 Introduction

Inputs ————=1 Combinational -[———— Ouiputs
logic
- network

Memory

Figure 0.5 Sequential logic circuit.

Transistor and Physical Design Levels

Combinational and sequential logic circuits completely define the logical be-
havior of a digital system. Ultimately, each logic gate must be realized by a
lower-level transistor circuit, which in turn is realized by combining various
semiconductor and other materials. The technologies used to construct gates
and other logic elements have evolved from mechanical devices to relays to
electron tubes to discrete transistors to integrated circuits. Figure 0.6 illustrates
several of these devices. Modern computers and application-specific digital
systems are usually built of integrated circuits that are arranged to realize the
registers and control circuits necessary to implement the computer’s instruction
set or the system’s functions.

An integrated circuit (IC) contains multiple logic elements. The number
of gates or gate equivalents per IC determines the scale of integration. Small
scale integration (SSI) refers to ICs with 1 to 10 gates, medium scale integration
(MSI) corresponds to 10- to 100-gate ICs, large scale integration (LSI) to 100
to 10,000 gates, and very large scale integration (VLSI) to ICs with more than
100,000 gates.

It is beyond the scope of this text to consider transistor and physical-level
design of logic gates. However, it is important to have a basic understanding of
various electrical and physical properties of different gate circuits so that the
logical operation, performance, cost, and other parameters of a digital system
design may be evaluated.

Electronic Technologies

Numerous families of electronic technologies have been developed to provide
characteristics such as speed, power consumption, packaging density, func-
tionality, and cost that hardware designers prefer. Usually, it is impossible to
provide all the desired characteristics in one family. Hence, there is an on-
going quest for improvements in proven technologies or the development of
new technologies. Tables 0.2 and 0.3 list the most significant technologies and
corresponding characteristics that have been used since the beginning of the
transistor era.

The packaging of logic gates and other logic elements has changed signifi-
cantly over the years. Early electronic logic elements were typically constructed
from large electron tubes, discrete resistors, and capacitors, were mounted on

www.youseficlass.ir

Section 0.2 Digital Systems 9

TABLE 0.2 IMPORTANT ELECTRONIC TECHNOLOGIES

Technology Device Type
Resistor—transistor logic (RTL) Bipolar junction
Diode-transistor logic (DTL) Bipolar junction
Transistor-transistor logic (TTL) Bipolar junction
Emitter-coupled logic (ECL) Bipolar junction
Positive metal oxide semiconductor (pMOS) MOSFET
Negative metal oxide semiconductor (nMOS) MOSFET
Complementary metal oxide semiconductor (CMOS) MOSFET
Gallium Arsenide (GaAs) MESFET

TABLE 0.3 CHARACTERISTICS OF ELECTRONIC TECHNOLOGY

FAMILIES
Technology Power Consumption Speed Packaging
RTL High Low Discrete
DTL High Low Discrete, SSI
TTL Medium Medium SSI, MSI
ECL High High SSI, MSI, LSI
pMOS Medium Low MSI, LSI
nMOS Medium Medium MSI, LSI, VLSI
CMOS Low Medium SSI, MSI, LSI, VLSI
GaAs High High SSI, MST, LSI

an aluminum chassis, and were interconnected with copper wire. Tube tech-
nology advances resulted in reduced sizes, and printed circuit boards replaced
the wires. Later, discrete transistors replaced the tubes, but the resistors, ca-
pacitors, and printed circuit boards remained in use, although their sizes were
smaller. The advent of the integrated circuit in the early 1960s produced further
reduction in the size of printed circuit boards and other passive elements.

Integrated circuits can be manufactured in standard, semicustom, and
custom forms. Standard ICs provide the parts necessary to build systems for
most applications. However, some applications may require semicustom or
custom circuits to meet special functions, lower cost, or smaller size require-
ments. Custom circuits are manufactured to the exact requirements of a specific
customer. On the other hand, semicustom circuits are programmed to satisfy a
customer’s need. The term application-specific integrated circuits (ASICS) is
often used to describe semicustom devices.

www.youseficlass.ir

10 Chapter 0 Introduction

Figure 0.6 Photographs of computer hardware. (a) abacus; (b) relays; (c) electron tubes;
(d) transistors; (e} small-scale integrated circuits; (f) medium-scale integrated circuits; (g) large-
scale integrated circuit.

www.youseficlass.ir

11

Section 0.2 Organization of a Stored Program Digital Computer

(k)

U]
Figure 0.6 (Continued). (h) internal view of an integrated circuit chip (MC74450) (courtesy of
Motorola Semiconductor Products, Inc.); (i) internal view of an electronically programmable logic
device (courtesy of Xilinx); (j) internal view of an electronically programmable logic device (courtesy
of Xilinx); (k) a very large-scale integrated circuit in a flat pack with pin-grid input/ output leads
(courtesy of Xilinx); (1) multichip module containing three chips—a microprocessor, an electronically
programmable read-only memory, and an application-specific integrated circuit (courtesy of Texas

Instruments).

www.youseficlass.ir

12 Chapter 0 Introduction

B 0.3 Organization of a Stored Program
Digital Computer

Now that we have been introduced to the basic elements used to construct digital
logic circuits, let us take a look at the organization of a digital computer. A dig-
ital computer is a system whose functional elements consist of arithmetic/logic
units (ALUs), control units, memory or storage units, and input/output (I/O)
equipment. The interaction of these elements is shown in Fig. 0.7. Every com-
puter system has a native set of instructions, called machine instructions, that
specify operations to be performed on data by the ALU and other interactions
between the ALU, memory, and /O devices. The memory elements contain
the data plus a stored list of machine instructions called a program.

Central processing unit

(CPU)
Arithmetic/
d;\{ges -« logic unit - »{ Memory
(ALU)

Figure 0.7 High-level organization of a digital computer.

The control unit coordinates all operations of the ALU, memory, and
/O devices by continuously cycling through a set of operations that cause
instructions to be fetched from memory and executed. The instruction cycle of
a simple digital computer, illustrated in Fig. 0.8, includes the following basic
steps:
1. Fetch the next instruction of the current program from memory into the
control unit.

2. Decode the instruction; that is, determine which machine instruction is
to be executed.

3. Fetch any operands needed for the instruction from memory or from
input devices.

4. Perform the operation indicated by the instruction.

S. Store in memory any results generated by the operation, or send the
results to an output device.

www.youseficlass.ir

Section 0.3 Organization of a Stored Program Digital Computer 13

Instructions are taken from memory in sequential order unless a special
kind of instruction is encountered called, synonymously, a branch, jump, skip, or
transfer. The branch instructions allow looping and decision-making programs
to be written.

Fetch Decode Fetch Perform Store
instruction instruction operands operation results j

Figure 0.8 Instruction cycle of a stored program computer.

0.3.1 Computer Instructions

As the control unit of a digital computer fetches an instruction from memory
for execution, several types of operations may result.

1. Arithmetic instructions cause the binary data to be added, subtracted,
multiplied, or divided as specified by the computer programmer in the
program.

2. Test and compare operations are available and determine the relation
(greater than, less than, equal to, or other) of two pieces of binary data.

3. Branch or skip instructions may be employed that alter the sequential
nature of program execution, based on the results of a test or compare.
This type of function adds considerable flexibility to programs.

4. Input and output commands are included for reading messages into
the computer, writing messages from the computer, and controlling
peripheral devices.

5. Logical and shifting operations provide the computer with the ability
to translate and interpret all the different codes it uses. These in-
structions allow bit manipulation to be accomplished under program
control.

All instructions for any digital computer may be grouped into one of
these five categories.

0.3.2 Information Representation in Computers

We have briefly discussed the instructions and data stored in the digital com-
puter’s memory unit, but no mention was made of the form of these items.
Information in a computer system can generally be divided into three cate-
gories: numeric data, nonnumeric data, and instruction codes.

Numeric Data Representation

Numbers are stored in the computer’s memory in the binary (base 2) number
system. Binary numbers are written using the two binary digits (bits), 1 and 0.
By contrast, we use 10 decimal digits in writing decimal numbers.

www.youseficlass.ir

14 Chapter 0 Introduction

For example, 129 in decimal means 1 x 102 +2 x 10" +9 x 10°, or
each digit’s position represents a weighted power of 10. Note that the 10
digits are O through 10 — 1 = 9. Each digit in a binary number, say 1101, is
represented by a weighted power of 2, or 1 x 2> + 1 x 22 +0 x 2! +1 x 2°.
To convert the binary number to decimal, this weighted sum is determined
as (1101), =1 x 8+ 1 x4+ 0x 2+ 1 x 1 = (13),, or one-one-zero-one in
binary equals 13 in decimal. The rules for converting numbers between decimal
and binary are covered in detail in Chapter 1.

Data in the form of binary numbers are stored in registers in the computer
and are represented as follows:

1011000111

This is a 10-bit register, which might reside in the arithmetic or memory unit. In
memory, the data in a single register are called a word (the word length is 10 bits
in this example). Patterns of ones and zeros are the only information that can
be stored in a computer’s registers or memory. The assignment of a meaning
to the bit patterns is called coding, and the codes used in most computers for
data are simply variations of the binary weighting scheme just presented.

Nonnumeric (Input/Output) Codes

Although the computer employs binary data, users prefer alphabetic and nu-
meric data representations, for example, records of sales, lists of names, or test
grades. The set of alphanumeric symbols allowed for many computers is called
the character set and has a special binary-like code called the American Stan-
dard Code for Information Interchange (ASCII). In this code the alphanumeric
and other special characters (punctuation, algebraic operators, and the like) are
coded with 8 bits each; a partial listing of this code is given in Chapter 1. Sup-
pose we wanted to give the digital computer a message "ADD 1". This message
has five characters, the fourth one being a space or blank. In the ASCII code,
our message becomes

Symbol | ASCII Code
A 01000001
D 01000100
D 01000100
00100000
1 00110001

After our message is sent to the computer, a program in the computer’s
memory accepts it and acts accordingly.

www.youseficlass.ir

Section 0.3 Organization of a Stored Program Digital Computer 15

Instruction Codes

The computer’s instructions reside in main memory and therefore, by definition,
are also represented by patterns of ones and zeros. The instructions are generally
broken down into subfields that are coded separately. These subfields are the
operation code (op code) and the memory address. The operation code specifies
the specific function to be performed.

0.3.3 Computer Hardware

Now, let us further examine the interaction of the computer’s components
shown in Fig. 0.7. Programs are stored in the computer’s memory as discussed
previously. However, the programs are inserted into memory by the control
unit in conjunction with the input/output (I/O) equipment, sometimes called
peripheral devices. Programs are usually given to the computer from magnetic
or optical peripheral storage devices. The computer then fetches the instructions
of the program from memory and executes them. Data to be used by a program
are likewise transferred into memory from keyboards, scanners, magnetic disks,
and other peripheral devices.

Control Unit

The control unit follows the stored list of instructions, directing the activities
of the arithmetic unit and I/O devices until the program has run to completion.
Each unit performs its task under the synchronizing influence of the control unit.

Arithmetic/Logic Unit

Arithmetic/logic units (ALUs) are combinational or sequential logic circuits
that perform various operations on data, as instructed by the control unit. Each
ALU is characterized by the type of data that it can manipulate and the set of
operations that it can perform on those data. Most ALUs support operations
on integers of various sizes and may also include operations to manipulate
fixed-point and floating-point numbers and various nonnumeric data. Typical
ALU operations include the following:

® Arithmetic: add, subtract, multiply, divide.

e Logical: AND, OR, exclusive-OR, complement (these will be defined
when we examine combinational logic circuits in Chapter 2).

e Shift and rotate data.

e Convert data from one type to another.

Control unit and ALU circuits are usually constructed from semicon-
ductor devices packaged in a wide variety of schemes. Models of the second

generation have transistors, resistors, diodes, and so on, mounted on printed
circuit boards, while models of the third generation use small scale integrated

www.youseficlass.ir

16 Chapter 0 Introduction

circuits on circuit boards. Fourth-generation machines use large scale and very
large scale integrated circuits.

Memory Units

Computer memory units are classified as primary memory if they can be ac-
cessed directly by the control unit; otherwise they are classified as secondary
memory.

Primary memory units in today’s digital computers are usually con-
structed using high-speed semiconductor elements called RAMs (random-
access memory) and ROMs (read-only memory). Most systems built prior
to 1980, some of which are still in operation today, utilized arrays of magnetic
cores as their primary memory elements. A few specialized systems, particu-
larly in space vehicles, utilized plated wire as a replacement for magnetic core
in some applications where radiation hardness was required.

Memory units are divided into cells called words, and each cell is known
by its physical location, or memory address. The concept of a memory address
for a memory cell is equivalent to a mailing address for a mailbox. For example,
every post office has rows of mailboxes, each identified by a unique numbered
position. Similarly, each memory cell resides in a unique numbered position,
the number being the memory address.

Memory units may be characterized by their access and cycle times;
memory access time may be defined as the length of time required to extract
(read) a word from the memory, and memory cycle time may be defined as the
minimum interval of time required between successive memory operations. The
access time of a memory determines how quickly information can be obtained
by the CPU, whereas the cycle time determines the rate at which successive
memory accesses may be made.

Secondary memory devices are used for bulk or mass storage of programs
and data and include rotating magnetic devices, such as floppy and hard disks,
magnetic tapes, magnetic bubble memories, optical devices such as CDROMs
(compact disk read-only memory), and a variety of other devices. In contrast
to primary memory, information in secondary memory devices is not accessed
directly. Instead, a special controller searches the device to locate the block of
information containing the desired item. When found, the entire block is usually
transferred into primary memory, where the desired items can be accessed in a
more convenient fashion.

Input/Output Equipment

The computer may output data to several types of peripherals; a magnetic
disk or laser printer is typical. Cathode-ray tubes (CRTs) and liquid crystal
display (LCD) panels are also available to display the results of a program’s
calculations. Analog-to-digital converters, digital-to-analog converters, plot-
ters, magnetic reading and recording devices, and laser and ink-jet printers are
the most commonly used input/output equipment.

www.youseficlass.ir

Section 0.3 Organization of a Stored Program Digital Computer 17

0.3.4 Computer Software

Software consists of the programs and data stored in the computer’s memory.
The software determines how the computer hardware is utilized and can be
broadly classified as either application programs or system programs.

Application Programs

Programming the digital computer is the process of designing a list of instruc-
tions for the computer so that it can efficiently perform a specified task. The
digital computer’s instructions must be coded in patterns of ones and zeros
before the computer can interpret them. If all programs had to be written in
this form, digital computers would enjoy very limited use. The patterns of ones
and zeros are called machine language instructions, and very few programmers
ever attempt to write programs in this manner.

A symbolic representation of the machine language of a computer, called
assembly language, is often used to develop programs. This is especially true for
small microcomputers embedded into kitchen appliances, electronic games, and
automotive equipment. Assembly language allows a programmer to specify the
operations to be performed on data stored in the internal registers and memory
of a processor without becoming bogged down in patterns of ones and zeros.

However, most programmers prefer to use higher-level, more reasonable,
symbolic languages in which to program their problems. By using high-level
languages such as C, Pascal, Ada, or FORTRAN, the programmer has a wide
range of instructions in a form that he or she can easily understand and efficiently
use, with the instructions of each language tailored to specific types of problems.
The full flexibility of machine language is difficult to incorporate into high-level
languages, but a magnificent amount has been retained, especially in C.

System Programs

System programs comprise all the software provided on a computer system to
aid programmers in the process or developing and executing application pro-
grams. For example, whenever a symbolic language, either assembly language
or a high-level language, is used to write a program, the program must be trans-
lated into machine language before it can be executed by the computer. The
question now arises as to who shall perform this laborious translation chore.
The most efficient translator is not the programmer, but the digital computer
itself. Any job done by a computer is done under program control; therefore,
the program that translates higher-level languages into machine language has
been given a special name, the compiler. This translation process is illustrated
in Fig. 0.9. Likewise, the program that translates assembly language into ma-
chine language is called an assembler. Compilers and assemblers are typical
examples of system programs, as are the text editors used to type and alter
program statements.

www.youseficlass.ir

18 Chapter 0 Introduction

High-level
language
program

Compiler

Machine
language
program

Assembly
language
program

Assembler /

Figure 0.9 Translation of computer programs into machine
language.

Now, let us contemplate the manner in which a given digital computer
might be operated. A special program called the operating system handles
the routine tasks needed to change from one user’s program to the next. This
special program falls into a category of programs called system software. In
particular three different operating systems will be discussed: single user, batch
processing, and time sharing.

If a machine is operated by each user who executes a program, it is
dedicated to this program and no one else may use the computer until the
current user is finished. The computer is then dependent on human intervention
during the time between programs, and hence much time can be spent idling.
This operating system is convenient for the user if the computer is available
when the user needs it, for once an individual is “on the machine,” that user
may modify and reexecute programs or execute several successive programs
before turning the machine over to the next user. The MS-DOS and Macintosh
operating systems are examples of single-user operating systems.

The batch operating system eliminates most of the computer idle time
by establishing one operator who collects all the user programs and feeds them
to the computer continuously. The operating system program resides in the
memory unit, and the memory locations it uses are protected from each user.
Thus, although idle time is reduced, the available memory storage for the user
is also reduced. In addition, the user must wait for the operator to return her or
his program, which is always a source of irritation and confrontation.

A more advanced operating system called time sharing allows multiple
users to execute their programs almost simultaneously. Common examples are
the UNIX operating system, used on a wide variety of personal computers,
workstations, and larger machines, and the VMS operating system used on
computers from Digital Equipment Corporation. Remote terminals consisting
of limited input/output devices are connected to the digital computer, and each
terminal is assigned to a single user. The users are relatively slow while the
computer is extremely fast. This speed differential allows the computer to skip
around between users, or time-share, in such a manner as to convince each

www.youseficlass.ir

B® 0.4 Summary

REFERENCES

Section 0.4 Summary 19

user that he has the machine all to himself. Although this operating system
seems very attractive, it has disadvantages, the first of which is cost. Also the
time-sharing system program is complicated and long, which means it uses a
lot of memory space and computer time. In addition, since all users’ programs
are stored in memory simultaneously, each individual’s available portion of
memory is limited. Therefore, time sharing usually requires the maximum
number of memory elements that a particular computer can accommodate.

In this introductory chapter we have provided motivation for the material that
follows. We have briefly explained what a computer is, how it is organized,
the codes it employs, the manner in which it is programmed, and the hardware
of which it is composed. The material contained in the remaining chapters is
prerequisite to any hardware design or implementation for digital computers or
other complex digital systems. The reader is referred to [1, 2, 3, 4] for further
reading.

1. J. P. HAYES, Computer Architecture and Organization, 2nd ed. New York:
McGraw-Hill Book Co., 1988.

2. D. A. PATTERSON AND J. L. HENNESSY, Computer Organization & Design: The
Hardware/Software Interface. San Mateo, CA: Morgan Kaufmann Publishers,
1993.

3. D. A. HODGES AND H. G. JACKSCN, Analysis and Design of Digital Integrated

Circuits, 2nd ed. New York: McGraw-Hill Book Co., 1988.

4. J. F. WAKERLY, Digital Design Principles and Practices, 2nd ed. Englewood

Cliffs, NJ: Prentice Hall, 1994.

www.youseficlass.ir

*T*T* + Computers and other digital systems pro-
cess information as their primary function.
Therefore, it is necessary to have methods and
systems for representing information in forms
that can be manipulated and stored using electronic

or other types of hardware.

In this chapter we cover number systems and codes
that are often employed in computers and digital sys-
tems. Topics covered include binary, octal, and hex-
adecimal number systems and arithmetic; base con-
version techniques; negative number representation
methods such as sign-magnitude, two’s complement,
and one’s complement; numeric codes for fixed- and
floating-point numbers; character codes, including bi-
nary coded decimal and ASCII; Gray and excess codes;
and error detection and correction codes. Later chap-
ters of the book cover the analysis and design of hard-
ware to process information represented in the forms
described here.

www.youseficlass.ir

Albustani
Rechteck

Albustani
Rechteck

Number System and Codes

T —————— = E— T

® 1.1 Number Systems

A number system consists of an ordered set of symbols, called digits, with
relations defined for addition (+), subtraction (-), multiplication (x), and division
(+). The radix (r), or base, of the number system is the total number of digits
allowed in the number system. Number systems commonly used in digital
system design and computer programming include decimal (r = 10), binary
(r =2), octal (r =8), and hexadecimal (r = 16). Any number in a given
system may have both an integer part and a fractional part, which are separated
by a radix point (.). The integer part or the fraction part may be absent in some
cases. Now let’s examine the positional and polynomial notations for a number.

1.1.1 Positional Notation
Suppose you borrow one hundred twenty-three dollars and thirty-five cents
from your local bank. The check you are given indicates the amount as $123.35.
In writing this number, positional notation has been used. The check may be
cashed for 1 one hundred dollar bill, 2 ten dollar bills, 3 one dollar bills, 3
dimes, and 5 pennies. Therefore, the position of each digit indicates its relative
weight or significance.
In general, a positive number N can be written in positional notation as
N=(a, a0, 5...q00, . a_ja_,...a_,), (1.1)
where
. = radix point separating the integer and fractional digits
r = radix or base of the number system being used
n = number of integer digits to the left of the radix point
m = number of fractional digits to the right of the radix point
a, = integer digit/ whenn —1>i >0
a, = fractional digit i when —1 > i > —m
a,_, = most significant digit
a_, = least significant digit

www.youseficlass.ir 21

22 Chapter1 Number Systems and Codes

[t]ofefrfe]ofr]o]

Figure 1.1 An 8-bit register.

®» 1.2 Arithmetic

Note that the range of values for all digits @; is r — 1 > a, > 0. Using this
notation, the bank loan amount would be written $(123.35),,. The parenthe-
ses and the subscript denotating the radix may be eliminated without loss of
information if the radix is either known by the context or otherwise specified.

Polynomial Notation

The (123.35) , dollar loan amount can be written in polynomial form as
N=1x1004+2x104+3x14+3x0.145x0.01
=1x10°4+2x10'+3x10°+3 x 107" +5 x 1072
Note that each digit resides in a weighted position and that the weight of each

position is a power of the radix 10. In general, any number N of radix » may
be written as a polynomial in the form

n—1
N=> ar (1.2)

where each symbol is defined the sameﬂas in Eq. 1.1. For the bank loan, r = 10,
a,=1,a,=2,ay=3,a_, =3,a_,=35,anda, =0fori > 3andfori < -3.

1.1.2 Commonly Used Number Systems

The decimal, binary, octal, and hexadecimal number systems are all important
for the study of digital systems. Table 1.1 summarizes the fundamental features
of each system and illustrates a limited range of positive integers in each. All
the numbers in Table 1.1 are written in positional notation.

Digital systems are usually constructed using two-state devices that are
either in an off state or an on state. Hence, the binary number system is ideally
suited for representing numbers in digital systems, since only two digits, O and
1, commonly called bits, are needed. A bit can be stored in a two-state storage
device often called a latch. Binary numbers of length n can be stored in an n-bit
long device known as a register, which is built with n latches. An 8-bit register
loaded with the binary number 10011010 is shown in Fig. 1.1.

Every child learns the rudiments of arithmetic by memorizing the base-10 ad-
dition and multiplication tables as shown in Tables 1.2a and b, respectively.
Subtraction can be accomplished by using the addition table in reverse. Simi-
larly, long division uses trial and error multiplication and subtraction to obtain
the quotient. The foundation for arithmetic in any base is a knowledge of
the addition and multiplication tables for the given base. Given these tables,
arithmetic operations proceed in a similar manner for all bases. Arithmetic in
the binary, octal, and hexadecimal number systems will be introduced in the
remainder of this section.

www.youseficlass.ir

EXAMPLE 1.1

Section 1.2 Arithmetic 23

TABLE 1.1 IMPORTANT NUMBER SYSTEMS

Name Decimal Binary Octal Hexadecimal
Radix 10 2 8 16
Digits 0,1,2,3,4, 0,1 0,1,2,3, 0,1,2,3,4,5,

56,7,8,9 4,5,6,7 6,7,8,9,A, B,
C,DEF

First 0 0 0 0
seventeen 1 1 1 1
positive 2 10 2 2
integers 3 11 3 3
4 100 4 4

5 101 5 5

6 110 6 6

7 111 7 7

8 1000 10 8

9 1001 11 -9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 20 10

1.2.1 Binary Arithmetic
Addition

Tables 1.3a and b show the addition and multiplication tables, respectively, for
the binary number system. The tables are very small since there are only two
digits, or bits, in the system. Binary arithmetic is very simple as a result. Note
that the addition 1 4 1 produces a sum bit of O and a carry bit of 1. The carry
must be added to the next column of bits as addition proceeds in the normal
pattern from right to left. Two examples of binary addition are given next.

Add the two binary numbers (111101), and

(10111),.
1 1 1 1 1 1 Carries
1 1 1 1 O 1 Augend
+ 1 0 1 1 1 Addend
1 01 01 0 O Sum

www.youseficlass.ir

24 Chapter 1

Number Systems and Codes

TABLE 1.2 (a) DECIMAL ADDITION TABLE; (b) DECIMAL

MULTIPLICATION TABLE.

+ |0 1 2 3 4 5 6 7

0o 1 2 3 4 5 6 7 9
1|1 2 3 4 5 6 7 8 9 10
2 (2 3 4 5 6 7 8 9 10 11
3(3 4 5 6 7 8 9 10 11 12
4 14 5 6 7 8 9 10 11 12 13
5/!5 6 7 8 9 10 11 12 13 14
6 |6 7 8 9 10 11 12 13 14 15
717 8 9 10 11 12 13 14 15 16
818 9 10 11 12 13 14 15 16 17
9 (9 10 11 12 13 14 15 16 17 18

(@)

x |0 1 2 3 4 5 6 7 8 9
0/l0 0 0 0 O 0 0 0
10 1 2 3 4 5 6 7 8 9
210 2 4 6 8 10 12 14 16 18
310 3 6 9 12 15 18 21 24 27
4 {0 4 8 12 16 20 24 28 32 36
510 5 10 15 20 25 30 35 40 45

6 |0 6 12 18 24 30 36 42 48 54
710 7 14 21 28 35 42 49 56 63

8 |0 8 16 24 32 40 48 56 64 72
919 9 18 27 36 45 54 63 T2 81

(b)

TABLE 1.3 (a) BINARY ADDITION TABLE.
(b) BINARY MULTIPLICATION TABLE.

+ 10 1 X 0 1

010 1 0 (VI

1 1 10 1 0 1
(@ (b)

In Example 1.1, two columns were encountered that had two 1 bits and a
carry bit of 1, which had to be totaled. This addition of three 1’ s can be more
easily viewed as

I+1+1=0+D+1
= (10), + (01),
=11

www.youseficlass.ir

EXAMPLE 1.2

EXAMPLE 1.3

Section 1.2 Arithmetic 25

Thus both the sum bit and the carry bit are 1’s.

When a long list of binary numbers must be added, the computation
is easily performed by adding the numbers in pairs, as demonstrated in the
following example.

Add the four numbers (101101),, (110101),,
(001101),, and (010001),.

{101101
1 1. 01 0 1
001101}
+ 01 0 0 0 1
1 11 1 1
1 01 1 0 1 0 01 1 01
+ 1 1 0 1 0 1 + 0 1 0 0 0 1
1 1.0 0 0 1 O 0 1 1 1 1 O
1 1 1 1 1 1
1 1.0 0 0 1 O
+ 01 1 1 1 O
1 0 0 000 0 O

However, we may choose to perform the addition directly to avoid the
intermediate steps required by the preceding approach. The direct method is
illustrated in the following example.

Repeat the previous example by adding one entire column at a time.

10 10 10 10 1 10 Carries
1 0 1 1 0 1
1 1 0 1 0 1
0 O 1 1 0 1
+ 0 1 0 0 0 1
1 0 0 0 0 O 0 0 Sum

Note that the sum of the digits in the first column is 14 1+ 1 + 1 = (100),.
This results in a sum digit of O in that column and a carry of 10 to the next
column to the left.

Subtraction

Subtraction may be thought of as the inverse of addition. The rules for binary
subtraction follow directly from the binary addition table in Table 1.3a and are

1-0=1
1-1=0

www.youseficlass.ir

26 Chapter 1 Number Systems and Codes

EXAMPLE 1.4

EXAMPLE 1.5

0-0=0
0—-1=1 withaborrowofl,or10—1=1

The last rule shows that if a 1 bit is subtracted from a O bit then a 1 must be
borrowed from the next most significant column. Borrows propagate to the left
from column to column, as illustrated next.

Subtract (10111), from (1001101),.
6 5 4 3 2 1 0 Column

1 10 Borrows
o g 10 0 @ 10 Borrows

¥ g o Y Y @ 1 Minuend
1 0 1 1 Subtrahend

1 1 0 1 1 0 Difference

In this example, a borrow is first encountered in column 1. The borrow is taken
from column 2, resulting in a 10 in column 1 and a 0 in column 2. The 0 now
present in column 2 necessitates a borrow from column 3. No other borrows
are necessary until column 4. In this case, there is no 1 in column 5 to borrow.
Hence, we must first borrow the 1 from column 6, which results in O in column
6 and 10 in column 5. Now column 4 borrows a 1 from column 5, leaving 1 in
column 5 (10 — 1 = 1) and 10 in column 4. This sequence of borrows is shown
above the minuend terms.

Multiplication and Division

Binary multiplication is performed in a similar fashion as decimal multipli-
cation except that binary multiplication operations are much simpler, as can
be seen in Table 1.3b. Care must be taken, however, when adding the partial
products, as illustrated in the following example.

Multiply (10111), by (1010),.

1 0 1 1 1 Multplicand
X 1 0 1 0 Multiplier
0 0 0 0 O
1 01 1 1
0 0 0 0 O
1 0 1 1 1

1 1.1 0 0 1 1 O Product
Note that there is one partial product for every multiplier bit. This procedure
can be performed more efficiently by merely shifting one column to the left,
rather than listing an all-zero partial product for a multiplier bit of 0. We can
see from this example how easily this procedure can be accomplished.

www.youseficlass.ir

EXAMPLE 1.6

EXAMPLE 1.7

EXAMPLE 1.8

EXAMPLE 1.9

Section 1.2 Arithmetic 27

Binary division is performed using the same trial and error procedure
as decimal division. However, binary division is easier since there are only
two values to try. Copies of the divisor terms are subtracted from the divi-
dend, yielding positive intermediate remainder terms. The following example
illustrates binary division.

Divide (1110111), by (1001),.

1 1 0 1 Quotient
Divisor 1 0 0 1|1 1 1 0 1 1 1 Dividend
1 0 0 1
1 0 1 1
1 0 0 1
1 0 1 1
1 0 1

1 0 Remainder

1.2.2 Octal Arithmetic

The addition and multiplication tables for the octal number system are given in
Table 1.4. Given these tables, octal arithmetic can be done using the same pro-
cedures as for the decimal and binary systems, as is illustrated in the following
four examples.

Compute (4163); + (7520),.

1 1 Carries
4 1 6 3 Augend
4+ 7 5 2 0 Addend
1 3 7 0 3 Sum
Compute (6204), — (5173),.
1 10 Borrows
6 2 @ 4 Minuend
— 5 1 7 3 Subtrahend
1 0 1 1 Difference
Compute (4167); x (2503),.
4 1 6 7 Multiplicand
x 2 5 0 3 Multiplier
1 4 5 4 5 Partial products
2 5 1 2 3 0
1 0 3 5 6
1 3 1 0 5 0 4 5 Product

www.youseficlass.ir

28 Chapter 1 Number Systems and Codes

EXAMPLE 1.10

TABLE 1.4 (a) OCTAL ADDITION TABLE (b) OCTAL

MULTIPLICATION TABLE
+ |0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7 10
2 2 3 4 5 6 7 10 11
3 3 4 5 6 7 10 11 12
4 4 5 6 7 10 11 12 13
5 5 6 7 10 11 12 13 14
6 6 7 10 11 12 13 14 15
7 7 10 11 12 13 14 15 16
(a)
x| o 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 10 12 14 16
3 0 3 6 11 14 17 22 25
4 0 4 10 14 20 24 30 34
5 0 5 12 17 24 31 36 43
6 0 6 14 22 30 36 4 52
7 0 7 16 25 34 43 52 61
(b)

Compute (4163) - (25),.

1.2.3 Hexadecimal Arithmetic

The hexadecimal addition and multiplication tables are more complex than
those for the number systems studied previously and are given in Table 1.5.
However, as with other number systems, a knowledge of these tables permits

www.youseficlass.ir

4 7 Quotient

NN A

Remainder

Section 1.2 Arithmetic 29

TABLE 1.5 HEXADECIMAL ADDITION AND MULTIPLICATION TABLES (a) HEXADECIMAL
ADDITION TABLE (b) HEXADECIMAL MULTIPLICATION TABLE

+/0 1 2 3 4 5 6 7 8 9 A B C D E F
olo 1 2 3 4 5 6 717 8 9 A B C D E F
1 1 2 3 4 5 6 7 8 9 A B C D E F 10
212 3 4 5 6 7 8 9 A B C D E F 10 11
3!3 4 5 6 7 8 9 A B C D E F 10 11 12
4|4 5 6 7 8 9 A B C D E F 10 1 12 13
5/!5 66 7 8 9 A B C€C D E F 10 11 12 13 14
6| 6 7 8 9 A B C D E F 10 11 12 13 14 15
717 8 9 A B C¢C D E F 10 11 12 13 14 15 16
8 8 9 A B C D E F 10 11 12 13 14 15 16 17
9/ 9 A B C D E F 10 11 12 13 14 15 16 17 18
A|lA B € D E F 10 11 12 13 14 15 16 17 18 19
B|!B ¢ D E F 10 11 12 13 14 15 16 17 18 19 1A
c|lc p E F 10 11 12 13 14 15 16 17 18 19 1A 1B
D|D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
E|E F 10 11 12 13 14 15 16 17 18 19 14 1B 1C 1D
F!F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E
(@)
8 9 A B C D F

S
o
o
S
o
o)

10 12 14 16 18 1A 1C 1E
12 15 18 1B 1E 21 24 27 24 2D
10 14 18 1C 20 24 28 2C 30 34 38 3C
14 19 1E 23 28 2D 32 37 3C 41 46 4B
12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A
15 1 23 2A 31 38 3F 46 4D 54 5B 62 69
10 18 20 28 30 38 40 48 50 58 60 68 70 78
3F 48 51 5A 63 6C 75 1TE 87
14 1E 28 32 3C 46 50 5A 64 6E 78 8 8C 96
16 21 2C 37 42 4D 58 63 6E 79 84 8F 94 AS
18 24 30 3C 48 54 60 6C 78 84 9 9C A8 B4
1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 (3
1IC 2A 38 46 54 62 70 7TE 8C 9A A8 B6 C4 D2
1E 2D 3C 4B 5A 69 78 8 9% A5 B4 C3 D2 El

(b)

M A >0 &0 Ol

cCoo oo ococoo0cocooco0o oo oo
T U AW 0w v s L= O

—

)

—

v+

)

N

)

o]

w

a

MDA ®E 0 0T M A WD~ OX

www.youseficlass.ir

30 Chapter1 Number Systems and Codes

hexadecimal arithmetic to be performed using well-known procedures. The
following four examples illustrate hexadecimal arithmetic.

EXAMPLE 1.11 Compute (2458),; + (71D0),.
1 Carries
2 A 5 8 Augend
+ 7 1 D 0 Addend
9 C 2 8 Sum
EXAMPLE 1.12 Compute (9F1B),, — (4436),..
E 11 Borrows
9 F Y B Minuend
- 4 A 3 6 Subtrahend
5 4 E 5 Difference
EXAMPLE 1.13 Compute (5C24),, x (71D0),,.
5 C 2 A Multiplicand
x 7 1 D 0 Multiplier
4 A E 2 2 0 Partial products
5 C 2 A
2 5 2 6
2 8 F 9 6 C 2 0 Product
EXAMPLE 1.14 Compute (27FCA),, + (3E),,.
A 5 1 Quotient
Divsor 3 E|2 7 F C A Dividend
2 6 C
1 3 C
1 3 6
6 A
3 E
2 C Remainder

B 1.3 Base Conversions

Users and designers of computers and other digital systems often encounter a
need to convert a given number in base A to the equivalent number in base B.
Algorithms for performing base conversions will be presented and illustrated
in this section.

www.youseficlass.ir

EXAMPLE 1.15

EXAMPLE 1.16

EXAMPLE 1.17

Section 1.3 Base Conversions 31

1.3.1 Conversion Methods

Series Substitution

The polynomial representation of a number previously given by Eq. 1.2 forms
the basis of the series substitution conversion method. The equation can be
written in an expanded form as follows:
_ n—1 0 —
N=a, v +...4+ay +a_r

A number in base A can be converted to a number in base B in two steps.

Yy . 4a_r ™ (1.3)

m

1. Form the series representation of the number in base A in the format of
Eq. 1.3.

2. Evaluate the series using base B arithmetic.

The following four examples illustrate this procedure.

Convert (10100), to base 10.

‘We make this conversion by substituting for each digit, according to its weight.
Counting from right to left in (10100),, we find that the rightmost digit, 0, has
a weight of 29 the next digit, 0, has weight 2! and so on. Substituting these
values into Eq. 1.3 and evaluating the series with base 10 arithmetic gives:

N=1x24+0x2+1x22+0x2+0x2°
=(16),,+0+4),,+0+0
= (20),,

Convert (274), to base 10.
N=2x8+7x8 +4x8
= (128),5 + (56) ;5 + (),
= (188),,

Convert (1101.011), to base 8.

The integer part of the number is converted as in the previous examples. With
digits that are to the right of a binary point, we count from left to right. The
first digit to the right of the binary point, 0, has weight 27!, the next digit, 1,
has weight 272, and the third digit, 1, has weight 272. Substituting into Eq. 1.3
gives
N=I1x24+1x224+0x2' +1x2°4+0x21+1x2724+1x27°
=(10)g + @+ 0+ (1g + 0+ (.2)g + (.1)4
= (15.3),

www.youseficlass.ir

32 Chapter 1 Number Systems and Codes

EXAMPLE 1.18

Convert (AF3.15),, to base 10.
N=Ax162+Fx16'+3x16°+1x 167" +5 x 1672
=10,y X 256,, 4+ 15,5 x 16,5+ 3,5 x 1,
+1,, x 0.0625,, + 5,, x 0.00390625,,
= 2560,, +240,, + 3,, + 0.0625, + 0.01953125,,
= (2803.08203125),,

Note in the preceding examples that the computations were easier for
conversions from base A to base B when A < B. Conversion methods will
now be described where the converse is true.

Radix Divide Method

The radix divide conversion method can be used for converting an integer in
base A to the equivalent base B integer. To understand the method, consider
the following representation of integer N,.

(N),=b, \B""+...4+b,B° (1.4)

In Eq. 1.4, the b,’s represent the digits of (N,) , in base A. The least significant
digit, (b,) ,, can be found by dividing (N,), by (B) , as follows:

N,/B = (b, B"'+...+bB" +b,B°/B
= b, B"+...+bB"+ b,
S

Quotient, Ql Remainder, R0

In other words, (b,), is the remainder produced when (N,), is divided by
(B) 4 - In general, (b;) , is the remainder, R, produced when quotient, 0;. is
divided by (B), . The conversion is completed by converting each (b;), to
base B. However, this last step is trivial if B < A. The radix divide conversion
procedure is summarized as follows.

1. Divide (¥,), by the desired base (B),, producing quotient @, and
remainder R,. R, is the least significant digit, d,, of the result.

2. Compute each remaining digit, d,, for i = 1...n — 1, by dividing
quotient Q, by (B),, producing quotient Q, | and remainder R,, which
represents d,.

3. Stop when quotient Q. . = 0.

i+l

The radix divide method is illustrated in the next two examples.

www.youseficlass.ir

EXAMPLE 1.19

EXAMPLE 1.20

Section 1.3 Base Conversions 33

Convert (234),, to base 8.

We solve this problem by repeatedly dividing integer (234) ,, that is (V) 4, by
8, that is (B) A until the quotient is 0.

2 9 3 0
82 3 4 82 9 8 [3
1 6 2 4 0
7 4 5 =b, 3 =b,
7 2
2 =b,

Hence, (234),, = (352);. These calculations may be summarized in the fol-
lowing shorthand format:

812 3 4 2 LSB
812 9
813 3 MSB
0
Convert (234),, to base 16.
1 4 0
1 6({2 3 4 1 6|1 4
1 6 0
7 4 1 4 =(B)=b
6 4

1 0 =A)=4h,
Hence, (234),, = (EA) . In the shorthand notation;
16 ({2 3 4 10=(A),
16 (1 4 14=(E),
0

Radix Multiply Method

Base conversions for fractions can be accomplished by the radix multiply
method. Let N be a fraction in base A. The fraction can be written in series
form as follows.

(NJ,=b_ B +b ,B*+...+b_ B (1.5)

www.youseficlass.ir

34 Chapter1 Number Systems and Codes

EXAMPLE 1.21

EXAMPLE 1.22

The b,’s in Eqn. 1.5 represent the digits of (N), in base A. The most
significant digit (b_,), can be obtained by multiplying (Nz), by (B), as
follows:

BxNy=Bx(b_B'+b,B*+...+b_,B™)

= b, +b,B'+...+b B "
——
Integer,I_| Fraction,F_,

Thus, (b_,) , is the integer part of the product that results from the multiplication
of (Np), by (B),. In general, (b_,), is the integer part, I_;, of the product
that results from multiplying the fraction F_, |, by (B) ,. Therefore, the radix
multiply procedure is summarized as follows:

L Let F | = (N,),.

2. Compute digits (b_,),, for i = 1...m, by multiplying F, by (B),,
producing integer /_,, which represents digit (b_,) ,, and fraction F_, .
3. Convert each digit (b_,) , to base B.

The following two examples illustrate this method.

Convert (0.1285),, to base 8.
0.1285 0.0280 0.2240 0.7920
X 8 X 8 X 8 X 8
1.0280 0.2240 1.7920 6.3360

t t t t
b, b_, b_s

0.3360 0.6880 0.5040 0.0320
X 8 X 8 X 8 X 8
2.6880 5.5040 4.0320 0.2560

1 1 1 1

Thus
0.1285,, = (0.10162540.. . .),

Convert (0.828125),, to base 2.

A shorthand notation will be used in this example when applying the radix mul-
tiply method. On each line, the fraction is multiplied by 2 to get the following
line:

www.youseficlass.ir

Section 1.3 Base Conversions 35

MSD | 1.656250 « 0.828125 x 2
1.312500 < 0.656250 x 2
0.625000 « 0.312500 x 2
1.250000 « 0.625000 x 2
0.500000 <« 0.250000 x 2
LSD | 1.000000 « 0.500000 x 2

0.828125,, = (0.110101),

1.3.2 General Conversion Algorithms
