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•The Need for This Book
This text has been developed from a previous work, An Introduction to
Computer Logic (1974) by Nagle, Carroll, and Irwin, which was a widely
adopted text on the fundamentals of combinational and sequential logic circuit
analysis and synthesis. The original book was praised for its clarity and teach-
ing effectiveness, and despite rapid changes in the field in the late 70’s and
early 80’s, the book continued to enjoy wide use many years after its original
publication date, underscoring the interesting fact that during most of the pe-
riod since the publication of that book, the mainstream educational approach
to introductory-level courses in digital design evolved quite slowly, even while
major technological changes were rapidly being adopted in industry.

How things have changed! Recently, the astronomical proliferation of
digital circuit applications and phenomenal increases in digital circuit com-
plexity have prompted significant changes in the methods and tools used in
digital design. Very Large Scale Integrated (VLSI) circuit chips now routinely
contain millions of transistors; computer-aided design (CAD) methods, stan-
dard cells, programmable logic devices, and gate arrays have made possible
rapid turnaround from concept to finished circuit, supported by increased em-
phasis on hierarchical, modular designs utilizing libraries of standard cells and
other predesigned circuit modules. We have developed a text which supports
those changes, but we have also worked carefully to preserve the strong cov-
erage of theory and fundamentals.

An effective digital design engineer requires a solid background in fun-
damental theory coupled with knowledge of practical real-world design prin-
ciples. This text contains both. It retains its predecessor’s strong coverage of
fundamental theory. To address practical design issues, over half of the text is
new material that reflects the many changes that have occurred in recent years,
including modular design, CAD methods, and the use of programmable logic,
as well as such practical issues as device timing characteristics and standard
logic symbols.
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xvi Preface

•Intended Audience
This book is intended for sophomore, junior, and senior-level courses in digi-
tal logic circuits and digital systems for engineers and scientists who may be
involved with the design of VLSI circuits, printed circuit boards, multi-chip
modules, and computer circuits.

No particular background in electronic circuits or computer systems is
assumed or required, and thus the text is suitable for a first course in digital
systems. However, the book contains sufficient advanced material and depth
to support the needs of more advanced students. This text has been designed
to allow each instructor the flexibility to select topics according to the needs
of his or her specific course.

This text is also suitable for the reader who wishes to use the self-study
approach to learn digital design, and is useful as a reference for practicing en-
gineers.

•Significant Features
This book is a unique work representing the combined efforts of the four au-
thors at three universities. In addition to extensive publisher-sponsored re-
viewing, the manuscript was used in courses at all three schools during its de-
velopment, with feedback from students and instructors incorporated into the
book.

Noteworthy features include:

• Solid coverage of fundamental concepts and theory coupled with practical
real-world design methods

• A strong emphasis on developing and using systematic problem solving and
design methodologies, abundantly supported by over 250 numbered, worked
examples

• Heavy emphasis on visualization, supported by over 600 two-color illustra-
tions

• Numerous problems with a wide range of difficulty levels at the ends of the
chapters

• CAD issues integrated in-depth throughout the text without relying heavily on
CAD products from specific vendors

• Coverage of hierarchical modular design and standard digital circuit modules
• A chapter containing comprehensive design projects
• Two chapters describing programmable logic devices and their applications in

implementing digital circuits
• An in-depth introduction to testing and design for testability
• Support of both breadboarding labs and CAD-based modeling and simulation

labs
• An Instructors’ Manual with fully worked solutions to each problem

www.youseficlass.ir



Preface xvii

•Coverage of Computer-Aided Design
Most modern digital circuit design projects require the use of computer-aided
design methods and tools. For this reason, CAD is covered throughout the text
at the end of each chapter, allowing CAD methods to be applied to the basic
fundamental concepts and design principles presented in that chapter.

The coverage of CAD methods and tools was designed to be generic in
nature, rather than specific to any particular vendor’s tools. This will allow
students to apply these concepts to whichever CAD tools may be available, in-
cluding comprehensive packages running on engineering workstations from
such vendors as Mentor Graphics, Cadence, and Viewlogic, and lower-end
tools designed for use on personal computers. A number of the latter are avail-
able at nominal pricing for students and educators.

The CAD coverage in the chapters
is as follows:
Chapter 2 introduces the computer-aided design process as used in the design
and analysis of digital logic circuits and systems. Topics covered include de-
sign representation with schematic diagrams and hardware description lan-
guages, schematic capture, and logic simulation for design verification and
timing analysis.

Chapter 3 discusses CAD methods for simplification and optimization
of combinational logic circuits. Chapter 4 extends the CAD coverage to sup-
port of hierarchical, modular combinational logic circuit designs. Chapter 5
describes CAD tools for designing and modeling circuits to be implemented in
programmable logic devices, including hardware description languages.

In the sequential circuit section of the book, Chapter 8 discusses CAD
methods used in the design and analysis of sequential logic circuits, including
timing analysis and detection of timing constraint violations. Chapter 11 ex-
tends this discussion to methods used for modeling sequential logic circuits to
be implemented in programmable logic devices.

B Laboratory Support
Courses in digital design often utilize laboratory experiments to reinforce con-
cepts presented in class. In some cases, schematic capture or other CAD tools
are used to model circuits of varying degrees of complexity, and simulation
tools are used to study the operation of these circuits. This text supports both
CAD-based and traditional breadboarding laboratories.

The traditional breadboarding lab usually involves the construction of
digital circuits with standard TTL small scale integrated (SSI) and medium
scale integrated (MSI) circuit modules. Many examples of such modules are
covered throughout the book, discussing the design and operation of each
module and the design of higher-level circuits using these modules.

www.youseficlass.ir



xviii Preface

In addition to short laboratory exercises, it is often desirable to use com-
prehensive design projects to have students assimilate the different concepts
learned in a course. To illustrate the planning and design steps in such projects,
the final chapter of this text presents four case studies based on projects done
by students at North Carolina State University and Auburn University.

•Chapter Descriptions
The material in this text has been organized into several sections. In each sec-
tion, fundamental concepts and theory are first developed to provide a solid
foundation. Then the theory is applied to the design and analysis of simple cir-
cuits, and extended to the design of optimal circuits. Finally, practical design
issues and methods are discussed, including the use of modular design meth-
ods, computer-aided design techniques, and programmable logic devices.
Extensive examples are presented throughout each section to illustrate and re-
inforce the concepts presented in that section.

!

Background
Since no particular prerequisites are assumed, the first two chapters present
background material that will aid in the understanding of digital circuit design.

Chapter 0 introduces digital circuits and digital computers, including
the primary software and hardware components of a computer.

Chapter 1 presents number systems and representation of information,
with emphasis on binary codes used to represent numbers and other informa-
tion in digital computers and other circuits. Arithmetic with binary numbers is
also discussed, as a prelude to the design of digital computer circuits that per-
form such operations.

Combinational Logic Circuits
The analysis and design of combinational logic circuits is the topic of the next
section of the book, beginning with fundamentals in chapter 2, and progress-
ing through optimization in Chapter 3, modular design in Chapter 4, and de-
sign with programmable logic in Chapter 5.

Chapter 2 begins with a presentation of Boolean and switching alge-
bras, which form the basis of logic circuit design. Digital logic gates are in-
troduced next, followed by coverage of analysis techniques for circuits con-
structed with basic gates. The synthesis and design of logic circuits from
various types of specifications are presented next. The chapter concludes with
an introduction to computer-aided design of digital logic circuits.

Chapter 3 presents algorithms and methods for simplifying combina-
tional logic circuits. The use of Karnaugh maps and the tabular Quine-
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Preface xix

McCluskey method are presented in detail, and then computer-aided methods
for simplification of combinational logic circuits are discussed.

Chapter 4 discusses hierarchical, modular design of digital circuits. The
design and use of various modules in such designs are described, including de-
coders, multiplexers, and arithmetic circuits. CAD tool support of hierarchical,
modular design activities is presented to conclude the discussion.

Chapter 5 describes the basic operation of programmable logic devices,
and the implementation of combinational logic circuits with programmable ar-
rays. The three basic device architectures, PLA, PROM, and PAL, are de-
scribed, along with examples of commercially-available modules. CAD tools
to support the modeling of combinational logic circuits to be implemented
with programmable devices are presented.

Sequential Logic Circuits
Sequential logic circuits, which involve memory, are discussed in the next sec-
tion of the book. Chapter 6 describes the memory elements used in sequential
circuits and Chapter 7 examines the design and operation of a number of stan-
dard circuit modules based on these memory elements. Chapter 8 presents the
fundamentals of synchronous circuit analysis and design, with Chapter 9 dis-
cussing methods for optimizing these circuits. Chapter 10 discusses the unique
problems associated with the analysis and design of asynchronous sequential
circuits. Finally, Chapter 11 describes the use of programmable logic devices
in sequential circuit design.

Chapter 6 begins by introducing sequential logic circuits, including the
role played by memory elements in these circuits. The design and operation of
the two basic types of memory devices, latches and flip-flops, are then dis-
cussed, and the features of a number of commercially-available modules con-
taining such devices are described.

Chapter 7 describes the design and operation of a number of standard
sequential logic circuit modules, including registers, shift registers, and coun-
ters. For each module type, the basic design and theory of operation are pre-
sented, and then the features and use of a number of representative standard
TTL modules are described.

Chapter 8 presents fundamentals and techniques for analysis and syn-
thesis of synchronous sequential logic circuits, including timing diagrams,
state tables, and flip-flop excitation tables. The chapter concludes with an
overview of CAD methods for modeling and simulating the operation of syn-
chronous sequential circuits and for analyzing the unique timing characteris-
tics of such circuits.

Chapter 9 discusses optimization of synchronous sequential logic cir-
cuits. Methods are presented for eliminating redundant states to reduce the
number of memory elements needed to implement a design, and methods for
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optimal assignment of state variables to minimize the number of required
combinational logic gates.

Chapter 10 discusses pulse mode and fundamental mode asynchronous
sequential circuits. Methods for analysis and synthesis of each type of circuit
are presented, including the identification of races in fundamental mode cir-
cuits and methods for preventing critical races.

Chapter 11 concludes the sequential circuit section by describing pro-
grammable logic devices used to implement synchronous and asynchronous
sequential circuits, including registered PALs and PLAs, and flexible macro-
cell-based devices. Also covered are field programmable gate arrays. The
chapter includes an overview of CAD methods for modeling sequential cir-
cuits to be synthesized with programmable logic devices.

Testing and Design for Testability
Chapter 12 provides an introduction to faults in digital logic circuits and test-
ing methods, including the process of deriving test sets for logic circuits.
Testing of a digital circuit represents a significant cost, especially as circuits
grow in size. To facilitate testing and minimize testing cost, design for test-
ability is critical. Therefore, this chapter discusses a number of digital circuit
design techniques that can improve testability at the gate and circuit board lev-
els, including the use of built-in testing circuits.

Digital Design Case Studies
Chapter 13 concludes the text by presenting four case studies based on actual
comprehensive digital design projects done by students at North Carolina
State University and Auburn University: a slot machine game, an automobile
keyless entry system, a traffic controller to coordinate two-way traffic on a sin-
gle-lane road, and a cash register controller.

^ Suggested Course Outlines
The material in this course may be used in a quarter or semester course, or may
be extended to two quarters. A 10-week quarter course might use the follow-
ing outline.
Chapter 0: General introduction
Chapter 1: Binary number codes and binary arithmetic
Chapter 2: Boolean algebra and switching functions, logic gates, combina-

tional circuit analysis and design
Chapter 3: Minimization—one method (typically K-maps)
Chapter 4: Modular, hierarchical design and standard circuit modules
Chapter 6: Basic operation and design of flip-flops and latches
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Chapter 7: Simple sequential shift register and counter modules
Chapter 8: Analysis and synthesis of synchronous sequential circuits

A second 10-week quarter course can spend more time on computer-
aided design, programmable logic, asynchronous circuits, and testing.

A 16-week semester course can simply follow the book outline, adding
the optimization topics in chapters 3 and 9, coverage of programmable logic
devices in chapters 5 and 11, and testing from chapter 12.
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We are living in an age that sociologists
have called the computer revolution. Like

any true revolution, it is widespread and all-i
pervasive and will have a lasting impact on so-

ciety. It is as fundamental to our present economic
and social order as was the industrial revolution ina*#”
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//ze nineteenth century. It will affect the thinking pat-
terns and life-styles of every individual. Whereas the
major effect of the industrial revolution was to aug-
ment our physical powersy the computer revolution is
extending our mental powers.

Computers are composed of electronic, mechan-
ical, and/or optical elements known as the hardware
and of programs and data known as the software. This
book introduces the subject of computer hardware. In
particular, we will study the analysis and design of logic
circuits that form the basis for most computer electronic
hardware. But first, let's take a closer look at the history
and the organization of the digital computer.
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Introduction

•0.1 History of Computing
A computer is a device capable of solving problems or manipulating infor-
mation, according to a prescribed sequence of instructions (or program), us-
ing some mechanical or electrical process. Since people first began solving
problems thousands of years ago, ways have been sought to simplify various
problem-solving tasks. Of primary interest over the millenia has been the au-
tomation of arithmetic operations. The advent of computer technology provided
an inexpensive way to perform simple arithmetic, and, as the technology ma-
tured, computer techniques were rapidly extended to solving complex numeric
problems, storing, retrieving, and communicating information, and controlling
robots, appliances, automobiles, games, manufacturing plants, and a variety
of other processes and machines. What is most amazing is that this computer
revolution has occurred all within the past 50 years! The following is a brief
synopsis of these developments.

0.1.1 Beginnings: Mechanical Computers
The first computer was probably the abacus, which has been used in the Orient
for over 3000 years. This device, still in use today, had little competition until
the 1600s when John Napier used logarithms as the basis for a device that
multiplied numbers. His work led to the invention of the slide rule. Then, in
1642, Blaise Pascal built an adding machine that had geared wheels much like
the modem odometer.

In 1820, Charles Babbage built the first device that used the principles of
modem computers. His machine, the difference engine, evaluated polynomials
by the method of finite differences (see [1]). He also conceived a mechanical
machine that resembled modern-day computers with a store and arithmetic
unit. However, the precision required for constructing the mechanical gears
was beyond the capabilities of the craftsmen of his time.
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0.1.2 Early Electronic Computers
The first real progress toward electronic digital computers came in the late 1930s
when Howard Aiken of Harvard University and George Slibitz of Bell Tele-
phone Laboratories developed an automatic calculator using relay networks; the
relay is an electromagnetically controlled switch. Other relay machines were
developed during World War II for artillery ballistic calculations. Although
these machines were relatively slow and comparatively large, they demon-
strated the versatility of the electronic computer. Then, in the early 1940s, John
Mauchly and J. Presper Eckert, Jr., of the University of Pennsylvania designed
and built a vacuum tube computer, which they called the electronic numeri-
cal integrator and calculator (ENIAC); it was completed in 1945 and installed
at Aberdeen Proving Ground, Maryland. ENIAC used 18,000 electron tubes,
which required tremendous amounts of power; its failure rate was high and it
was difficult to program because a plugboard was required.

Three very important discoveries were then made, which began the rapid
evolution toward today’s digital computer. First, John von Neumann proposed
that the program reside in the computer’s memory where it could be changed at
will, solving the programming difficulties of ENIAC; second, in 1947 the tran-
sistor was invented by John Bardeen, Walter H. Brattain, and William Shock-
ley, which drastically reduced the size and power requirements by replacing
the electron vacuum tube; and, third, J. W. Forrester and his associates at the
Massachusetts Institute of Technology developed the magnetic core memory,
which made large amounts of storage feasible.

\

0.1.3 The First Four Generations of Computers
ENIAC and other vacuum tube computers appearing in the late 1940s and
through the 1950s have been labeled first-generation digital computers. The
advent of transistors in the late 1950s brought about the second generation of
machines, which were smaller in size and faster and featured increased capa-
bilities over their ancestors. In the late 1960s and throughout the 1970s, the
third generation of machines appeared. These machines are characterized by
their use of integrated circuits consisting of subminiature packages of multi-
ple transistor circuits, which provided still another drastic reduction in size.
Improvements in packaging and memory technology also contributed to the
improved third-generation machines.

The late 1960s also brought the emergence of the minicomputer. In addi-
tion to large complex machines, often called mainframes, many manufacturers
offered these smaller, limited-capability, general-purpose computers. Minicom-
puters, which derived their name from their size and cost, have been used in
many diverse applications and have played a major role in popularizing the use
of computers. The minicomputer widely increased computer usage in the sci-
entific and engineering communities. Machines found their way into industrial
and university research laboratories. Computerized process control in industry
became commonplace.

www.youseficlass.ir

Albustani
Rechteck




Section 0.1 History of Computing 3

The fourth generation of computers was ushered in during the late 1970s
and early 1980s with the appearance of machines based on large scale inte-
grated (LSI) and very large scale integrated (VLSI) circuit hardware compo-
nents. VLSI made it feasible to build small but powerful computers known as
personal computers or workstations. The central component of these machines
is the microprocessor, which is an entire central processing unit of a computer
implemented in a single VLSI component. Intel Corporation and Motorola
have led the way in microprocessor technology development. This develop-
ment is illustrated in Fig. 0.1, which shows the evolution over a 20-year period
of the Intel VLSI microprocessor chips used in the IBM and IBM-compatible
personal computers.
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Figure 0.1 Evolution of the Intel microprocessors.

Perhaps the appearance of personal computers such as the IBM Personal
Computer, based on Intel microprocessors, and the Apple Macintosh, based on
Motorola microprocessors, has had the most dramatic impact on expanding the
range of computer applications than has any other occurrence. Before the per-
sonal computer became widespread, one could safely say that most computers
were used by computer experts. Now computers are commonly used by experts
and nonexperts alike. Computer networks have become commonplace during
the fourth generation as well. Networks have increased access to computers
and have spawned new applications, such as electronic mail.
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4 Chapter 0 Introduction

0.1.4 The Fifth Generation and Beyond
•«!•»!»

When will the fifth generation of computers begin? Or has it already begun?
Using the classical measure, the switch to a new hardware technology base,
the answer is no. But should hardware technology be the only indicator of
computer generations? Probably not. It is clear that advances in software have
had profound effects on the way computers are used. New user interfaces,
such as voice activation, or new computational paradigms, such as parallel
processing and neural networks, may also characterize the next-generation
machine. Whatever the case may be, it is likely that parallel processing, artificial
intelligence, optical processing, visual programming, and gigabit networks will
play key roles in computer systems of the future. We will likely be in the fifth
generation of computers for some time before it becomes apparent.

Armed with these perspectives, let us now review some important com-
puter terminology that we will need to analyze and design circuits for computers
and other digital systems.

•0.2 Digital Systems

0.2.1 Digital versus Analog Systems
A digital system or device is a system in which information is represented and
processed in discrete rather than continuous forms. Systems based on contin-
uous forms of information are called analog systems or devices. A watch that
displays time with hour, minute, and second hands is an example of an analog
device, whereas a watch that displays the time in decimal digits is a digital
device. Information on traditional audio cassette tapes is recorded in analog
form, whereas compact laser disks hold information in digital form. A more
modern form of audio tape, the digital audio tape (DAT), stores information in
digital form.

For example, Fig. 0.2a shows an analog signal as might be found on a
strip of magnetic audio tape. Figure 0.2b shows the same signal sampled at
uniform time intervals and converted to a discrete number of values. Figure
0.2c shows this information in digital form, with each sample represented by a
binary number written vertically on the tape.

n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 4
1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0
1 0 1 1 0 1 1 0 1 0 0 0 1 0 1 1/

/

(b) (c)(a)

Figure 0.2 Magnetic tape containing analog and digital forms of a signal,
(a) Analog form, (b) Sampled analog form, (c) Digital form.
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Section 0.2 Digital Systems 5

Although the modem computer is the most visible example of a digital
system, there are many other examples, including digital watches, traffic light
controllers, and pocket calculators. All these examples (other than the com-
puter) are systems with fixed functionalities that cannot be modified by the
user. On the other hand, the computer is a programmable system; that is, it
can be modified to change the tasks or applications that it performs. In other
words, computers are general-purpose systems, while the other examples are
application specific.

In a rapidly growing trend, computers are being used in place of applica-
tion-specific circuits in such products as automobile engines, home appliances,
and electronic games by developing programs to perform the tasks required
of the application and then embedding the programmed computer within the
product. The ability to program a computer to perform any arbitrary task allows
embedded computers to be used in place of a wide variety of fixed circuits,
usually at a much lower cost.

Analog computers and other analog systems were in use long before
digital devices were perfected. Why then have digital systems supplanted analog
systems in most application areas? There are several reasons.

•In general, digital techniques offer more flexibility than do analog
techniques in that they can be more easily programmed to perform any
desired algorithm.

•Digital circuits provide for more powerful processing capabilities in terms
of speed.

•Numeric information can be represented digitally with greater precision
and range than it can with analog signals.

•Information storage and retrieval functions are much easier to implement
in digital form than in analog.

•Digital techniques allow the use of built-in error detection and correction
mechanisms.

•Digital systems lend themselves to miniaturization more than do analog
systems.

0.2.2 Digital System Design Hierarchy
Digital systems may be designed and studied at many different levels of abstrac-
tion, ranging from a purely behavioral model, in which no hardware details are
specified, down to the physical level, in which only structures of physical ma-
terials are specified. Several levels of design abstraction are listed in Table 0.1.

The System and Register Levels
At its highest level, a digital system can be viewed as one or more interact-
ing functional modules. The behavior of each module is described without
specifying implementation details. For example, a desktop computer viewed
at the system level comprises a microprocessor, memory modules, and control
circuits for the monitor, keyboard, printer, and other peripheral devices.

www.youseficlass.ir
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TABLE 0.1 HIERARCHY OF DIGITAL SYSTEM DESIGN
ABSTRACTION

Design
Level

System Highest
Register
Gate
Transistor
Physical Lowest

Amount
of Detail

Level of
Abstraction Type of Model

Behavioral
Behavioral/structural
Structural
Structural
Structural

Lowest

Highest

At the register level, a digital system is viewed as a collection of elements
called registers that store information, interconnected in some fashion by signal
lines. Information is processed by the system by transferring it between registers
along these signal lines. In some cases the information is transformed during
these register transfers by routing it through one or more functional modules.
Figures 0.3a and b illustrate the system- and register-level models of a digital

Input

LJ
Adder

Input

1
Clear
Store

Compute the sum of
a sequence of
input numbers

Register A

t
Total Total

(b)(a)

Figure 0.3 Models of a digital system that adds lists
of numbers, (a) system level, (b) register level.

system that computes the sum of a sequence of binary numbers, supplied one
at a time as inputs to the system. At the system level, all that is known is the
basic function of the system, which is to compute:

N
Total = ^Inputi

i=1
At the register level, as in Fig. 0.3b, it is seen that the system comprises a storage
register, A, and an adder circuit. The Total is computed by first clearing register
A, using control signal Clear, and then adding each input number, Inputto the
contents of register A, replacing the contents of register A with the new sum,
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Section 0.2 Digital Systems 7

using control signal Store. Hence, the sum of a list of numbers is computed by
performing the following register transfers in the proper sequence.

Clear. A 0
Store: A A + input

The Gate Level
At its lowest level, the behavior of a digital system is specified as a set of logic
equations from switching algebra that can be realized in hardware by logic
circuits. The smallest logical unit of digital hardware is called a gate. Gates
are switching elements that implement the fundamental operators of switching
algebra. Logic equations are realized in hardware by interconnecting gates to
form combinational logic circuits, as illustrated in Fig. 0.4. Note that the circuit
has six gates. The inputs in this example are labeled *5, and the output

. . , x5 ) is a function only of the present value of the input signals. Hence,
a distinguishing feature of the combinational logic circuit is that it possesses no
memory of previous input signals. The analysis and design of combinational
logic circuits consume a major portion of this text.

/01’ •

*1 — G1
*2

G4

*3x4
G6 f ( x\ , x2, x3, x4, x5)G2

G5

*2
G3

*5

Figure 0.4 A combinational logic circuit with six gates.

All digital computers contain memory devices called registers that serve
as temporary stores for information. These registers and certain parts of the
control unit are called sequential logic circuits. A sequential logic circuit is,
in general, a combinational logic circuit with memory, as modeled in Fig. 0.5.
Unlike combinational logic circuits, the outputs of a sequential logic circuit are
functions of not only the present value of the input signals, but also depend on
the past history of inputs, as reflected by the information stored in the registers.
Sequential logic circuit analysis and design comprise the second focal point of
this text. Only after readers have mastered the fundamentals of combinational
and sequential circuits can they proceed with the design and construction of
digital systems hardware.
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Inputs OutputsCombinational •

logic
network

Memory

Figure 0.5 Sequential logic circuit.

Transistor and Physical Design Levels
Combinational and sequential logic circuits completely define the logical be-
havior of a digital system. Ultimately, each logic gate must be realized by a
lower-level transistor circuit, which in turn is realized by combining various
semiconductor and other materials. The technologies used to construct gates
and other logic elements have evolved from mechanical devices to relays to
electron tubes to discrete transistors to integrated circuits. Figure 0.6 illustrates
several of these devices. Modem computers and application-specific digital
systems are usually built of integrated circuits that are arranged to realize the
registers and control circuits necessary to implement the computer’s instruction
set or the system’s functions.

An integrated circuit (IC) contains multiple logic elements. The number
of gates or gate equivalents per IC determines the scale of integration. Small
scale integration (SSI) refers to ICs with 1 to 10 gates, medium scale integration
(MSI) corresponds to 10- to 100-gate ICs, large scale integration (LSI) to 100
to 10,000 gates, and very large scale integration (VLSI) to ICs with more than
100,000 gates.

It is beyond the scope of this text to consider transistor and physical-level
design of logic gates. However, it is important to have a basic understanding of
various electrical and physical properties of different gate circuits so that the
logical operation, performance, cost, and other parameters of a digital system
design may be evaluated.

Electronic Technologies
Numerous families of electronic technologies have been developed to provide
characteristics such as speed, power consumption, packaging density, func-
tionality, and cost that hardware designers prefer. Usually, it is impossible to
provide all the desired characteristics in one family. Hence, there is an on-
going quest for improvements in proven technologies or the development of
new technologies. Tables 0.2 and 0.3 list the most significant technologies and
corresponding characteristics that have been used since the beginning of the
transistor era.

The packaging of logic gates and other logicelements has changed signifi-
cantly over the years. Early electronic logic elements were typically constructed
from large electron tubes, discrete resistors, and capacitors, were mounted on
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TABLE 0.2 IMPORTANT ELECTRONIC TECHNOLOGIES

Technology Device Type

Bipolar junction
Bipolar junction
Bipolar junction
Bipolar junction
MOSFET
MOSFET
MOSFET
MESFET

Resistor-transistor logic (RTL)
Diode-transistor logic (DTL)
Transistor-transistor logic (TTL)

Emitter-coupled logic (ECL)
Positive metal oxide semiconductor (pMOS)
Negative metal oxide semiconductor (nMOS)
Complementary metal oxide semiconductor (CMOS)
Gallium Arsenide (GaAs)

TABLE 0.3 CHARACTERISTICS OF ELECTRONIC TECHNOLOGY
FAMILIES

Technology Power Consumption Speed
RTL
DTL
TTL
ECL
pMOS
nMOS
CMOS
GaAs

Packaging
High
High
Medium
High
Medium
Medium
Low

Low
Low
Medium

Discrete
Discrete, SSI
SSI, MSI
SSI, MSI, LSI
MSI, LSI
MSI, LSI, VLSI
SSI, MSI, LSI, VLSI
SSI, MSI, LSI

High
Low
Medium
Medium
HighHigh

an aluminum chassis, and were interconnected with copper wire. Tube tech-
nology advances resulted in reduced sizes, and printed circuit boards replaced
the wires. Later, discrete transistors replaced the tubes, but the resistors, ca-
pacitors, and printed circuit boards remained in use, although their sizes were
smaller. The advent of the integrated circuit in the early 1960s produced further
reduction in the size of printed circuit boards and other passive elements.

Integrated circuits can be manufactured in standard, semicustom, and
custom forms. Standard ICs provide the parts necessary to build systems for
most applications. However, some applications may require semicustom or
custom circuits to meet special functions, lower cost, or smaller size require-
ments. Custom circuits are manufactured to the exact requirements of a specific
customer. On the other hand, semicustom circuits are programmed to satisfy a
customer’s need. The term application-specific integrated circuits (ASICS) is
often used to describe semicustom devices.
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iff : ;ffffill!I

(a)

(b)

0
(C)

(d)

(e) (9)

(f)
Figure 0.6 Photographs of computer hardware, (a) abacus; (b) relays; (c) electron tubes;
(d) transistors; (e) small-scale integrated circuits; (f) medium- scale integrated circuits; (g) large-
scale integrated circuit.
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Section 0.2 Organization of a Stored Program Digital Computer 11

(h)

(i)

(j)
(k)

(I)
Figure 0.6 (Continued), (h) internal view of an integrated circuit chip (MC74450) (courtesy of
Motorola Semiconductor Products, Inc.) ; (i) internal view of an electronically programmable logic
device (courtesy of Xilinx); (j) internal view of an electronically programmable logic device (courtesy
of Xilinx); (k) a very large-scale integrated circuit in a flat pack with pin-grid input/ output leads
(courtesy of Xilinx) ; (I) multichip module containing three chips—a microprocessor, an electronically
programmable read-only memory, and an application-specific integrated circuit (courtesy of Texas
Instruments).
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12 Chapter 0 Introduction

•0.3 Organization of a Stored Program
Digital Computer

Now that we have been introduced to the basic elements used toconstruct digital
logic circuits, let us take a look at the organization of a digital computer. A dig-
ital computer is a system whose functional elements consist of arithmetic/logic
units (ALUs), control units, memory or storage units, and input/output (I/O)
equipment. The interaction of these elements is shown in Fig. 0.7. Every com-
puter system has a native set of instructions, called machine instructions, that
specify operations to be performed on data by the ALU and other interactions
between the ALU, memory, andI/O devices. The memory elements contain
the data plus a stored list of machine instructions called a program.

Central processing unit
(CPU)

Arithmetic/
logic unit

(ALU )

I/O Memory>devices

f(
I II

I I I
I I I

Control
unit

Figure 0.7 High-level organization of a digital computer.

The control unit coordinates all operations of the ALU, memory, and
I/O devices by continuously cycling through a set of operations that cause
instructions to be fetched from memory and executed. The instruction cycle of
a simple digital computer, illustrated in Fig. 0.8, includes the following basic
steps:

1. Fetch the next instruction of the current program from memory into the
control unit.

2. Decode the instruction; that is, determine which machine instruction is
to be executed.

3. Fetch any operands needed for the instruction from memory or from
input devices.

4. Perform the operation indicated by the instruction.
5. Store in memory any results generated by the operation, or send the

results to an output device.
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Section 0.3 Organization of a Stored Program Digital Computer 13

Instructions are taken from memory in sequential order unless a special
kind of instruction isencountered called, synonymously, a branch, jump,skip,or
transfer.The branch instructions allow looping and decision-making programs
to be written.

Fetch
instruction

Decode
instruction

Fetch Perform
operation

Store
resultsoperands

Figure 0.8 Instruction cycle of a stored program computer.

0.3.1 Computer Instructions
As the control unit of a digital computer fetches an instruction from memory
for execution, several types of operations may result.

1. Arithmetic instructions cause the binary data to be added, subtracted,
multiplied, or divided as specified by the computer programmer in the
program.
Test and compare operations are available and determine the relation
(greater than, less than, equal to, or other) of two pieces of binary data.
Branch or skip instructions may be employed that alter the sequential
nature of program execution, based on the results of a test or compare.
This type of function adds considerable flexibility to programs.
Input and output commands are included for reading messages into
the computer, writing messages from the computer, and controlling
peripheral devices.
Logical and shifting operations provide the computer with the ability
to translate and interpret all the different codes it uses. These in-
structions allow bit manipulation to be accomplished under program
control.

All instructions for any digital computer may be grouped into one of
these five categories.

2.

3.

4.

5.

0.3.2 Information Representation in Computers
We have briefly discussed the instructions and data stored in the digital com-
puter’s memory unit, but no mention was made of the form of these items.
Information in a computer system can generally be divided into three cate-
gories: numeric data, nonnumeric data, and instruction codes.

Numeric Data Representation
Numbers are stored in the computer’s memory in the binary (base 2) number
system. Binary numbers are written using the two binary digits (bits), 1 and 0.
By contrast, we use 10 decimal digits in writing decimal numbers.
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For example, 129 in decimal means 1 x 102 + 2 x 101 + 9 x 10°, or
each digit’s position represents a weighted power of 10. Note that the 10
digits are 0 through 10 — 1 = 9. Each digit in a binary number, say 1101, is
represented by a weighted power of 2, or 1 x 23 + 1 x 22 + 0 x 21 + 1 x 2°.
To convert the binary number to decimal, this weighted sum is determined
as (1101)2 = 1 x 8 + l x 4 + 0 x 2 + l x 1 = (13) ]0 or one-one-zero-one in
binary equals 13 in decimal. The rules for converting numbers between decimal
and binary are covered in detail in Chapter 1.

Data in the form of binary numbers are stored in registers in the computer
and are represented as follows:

1011000111

This is a 10-bit register, which might reside in the arithmetic or memory unit. In
memory, the data in a single register are called a word (the word length is 10 bits
in this example). Patterns of ones and zeros are the only information that can
be stored in a computer’s registers or memory. The assignment of a meaning
to the bit patterns is called coding, and the codes used in most computers for
data are simply variations of the binary weighting scheme just presented.

Nonnumeric (Input/Output) Codes
Although the computer employs binary data, users prefer alphabetic and nu-
meric data representations, for example, records of sales, lists of names, or test
grades. The set of alphanumeric symbols allowed for many computers is called
the character set and has a special binary-like code called the American Stan-
dard Code for Information Interchange (ASCII). In this code the alphanumeric
and other special characters (punctuation, algebraic operators, and the like) are
coded with 8 bits each; a partial listing of this code is given in Chapter 1. Sup-
pose we wanted to give the digital computer a message "ADD 1".This message
has five characters, the fourth one being a space or blank. In the ASCII code,
our message becomes

Symbol ASCII Code

A 01000001
01000100
01000100
00100000
00110001

D
D

1

After our message is sent to the computer, a program in the computer’s
memory accepts it and acts accordingly.
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Instruction Codes
The computer’s instructions reside in main memory and therefore, by definition,
are also represented by patterns of ones and zeros.The instructions are generally
broken down into subfields that are coded separately. These subfields are the
operation code (op code) and the memory address.The operation code specifies
the specific function to be performed.

0.3.3 Computer Hardware
Now, let us further examine the interaction of the computer’s components
shown in Fig. 0.7. Programs are stored in the computer’s memory as discussed
previously. However, the programs are inserted into memory by the control
unit in conjunction with the input/output (I/O) equipment, sometimes called
peripheral devices.Programs are usually given to the computer from magnetic
or optical peripheral storage devices.The computer then fetches the instructions
of the program from memory and executes them. Data to be used by a program
are likewise transferred into memory from keyboards, scanners, magnetic disks,
and other peripheral devices.

Control Unit
The control unit follows the stored list of instructions, directing the activities
of the arithmetic unit and I/O devices until the program has run to completion.
Each unit performs its task under the synchronizing influence of the control unit.

Arithmetic/Logic Unit
Arithmetic/logic units (ALUs) are combinational or sequential logic circuits
that perform various operations on data, as instructed by the control unit. Each
ALU is characterized by the type of data that it can manipulate and the set of
operations that it can perform on those data. Most ALUs support operations
on integers of various sizes and may also include operations to manipulate
fixed-point and floating-point numbers and various nonnumeric data. Typical
ALU operations include the following:

•Arithmetic: add, subtract, multiply, divide.
•Logical: AND, OR, exclusive-OR, complement (these will be defined

when we examine combinational logic circuits in Chapter 2).

•Shift and rotate data.

•Convert data from one type to another.
Control unit and ALU circuits are usually constructed from semicon-

ductor devices packaged in a wide variety of schemes. Models of the second
generation have transistors, resistors, diodes, and so on, mounted on printed
circuit boards, while models of the third generation use small scale integrated

www.youseficlass.ir



16 Chapter 0 Introduction

circuits on circuit boards. Fourth-generation machines use large scale and very
large scale integrated circuits.

Memory Units
Computer memory units are classified as primary memory if they can be ac-
cessed directly by the control unit; otherwise they are classified as secondary
memory.

Primary memory units in today’s digital computers are usually con-
structed using high-speed semiconductor elements called RAMs (random-
access memory) and ROMs (read-only memory). Most systems built prior
to 1980, some of which are still in operation today, utilized arrays of magnetic
cores as their primary memory elements. A few specialized systems, particu-
larly in space vehicles, utilized plated wire as a replacement for magnetic core
in some applications where radiation hardness was required.

Memory units are divided into cells called words, and each cell is known
by its physical location, or memory address. The concept of a memory address
for a memory cell is equivalent to a mailing address for a mailbox. For example,
every post office has rows of mailboxes, each identified by a unique numbered
position. Similarly, each memory cell resides in a unique numbered position,
the number being the memory address.

Memory units may be characterized by their access and cycle times;
memory access time may be defined as the length of time required to extract
(read) a word from the memory, and memory cycle time may be defined as the
minimum interval of time required between successive memory operations.The
access time of a memory determines how quickly information can be obtained
by the CPU, whereas the cycle time determines the rate at which successive
memory accesses may be made.

Secondary memory devices are used for bulk or mass storage of programs
and data and include rotating magnetic devices, such as floppy and hard disks,
magnetic tapes, magnetic bubble memories, optical devices such as CDROMs
(compact disk read-only memory), and a variety of other devices. In contrast
to primary memory, information in secondary memory devices is not accessed
directly. Instead, a special controller searches the device to locate the block of
information containing the desired item. When found, the entire block is usually
transferred into primary memory, where the desired items can be accessed in a
more convenient fashion.

Input/Output Equipment
The computer may output data to several types of peripherals; a magnetic
disk or laser printer is typical. Cathode-ray tubes (CRTs) and liquid crystal
display (LCD) panels are also available to display the results of a program’s
calculations. Analog-to-digital converters, digital-to-analog converters, plot-
ters, magnetic reading and recording devices, and laser and ink-jet printers are
the most commonly used input/output equipment.
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Section 0.3 Organization of a Stored Program Digital Computer 17

0.3.4 Computer Software
Software consists of the programs and data stored in the computer’s memory.
The software determines how the computer hardware is utilized and can be
broadly classified as either application programs or system programs.

Application Programs
Programming the digital computer is the process of designing a list of instruc-
tions for the computer so that it can efficiently perform a specified task. The
digital computer’s instructions must be coded in patterns of ones and zeros
before the computer can interpret them. If all programs had to be written in
this form, digital computers would enjoy very limited use. The patterns of ones
and zeros are called machine language instructions, and very few programmers
ever attempt to write programs in this manner.

A symbolic representation of the machine language of a computer, called
assembly language, is often used to develop programs.This is especially true for
small microcomputersembedded into kitchen appliances, electronic games, and
automotive equipment. Assembly language allows a programmer to specify the
operations to be performed on data stored in the internal registers and memory
of a processor without becoming bogged down in patterns of ones and zeros.

However, most programmers prefer to use higher-level, more reasonable,
symbolic languages in which to program their problems. By using high-level
languages such as C, Pascal, Ada, or FORTRAN, the programmer has a wide
range of instructions in a form that he or she can easily understand and efficiently
use, with the instructions of each language tailored to specific types of problems.
The full flexibility of machine language is difficult to incorporate into high-level
languages, but a magnificent amount has been retained, especially in C.

System Programs
System programs comprise all the software provided on a computer system to
aid programmers in the process or developing and executing application pro-
grams. For example, whenever a symbolic language, either assembly language
or a high-level language, is used to write a program, the program must be trans-
lated into machine language before it can be executed by the computer. The
question now arises as to who shall perform this laborious translation chore.
The most efficient translator is not the programmer, but the digital computer
itself. Any job done by a computer is done under program control; therefore,
the program that translates higher-level languages into machine language has
been given a special name, the compiler. This translation process is illustrated
in Fig. 0.9. Likewise, the program that translates assembly language into ma-
chine language is called an assembler. Compilers and assemblers are typical
examples of system programs, as are the text editors used to type and alter
program statements.
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High-level
language
program

Compiler

Machine
language
program

Assembly
language
program

Assembler

Figure 0.9 Translation of computer programs into machine
language.

Now, let us contemplate the manner in which a given digital computer
might be operated. A special program called the operating system handles
the routine tasks needed to change from one user’s program to the next. This
special program falls into a category of programs called system software. In
particular three different operating systems will be discussed: single user, batch
processing, and time sharing.

If a machine is operated by each user who executes a program, it is
dedicated to this program and no one else may use the computer until the
current user is finished. The computer is then dependent on human intervention
during the time between programs, and hence much time can be spent idling.
This operating system is convenient for the user if the computer is available
when the user needs it, for once an individual is “on the machine,” that user
may modify and reexecute programs or execute several successive programs
before turning the machine over to the next user. The MS-DOS and Macintosh
operating systems are examples of single-user operating systems.

The batch operating system eliminates most of the computer idle time
by establishing one operator who collects all the user programs and feeds them
to the computer continuously. The operating system program resides in the
memory unit, and the memory locations it uses are protected from each user.
Thus, although idle time is reduced, the available memory storage for the user
is also reduced. In addition, the user must wait for the operator to return her or
his program, which is always a source of irritation and confrontation.

A more advanced operating system called time sharing allows multiple
users to execute their programs almost simultaneously. Common examples are
the UNIX operating system, used on a wide variety of personal computers,
workstations, and larger machines, and the VMS operating system used on
computers from Digital Equipment Corporation. Remote terminals consisting
of limited input/output devices are connected to the digital computer, and each
terminal is assigned to a single user. The users are relatively slow while the
computer is extremely fast. This speed differential allows the computer to skip
around between users, or time-share, in such a manner as to convince each
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Section 0.4 Summary 19

user that he has the machine all to himself. Although this operating system
seems very attractive, it has disadvantages, the first of which is cost. Also the
time-sharing system program is complicated and long, which means it uses a
lot of memory space and computer time. In addition, since all users’ programs
are stored in memory simultaneously, each individual’s available portion of
memory is limited. Therefore, time sharing usually requires the maximum
number of memory elements that a particular computer can accommodate.

•0.4 Summary
In this introductory chapter we have provided motivation for the material that
follows. We have briefly explained what a computer is, how it is organized,
the codes it employs, the manner in which it is programmed, and the hardware
of which it is composed. The material contained in the remaining chapters is
prerequisite to any hardware design or implementation for digital computers or
other complex digital systems. The reader is referred to [1, 2, 3, 4] for further
reading.

REFERENCES J. P. HAYES, Computer Architecture and Organization, 2nd ed. New York:
McGraw-Hill Book Co., 1988.
D. A. PATTERSON AND J. L. HENNESSY, Computer Organization & Design: The
Hardware/Software Interface. San Mateo, CA: Morgan Kaufmann Publishers,
1993.
D. A. HODGES AND H. G. JACKSON, Analysis and Design of Digital Integrated
Circuits, 2nd ed. New York: McGraw-Hill Book Co., 1988.
J. F. WAKERLY, Digital Design Principles and Practices, 2nd ed. Englewood
Cliffs, NJ: Prentice Hall, 1994.
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Number System and Codes» •

)' %

P 1.1 Number Systems
A number system consists of an ordered set of symbols, called digits, with
relations defined foraddition (+), subtraction (-), multiplication (x), and division
(-r). The radix (r), or base, of the number system is the total number of digits
allowed in the number system. Number systems commonly used in digital
system design and computer programming include decimal ( r = 10), binary
( r = 2), octal ( r = 8), and hexadecimal ( r = 16). Any number in a given
system may have both an integer part and a fractional part, which are separated
by a radix point (.). The integer part or the fraction part may be absent in some
cases. Now let’s examine the positional and polynomial notations for a number.

1.1.1 Positional Notation
Suppose you borrow one hundred twenty-three dollars and thirty-five cents
from your local bank. The check you are given indicates the amount as $123.35.
In writing this number, positional notation has been used. The check may be
cashed for 1 one hundred dollar bill, 2 ten dollar bills, 3 one dollar bills, 3
dimes, and 5 pennies. Therefore, the position of each digit indicates its relative
weight or significance.

In general, a positive number N can be written in positional notation as
a-\a-2 • • * a-m ^N = (<*„-lan-2 ' - - aia0 (1.1)

where
. = radix point separating the integer and fractional digits
r = radix or base of the number system being used
n = number of integer digits to the left of the radix point
m = number of fractional digits to the right of the radix point
a. = integer digit i when n — 1 > i > 0
a

{ — fractional digit i when —1 > / > —m

an l = most significant digit
a_m = least significant digit
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22 Chapter 1 Number Systems and Codes

Note that the range of values for all digits a( is r — 1 > a. > 0. Using this
notation, the bank loan amount would be written $(123.35)|0. The parenthe-
ses and the subscript denotating the radix may be eliminated without loss of
information if the radix is either known by the context or otherwise specified.

Polynomial Notation
The (123.35)10 dollar loan amount can be written in polynomial form as

A = 1 x 100 + 2 x 10 + 3 x 1 + 3 x 0.1 + 5 x 0.01

= 1 X 102 + 2 X 10' + 3 X 10° + 3 X 10
_1 + 5 x 1(T2

Note that each digit resides in a weighted position and that the weight of each
position is a power of the radix 10. In general, any number N of radix r may
be written as a polynomial in the form

n-1

£ (1.2)N = ar
i=-m

where each symbol is defined the same as in Eq. 1.1. For the bank loan, r = 10,
a2 = l , a , = 2, a0 = 3, a_ , = 3,a_ 2 = 5, and a. = Ofori > 3 and for / < —3.

1-1-2 Commonly Used Number Systems
The decimal, binary, octal, and hexadecimal number systems are all important
for the study of digital systems. Table 1.1 summarizes the fundamental features
of each system and illustrates a limited range of positive integers in each. All
the numbers in Table 1.1 are written in positional notation.

Digital systems are usually constructed using two-state devices that are
either in an off state or an on state. Hence, the binary number system is ideally
suited for representing numbers in digital systems, since only two digits, 0 and
1, commonly called bits, are needed. A bit can be stored in a two-state storage
device often called a latch.Binary numbers of length n can be stored in an n-bit
long device known as a register, which is built with n latches. An 8-bit register
loaded with the binary number 10011010 is shown in Fig. 1.1.

1 0 1 01 0 0 1

Figure 1.1 An 8-bit register.

D 1.2 Arithmetic
Every child learns the rudiments of arithmetic by memorizing the base-10 ad-
dition and multiplication tables as shown in Tables 1.2a and b, respectively.
Subtraction can be accomplished by using the addition table in reverse. Simi-
larly, long division uses trial and error multiplication and subtraction to obtain
the quotient. The foundation for arithmetic in any base is a knowledge of
the addition and multiplication tables for the given base. Given these tables,
arithmetic operations proceed in a similar manner for all bases. Arithmetic in
the binary, octal, and hexadecimal number systems will be introduced in the
remainder of this section.
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Section 1.2 Arithmetic 23

TABLE 1.1 IMPORTANT NUMBER SYSTEMS

Name Decimal Binary Octal Hexadecimal
Radix
Digits

10 2 8 16
0, 1, 2, 3, 4,
5, 6, 7, 8, 9

0, 1 0, 1, 2, 3,
4, 5, 6, 7

0, 1, 2, 3, 4, 5,
6, 7, 8, 9, A, B,

C, D, E, F
First
seventeen
positive
integers

0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3

44 100 4
5 101 55
6 110 6 6
7 111 7 7
8 81000 10
9 91001 11

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D

1614 1110 E
15 t i l l 17 F
16 10000 20 10

1.2.1 Binary Arithmetic
Addition
Tables 1.3a and b show the addition and multiplication tables, respectively, for
the binary number system. The tables are very small since there are only two
digits, or bits, in the system. Binary arithmetic is very simple as a result. Note
that the addition 1 + 1 produces a sum bit of 0 and a carry bit of 1. The carry
must be added to the next column of bits as addition proceeds in the normal
pattern from right to left. Two examples of binary addition are given next.

EXAMPLE 1.1 Add the two binary numbers (111101)2 and
(10111)2.

1 1 1 1 1 1
1 1 1 1 0 1 Augend

10 111 Addend

Carries

+
1 0 1 0 1 0 0 Sum
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24 Chapter 1 Number Systems and Codes

TABLE 1.2 (a) DECIMAL ADDITION TABLE; (b) DECIMAL
MULTIPLICATION TABLE.

0 1 2 3 4 5 6 7 8 9+
0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 1 0
2 3 4 5 6 7 8 9 1 0 1 1
3 4 5 6 7 8 9 1 0 1 1 1 2
4 5 6 7 8 9 1 0 1 1 1 2 1 3
5 6 7 8 9 1 0 1 1 1 2 1 3 1 4
6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6
9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8

0
1
2
3
4
5
6

(a)

0 1 2 3 4 5 6 7 8 9x
0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9
0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
0 3 6 9 1 2 1 5 1 8 2 1 2 4 2 7
0 4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5
0 6 1 2 1 8 2 4 3 0 3 6 4 2 4 8 5 4
0 7 1 4 2 1 2 8 3 5 4 2 4 9 5 6 6 3
0 8 1 6 2 4 3 2 4 0 4 8 5 6 6 4 7 2
9 9 1 8 2 7 3 6 4 5 5 4 6 3 7 2 8 1

0
1
2
3
4
5
6
7
8
9

(b)

TABLE 1.3 (a) BINARY ADDITION TABLE.
(b) BINARY MULTIPLICATION TABLE.

0 10 1+ x

0 0
0 1

00 0 1
1 101 1

(b)(a)

I n Example 1.1, two columns were encountered that had two 1 bits and a
carry bit of 1, which had to be totaled. This addition of three 1’ s can be more
easily viewed as

1 + 1 + 1 = (1 + 1) + 1

= (10)2 + (01)2

= 11
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Thus both the sum bit and the carry bit are 1’s.
When a long list of binary numbers must be added, the computation

is easily performed by adding the numbers in pairs, as demonstrated in the
following example.

EXAMPLE 1.2 Add the four numbers (101101)2, (110101)2,
(001101)2, and (010001)2.

1 0 1 1 0 1
1 1 0 1 0 1
0 0 110 1

+ 0 1 0 0 0 1

(
1

1 1 1
10 110 1

+ 1 1 0 1 0 1

1 1
0 0 110 1

+ 0 1 0 0 0 1
1 1 0 0 0 1 0 0 1 1 1 1 0

1 1 1 1 1 1
1 1 0 0 0 1 0

0 1 1 1 1 0+
1 0 0 0 0 0 0 0

However, we may choose to perform the addition directly to avoid the
intermediate steps required by the preceding approach. The direct method is
illustrated in the following example.

EXAMPLE 1.3 Repeat the previous example by adding one entire column at a time.

Carries10 10 10 10 1 10
10 110 1
110 10 1
0 0 110 1
0 1 0 0 0 1+

1 0 0 0 0 0 0 0 Sum
Note that the sum of the digits in the first column isl + l + l + l = (100)2.
This results in a sum digit of 0 in that column and a carry of 10 to the next
column to the left.

Subtraction
Subtraction may be thought of as the inverse of addition. The rules for binary
subtraction follow directly from the binary addition table in Table 1.3a and are

1 - 0 = 1
1- 1 = 0
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0-0 = 0
0 — 1 = 1 with a borrow of 1, or 10 — 1 = 1

The last rule shows that if a 1 bit is subtracted from a 0 bit then a 1 must be
borrowed from the next most significant column. Borrows propagate to the left
from column to column, as illustrated next.

EXAMPLE 1.4 Subtract (10111)2 from (1001101)2.
6 5 4 3 2 1 0 Column

/ 10 Borrows
Borrows0 / (/} 10 0 10

r 0 9 x r 0 i
10 111 Subtrahend

Minuend

1 10 1 10 Difference
In this example, a borrow is first encountered in column 1. The borrow is taken
from column 2, resulting in a 10 in column 1 and a 0 in column 2. The 0 now
present in column 2 necessitates a borrow from column 3. No other borrows
are necessary until column 4. In this case, there is no 1 in column 5 to borrow.
Hence, we must first borrow the 1 from column 6, which results in 0 in column
6 and 10 in column 5. Now column 4 borrows a 1 from column 5, leaving 1 in
column 5 (10 — 1 = 1) and 10 in column 4. This sequence of borrows is shown
above the minuend terms.

Multiplication and Division
Binary multiplication is performed in a similar fashion as decimal multipli-
cation except that binary multiplication operations are much simpler, as can
be seen in Table 1.3b. Care must be taken, however, when adding the partial
products, as illustrated in the following example.

EXAMPLE 1.5 Multiply (10111)2 by (1010)2.
10 11

1 0 1
1 Multiplicand
0 Multiplierx

0 0 0 0 0
1 0 1 1 1

0 0 0 0 0
1 0 1 1 1
1 110 0 110 Product

Note that there is one partial product for every multiplier bit. This procedure
can be performed more efficiently by merely shifting one column to the left,
rather than listing an all-zero partial product for a multiplier bit of 0. We can
see from this example how easily this procedure can be accomplished.
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Binary division is performed using the same trial and error procedure
as decimal division. However, binary division is easier since there are only
two values to try. Copies of the divisor terms are subtracted from the divi-
dend, yielding positive intermediate remainder terms. The following example
illustrates binary division.

EXAMPLE 1.6 Divide (1110111)2 by (1001)2.
110 1 Quotient

1 1 1 0 1 1 1 Dividend
1 0 0 1

Divisor 10 0 1

1 0 1 1
1 0 0 1

1 0 1 1
1 0 0 1

0 Remainder1

1.2.2 Octal Arithmetic
The addition and multiplication tables for the octal number system are given in
Table 1.4. Given these tables, octal arithmetic can be done using the same pro-
cedures as for the decimal and binary systems, as is illustrated in the following
four examples.

EXAMPLE 1.7 Compute (4163)g + (7520)8.
Carries

4 16 3 Augend
+ 7 5 2 0 Addend

1 1

1 3 7 0 3 Sum

EXAMPLE 1.8 Compute (6204)8 - (5173)g.
1 10 Borrows

6 JZ
5 1

f/ f 4 Minuend
7 3 Subtrahend

1 0 1 1 Difference

EXAMPLE 1.9 Compute (4167)8 X (2503)8.
4 16 7 Multiplicand

x 2 5 0 3 Multiplier
1 4 5 4 5 Partial products

2 5 1 2 3 0
1 0 3 5 6
1 3 1 0 5 0 4 5 Product
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TABLE 1.4 (a) OCTAL ADDITION TABLE (b) OCTAL
MULTIPLICATION TABLE

5 6 72 3 40 1+
5 6 72 3 40 10

7 10
7 10 11

6 7 10 11 12
7 10 11 12 13

7 10 11 12 13 14
7 10 11 12 13 14 15

7 10 11 12 13 14 15 16

2 3 5 641 1
3 5 62 2 4

53 3 4
64 54

5 65
6 6
7

(a)

53 6 70 1 2 4X
0 00 0 00 0

0 1
0 2
0 3
0 4 10
0 5 12
0 6
0 7

00
2 5 6 73 41
4 6 10 12 14 16
6 11 14 17 22 25

14 20 24 30 34
17 24 31 36 43

14 22 30 36 44 52
16 25 34 43 52 61

2
3
4
5
6
7

(b)

EXAMPLE i.io Compute (4163)8 (25)8'
1 4 7 Quotient
16 3 DividendDivisor 2 5 4

2 5
1 4 6
1 2 4

2 2 3
2 2 3

0 Remainder

1.2.3 Hexadecimal Arithmetic
The hexadecimal addition and multiplication tables are more complex than
those for the number systems studied previously and are given in Table 1.5.
However, as with other number systems, a knowledge of these tables permits
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TABLE 1.5 HEXADECIMAL ADDITION AND MULTIPLICATION TABLES (a) HEXADECIMAL
ADDITION TABLE (b) HEXADECIMAL MULTIPLICATION TABLE

0 1 2 3 4 5 6 7 8 9 A F C D E F+
0 1 2 3 4 5 6 7 8 9 A F C D E F
1 2 3 4 5 6 7 8 9 A F C D E F 1 0
2 3 4 5 6 7 8 9 A F C D F F 1 0 1 1
3 4 5 6 7 8 9 A F C D F F 1 0 1 1 1 2
4 5 6 7 8 9 A B C D E F 1 0 1 1 1 2 1 3
5 6 7 8 9 A B C D E F 1 0 1 1 1 2 1 3 1 4
6 7 8 9 A B C D E F 1 0 1 1 1 2 1 3 1 4 1 5
7 8 9 A B C D E F 1 0 1 1 1 2 1 3 1 4 1 5 1 6
8 9 A B C D E F 1 0 1 1 1 2 1 3 1 4
9 A B C D E F 1 0 1 1 1 2 1 3 1 4 1 5
A B C D E F 1 0 1 1 1 2 1 3 1 4 1 5 1 6
B C D E F 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7
C D E F 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8
D E F 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1A I F 1C
E F 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1A 1 B 1C I D
F 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1A I B 1C I D I E

0
1
2
3
4
5
6
7

1 5 1 6 1 7
1 6 1 7 1 8
1 7 1 8 1 9
1 8 1 9 1A
1 9 1A I B

8
9
A
B
C
D
E
F

(a)

0 1 2 3 4 5 6 7 8 9 A B C D E Fx
0 0 0 0 0 0 0 0 0 0 0

4 5 6 7 8 9 A B C D E F
8 A C E 1 0 1 2 1 4 1 6 1 8 1A 1C 1E

6 9 C F 1 2 1 5 1 8 \B I E 2 1 2 4 2 7 2A 2D
8 C 1 0 1 4 1 8 1C 2 0 2 4 2 8 2C 3 0 3 4 3 8 3C
A F 1 4 1 9 I E 2 3 2 8 2D 3 2 3 7 3C 4 1 4 6 4B
C 1 2 1 8 1 E 2 4 2A 3 0 3 6 3C 4 2 4 8 4E 5 4 5A
E 1 5 1C 2 3 2A 3 1 3 8 3F 4 6 4D 5 4 5 B 6 2 6 9

1 8 2 0 2 8 3 0 3 8 4 0 4 8 5 0 5 8 6 0 6 8 7 0 7 8
5 1 5A 6 3 6C 7 5 I E 8 7

6 4 6E 7 8 8 2 8C 9 6

0 0 0 0 0
0 1 2 3
0 2 4 6
0 3
0 4
0 5
0 6
0 7
0 8 10
0 9 1 2 I B 2 4 2D 3 6 3F 4 8
0 A 1 4 I F 2 8 3 2 3C 4 6 5 0 5A
0 B 1 6 2 1 2C 3 7 4 2 4D 5 8 6 3 6E 7 9 8 4 8F 9A A5
0 C 1 8 2 4 3 0 3C 4 8 5 4 6 0 6C 7 8 8 4 9 0 9C A8 B4
0 D 1A 2 7 3 4 4 1 4E 5B 6 8 7 5 8 2 8F 9C A9 B6 C3
0 E 1C 2A 3 8 4 6 5 4 6 2 7 0 I E 8C 9A A8 B6 C4 D2
0 F I F 2D 3C 4B 5A 6 9 7 8 8 7 9 6 A5 B4 C3 D2 F I

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

(b)
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30 Chapter t Number Systems and Codes

hexadecimal arithmetic to be performed using well-known procedures. The
following four examples illustrate hexadecimal arithmetic.

EXAMPLE 1.11 Compute (2A58)16 + (71Z>0)16.
Carries

2 A 5 8 Augend
+ 7 1 D 0 Addend

1

9 C 2 8 Sum

EXAMPLE 1.12 Compute (9F1Z?)16 - (4A36)16.
E 11 Borrows

X B Minuend
3 6 Subtrahend

9 f
4 A

5 Difference5 4 E

EXAMPLE 1.13 Compute (5C2A)16 x (71D0)16.
5 C 2 A Multiplicand
7 1 D 0 Multiplier

4 A E 2 2 0 Partial products
5 C 2 A

2 8 5 2 6

x

2 8 F 9 6 C 2 0 Product

EXAMPLE 1.14 Compute (27FCA )l6 4- (3E )u.
A 5 1 Quotient

E 2 1 F C A Dividend
2 6 C

Divisor 3

1 3 C
1 3 6

6 A
3 E
2 C Remainder

•1.3 Base Conversions
Users and designers of computers and other digital systems often encounter a
need to convert a given number in base A to the equivalent number in base B.
Algorithms for performing base conversions will be presented and illustrated
in this section.
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1,3.1 Conversion Methods
Series Substitution
The polynomial representation of a number previously given by Eq. 1.2 forms
the basis of the series substitution conversion method. The equation can be
written in an expanded form as follows:

N = an_
{ rn~ l + . . .+ a0r° + + . . . + a_mr ~m

A number in base A can be converted to a number in base B in two steps.
1. Form the series representation of the number in base A in the format of

Eq. 1.3.
2. Evaluate the series using base B arithmetic.

The following four examples illustrate this procedure.

(1.3)

EXAMPLE 1.15 Convert (10100)2 to base 10.
We make this conversion by substituting for each digit, according to its weight.
Counting from right to left in (10100)2, we find that the rightmost digit, 0, has
a weight of 2°, the next digit, 0, has weight 21 , and so on. Substituting these
values into Eq. 1.3 and evaluating the series with base 10 arithmetic gives:

N = 1 x 24 + 0 x 23 + 1 x 22 + 0 x 21 + 0 x 2°
= (16)10 + 0 + (4)10 + 0 + 0

- (20)10

EXAMPLE 1.16 Convert (274)g to base 10.
yv = 2 x 8 2 + 7 x 8' + 4 x 8°

— (128)10 + (56)10 + (4)10

= (188)10

EXAMPLE 1.17 Convert (1101.011)2 to base 8.
The integer part of the number is converted as in the previous examples. With
digits that are to the right of a binary point, we count from left to right. The
first digit to the right of the binary point, 0, has weight 2

_1, the next digit, 1,
has weight 2-2, and the third digit, 1, has weight 2-2. Substituting into Eq. 1.3
gives

N = 1 x 23 + 1 x 22 + 0 x 21 + 1 x 2° + 0 x 2"1 + 1 x 2-2 + 1 x 2"3

= (10)8 + (4)8 + 0 + (1)8 + 0 + (.2)g + (.1 )

= (15.3)
8

8
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32 Chapter 1 Number Systems and Codes

EXAMPLE 1.18 Convert (AF3.15),6 to base 10.
N = A x 162 + F x 16' + 3 x 16° + 1 x 16“‘ + 5 x 16~2

= 1010 x 256]0 + 1510 x 1610 + 310 x 1, 0

+110 x 0.062510 + 5] 0 x 0.0039062510
= 2560, 0 + 24010 + 310 + 0.062510 + 0.01953125|t)

= (2803.08203125)10

Note in the preceding examples that the computations were easier for
conversions from base A to base B when A < B. Conversion methods will
now be described where the converse is true.

Radix Divide Method
The radix div ide conversion method can be used for converting an integer in
base A to the equivalent base B integer. To understand the method, consider
the following representation of integer Nf .

( M,)A = bn_ lBn-' + ...+ b0 B°
In Eq. 1.4, the b. 9s represent the digits of ( JV7 ) B in base A. The least significant
digit, ( b0 ) A , can be found by dividing ( NJ ) A by ( B ) A as follows:

i.bn_ xBn~ x + . . .+ btBl + b0 B° ) / B
+ . . .+ biB°+

(1.4)

N,/ B
n —2b B bon-1

Remainder, R{ )Quotient ,Q

In other words, (b0 ) A is the remainder produced when ( NJ )A is divided by
( B ) A . In general, ( b i )A is the remainder, /?. , produced when quotient, Qj 9 is
divided by ( B )A . The conversion is completed by converting each {b i )A to
base B. However, this last step is trivial if B < A. The radix divide conversion
procedure is summarized as follows.

1. Divide ( NJ ) A by the desired base ( B)A , producing quotient Qx and
remainder R0. RQ is the least significant digit, dQ 9 of the result.

2. Compute each remaining digit, d., for i = 1 . ..n — 1, by dividing
quotient Q. by ( B)A , producing quotient Q .+ l and remainder /?., which
represents di .

3. Stop when quotient Q

The radix divide method is illustrated in the next two examples.
= 0.

i +i
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EXAMPLE 1.19 Convert (234)10 to base 8.
We solve this problem by repeatedly dividing integer (234)10, that is ( N ) A , by
8, that is ( B)a, until the quotient is 0.

2 9 3 0
8 2 3 4 8 2 9

2 4
8 3

1 6 0
7 4
7 2

5 = * 3 = b21

2 = *,0
Hence, (234)10 = (352)8. These calculations may be summarized in the fol-
lowing shorthand format:

8 2 3 4 2 LSB
8 2 9 5

8 3 3 MSB
0

EXAMPLE 1.20 Convert (234)10 to base 16.
1 4

1 6 Y l 3 4
~

0
1 6 1 4

1 6 0
1 4 = (£)16 = fc,7 4

6 4
1 0 = ( A)u = b0

Hence, (234)10 = ( E A )l6. In the shorthand notation;

16 | 2 3 4 10 = (A) I 6

16 I 1 4 14 = (£)|6
0

Radix Multiply Method
Base conversions for fractions can be accomplished by the radix multiply
method. Let NF be a fraction in base A. The fraction can be written in series
form as follows.

( N F ) A = b_ x zr1 + b_2 B-2 + . . . + b_m B~m (1.5)
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34 Chapter 1 Number Systems and Codes

The fc .’s in Eqn. 1.5 represent the digits of ( N f ) B
significant digit (b_ x ) A can be obtained by multiplying (NF ) A by ( B ) A as
follows:

in base A. The most

B x AL = B x ( b_ xB~ x + b_ 2 B ~2 + . . .+ b_mB ~m )

T- b_ 2 B 1 + ... + b_m B
F

~(m-1)b-l

Integer, I

Thus, (b_ { ) A is the integer part of the product that results from the multiplication
of ( NF ) A by ( B)a. In general, {b_

i ) A is the integer part, /_., of the product
that results from multiplying the fraction F
multiply procedure is summarized as follows:

1. Let F_ j = ( Nf )a .
2. Compute digits ( b { )A , for i = 1 . .. m, by multiplying F. by ( B)

producing integer which represents digit (b_ .)A , and fraction F

3. Convert each digit (b_ . )A to base B.

The following two examples illustrate this method.

Fract ion , F-l -2

by ( B ) A. Therefore, the radix-0+1)

/4 ’
(i+ D *

EXAMPLE 1.21 Convert (0.1285)10 to base 8.
0.1285 0.0280 0.2240 0.7920

8 88 8x X X X

1.0280 0.2240 1.7920 6.3360
tt t t

b— 2 b—3b-\ b—4

0.3360 0.6880 0.5040 0.0320
8 8 8 8x x X X

2.6880 5.5040 4.0320 0.2560
t t t t

b—5 b-6 b—1 b-8
Thus

0.128510 = (0.10162540 . . .)8

EXAMPLE 1.22 Convert (0.828125)10 to base 2.
A shorthand notation will be used in this example when applying the radix mul-
tiply method. On each line, the fraction is multiplied by 2 to get the following
line:
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MSD 1.656250 *- 0.828125 x 2
1.312500 *— 0.656250 x 2
0.625000 0.312500 x 2
1.250000 *— 0.625000 x 2
0.500000 <- 0.250000 x 2
1.000000 <- 0.500000 x 2LSD

0.82812510 = (0.110101)2

1.3.2 General Conversion Algorithms
The examples presented so far demonstrate the principles of base conversion. It
is often helpful to define generalized procedures for solving various problems
so that basic steps can be applied in the proper sequence. The base conver-
sion methods used will now be formulated into two generalized conversion
algorithms.

Algorithm 1.1

To convert a number N from base A to base B, use
(a) the series substitution method with base B arithmetic, or
(b) the radix divide or multiply method with base A arithmetic.

Algorithm 1.1 can be used for conversion between any two bases. How-
ever, it may be necessary to perform arithmetic in an unfamiliar base when
doing so. The following algorithm overcomes this difficulty at the expense of
a longer procedure.

Algorithm 1.2

To convert a number N from base A to base B, use
(a) the series substitution method with base 10 arithmetic to convert N
from base A to base 10, and
(b) the radix divide or multiply method with decimal arithmetic to convert
N from base 10 to base B.

Algorithm 1.2 in general requires more steps than Algorithm 1.1. How-
ever, the latter is often easier, faster, and less error prone because all arithmetic
is performed in decimal.
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EXAMPLE 1.23 Convert (18.6)9 = (?)u

NA = (18.6)9

a. Converting to base 10 via series substitution yields
N ]0 = 1 x 9' + 8 x 9° + 6 x 9

= 9 + 8 + 0.666...

= (17.666...)10
b. Converting from base 10 to base 11 via radix divide produces

-1

11 1 7 6 0.666 x 11
0.326 x 11
0.586 x 11

7.326
3.586
6.446

1 111
0

Putting the integer and fraction parts together,

Nu = (16.736...)n .

1.3.3 Conversion between Base A and Base B
When B = A*

Simplified conversion procedures can be used when one base is a power of the
other, for example, B — Ak. These procedures are very useful and are described
next.

Algorithm 1.3

(a) To convert a number N from base A to base B when B = Ak and k is a
positive integer, group the digits of N in groups of k digits in both directions
from the radix point and then replace each group with the equivalent digit in
base B.
(b) To convert a number N from base B to base A when B = Ak and k is
a positive integer, replace each base B digit in N with the equivalent k digits
in base A.

The following examples illustrate the power and speed of this algorithm for the
case where A = 2.
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EXAMPLE 1.24 Convert (1011011.1010111)2 to base 8.

Algorithm 1.3a can be applied where B = 8 = 23 = Ak . Therefore, three bi-
nary digits are grouped for each octal digit.

001 011 Oil . 101 011 100
3 31 5 3 4

1011011.10101112 = (133.534)8

EXAMPLE 1.25 Convert (AF.16C)16 to base 8.

Since both 16 and 8 are powers of 2, Algorithm 1.3 can be applied twice as
follows.

•Use Algorithm 1.3b to convert (AF.16C)16 to base 2, since 16 = 24. Each
hexadecimal digit is replaced by four binary digits.

6A F 1 C

10101111.000101101100

(AF.16C)16 = (10101111.0001011011)2

•Use Algorithm 1.3a to covert the binary number to base 8.
010 101 111 . 000 101 101 100

72 5 0 5 45
Therefore;

(AF.16C)16 = (257.0554)8

B 1.4 Signed Number Representation
The sign of numbers stored in digital systems is specified by a digit called
the sign digit, which is usually placed in the leftmost digit position of the
number, as illustrated in Fig. 1.2. Positive numbers are specified by a zero
sign digit and negative numbers by a nonzero sign digit. The magnitude of a
positive number is simply represented by its positional digits. However, several
methods are available for representing the magnitude of negative numbers.
Table 1.6 illustrates the sign magnitude, radix complement, and diminished
radix complement methods. Each method is discussed in more detail next.

Magnitude representationS

T
Sign representation

Figure 1.2 Signed number format.
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1.4.1 Sign Magnitude Numbers
The simplest method of representing signed numbers is sign magnitude. How-
ever, the use of this method requires arithmetic circuitry and algorithms that
are more costly in circuitry and computation time than for other methods.
Hence, the sign magnitude representation is not commonly used in practice for
representing integer numbers.

A signed number N = ±(a
magnitude form as follows.

. . aQ.a_ { . . . a_m )r may be written in signn-1 '

(1.6)N = ( san_
l ...a0.a_

l .. .a_Jrsm
where 5 = 0 if N is positive and 5 = r — 1 if N is negative.

EXAMPLE 1.26 Determine the sign-magnitude code of
N = -(13)10 in binary (r = 2) and decimal
(r = 10).
In binary:

N = — (13)10

= — (1101)2

= (1.1101)Ism
In decimal:

N = — (13) l 0

= (9, 13)
where 9 is used to represent the negative sign for r = 10.

10sm

See Table 1.6 for more examples of sign magnitude binary numbers. For
the sake of clarity, commas will be used to delimit sign digits.

1.4.2 Complementary Number Systems
Complementary numbers form the basis of complementary arithmetic, which is
a powerful method often used in digital systems for handling mathematical op-
erations on signed numbers. In these systems, positive numbers are represented
in the same fashion as in a sign magnitude system, while negative numbers are
represented as the complement of the corresponding positive number. Radix
complement and diminished radix complement are important number systems
and are discussed next. Complementary arithmetic is illustrated by examples
in this chapter as well.

Radix Complements
The radix complement [N]r of a number ( N )r as defined in Eq. 1.2 is defined
as

[ N ]r = r n - ( N )r (1.7)
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TABLE 1.6 SIGNED NUMBER REPRESENTATION EXAMPLES*

Signed
Decimal

Sign Magnitude
Binary
0,1111
0,1110
0,1101
0,1100
0,1011
0,1010
0,1001
0,1000
0,0111
0,0110
0,0101
0,0100
0,0011
0,0010
0,0001
0,0000

(1,0000)
1,0001
1,0010
1,0011
1,0100
1,0101
1,0110
1,0111
1,1000
1,1001
1,1010
1,1011
1,1100
1,1101
1,1110
1,1111

Two’s Complement
System
0,1111
0,1110
0,1101
0,1100
0,1011
0,1010
0,1001
0,1000
0,0111
0,0110
0,0101
0,0100
0,0011
0,0010
0,0001
0,0000

One’s Complement
System
0,1111
0,1110
0,1101
0,1100
0,1011
0,1010
0,1001
0,1000
0,0111
0,0110
0,0101
0,0100
0,0011
0,0010
0,0001
0,0000

(1,1111)
1,1110
1,1101
1,1100
1,1011
1,1010
1,1001
1,1000
1,0111
1,0110
1,0101
1,0100
1,0011
1,0010
1,0001
1,0000

+15
+14
+13
+12
+11
+10
+9
+8
+7
+6
+5
+4
+3
+2
+1
0

-1 1,1111
1,1110
1,1101
1,1100
1,1011
1,1010
1,1001
1,1000
1,0111
1,0110
1,0101
1,0100
1,0011
1,0010
1,0001
1,0000

-2
-3
-4
-5
-6
-7
-8
-9

-10
-11
-12
-13
-14
-15
-16

*Note that sign bits are delimited by commas.

where n is the number of digits in ( N )r. The largest positive number (called
positive full scale ) that can be represented is rn~ l - 1, while the most negative
number (called negative full scale ) is — rn-1
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The two’s complement is a special case of radix complement for binary
numbers (r = 2) and is given by

[ N ] 2 = 2n - ( N )2
where n is the number of bits in ( N )2.Two’s complement is the most commonly
used format for signed numbers in digital systems and will therefore be the
focus of most of the examples in this text.

The following examples illustrate how the two’s complement of a given
binary number can be found using Eq. 1.8.

(1.8)

EXAMPLE 1.27 Determine the two’s complement of
( N )2 = (01100101)2.

From Eq. 1.8,
[ N ] 2 = [01100101]2

(01100101)2

= (100000000)2 - (01100101)2

= (10011011)2.

8= 2

EXAMPLE 1.28 Determine the two’s complement of
(N )2 = (11010100)2, and verify that it can be
used to represent ~( N )2 by showing that
(N )2 + [\] 2 = 0.
First we determine the two’s complement from Eq. 1.8:

[AT]2 = [11010100]2

= 28 - (11010100)2

= (100000000)2 - (11010100)2

= (00101100)2.
To verify that [N ] 2 can be used to represent — (A02, let uscompute ( N )2 + [ N ]2:

110 10 10 0
+ 0 0 1 0 1 1 0 0
1 0 0 0 0 0 0 0 0
t

carry

If we discard the carry bit, we get (A02 + [AH2 = (00000000)2, that is, the
sum of a binary number and its two’s complement is 0. Therefore, it follows
that [ N ] 2 can be used to represent — (A02.

EXAMPLE 1.29 Determine the two’s complement of
[7V]2 = (00101100)2, computed in Example 1.28.

[[An2]2 = [ooioi ioo]2
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= 28 - (00101100)2
= (100000000)2 - (00101100)2

= (11010100)2
Note that the result is the original value of (JV)2 given in Example 1.28.

From the last example, we see that applying the two’s complement op-
eration to a number twice simply produces its original value. This is readily
verified for the general case by substituting — ( N )-, for [ N ]2 as follows:

[[AH2]2 = [-(A02]2

= -(-(A02)2

= W2

EXAMPLE 1.30 Determine the two’s complement of
(A02 = (10110)2 for n - 8.

From Eq. 1.8.
[N]2 = [10110]2

= 28 - (10110)2

= (100000000)2 - (10110)2

= (11101010)2
Note that we keep 8 bits in the result. The reader is encouraged to verify that
this value of [7V]2 can be used to represent — ( N )2 and that [[A^]2]2 — (W)2.

The following example illustrates that the basic procedure for determin-
ing the radix complement of a number is the same for any radix.

EXAMPLE 1.31 Find the 10’s complement of ((V)10 = (40960)10.
From Eq. 1.7,

[N]10 = [40960]10

= 105 - (40960)10

= (100000)10 - (40960)10

= (59040)10.
Note that we keep 5 digits in the result. The reader is encouraged to verify that
[N]10 can be used to represent — (A010 and that [[N]10]10 = (A010.

While the radix complement of a number can always be determined by
the definition given in Eq. 1.7, easier methods are available. The following two
algorithms for computing [N]r given ( N )r are presented without proof.
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Algorithm 1.4 Find [iV]r given ( N )r.
Copy the digits of N , beginning with the least significant and proceeding
toward the most significant until the first nonzero digit has been reached.
Replace this digit, a., with r — a.. Then continue if necessary by replacing
each remaining digit, a j 9 of TV by ( r — 1) — a. until the most significant digit
has been replaced.

For the special case of binary numbers (r = 2), the first nonzero digit,
af , is by default a 1. Therefore, a - is replaced by r — a. = 2 — 1 = 1; hence
a i remains unchanged. Each remaining bit, a j , is replaced by (r — 1)
1 — d j = a .. Therefore, Algorithm 1.4 is applied to binary numbers by simply
copying down all bits up to and including the first 1 bit and then complementing
the remaining bits.

a, =

EXAMPLE 1.32 Find the two’s complement of /V = (01100101)2.
N = 0 110 0 10 1

$ first nonzero digit
[ N ] 2 = (1 0 0 1 1 0 1 1)2

Find the two’s complement of /V = (11010100)2.
N = 1 1 0 1 0 1 0 0

EXAMPLE 1.33

first nonzero digit4
[ N ] 2 = (0 0 1 0 1 1 0 0)2

Find the two’s complement of N = (10110)2 for
n = 8.

EXAMPLE 1.34

First, since n — 8, three zeros must be concatenated in the most significant bit
positions to form an 8-bit number. Then apply Algorithm 1.4.

/V = 0 0 0 1 0 1 1 0
first nonzero digit$

[ N ] 2 = (1 1 10 10 1 0)2

Find the 10 5 complement of (40960)10.
N = 4 0 9 6 0

EXAMPLE 1.35

first nonzero digit$
[ N ] ]0 = (5 9 0 4 0)10

Algorithm 1.5 Find fN]r given (A0r.
First replace each digit, a v of (N )r by ( r — 1) — a k and then add 1 to the
resultant.
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For the special case of binary numbers (r = 2), we replace each bit, a
by ( r — 1 ) — ak = 1 — ak = ak.Therefore Algorithm 1.5 is applied by simply
complementing each bit and then adding 1 to the result.

EXAMPLE 1.36 Find the two’s complement of N = (01100101)2.
N = 01100101

10011010 Complement the bits
+1 Add 1

[/V]2 = (10011011)2

EXAMPLE 1.37 Find the two’s complement of N = (11010100)2.
N = 11010100

00101011 Complement the bits
+1 Add 1

L N ] 2 = (00101100)2

EXAMPLE 1.38 Find the 10’s complement of (40960)10.
N = 40960

59039 Complement the digits
+1 Add 1

[ N ] m = (59040)10

Note that Algorithm 1.4 is convenient for hand calculations, while Algo-
rithm 1.5 is more useful for machine implementation since it does not require
decision making.

Radix Complement Number Systems
Previously the radix complement was defined and several methods for finding
the radix complement of a given number were presented and illustrated. We
also suggested by example that the radix complement of a number can be used
to represent the negative of that number. Next, we describe more precisely
a number system that utilizes the two’s complement to represent negative
numbers. Similarly, systems could be defined for other bases.

In the two’s complement number system, positive values are represented
in the same fashion as in the sign magnitude system; a leading bit of 0 is used to
represent the sign. Negative numbers are represented by the two’s complements
of the corresponding positive number representations. We shall use the notation

to denote a number that is represented in the two’s complement number
• • > ao)2cnS’ Where 0

(N )lens
system. Thus, N = +( an
2"

_1 — I . If N = ( a n_v a
complement number system by [a
All negative numbers in the two’s complement number system have a sign bit

. . , a0 )2 = (0, a-2’ ' n-2’ '

. . , a0 )2 , then — N is represented in the two’s
. . , a0]2, where — 1 > — N > — 2n~ l .

n-2’ •

n-1’ *

of 1. Table 1.6 lists the two’s complement number system codes for n = 5.
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The following examples illustrate the, encoding of positive and negative
numbers in the two’s complement number system. The reader is encouraged to
verify the two’s complement entries in Table 1.6 after studying the examples.

EXAMPLE 1.39 Given (N )2 = (1100101)2, determine the two’s
complement number system representations
of ±(7V)2 for n = 8.
By inspection,

+{ N )2 = (0, 1100101)2cns
FromEq. 1.8,

-(A02 = [+(A0212
= [0, 1100101]2

= 28 — (0, 1100101)2

= (100000000)2 - (0, 1100101)2

= (1, 0011011)
From their sign bits, we see that (0, 1100101)
and (1, 0011011)
shall use a comma to facilitate identifying the sign bit.

lens *

represents a positive value
is its negative. In this example and those that follow we

lens

lens

EXAMPLE 1.40 Find the two’s complement number system
representations of ±(110101)2 for n = 8.
By inspection,

+(110101)2 = (0, 0110101)lens
From Eq. 1.8,

— (110101)2 = [110101]2_ 08= 2 — (110101)2

= (100000000)2 - (110101)2

= (1 , 1001011)lens

EXAMPLE 1.41 Determine the two’s complement number
system encoding of —(13)10 for /1 = 8.
We begin by converting (13) I0 from decimal to binary.

+(13)10 = +(1101)2 = (0, 0001101)
Next we compute the two’s complement of (0, 0001101)
"(13),o:

lens
to representlens

—(13)10 = -(0, 0001101)

= [0, 0001101]2

= 28 — (0, 0001101)2

= (1 , 1110011)

lens

lens
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EXAMPLE 1.42 Determine the decimal number represented
by N = (1,1111010)lens'

From the sign bit, we see that N is a negative number. Therefore, we determine
the magnitude of N (the corresponding positive value) by computing its two’s
complement.

N = (1, 1111010)

= —[1 , 1111010]2

= — (28 — (1, 1111010)2)

= -(0, 0000110)

lens

lens

— (6)10

= +(6)10.Therefore, (1, 1111010)2crtRepresents ~(6)10.where (0,0000110)lens

Now let us consider some examples of arithmetic with radix complement
numbers.

Radix Complement Arithmetic
Most digital computers use a radix complement number system to minimize
the amount of circuitry needed to perform integer arithmetic. For example, the
operation A — B can be performed by computing A + ( — B ) , where ( — B ) is
represented by the two’s complement of B. Hence, the computer need only
have binary adder and complementing circuits to handle both addition and
subtraction. This point of view is convenient for discussing radix complement
arithmetic and will therefore be taken in the paragraphs that follow. Since com-
puter arithmetic is primarily performed in binary, we shall focus our discussion
on two’s complement arithmetic.

Before beginning our discussion in depth, let us consider a fundamental
limitation of the machine representation of numbers. Machines such as digital
computers operate with finite number systems imposed by the number of bits
that can be used in the representation of numerical quantities. The number of
bits available in the computer’s arithmetic unit limits the range of numbers that
can be represented in the machine. Numbers that fall outside this range cannot
be handled by the system. Machines that use the two’s complement number
system (2cns) can represent integers in the range

< N < 2n

wheren is the number of bits available for representing N .Note that 2
(0, 11 . . . 1)
the sign and the remaining n — 1 bits represent the magnitude).

If an operation produces a result that falls outside the available range as
defined by Eq. 1.9, that is, if N > 2
tion is said to occur. In such cases, the n-bit number produced by the operation
will not be a valid representation of the result. Digital computers monitor their

n-1 -1-2 - 1 (1.9)
n— 1 — 1 =

n-1 (the leftmost bit representsand that —2 = (1, 00 . . .0)lens lens

n-\ n-1— 1 or N < —2 , an overflow condi-
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arithmetic operations when performing two’s complement arithmetic and gen-
erate a warning signal when overflow occurs so that invalid numbers are not
mistaken for correct results.

Three cases will now be considered for illustrating arithmetic in the
two’s complement number system: A = B + C, A = B — C, and A = — B —
C. Each case will be described in general and then clarified by appropriate
examples. For all cases, assume that B > 0 and C > 0. The results are easily
generalized to include negative values of B and C.
Case 1. Compute A = B + C. Since both B and C are nonnegative, A will
also be non negative, and this simply becomes

( A )2 = ( B )2 + (C)2
Since all three numbers are positive, there is no need to use the two’s comple-
ment.

The only difficulty that can arise in this case is when A > 2n~ l — 1, that
is when an overflow occurs. An overflow condition is easily detected because
the sign bit of A will be incorrect. To show this, consider the sum of the two
largest representable ft -bit positive numbers:

1)+ ( 2n~ ] - 1)= 2n - 2
Since the largest representable ft -bit positive value is 2n ~ l — 1, an overflow
condition occurs for any sum in the range

A > 2
The n t h bit of any binary number in this range will be set to 1. Unfortunately,
this happens to be the bit that represents the sign in an ft -bit two’s complement
number. Therefore, the result appears to be a negative number, thus indicating
the overflow condition.

It should be noted that since A < 2n there will never be a carry out of the
n t h bit of the binary adder.

The following examples will utilize the 5-bit two’s complement number
system whose values are listed in Table 1.6;

n— 10 < A < (2

n-1

EXAMPLE 1.43 Compute (9)10 + (5)10 using 5-bit two’s
complement arithmetic.
We begin by writing (9)10 and (5)10 as 5-bit two’s complement numbers. Since
both numbers are positive, a zero sign bit is used for each. From Table 1.6,

+(9)10 = +(1001)2 = (0, 1001)2cns

+(5)10 = +(0101)2 = (0, 0101)2cns
Adding these two 5-bit codes gives

0 1 0 0 1
+ 0 0 1 0 1

0 1 1 1 0
Since the result also has a zero sign bit, it correctly represents the desired
positive sum, which is interpreted as

(0, 1110) = +(1110)2 = +(14)102cns
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Section 1.4 Signed Number Representation 47

EXAMPLE 1.44 Compute (12)10 + (7)]0.

From Table l .6,

(12)10 = +(1100)2 = (0, 1100)
(?)10 = +(0111)2 = (0, 0111)

2cns

2cns
Adding the two 5-bit codes gives

0 1 1 0 0
+ 0 0 1 1 1

1 0 0 1 1

, which from Table 1.6 is interpreted as
— (1101)2 = — (13)10

A closer look at this computation reveals that the addition of two positive
numbers appears to have produced a negative result! However, this cannot be
correct, so there must be an explanation. The answer is that the sum of the
given two numbers requires more than the allotted 5 bits to represent it. The
correct sum is +(19) 10, which is outside the 5-bit two’s complement number
range, since positive full scale is (0, 1111)
bit obtained in the computation indicates an incorrect result. Hence an overflow
condition has occurred.

The result is (1, 0011)lens
( 1, 0011)lens

= +(15)10. The incorrect signlens

Case 2. Compute A = B — C.The computation is treated as A = B + ( — C )
in the following manner. We desire to compute

A = ( B )2 + (-(C )2 )
Suppose we represent this operation by encoding the numbers in two’s comple-
ment. The positive number ( B )2 is unchanged. However, — ( C )2 becomes [C]2:

A = ( B )2 + [C]2

= ( B )2 + 2" - (C)2

= 2n + ( B - C )2
Hence the computation is equivalent to 2n + ( B — C). This is the answer we
want, except that there is an extra 2n term. Can we ignore it? If B > C, then
B — C > 0, making A > 2n. The 2n term represents a carry bit and can be
discarded, leaving ( B — C)2 (an n-bit binary adder will generate a carry for
any sum A > 2n ). Therefore,

( A)2 — ( B )2 + [C]2 lcarry discarded
If B < C, then B - C < 0, giving A = 2n - ( C - B )2 = [ C - B ] 2 , or A =— (C — B )2 which is the desired answer. Note that there is no carry in this
instance. All possible conditions will be summarized in tabular form later.

When B and C are both positive numbers, the magnitude of B — C will
always be less than either of the two numbers. This means that no overflow can
occur when computing B — C.
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EXAMPLE 1.45 Compute (12)10 - (5)10.
We perform this computation as (12) l0 + ( — (5)10)

(12)10 = +(1100)2 = (0, 1100)lens

-(5)10 = -(0101)2 = (1, 1011)lens
Adding the two 5-bit codes gives

0 1 1 0 0
+ 1 1 0 1 1
1 0 0 1 1 1
t

Carry
Discarding the carry, the sign bit is seen to be 0, and therefore the result is
interpreted as

(0, 0111) = +(0111)2 = +(7)10lens

EXAMPLE 1.46 Reversing the order of the operands from the
previous example, compute (5)10 - (12)10.
We perform the computation as (5)10 + (— (12)10).

(5)10 = +(0101)2 = (0, 0101)^— (12)10 — — (1100)2 = (1 , 0100)lens
Adding the two 5-bit codes gives

0 0 1 0 1
+ 1 0 1 0 0

110 0 1

In this case there is no carry, and the sign bit is 1, indicating a negative result,
which is

(1, 1001)2cnj = (0111)2 = (?) io

EXAMPLE 1.47 Compute (0,0111)^- (1,1010)

We perform the computation as (0, 011\ )2cns + (— (1, 1010)^).The left-hand
operand is already in two’s complement number system format. Since its sign
bit is 1, the right-hand operand represents a negative number. To negate it, we
take the two’s complement of this negative number to get the corresponding
positive value. Note from the definition of two’s complement that

-[A]2 = [ [ A ]2 ] 2

= 2n - [ A ]2
= 2n - (2n - A )

= A

lens'
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Therefore,
-(i , 1010)2cn5 = (0, °n0)2cns

Adding the two 5-bit codes gives

0 0 111
+ 0 0 1 1 0

0 1 1 0 1
The result is positive, as indicated by the 0 sign bit, and is interpreted as

(0’ 1101)2 = +(1101)2 = +(13)10
The reader should verify that this computation is equivalent to computing
(7)10 - (—(6),0) = 03)10.

Case 3. Compute A = — B — C. The desired result is A = — ( B + C ) =
[ B + C]2. Both — B and — C will be represented by the two’s complements
of their magnitudes, and the computation will be performed as A = ( — B ) +
( — C). Therefore,

^ — [#]2 + [C]2

= 2n — ( B )2 + 2" - (C)2

= 2n + 2n - ( B + C)2

= 2n + [ B + C]2
If the carry bit (2n ) is discarded, the computation produces the correct result,
the two’s complement representation of — ( B + C)2.

EXAMPLE 1.48 Compute —(9)10 - (5)1#.

We perform the computation as ( — (9)10) + ( — (5) l 0).
— (9) i0 = — (1001)2 = (1, 0111)2cns

— (5)10 = — (0101)2 = (1, 1011)2cns
Adding the two 5-bit codes gives

1 0 1 1 1
+ 1 1 0 1 1
1 1 0 0 1 0
t

Carry
Discarding the carry leaves a sign bit of 1. Therefore, the result is correct and
is interpreted as

(1, 0010)^ = -(1110)2 = -(14)10

As is the case when adding two positive values, an overflow can occur
when adding two negative values, producing a result in the range

A < -2
which is indicated by a result having an incorrect sign bit (that is, a result that
appears to be positive). This is illustrated in the following example.

n-1
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EXAMPLE 1.49 Compute —(12)10 - (5)10.
We perform the computation as ( — (12)10) + (— (5) ]0)

~(12)10 = — (1100)2 = (1, 0100)

— (5) io — — (0101)2 = (1, 1011)
lens

lens
Adding the two 5-bit codes gives

1 0 1 0 0
+ 1 1 0 1 1
1 0 1 1 1 1
t

Carry

Discarding the carry, the result is interpreted as
= +(l l l l)2 = +(15)10

Note that the sign bit is incorrect, indicating an overflow. This result is “too
negative"; it exceeds the number range in the negative direction by 1, since the
desired result was — (1710). Consequently, because of the overflow the result is
incorrectly interpreted as +(15)10.

(0, 1111)lens

The next example illustrates the utility of two’s complement arithmetic
in digital computers.

EXAMPLE 1.50 A and B are integer variables in a computer
program, with A = (25)10 and B =-(46)10.
Assuming that the computer uses 8-bit two’s
complement arithmetic, show how it would
compute A + B, A — B, B — A, and —A - B.

Variables A and B would be stored in the memory of the computer in 8-bit
two’s complement number system format:

A =+(25)
B =— (46)10=— (0, 0101110)2c7IJ= (1, 1010010)

First, let us compute the two’s complements of A and B to represent — A and
— B, respectively:

— A =
-B =-{-(46 )l0 )=-( U 1010010)

Performing the computations,

(0, 0011001)io — lens

lens

— (25)10=— (0, 0011001)^= (1, 1100111)
= (0, 0101110)

lens

lens lens

0 0 0 1 1 0 0 1
+ 1 1 0 1 0 0 1 0A + B :

1 1 1 0 1 0 1 1
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The result is (1, 1101011)^--(0, OOIOIOI)^,, = — (21)10-
0 0 0 1 1 0 0 1

+ 0 0 1 0 1 1 1 0A - B = A + (-B ):
0 1 0 0 0 1 1 1

The result is (0, 1000111) = +(7D,o-2cns

110 10 0 10
+ 1 1 1 0 0 1 1 1B — A = B + (-A ):
1 1 0 1 1 1 0 0 1

The result is (1, 0111001)2cnj = -(0, 1000111)^ = —(71)10.
1 1 1 0 0 1 1 1

+ 0 0 1 0 1 1 1 0-A - B = (-A ) + (-B ):
1 0 0 0 1 0 1 0 1

= +(21)10. Note that in the last two cases theThe result is (0, 0010101)
carry bit is discarded.

2cns

A summary of two’s complement addition and subtraction is given in
Table 1.7.

TABLE 1.7 SUMMARY OF TWO’S COMPLEMENT ADDITION AND SUB-
TRACTION

Overflow?Case*
£ + C

Carry Sign Bit Condition
B + C < 2n _1 - 1
B + C > 2n ~ l - 1

0 0 No
0 1 Yes

B < C
B > C

B - C 1 0 No
0 1 No

n — 1-B - C 1 1 -(£ + C) > -2
~( B + C ) < -2

No
n-11 0 Yes

* B and C are positive numbers.

Radix complement arithmetic can be utilized for any radix, and not just
binary numbers. To illustrate, the next two examples will demonstrate ten’s
complement arithmetic using three-digit numbers.

EXAMPLE 1.51 Add +(75)10 and —(21),0 using 3-digit ten’s
complement arithmetic.
First, we determine the ten’s complement codes for the two numbers from
Eq. 1.7:

(75)10 = (0, 75)

— (21)10 = (9, 79)
10cns

10cns
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Then we perform the computation as (75)10 -f- ( — (21)10). Adding the two 3-
digit codes gives

0 7 5
+ 9 7 9
10 5 4
t

Carry
Discarding the carry digit, the result is (0, 54)
correct result.

= (54)10, which is the1Ocns

EXAMPLE 1.52 Add +(21)10 and -(75)10.

Again, we begin by determining the ten’s complement codes for the two num-
bers via Eq. 1.7:

(21)10 = (0,21)

— (75)10 = (9, 25)
1Ocns

1Ocns

Adding the two 3-digit codes gives

0 2 1
+ 9 2 5

9 4 6

The result is (9, 46)
sents a negative value. The reader should verify that (9, 46)
representation in a ten’s complement number system for the desired result,
-(54)10-

with the leading 9 indicating that this number repre-
is the correct

lOcws’
1Ocns

Diminished Radix Complement Number
Systems
The diminished radix complement [A]r l of a number ( N )r is defined as

= r n - ( N )r - 1 (1.10)r — 1

where n is the number of digits in ( N )r .
The one's complement is a special case of diminished radix complement

for binary numbers (r = 2) and is given by

= 2n — ( N )2 - 1 '[TV] ( l .H)2-1
where n is the number of bits in ( N )2.

The one’s complement of a given binary number can be found directly
from Eq. 1.11 as illustrated in the following examples . The reader is encouraged
to verify the one’s complement entries in Table 1.6 after studying the examples.
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EXAMPLE 1.53 Determine the one’s complement of
(01100101)2.

From Eq. 1.11,
= 28 — (01100101)2 — 1
= (100000000)2 - (01100101)2 - (00000001)2

= (10011011)2 - (00000001)2

= (10011010)2.

[W]2-1

EXAMPLE 1.54 Determine the one’s complement of
(11010100)2.

From Eq. 1.11,

= 28 - (11010100)2 - (00000001)2

= (100000000)2 - ( U010100)2 - (00000001)2

= (00101100)2 - (00000001)2

= (00101011)2.

[N ] 2-1

EXAMPLE 1.55 Find the nine’s complement of (40960)10.
FromEq. 1.10,

= 105 - (40960)10 - (00001)10

= (100000)1Q - (40960)10 - (00001)1Q

= (59040)10 - (00001)10

= (59039)10.

I N ] 10-1

While the one’s complement of a number can always be determined by
the definition given in Eq. 1.11, easier methods are available. The following
algorithm for computing [A^]r _ 1 given (N )r is suggested by the preceding
examples and is presented without proof.

Algorithm 1.6 Find [Arjr _ , given ( N )r .
Replace each digit a{ of ( N )r by r — 1 - ar Note that when r = 2 this
simplifies to complementing each individual bit of ( N )r.

A comparison of Eqs. 1.7 and 1.10 indicates that the radix complement
and the diminished radix complement of a number (N )r are related as follows.

(U2)I N ],= [ N ] r _ x + 1
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It should now be clear that Algorithm 1.5 for finding the radix complement
follows from Algorithm 1.6.

Number systems that use the diminished radix complement for negative
number representation can be formulated in a manner reminiscent of that used
with radix complement. However, this will not be done here. Instead, we will
simply illustrate the arithmetic.

Diminished Radix Complement
Arithmetic
The key features of diminished radix complement arithmetic are illustrated
in the following examples. The first three examples focus on one’s comple-
ment addition for various combinations of positive and negative operands. The
numbers used in these examples are from Table 1.6.

EXAMPLE 1.56 Add +(100l)2 and -(0100)2.

The positive number is represented by 01001 and the negative number by the
one’s complement of 00100, which is 11011. Hence 00100 + 11011 = 100100.
Note that this is not the correct result. However, the correct result is obtained
if the carry-out of the most significant bit is added to the least significant bit
position. That is, 00100 + 1 = 00101. This procedure is referred to as an end-
around carry and is a necessary correction step in diminished complement
arithmetic.

EXAMPLE 1.57 Add +(1001)2 and —(1111)2.

The positive number is represented by 01001 and the negative by 10000. This
results in 01001 + 10000 = 11001. Note that in this case the end-around carry
is 0 and therefore does not affect the result.

EXAMPLE 1.58 Add -(1001)2 and -(0011)2.

Representing each number by its one’s complement yields 10110 + 11100 =
110010. The end-around carry step yields the correct result, that is, 10010 +
1 = 10011.

The next two examples illustrate nine’s complement arithmetic.

EXAMPLE 1.59 Add +(75)10 and -(21)10.

The nine’s complement of 021 is 978. Hence the operation proceeds as 075 +
978 = 1053, which is the correct result after the end-around carry procedure.
053 + 1 = 054.
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EXAMPLE 1.60 Add +(21)1# and -(75)10.
The computation is given by 021 -f- 924 = 945, which is correct since the
end-around carry is 0.

•1.5 Computer Codes
A code is a systematic and preferably standardized use of a given set of symbols
for representing information. Simple forms of codes are encountered routinely
in everyday life. For example, when a traffic light is approached, it is understood
that a red signal means stop, a green signal means go, and a yellow signal means
caution. In other words, the code is

Red light: Stop
Yellow light: Caution
Green light: Go

Another familiar code is used in baseball. When an umpire raises his or
her arms with two fingers showing on the right hand and three fingers showing
on the left, it is understood that the count on the batter is two strikes and three
balls. These two simple examples illustrate the idea of codes and no doubt the
reader can think of many more.

Codes of a more complex nature are used in computers and other digital
systems in the processing, storage, and exchange of information of various
types. Three important types of computer codes are numeric, character, and
error detection and correction. Some important codes in each of these categories
are discussed briefly next.

1.5.1 Numeric Codes
Numeric codes are typically used to represent numbers for processing and/or
storage. Fixed-point and floating-point numbers are examples of such codes.

Fixed-point Numbers
Fixed-point numbers are used to represent either signed integers or signed
fractions. In both cases, either sign magnitude, two’s complement, or one’s
complement systems are used for representing the signed values. Fixed-point
integers have an implied binary point to the right of the least significant bit, as
shown in Fig. 1.3a, and fixed-point fractions have the implied binary point be-
tween the sign bit and the most significant magnitude bit, as shown in Fig. 1.3b.
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n-2 n- 3 2rc - 1 1 0

r TMagnitude representation
Sign bit Implied binary point

(a)

0 21

V Magnitude representation
Sign bn

Implied binary point
(b)

Figure 1.3 Fixed-point number representations, (a) Fixed-point
integer, (b) Fixed-point fraction.

EXAMPLE 1.61 Give two possible interpretations of the 8-bit
fixed-point number 01101010, using the two’s
complement system.
Since the sign bit is 0, the number represents either the positive integer 1101010.
if the binary point is placed as in Fig. 1.3a or the positive fraction 0.1101010 if
the binary point is placed as in Fig. 1.3b.

EXAMPLE 1.62 Give two possible interpretations of the 8-bit
fixed-point number 11101010, using the two’s
complement system.
The sign bit is 1. Therefore, the number represents either —0010110. or
—0.0010110 depending on the convention used for placement of the binary
point.

Excess or Biased Representations
An excess— K representation of a code C is formed by adding the value K
to each code word of C. Excess representations are frequently used in the
representation of the exponents of floating-point numbers so that the smallest
exponent value will be represented by all zeros. Note that the excess-2” numbers
are just the two’s complement numbers with the sign bit reversed!

The excess-8 representation given in Table 1.8 is produced by adding
(1000)2 to the 4-bit two’s complement code. Note that the result is the smallest
number (-8) being represented by 0000 and the largest (+7) by 1111.
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TABLE 1.8 EXCESS-8 CODE

Two’s Complement
0111

Decimal Excess-8
mi+7

+6 11100110
+5 11010101
+4 0100 1100
+3 0011 1011
+2 0010 1010

0001+1 1001
0 0000 1000
-1 m i 0111
-2 1110 0110
-3 1101 0101
-4 1100 0100
-5 00111011
-6 00101010

1001 0001-7
-8 00001000

Floating-point Numbers
Floating-point numbers are similar in form to numbers written in scientific
notation. In general, the floating-point form of a number N is written as

N = M xrE
where M, the mantissa or significand, is a fixed-point number containing the
significant digits of N , and E , the exponent or characteristic, is a fixed-point
integer. In the general case, given a fixed-point number N , where

N = ±{a

(1.13)

n-1 ’

then in floating-point form
.a ) x rn—m' rN = ±(.an — 1 * '

When deriving a representation of a floating-point number, the mantissa and
exponent are coded separately. The radix is implied and is thus not included in
the representation.

The mantissa M is often coded in sign magnitude, usually as a fraction,
and can be written as

M = ( SM .a (1.14)* * ^ —m ^ rsmn-1 *

where ( .a
sign of the number. SM is usually chosen so that

M = (-1)5* x { .a

• ' a-m )r ^presents the magnitude of M and SM indicates then-1 *

a-m\ (1.15)
/1—1 *

and thus SM = 0 indicates a positive number, whereas SM — 1 indicates a
negative number.
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The exponent E is most often coded in excess-K two’s complement. The
excess- K two’s complement of an exponent is formed by adding a bias of K to
the two’s complement integer value of the exponent. For binary floating-point
numbers (numbers for which radix r = 2), K is usually selected to be 2e~\
where e is the number of bits in the exponent. Therefore,

E < 2
0 < E + 2e~ ] < 2e

which indicates that the biased value of E is a number that ranges from 0 to
2e — 1 as E increases from its most negative to its most positive value. The
excess- K form of E can be written as

^ = ^e-v ^e-2 • • - ^excess-K
where be_ { indicates the sign of E.

M and £, coded via Eqs. 1.14 and 1.16, are combined to produce the
following floating-point number format:

e — 1 e — l-2 <

(1.16)

^ — ( SMbe_ lbe_
2 • • • b0an . (1.17)—m / r

representing the number
-a_

m )r x r1*'-1*'-2"

One exception to the format of Eq. 1.17 is the number 0, which is treated as a
special case and is usually represented by an all-zero word.

Floating-point representations of a given number are not unique. Given
a number N , as defined in Eq. 1.13, it can be seen that

N = M x rE

•v-2'N — x ( .a (1.18)n-\ ' *

(U9)
E+ 1= ( M r ) x r

= (M x r ) x r
where (M -i- r ) is performed by shifting the digits of M one position to the
right, and (M x r) is performed by shifting the digits of M one position to the
left. Therefore, more than one combination of mantissa and exponent represent
the same number. For example, let M = +(1101.0101)2. Representing M as a
sign magnitude fraction in the format of Eq. 1.14 and repeatedly applying Eq.
1.20 gives

(1.20)
(1.21)E — 1

M = +(1101.0101)2

= (0.11010101)2 X 24
= (0.011010101)2 x 25
= (0.0011010101)2 x 26

(1.22)

(1.23)

(1.24)

When performing computations in a computer, it is usually most conve-
nient to have a unique representation for each number. Normalization is used
to provide uniqueness for floating-point numbers. A floating-point number is
said to be normalized if the exponent is adjusted so that the mantissa has a
nonzero value in its most significant digit position. Therefore, Eq. 1.22 gives
the normalized representation of N , while the numbers in Eqs. 1.23 and 1.24
are not normalized.
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Note that the most significant bit of a normalized binary number is always
1. Therefore, if M is represented in sign magnitude form as a normalized
fraction,

0.5 < \ M \ < 1.
Floating-point formats used in computer systems from different man-

ufacturers often differ in the numbers of bits used to represent the mantissa
and exponent and the method of coding used for each. Almost all systems
utilize the general format illustrated in Fig. 1.4, with the sign stored in the
leftmost bit, followed by the exponent and then the mantissa. The one-word
format of Fig. 1.4a is typically used in computers with word lengths of 32
bits or more. The two-word format of Fig. 1.4b is used in computers with
“short" word lengths for single-precision floating-point numbers or in comput-
ers with long word lengths for extended-precision (alsocalled double-precision)
representation.

Exponent E Mantissa M

4

Sign of mantissa
(a)

Mantissa M (most significant part)Exponent E

Mantissa M (least significant part)

(b)

Figure 1.4 Floating-point number formats, (a) Typical single-
precision format, (b) Typical extended-precision format.

Table 1.9 presents a summary of the single- and double-precision formats
used by several computer systems, including the formats defined in the IEEE
Standard 754-1985 [8]. Note that all of these formats use a biased exponent,
with a varying number of bits. The DEC VAX formats and the IEEE Standard
formats both suppress storage of the most significant bit of the mantissa. Since
all numbers are binary values in normalized form, the most significant bit is
known to be 1. Therefore, storage of this bit is unnecessary, and thus one
additional bit of precision can be gained (denoted by the +1 in the third column
of Table 1.9).
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TABLE 1.9 SOME COMMON FLOATING POINT NUMBER FORMATS*

System/
Format

IEEE Std. 754-1985:

Total Significand Exponent Exponent
biasbits bits bits Mantissa coding

Sign/Mag: (radix 2):
1 < |M| < 2
1 < \ M \ < 2

Single Precision
Double Precision

32 23 (+1)
52 (+1)

8 127
64 102311

Sign/Mag (radix 16):
1/16 < \ M \ < 1
1/16 < |A/| < 1

IBM System/360:
Single Precision
Double Precision

32 24 7 64
64 56 7 64

DEC VAX 11/780:
F Format
D Format
G Format

Sign/Mag (radix 2):
1/2 < \ M \ < 1
1/2 < \ M \ < 1
1/2 < |M| < 1

23 (+1)
55 (+1)
52 (+1)

32 8 128
64 8 128
64 11 1024

CDC Cyber 70: 60 48 1024 1’s Complement (radix 2)
1 < \ M\ < 2

11
48

*(+!) => most significant bit suppressed.

EXAMPLE 1.63 Write the binary number N = (101101.101)2 in
the floating-point format of Eq. 1.17, where
n + m = 10 and e — 5. Assume that a
normalized sign magnitude fraction is used
to represent M and that Excess-16 two’s
complement is used for E.

N = (101101.101)2 = (0.101101101)2 x 26
Writing the mantissa in the format of Eq. 1.14:

M = +(0.1011011010)2
= (0.1011011010)2sm

The exponent is coded by determining its two’s complement form and then
adding a bias of 16. (Note that the number of exponent bits e = 5 and that the
bias value is 2e — 1 = 24 = 16). Therefore,

E = +( 6)10

= +(0110)2

= (00110)
Adding the bias value of 16 = (10000)2 to the two’s complement of E yields

lens

00110
+ 10000

10110
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So,
E — (1, 0110)exCess-16

Note that the sign of the exponent, b
value.

is 1, indicating a positive exponente-V

Combining M and E gives
N = (0, 1, 0110, 1011011010) f p

Arithmetic operations on floating-point numbers require special algo-
rithms to manipulate exponents and mantissas, which are beyond the scope
of this text. The reader is referred to [9] for information on algorithms for
floating-point arithmetic.

1.5.2 Character and Other Codes
It is often necessary or desirable to represent information as strings of alphabet-
ical or numerical characters. Numerous character codes have been developed
for this purpose and some of the most important ones will now be discussed.

Binary Coded Decimal (BCD)
The binary coded decimal or BCD code is used for representing the decimal
digits 0 through 9 and is an example of a weighted code. That is, each bit
position in the code has a fixed numerical value or weight associated with
it. The digit represented by a given code word can be found by summing up
the weighted bits. The BCD code uses 4 bits, with the weights chosen to be
the same as those of a 4-bit binary integer. Hence, the BCD code for a given
decimal digit is the same as the binary equivalent of the number with leading
zeros. BCD codes are sometimes referred to as 8 — 4 — 2 — 1 codes because
of the weights used. The complete BCD code is given in Table 1.10.

TABLE 1.10 BINARY
CODED DECIMAL
(BCD) CODES

0000 50 0101
61 0001 0110

01112 0010 7
0011 8 10003

9 10014 0100

BCD codes are used to encode numbers for output to numerical displays
and for representing numbers in processors that perform decimal arithmetic.
The latter can be found in mainframe computers on one end of the spectrum
and in hand-held calculators on the other.
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EXAMPLE 1.64 Encode the decimal number N = (9750)10 in
BCD.
First, the individual digits are encoded from Table 1.10.

9 -* 1001, 7 —> 0111, 5 0101, and 0 -* 0000
Then the individual codes are concatenated to give

N = (1001011101010000)BCD

Extensions of the BCD code have been developed to cover not only the
decimal digits but also alphabetical and other printing characters, as well as
nonprinting control characters. These codes are typically 6 to 8 bits in length.
They are used for representing data during input or output and for internally
representing nonnumeric data such as text. One such code, used in several
IBM mainframe computer models, is the Extended Binary Coded Decimal
Interchange Code { EBCDIC).

ASCII
The most widely used character code in computer applications is the ASCII
(American Standard Code for Information Interchange) code, pronounced
“askey." The 7-bit ASCII code is given in Table 1.11. An eighth bit is of-
ten used with the ASCII code to provide error detection. This technique, parity
coding, is discussed later in the chapter.

EXAMPLE 1.65 Encode the word Digital in ASCII code,
representing each character by two
hexadecimal digits.

Character Binary Code Hexadecimal Code
1000100
1101001
1100111
1101001
1110100
1100001
1101100

D 44
69I

67g
69I

74t
61a

1 6C

Note that the hexadecimal form is more compact and readable than the
binary form. For this reason, the former is often used when representing ASCII
coded information.

Gray Codes
A cyclic code may be defined as any code in which, for any code word, a
circular shift produces another code word. The Gray code is one of the most
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TABLE 1.11 ASCII CHARACTER CODE

C6CSC 4

000 001 010 011 100 101 110 111
0000 NUL DLE SP @0 P P
0001 SOH DC1 1 A Q a q

STX0010 DC2 2 B R b r
0011 ETX DC3 3 C s# c s

$EOT0100 DC4 4 T dD t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL GETB 7 W g w

C3C2C1 C0 1000 BS CAN 8 H( X h x
1001 HT EM ) 9 I Y l y
1010 SUB * JLF Z J z

ESC {1011 VT K k[+

FS1100 FF L \ 1<
1101 GS )CR M ] m

SO RS1110 N> n
9m i SI US / o DELo

common types of cyclic codes and has the characteristic that the code words for
two consecutive numbers differ in only 1 bit. That is, the distance between the
two code words is 1. In general, the distance between two binary code words
is equal to the number of bits in which the two words differ.

EXAMPLE 1.66 Define a Gray code for encoding the decimal
numbers 0 through 15.
Four bits are needed to represent all the numbers, and the necessary code can
be constructed by assigning bit i of the code word to be 0 if bits i and i + 1
of the corresponding binary number are the same and 1 otherwise. The most
significant bit of the number must always be compared with 0 when using this
technique. The resulting code is given in Table 1.12.

EXAMPLE 1.67 The need to observe or measure the position of a circular shaft occurs in many
applications. This can be accomplished by mounting an encoded conducting
disk on the shaft and electrically sensing the position of the disk. How can the
disk be encoded so that incorrect position indications are not read when the
sensors move from one sector of the disk to another?

The desired result can be obtained if the disk sectors are encoded in a
Gray code since only one bit position in the code will change as the sensors
move from one sector to the next. Figure 1.5 illustrates the solution.
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TABLE 1.12 GRAY CODE FOR DECIMAL
NUMBERS 0 THROUGH 15

GrayDecimal Binary
0000 00000

00011 0001
00112 0010
00103 0011
01104 0100

0101 01115
010101106
010001117

1000 11008
1001 11019
1010 m i10
ion 111011

101012 1100
101113 1101
1001111014
100015 m i

34
25

16

07

158

C DB9 14 x1310 —— Battery11 12

Figure 1.5 Gray-coded disk.

www.youseficlass.ir



Section 1.5 Computer Codes 65

1.5.3 Error Detection Codes
and Correction Codes

An error in binary data is defined as an incorrect value in one or more bits. A
single error refers to an incorrect value in only one bit, while a multiple error
refers to one or more bits being incorrect. Errors may be introduced by hardware
failures, external interference (noise), or other unwanted events. Information
may be encoded using special codes that allow the detection and sometimes
the correction of certain classes of errors. Some simple error detection and
correction codes are illustrated next.

It will be useful to state some definitions and notations before presenting
specific codes. Let / and J be n-bit binary information words. The weight of / ,
u;( / ), is defined to be the number of bits of I equal to 1. The distance between
I and 7, d { I , J ), is equal to the number of bit positions in which / and J differ.

EXAMPLE 1.68 Determine the weights of I and J and the
distance between them if / = (01101100) and
J = (11000100).
Counting the 1 bits in each number, we get

w( I ) = 4 and w{ J ) — 3
Next, we compare the two numbers bit by bit, noting where they differ as
follows:

0 1 1 0 1 1 0 0
1 1 0 0 0 1 0 0
t t t

The numbers differ in three bit positions, therefore,

d ( I , J ) = 3

General Properties of Error Detection
and Correction Codes
If the distance between any two code words of a code C is > dmin , the code
is said to have minimum distance d . The error detection and correction

min

properties of a code are determined in part by its minimum distance. This is
illustrated in Figure 1.6, in which circled dots represent valid code words and
uncircled dots represent words that contain errors. Two dots are connected if
the corresponding words differ in exactly one bit position. For a given dmin ,
at least d . errors are needed to transform one valid code word to another. If
there are fewer than dmin errors, then a detectable noncode word results. If the
noncode word is “closer” to one valid code word than to any other, the original
code word can be deduced, and thus the error can be corrected.

In general, a code provides t error correction plus detection of s additional
errors if and only if the following inequality is satisfied.

2t + s + 1 < dmm (1.25)
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It can be seen from a closer examination of Eq. 1.25 that a single-error de-
tection code ( s = 1, t = 0) requires a minimum distance of 2. A single-error
correction code ( s = 0, t = 1) requires a minimum distance of 3, and a code
with both single-error correction and double-error detection ( s = t = 1) re-
quires a minimum distance of 4. Figure 1.6 illustrates these and several other
combinations.

Error word

Valid code word

^min — ^
(a) (b)

(c) (d)

Figure 1.6 Relationship between the minimum distance between code words and the
ability to detect and correct bit errors. (Connected words differ in exactly one bit position.)
(a) Single-error detection (SED). (b) Single-error correction (SEC) or double-error
correction (DED). (c) (SEC and DED) or TED. (d) DEC, (SEC and 3ED), or 4ED.

Simple Parity Codes
Parity codes are formed from a code C by concatenating (|) a parity bit, P , to
each code word of C. Figure 1.7 illustrates the concept. In an odd-parity code,
the parity bit is specified to be either 0 or 1 as necessary for w( P \ C ) to be odd.
The parity bit of an even-parity code is selected so that w( P \ C ) will be even.
Figure 1.8 shows how parity encoding is used on a nine-track magnetic tape.

Information bitsP

Parity bit

Figure 1.7 Parity-coded information.
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01011000

0
1
0
1 Information

tracks1
0
0
0

Parity track1

Figure 1.8 Parity coding on magnetic tape.

EXAMPLE 1.69 Concatenate a parity bit to the ASCII code of
the characters 0,*,=, and BEL to produce an
odd parity code.

Character ASCII Code Odd-Parity Code
0110000
1011000
0111100
0000111

10110000
01011000
10111100
00000111

0
X

BEL

EXAMPLE 1.70 Encode the message CATCH 22 in ASCII
code with even parity and group the coded
word into 16-bit segments.

Segment 1: (11000011 01000001)ASrn
c A

Segment 2: (11010100 11000011)Asm
T C

Segment 3: (01001000 10100000)ASCI1
blankH

Segment 4: 1011001010110010 ASCII
2 2

Note that this message can be stored in four memory words of a 16-bit
computer as

1100001101000001
1101010011000011
0100100010100000
1011001010110010

Word X:
Word X -I- 1
Word X + 2
Word X + 3
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Error detection on parity-encoded information is easily accomplished
by checking to see if a code word has the correct parity. For example, if the
parity of an odd-parity code word is actually even, then a detectable error has
occurred. It is easy to build logic circuits to detect parity, as will be seen later
in the text.

Parity codes are minimum-distance-2 codes and thus can be used to detect
single errors. In fact, they can be used to detect any odd number of errors since
such errors will always change the parity of the code word. On the other hand,
errors in an even number of bits will not change the parity and are therefore
not detectable using a parity code.

Two-out-of-Five Code
The two-out-of-five code is an error detection code having exactly 2 bits equal
to 1 and 3 bits equal to 0 in each code word and is representative of m-out-of-n
codes. Error detection is accomplished by counting the number of ones in a
code word. An error is indicated anytime the number of ones is not exactly equal
to 2. It follows that two-out-of-five codes permit the detection of single errors
as well as multiple errors in adjacent bits. Table 1.13 presents a two-out-of-five
code for the decimal digits.

Hamming Codes
Richard Hamming, in 1950, published the description of a class of error-
correcting codes that have subsequently become widely used. Hamming codes
may be viewed as an extension of simple parity codes in that multiple par-
ity or check bits are employed. Each check bit is defined over a subset of
the information bits in a word. The subsets overlap in such a manner that
each information bit is in at least two subsets. Single-error-correcting (SEC )

TABLE 1.13 TWO-OUT-OF-FIVE
CODES FOR THE
DECIMAL DIGITS

Digit Two-out-of-Five Code
00011
00101
01001
10001
00110
01010
10010
01100
10100
11000

0
1
2
3
4
5
6
7
8
9
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codes permit the detection and correction of any single-bit error. Single-error-
correcting/ double-error-detecting ( SEC/DED ) codes provide the detection but
not correction of any double error, in addition to single-error detection and
correction.

The error detection and correction properties of a Hamming code are
determined by the number of check bits used and how the check bits are defined
over the information bits. The minimum distance dmin is equal to the weight of
the minimum-weight nonzero code word. In other words, d . is equal to the
number of ones in the codeword with the fewest ones. It is beyond the scope of
this book to discuss the design of Hamming codes in depth. However, the two
Hamming codes given in Table 1.14 will be used to illustrate code properties.
Also, a method for designing simple SEC Hamming codes will be presented.

Hamming Code1. The code provides single-error correction but no double-
error detection since its minimum distance is 3.This can be seen more clearly in
the following analysis. A single error in the leftmost bit of code word 0100110
produces the error word 1100110. Table 1.15 shows the difference and distance
between each valid code word and the error word.

Note that only the code word in which the error occurred has distance 1
from the error word. This means that no single error in any other code word
could have produced the error word. Hence, the detection of the error word

TABLE 1.14 TWO HAMMING CODES FOR 4-BIT
INFORMATION WORDS

Information
Words
(VaVo)

0000

Hamming
Code 1

(V2V0W0)

0000000
0001011
0010101
0011110
0100110
0101101
0110011
0111000
1000111
1001100
1010010
1011001
1100001
1101010
1110100
1111111

Hamming
Code 2

(h*2*l*0C3C2ClCo )

00000000
00011011
00101101
00110110
01001110
01010101
01100011
01111000
10000111
10011100
10101010
10110001
11001001
11010010
11100100
11111111

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
mi
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1100110 is equivalent to correcting the error, since the only possible single
error that could have produced the pattern is an error in the leftmost bit of code
word 0100110.

The above preceding analysis also suggests an error detection and correc-
tion procedure. That is, we could find the difference between a data word and
each possible valid code word. A distance of 0 would indicate a valid match,
a distance of 1 would indicate a single error in the corresponding code word
in the bit position corresponding to the 1 bit of the difference, and a distance
of 2 or more over all code words would indicate a multiple error. While this
procedure works in theory, it would not be practical for codes with a large
number of code words. Practical approaches will be discussed later.

Our analysis also reveals that several code words are distance 2 from the
error word. Hence, a double error in each of these words could produce the same
error word as the single error (examine Figure 1.6). This implies that double
errors cannot in general be detected with this code. Single-error correction in
conjunction with double-error detection requires a minimum-distance-4 code.

The check bits of the code are defined to provide even parity over a subset
of the information bits, as follows:

c2: i i i3’ 2’
c, : *3’ i2’ *0

*1’ l0

r
c0: lv

TABLE 1.15 EFFECTS OF ERRORS ON CODE WORDS

Code Words
0000000
0001011
0010101
0011110
0100110
0101101
0110011
0111000
1000111
1001100
1010010
1011001
1100001
1101010
1110100
1111111

Error Word
1100110
1100110
1100110
1100110
1100110
1100110
1100110
1100110
1100110
1100110
1100110
1100110
1100110
1100110
1100110
1100110

Difference
1100110
1101101
1110011
1111000
1000000
1001011
1010101
1011110
0100001
0101010
0110100
0111111
0000111
0001100
0010010
0011001

Distance
4
5
5
4
1
4
4
5
2
3
3
6
3
2
2
3
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This relationship can be conveniently specified by a matrix known as the
generator matrix, or G matrix, as shown next. Each column of the G matrix
corresponds to a bit in the code word as indicated.

[ 1 0 0 0
0 1 0 0
0 0 1 0_ 0 0 0 1 p4 J P42 p43 _

1 0 0 0 1 1 1
0 10 0 110
0 0 10 10 1
0 0 0 1 0 1 1

P11 P12 P13
Pl\ P22 P23G = (1.26)
P31 P32 P33

l 3 l 2 l \ l0 C2 C\ C0

The encoding of an information word, /, to produce a code word, c, can
be expressed in terms of the generator matrix, G, as follows.

c = iG (1.27)

The decoding of a data word can best be expressed in terms of a matrix,
//, known as the parity-check matrix. The H matrix can be derived from the G
matrix as follows for the preceding code.

1 0 0
0 1 0
0 0 1

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

P11 Pl\ P3 I P41
P12 P22 P32 P42_ P13 P23 P33 P43

H =

(1.28)

An n-tuple c is a code word generated by G if and only if

HCT 0
Let d represent a data word corresponding to a code word c, which has

been corrupted by an error pattern e. Then

d = c -Ye

(1.29)

(1.30)

Decoding begins with the computation of the syndrome, 5, of d in order
to determine if an error is present. If no error is present, decoding concludes
by removing the check bits, leaving only the original information bits. If a
correctable error is found, the error is corrected before removing the check
bits. If an uncorrectable error is found, the process terminates with an error
signal so indicating.

The syndrome of d is computed as follows using H:
5 = HdT

= H (c + e )T

= HCT + HeT
= 0+ H e T
= H e7

The syndromes for the H matrix given in Eq. 1.28 are shown in Table
1.16. Note that the pattern of each syndrome is the same as the pattern of the
column in the H matrix corresponding to the erroneous bit.

(1.31)

(1.32)

Hamming Code 2. The minimum distance is 4 since no nonzero code word
has weight less than 4. Hence the code has both single-error correction and
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TABLE 1.16 SYNDROMES AND ERROR PATTERNS

Error Pattern
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0

Syndrome
0 0 0

Meaning
No error

Error in c0
Error in c
Error in c2
Error in iQ
Error in i
Error in i2
Error in *'3

0 0 1
0 1 0 I
1 0 0
0 1 1
1 0 1 1
1 1 0
1 1 1

double-error detection properties. The generator and parity-check matrices are
as follows:

10000111
01001110
00101101
00011011
01111000'

11100100
11010010
10110001

Note that each column in the H matrix of Eq. 1.34 has an odd number
of ones. Such Hamming codes are called odd-weight-column codes and have
several desirable properties, including single-error correction, double-error de-
tection, and detection of other multiple errors. Moreover, they allow relatively
low cost and fast encoding and decoding circuitry. As a result, odd-weight-
column codes are frequently used in practice.

Hamming codes are most easily designed by specifying the H matrix.
For any positive integer m > 3, an (m, k ) SEC code exists with the following
properties.

(1.33)G =

(1.34)H =

•Code length: n = 2m — \

• Number of information bits: k = 2m — m — 1

• Number of check bits: n — k = m

•Minimum distance: d

The H matrix for such a code is an n x m matrix consisting of all the nonzero
binary m-tuples as its columns. The matrix in Eq. 1.28 is an example of such
a matrix for m = 3. Note that other H matrices for m = 3 can be found by
reordering the columns.

= 3min
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A (15, 11) Hamming code is produced when m = 4. One possible H
matrix for such a code is the following:

111101110001000
111011001100100
110110100110010
101110011010001

(1.35)H =

Any / columns may be deleted from an H matrix of a Hamming code to
produce another Hamming code with the following properties.

•Code length: n = 2m — / — 1

•Number of information bits: k = 2m — m — l — 1

•Number of check bits: n — k = m

•Minimum distance: d . > 3
min —

These properties lead to the possibility of designing codes with improved error
correction and detection properties and more useful code lengths.

EXAMPLE 1.71 Design a Hamming code for encoding five
(k = 5) information bits.
Four check bits (m — 4) are required since for m = 3,h = 23 — 3 — 1 = 4 < 5.
However, for m = 4, k — 24 — 4 — 1 = 11 > 5. But a (9, 5) code can be found
by deleting six columns from the H matrix of a (15, 11) code. Deleting six
columns from Eq. 1.35 yields

111101000
111010100
110110010
101110001

(1.36)H =

The corresponding generator matrix is
100001111
010001110
001001101
000101011
000010111

(1.37)G =

This completes our coverage of error detection and correction codes.
Readers wanting to learn more about codes are referred to reference [4].

•1.6 Summary
Our introduction to number systems and computer codes is complete. The
reader should now be familiar with decimal, binary, octal, and hexadecimal
number systems and be able to convert numbers from any one of these bases
to any other. Moreover, the reader should understand arithmetic operations in
all the bases and should understand how negative numbers may be represented
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in computers. Also, familiarity with fixed-point and floating-point numbers
should have been gained. An understanding of binary coded decimal (BCD)
and ASCII character codes should have been obtained. Gray codes and ex-
cess or biased codes have also been introduced. Finally, a general knowledge
of simple error detection and correction codes should have been obtained. A
more in-depth understanding of these subjects can be gained by referring to the
references.
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PROBLEMS Calculate A + B , A — B, A x B , and A 4- B for the following pairs of binary
numbers.
(a) 10101, 1011
(b) 1011010, 101111
(c) 101, 1011
(d) 10110110, 01011011

1.1

(e) 1101011, 1010
(f) 1010101 , 101010
(g) 10000, 1001
(h) loihfnoi , iio. il

Calculate A + B, A — B, A x B, and A -E B for the following pairs of octal
numbers.
(a) 372, 156
(b) 704, 230

1.2

(c) 1000, 777
(d) 423, 651

Calculate A + B, A — B, A x B, and A -E B for the following pairs of hexadec-
imal numbers.
(a) 2CF3, 2B
(b) FFFF, 1000

1.3

(c) 9A5, D17
(d) 372, 156
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1.4 Convert each of the following decimal numbers to binary, octal, and hexadecimal
numbers.
(a) 27
(b) 915
(c) 0.375

(d) 0.65
(e) 174.25
(0 250.8

1.5 Convert each of the following binary numbers to octal, hexadecimal, and decimal
numbers using the most appropriate conversion method.

(d) 0.01101
(e) 10101.11
(f) 10110110.001

(a) 1101
(b) 101110
(c) 0.101

1.6 Convert each of the following octal numbers to binary, hexadecimal, and decimal
using the most appropriate conversion method.
(a) 65
(b) 371
(c) 240.51

(d) 2000
(e) 111111
(0 177777

1.7 Convert each of the following hexadecimal numbers to binary, octal, and decimal
using the most appropriate conversion method.
(a) 4F
(b) ABC
(c) F8.A7

(d) 2000
(e) 201.4
(f) 3D65E

1.8 Find the two’s complement of each of the following binary numbers assuming
n = 8.
(a) 101010
(b) 1101011
(c) 0

(d) 11111111
(e) 10000000
(0 11000

1.9 Find the one’s complement of each of the following binary numbers assuming
/1 = 8.
(a) 110101
(b) 1010011
(c) 0

(d) 10000000
(e) 100001
(f) 01111111

1.10 Calculate A + B , A — B, — A + B, and — A — B for each of the following pairs
of numbers assuming a two’s complement number system and n = 8. Check
your results by decimal arithmetic. Explain any unusual results.
(a) 1010101, 1010
(b) 1101011 , 0101010

(c) 11101010, 101111
(d) 10000000, 01111111

1.11 Repeat Problem 1.10 for the following numbers using a one’s complement
number system.
(a) 101011, 1101
(b) 10111010, 11010

(c) 1010101, 0101010
(d) 10000000, 01111111
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1.12 Show how a 16-bit computer using a two’s complement number system would
perform the following computations.
(a) (16850)10 + (2925)10 = (?)10
(b) (16850) 1Q — (2925)|0 = (?)10
(c) (2925)10 - (16850)10 = (?) IO
(d) -(2925)10 - (16850) I 0 = (?)10

Encode each of the following numbers in BCD and in excess-3 codes.
(a) 39
(b) 1950

1.13
(c) 94704
(d) 625

1.14 Encode each of the following character strings in ASCII code. Represent the
encoded strings by hexadecimal numbers.
(a) 1980
(b) A = b + C

(c) COMPUTER ENGINEERING
(d) The End.

1.15 Define a 4-bit code for representing the decimal digits that has the property that
the code words for any two digits whose difference is 1 differ in only one bit
position and that this property also holds for the digits 0 and 9.

How many bit errors can be detected in a two-out-of-five code? How many
errors, if any, can be corrected in a two-out-of-five code? Prove your answers
mathematically.

Examine the Gray-coded disk of Fig 1.5. Suppose the display lights give the
following indications: A is off, B is on, C is on, and D is flickering on and off.
Locate the position of the disk by sector numbers.

For the nine-track magnetic tape of Fig 1.7, the following 8-bit messages are to
be recorded. Determine the parity bit to establish odd parity for each message.

(c) P10011001
(d) P01011010

1.16

1.17

1.18

(a) P10111010
(b) P00111000

1.19 Let 10111001 be an error word from Hamming code 2. Determine the correct
code word by computing the difference and distance between the error word and
each valid code word.

1.20 Develop a syndrome table for Hamming code 2 that covers the error-free case,
all single errors, and all double errors. Is there a simple characterization of the
double-error syndromes? Are there any error patterns of three or more errors
that the code can detect?

1.21 Use the syndrome table developed in Problem 1.20 to decode the following
words.
(a) 10010111
(b) 10011011
(c) 00111110
(d) 00000111

(e) 11101110
(f) 01011000
(g) 11100001
(h) 01101000

1.22 Develop the generator and parity-check matrices for a Hamming SEC code for
encoding information words of 6 bits in length.
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1.23 Encode all the information words for a code defined by the following parity-
check matrix. Note that codes with a parity-check matrix in the form of Eq. 1.28
are called separable codes since the information bits may be separated in a
block from the check bits. The code resulting from the following matrix will be
nonseparable since information bits and the check bits are interspersed.

1111000"

1100110
1010101_

What error detection and correction properties does the code defined in Problem
1.23 have? Develop a syndrome table for the code. Describe any interesting
characteristics of the syndromes.
Describe the advantages and disadvantages of separable codes of the form
represented by the matrix of Eq. 1.28 when compared to nonseparable codes of
the form represented by the matrix in Problem 1.23.

H =

1.24

1.25
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In this chapter the basic mathematical
tools for computer logic design and the

underlying mathematical concepts are pre-
sented. The material itself is not only an impor-

tant subject, but it also provides the foundation for
the subsequent more advanced concepts discussed

throughout the text. The discussion of this chapter is
intended to be independent of any specific circuit ele-
ments to be used in the construction of digital circuits.
Subsequent chapters will examine the application of
these mathematical tools to various circuit element
types.
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•2.1 Fundamentals of Boolean Algebra
The analysis and synthesis tools presented in this chapter are based on the
fundamental concepts of Boolean algebra, and hence this topic will now be
examined. In 1849, George Boole presented an algebraic formulation of the
processes of logical thought and reason [1]. This formulation has come to be
known as Boolean algebra, a brief summary of which follows.

2.1.1 Basic Postulates
The basic description of the Boolean algebra formulation is based on concepts
from set theory, in which a Boolean algebra is formally defined as a distributive,
complemented lattice [2]. We present here a summary of this definition as a set
of postulates that summarizes the basic elements and properties of a Boolean
algebra.

Postulate 1. Definition A Boolean algebra is a closed algebraic sys-
tem containing a set K of two or more elements and the two operators • and -f ;
alternatively, for every a and b in set K , a • b belongs to K and a -f b belongs to
K (+ is called OR and • is called AND).

Postulate 2. Existence of 1 and 0 elements There exist unique ele-

ments 1 (one) and 0 (zero) in set K such that for every a in K
(a) a + 0 = a,
(b) a • 1 = a,

where 0 is the identity element for the + operation and 1 is the identity element for
the • operation.

Postulate 3. Commutativity of the + and • operations For every a
and b in K

(a) a + b = b + a,
(b) a • b = b • a.
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Postulate 4. Associativity of the + and • operations For every a , b,
and c in K

(a) a + ( b + c) = ( a + b ) + c ,
(b) a • ( b * c ) = (a • b ) c.

Postulate 5. Distributivity of + over and over + For every a , b,
and c in K

(a) a + (b • c) = (a + b ) • ( a + c )

(b) a • (b + c) = (a • b) + (a • c).

Postulate 6. Existence of the complement For every a in K there
exists a unique element called a (complement of a ) in K such that

(a) a + a = 1,

(b) a a = 0.

Upon this set of premises we may now develop other useful relationships,
which we shall call theorems. To simplify notation in the remainder of the text,
the dot (•) will be suppressed when indicating the • operation.

EXAMPLE 2.1 a + b • c = (a + b ) • {a + c)
a -|- be = {a + b)(a + c)

Before proceeding to the theorem development, let us examine the pos-
tulates more closely to understand exactly what they mean.

2.1.2 Venn Diagrams for Postulates [2]
The postulates may be graphically presented in the form of Venn diagrams.This
graphical description is possible since the algebra of sets is a Boolean algebra in
which the sets correspond to elements, the intersection operation corresponds
to *, and the union operation corresponds to +. On the Venn diagram, sets are
shown as closed contours, that is, circles, squares, ellipses, and the like. Venn
diagrams for the sets a, b, a • b, and a + b are shown in Fig. 2.1. Alternative
notation sometimes used for a + b is a v b or a U b, and for a • b, ab or a A b
or a Ob.

The Venn diagrams can be used to illustrate the postulates. Let us select
as an example Postulate 5.

EXAMPLE 2.2 Let us use the Venn diagram to illustrate
Postulate 5.
From the analysis in Fig. 2.2, it is evident that the set a + be and the set
(a + b)(a + c) are two representations of the same shaded area, and hence
a + be is equal to (a + b )(a + c ).
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Set a is shaded. Set b is shaded.

Set a • b is shaded. Set a + b is shaded.

Figure 2.1 Examples of Venn diagrams.

It is interesting to examine some facets of Postulate 6. This postulate
refers to the complement of a. If a is the shaded set shown in Figure 2.3,
the complement of a , a, is that area outside a in the universal set. In other
words, a and a are mutually exclusive and lie inside the universal set. Since
they are mutually exclusive, they contain no area in common, and hence their
intersection is the null set: a • a = 0. The union of a and a is by definition the
universal set: a + a = 1.

Furthermore, since the universal set, 1, contains all other sets, its com-
plement must be the null set, 0. Therefore, 1 = 0 and 0 = 1.

The Venn diagram is a powerful tool for visualizing not only the postulates
that have been presented but also the important theorems of Boolean algebra
that follow.

2.1.3 Duality
The principle of duality is a very important concept in Boolean algebra. Briefly
stated, the principle of duality pronounces that, if an expression is valid in
Boolean algebra, the dual of the expression is also valid. The dual expression is
found by replacing all + operators with *, all * operators with +, all ones with
zeros, and all zeros with ones.

EXAMPLE 2.3 Find the dual of the expression
a + {be ) = {a 4- b ) (a -f c )
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Set b •c is shaded.Set a is shaded. Union

Set a + be is shaded.

Set a + c is shaded.Set a + b is shaded. Intersection

Set ( a + b)(a + c) is shaded.

Figure 2.2 Venn diagrams for Postulate 5.
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Universal set 1 Null set 0

Set a Set a

Set a + aSet a •a
Figure 2.3 Venn diagrams illustrating Postulate 6.

Changing all + operators to • and vice versa, the dual expression is
a( b + c ) = ab + ac

When obtaining a dual, we must be careful not to alter the location
of parentheses, if they are present. Note that the two expressions in the last
example are parts (a) and (b) of Postulate 5. In fact, Postulates 2 through 6 are
all listed as dual expressions.

The principle of duality will be used extensively in proving Boolean
algebra theorems. In fact, once we have employed the postulates and previously
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proven theorems to demonstrate the validity of one expression, duality can be
used to prove the validity of the dual expression.

2.1.4 Fundamental Theorems of
Boolean Algebra

We shall now state several useful theorems in Boolean algebra. In these theo-
rems, the letters a, b, c, . . . represent elements of a Boolean algebra. The first
theorem describes the property of idempotency and is stated as follows.
Theorem 1. Idempotency

(a) a + a = a.
(b) a • a = a.

Proof. We may prove either part (a) or (b) of this theorem. Suppose
we prove part (a):

[P2(b)]
[P6(a)]
[P5(a)]
[P6(b)]

lP2(a)]

a + a = (a + a )1

= (a + a ) (a 4- a )

— a + a a

— a -h 0

= a

The postulates used to justify a particular step are listed to the right. An
important point to remember is that symbols on opposite sides of the equal sign
may be used interchangeably; for example, Theorem 1 tells us that we may
exchange {a } for { a • a }, and vice versa.

The next theorem further emphasizes the properties of the unique ele-
ments 1 and 0.
Theorem 2. Null elements for + and operators

(a) a + 1 = 1.
(b) a • 0 = 0.

Proof. Let us again prove part (a) of the theorem.
a + l = (a + l)l

=!• (« +!)

= (a + a )(a + 1)

= a + a •\

= (2 ~\~ Cl

[P2(b)]
[P3(b>]
[P6(a)]
[P5(a)]
[P2(b)]
[P6(a)]= 1

Since part (a) of this theorem is valid, it follows from the principle of
duality that part (b) is valid also.
Theorem 3. Involution

a = a.
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Proof. From Postulate 5, a • a = 0 and a a — Therefore, a is the
complement of a, and also a is the complement of a. Since the complement of
a is unique, it follows that a = a.

At this point let us use the preceding material to summarize all the
properties of the unique elements 1 and 0 in Table 2.1. The • (AND) properties
of 1 and 0 remind us of the fundamental properties of multiplication in standard
mathematics; however, the + (OR) properties quickly indicate that we are
not dealing with mathematics we previously have studied, and none of the
mathematical properties that we employed there can be assumed for use in
Boolean algebra. We may use only the postulates and theorems we are currently
developing, since we are now working in a completely new and different system.

The Boolean algebra property of absorption is now stated in the next
theorem. Absorption has no counterpart in “ordinary” algebra.

Theorem 4. Absorption

(a) a+ ab = a.
(b) a(a + b ) = a.

Proof. Let us prove part (a).
a -f- ab = a • 1 + ab

= a( 1 + b )

= a(b + 1)

= a • 1

[P2(b)]
[P5(b)]
[P3(b)]
[T2(a)]
[P2(b)]= a

Theorem 4 can be easily visualized using a Venn diagram. The following
examples illustrate the use of this theorem.

EXAMPLE 2.4
( X + Y ) + ( X + Y )Z = X + Y [T4(a)]

EXAMPLE 2.5
AB( AB + BC ) = AB [T4(b)J

EXAMPLE 2.6
ABC + B = B [T4(a)]

TABLE 2.1 PROPERTIES OF 0 AND 1 ELEMENTS

OR AND COMPLEMENT
a +0 = a
a -h 1 = 1

a • 0 = 0 0 = 1
I = 0a • 1 = a
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The following three theorems are similar to absorption in that they can
be employed to eliminate extra elements from a Boolean expression.

Theorem 5.
(a) a + a b = a + b.
(b) a(a + b) = a b.

Part (a) of the theorem is proved as follows:
a + a b = {a + a )( a + b )

= 1 • {a + b)

= (a + b ) - 1

= ( a + b )
The following examples illustrate the use of Theorem 5 in simplifying Boolean
expressions.

Proof.
[P5(a)]
[P6(a)]
[P3(b)]
[P2(b)]

EXAMPLE 2.7
B + A B C D = B + A C D [T5(a)]

EXAMPLE 2.8
Y ( X + Y + Z ) = y(X + Z) [T5(b)]

EXAMPLE 2.9
{ X + Y )( ( X + Y ) + Z ) = ( X + Y )Z [T5(b)]

EXAMPLE 2.10
A B + ( A B )C D = A B + C D [T5(a)]

Theorem 6.
(a) a b -\- ab = a.
(b) (a + b )(a +b ) = a.

Part (a) of the theorem is proved as follows:
a b + a b = a(b + b )

= a • 1

= a
The following examples illustrate the use of Theorem 6 in simplifying Boolean
expressions.

Proof.
[P5(b)]
[P6(a)]
[P2(b)]

EXAMPLE 2.11
A B C + A B C = A C [T6(a) j

EXAMPLE 2.12
( A D + B + C )( A D + ( B + C ) ) = A D [T6(b)]
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EXAMPLE 2.13 Simplify +i+ y + z )( w + x + Y + Z)
(W + X + Y + Z)(W + X + Y + Z).

= ( W + X + f )( W + X + F + Z)( W + X + T + Z)

= ( w + x + y)( w + x + y)

= ( W + X)

[T6(b)]
[T6(b)]
[T6(b)]

Theorem 7.

(a) a b + a b c = a b+ a c.
(b) {a + b)(a + b + c ) = {a + b) (a + c ).

Part (a) of the theorem is proved as follows:
a b + a b c = a( b + b e )

= a( b + c)

= + a c

The following examples illustrate the use of Theorem 7 in simplifying
Boolean expressions.

Proof.
[P5(b)]
[T5(a)]
[P5(b)]

EXAMPLE 2.14 x y + x y( w + z ) = x y + x( u> + z ) [T7(a)]

EXAMPLE 2.15 ( x y + z ) ( w + x y + z ) = ( x y + z )( w + x y ) [T7(b)]

EXAMPLE 2.16
( A + B + C )( B + C )( A + B ) = ( A + B ) ( B + C )( A + B )

= B( B + C)
[T7(b)J
[T6(b)]
[T4(b)]. B

EXAMPLE 2.17 [T7(a)]
[T6(a)]
[T6(a)]
[T4(a)]

w y + w x y + w x y z + w x z = w y + w x y + w x y + w x z
= w y + w y + w x z
= W + W X Z

= w

We will find in the following chapters that these theorems form the basis
for some of our standardized and computer-automated methods for simplifying
Boolean expressions.

In working with Boolean algebra, we often need to determine the com-
plement of a Boolean expression. The following theorem provides the basis for
this operation.
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Theorem 8. DeMorgan’s theorem
(a) a + b = a • b.
(b) a • b = a + b.

Let us prove part (a).
If X = a + b, then X = (a + b ). By Postulate 6, X • X = 0 and X +

X = 1.U X - Y = 0 and X + Y = 1, then Y = X because the complement of
X is unique. Therefore, we let Y — ah and test X • Y and X + Y :

X - Y = (a + b )(ab )

= (ab )(a + b )

= (ab )a + (ab )b

= a( ab ) + ( ab )b

= (aa )b + a( bb )

= 0 • b + a(b • b )

= b • 0 + a • 0
= 0 + 0

Proof;

[P3(b)]
[P5(b)]
[P3(b)]
[P4(b)]
[P6(b), P3(b)]
[P3(b), P6(b)]
[T2(b)]
[P2(a)]= 0

x + y — (fl + z?) + ^^?

= (fe + a ) + ab

= b + (a + ab )

= b + (a + b )

= (a + b) + b

= a + (b + b )

= a + ( b + b )

= a + 1

[P3(a) j
[P4(a)]
[T5(a)]
[P3(a)]
[P4(a)]
[P3(a)]
[P6(a)]
[T2(a)]= 1

Therefore, by the uniqueness of X , Y = X , and therefore
ab = a + b

Theorem 8 may be generalized as follows.
(a) a + b -\ f - z = a • b • • •

(b) ab . . . z = a + b H \~ z.
The rule to follow when complementing an expression is to use relation (a) or
(b), replacing each + (OR) operator with an • (AND) operator, and vice versa,
and replacing each variable with its complement.

A note of caution is in order here. In applying DeMorgan’s theorem, op-
erator precedence must be observed: • takes precedence over +. The following
example illustrates this important point.

z .
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EXAMPLE 2.18 Complement the expression a + be .

a + b - c = a + ( b - c )

= a • ( b • c)

= a - (b + c )

= ab+ ac
Note that: a + b - c ^f a - b+ c

The following examples illustrate the use of DeMorgan’s theorem.

EXAMPLE 2.19
X + Y = X Y [T8(a)]

= X Y [T3]

EXAMPLE 2.20 Complement the expression a(b + z(x + a )),
and simplify the result so that the only
complemented terms are individual variables.

a( b + z( x + a ) ) = a + (b + z ( x + a))

= a + b (z ( x + a))

— a + b( z + ( x + a))

= a + b( z + x a )

= a + b( z + xa )

= a + b( z + x )

[T8(b)J
[T8(a)]
[T8(b)]
[T8(a>]
[T3]
[T5(a)]

EXAMPLE 2.21 Repeat Example 2.20 for the expression
a(b + c ) + ab.

a(b + c) + ab = ab + ac + ab

= b + ac

= b(ac )

= b( a + c )

[P5(b)]
[T6(a)]
[T8(a)]
[T8(b)]

As illustrated by this last example, the process of complementing an
expression can often be simplified by reducing the expression prior to applying
DeMorgan’s theorem.

DeMorgan’s theorem thus presents the general technique for comple-
menting Boolean expressions. It will be especially useful in manipulating
Boolean expressions into formats suitable for realization with specific types
of logic gates.
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The last fundamental theorem of Boolean algebra to be considered is the
consensus theorem.

Theorem 9. Consensus
(a) ab + ac + be = ab + ac.
(b) ( a + b) (a + c ){b + c ) = (a + b)(a + c ).

Proof. Henceforth, Postulates 3 and 4 will be used without reference.
ab + ac + be = ab + ac + \ • be

= ab + ac + (a + a )bc

= ab + ac + abc + abc

= (ab + abc ) + (ac + acb )

— ab + ac

[P2(b)]

I P6(a)]
[P5(b)]

[T4(a)]

The key to using this theorem is to find an element and its complement,
note the associated terms, and eliminate the included term (the “consensus”
term), which is composed of the associated terms.

The consensus theorem is useful both in reducing Boolean expressions
and expanding expressions in several of the automated minimization algorithms
that will be described later.

EXAMPLE 2.22
AB + ACD + BCD = AB + AC D [T9(a>]

EXAMPLE 2.23
(a + b )(a + c )( b + c) = (a + b )(a + c) [T9(b)]

EXAMPLE 2.24
[P5(b)]
[T8(b)]
[T9(a)]
[T8(b)]
[P5(b)]

ABC + AD + BD + CD = ABC + ( A + B ) D + CD

= ABC + AHD + CD

= ABC + ABD

= ABC + ( A + B ) D

= ABC + AD + BD

In each of the preceding examples, an element or expression and its
complement offer the key to reducing the expression.

It is important to note that the theorems presented can be quickly demon-
strated via Venn diagrams. Hence readers are encouraged to use this graphical
picture as an aid in remembering these important theorems. Table 2.2 summa-
rizes the basic postulates and theorems of Boolean algebra. Theorem 10, which
is included in this table, will be presented later.
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TABLE 2.2 BOOLEAN ALGEBRA POSTULATES AND THEOREMS

Expression
P2(a ) : a + 0 = a
P3(a ) : a + b = b + a
PA(a) : a + (b + c) = (a + b) + c
P5(a ) : a + be = (a + b)( a + c )
P6(a ) : a + a = 1
T\(a ) \ a + a = a
T 2(a ) : a + 1 = 1

a = a
TA(a ) : a + ab = a
T 5( a ) : a + ab = a + b
T6(a ) : ab + ab = a
Tl (a ) : ab + abc = ab + ac
T 8(a ) : a + b = ab
T9(a ) : ab + ac + be = ab + be
T 1 0(a ) : f ( x v x2 , ... , x n ) = x j(\, x2 , . . . , x n ) + i, /(0, *
7*10(6) : f ( x v x v .. . , x ) = [ x t + /(0, x2, . . . , xj][i1 + f (\ , x

Dual
P2( b ) : a - l = a
P3( b ) : ab = ba
P4(b) : a( be) = ( ab )c
P5 (b ) : a( b + c ) = ab + ac
P6( b) : a • a = 0
T\( b) : a a = a
T 2(b) : a - 0 = 0

T 3 :
r4(6) : a( a + b ) = a
T 5(b) : 4- b ) = ab
T6(b ) : (a + b)(a + b) = a
Tl ( b) : (a + b )(a + b + c ) = (a + + c)
78(6) : ab = a -\- b
T 9(b ) : (« + 6)(a + c) (6 + c) = (a + b )(a + c )

2’ '

2’ '

•2.2 Switching Functions
The postulates and theorems of Boolean algebra presented previously are given
in general terms without the elements of the set K being specified. Hence, the
results are valid for any Boolean algebra. In the discussions that follow, empha-
sis will focus on the Boolean algebra in which K = {0, 1}. This formulation is
often referred to as switching algebra.

The concept of a function is well known to those familiar with ordinary
algebra. Switching functions represent the corresponding concept for switching
algebra and can be defined as follows. Let X { , X 2, . . . , Xn be symbols called
variables, each of which represents either the element 0 or 1 of a switching
algebra (0 or 1 is said to be the value of the variable), and let f ( X { , X 2 , . . . , X n )
represent a switching function of X { , X 2 , . . . , X n.The function / represents the
value 0or the value 1 depending on the set of values assigned to X { , X v . . . , X n.
Since there are n variables and each variable has two possible values, there are
2n ways of assigning these values to the n variables. Furthermore, there are

' jntwo possible values for the function f ( x{ , x2, . . . , x n ). Therefore, there are 2
different switching functions of n variables.

For the case in which n = 0, the two switching functions of zero variables
are

/0 - 0 /1 = 1
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For n = 1, the four functions of the variable A are
f2 =*/o = 0,

/, = A ,
The 16 functions of the two variables A and B are derived next. Let /.(A , B)
be defined as follows:

/3 = 1

f - (A , B) — i j A B i2 A B -f- i j A B -|- i^ A B
where (i )10 = i0)2 assumes the binary values0000, 0001, 0010, . . . 1111.
The resulting 16 functions are as follows:

f0(A , B) = 0

fl (A, B) = AB
/2(A , B ) = A B
/3(A , B ) = A B + A B = A

/4(A, B ) = A B

/5 (A , B ) = A B + A B = B
f6 ( A , B ) = A B + A B

/?(A , B ) = A B + A B + A B = A + B

/g(A , B ) = A B

/9 (A , B ) = A B + A B
f ] 0( A , B ) = A B + A B = B
f u ( A , B ) = A B + A B + A B = A + B

/12 (A , B ) = A B + A B = A

/l 3(A , £) = A5 + A5 + A B = A + B

/|4 (A , £) = A £ + AZ? + A5 = A + £

/]5(A , 5) = A B + A B + A B + A B = 1
By evaluating each of these functions for each combination of A and B , the
preceding information can also be given in table form, as illustrated in Table 2.3.

TABLE 2.3 SIXTEEN FUNCTIONS OF TWO VARIABLES

/0 /1 /2 /3 /4 /5 fs A A A Ao Ai A2 A3 A4 AsA#
0 0 0 1 0 1 0 1 0 0 1 0 1 01 0 1 1
0 1 0 0

0 0
0 0

1 1 0 0
0 0 1 1
0 0 0 0

0 0
0 0

01 1 1 1 0 1 1
1 0 11 0 0 1 1 1 1
11 0 0 1 1 1 1 1 1 11

A switching function can be described by a switching expression as
follows:

f ( A , B , C ) = A B + A C + A C
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If A = 1 and B = C = 0, then the value of the function / is 1, which is verified
as follows:

/ (1, 0, 0) = 1 0 + 1 * 0 + 1 0

= 1 * 0 + 0 0 + 1 * 1

= 0 + 0 + 1 • 1

= 1 - 1

[T3]
[T2(b)]
[P2(a)]

= 1 [P2(b)]
Other values can be computed in a similar manner; for example, when A =
0, B = 1, and C = 0, it can be seen that / = 0.

2.2.1 Truth Tables
A given switching function can be represented by a number of different, but
equivalent, switching expressions. If we evaluate a switching function for all
possible input combinations and list the results in tabular form, we obtain a
unique representation of the function called a truth table.

For example, truth tables, as shown in Tables 2.4a, b, and c, can be used
to demonstrate the basic OR, AND, and Complement operations employed
in the switching algebra by considering each to be a switching function and
displaying all possible combinations of the elements.

If we evaluate the function / (A , B, C ) — AB + AC + AC for all pos-
sible input combinations and list them in a tabular form, we obtain the truth
table shown as Table 2.5a. Replacing each 0 in Table 2.5a with F(false) and

TABLE 2.4 TRUTH TABLES FOR THE OR, AND, AND NOT FUNCTIONS

a f ( a ) = af (a , b ) = a -\- b a ba b f (a , b ) = a b
0 0 0 0 0 0 0 T

0 1 0 1 00 1 1
1 0 1 1 1 0
11 1 0 11

(a) (b) (c)

TABLE 2.5 TRUTH TABLES FOR
/(A, B , C ) = A B + A C + A C

A B CA B C /(A, B X ) /(A, B , C )
00 0 0 F F F

F F T
F T F
F T T
T F F
T F T
T T F
T T T

F
0 0 1 1 T
0 1 0 0 F
0 1 1 1 T
1 0 0 1 T
1 0 1 0 F
1 1 0 1 T
1 1 1 1 T

(a) (b)
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each 1 with T (true) yields an alternative form of the truth table, shown in Table
2.5b, and demonstrates the one-to-one correspondence that exists between the
switching algebra and the truth-functional calculus [4].

The truth table can also be used as a convenient means of evaluating
switching functions. For example, consider our previous function

/(A , B , C ) = AB + AC + AC
The truth table may be obtained one term at a time as follows:

C { A B + A C ) + A C f ( A , B , C )A , B , C A B A A C A B + A C A C
0 0 0 0 - 0 = 0

0 - 0 = 0
0 - 1 = 0
0 - 1 = 0
1 - 0 = 0
1 - 0 = 0
1 - 1 = 1
1 - 1 = 1

0 = 1
6 = l
6 = l
6 = l
I = o
I = o
I = o
I = o

1 - 0 = 0
1 - 1 = 1
1 - 0 = 0
1 - 1 = 1
0 - 0 = 0
0 - 1 = 0
0 - 0 = 0
0 - 1 = 0

0 + 0 = 0
0 + 1 = 1
0 + 0 = 0
0 + 1 = 1
0 + 0 = 0
0 + 0 = 0
1 + 0 = 1
1 + 0 = 1

0 - 1 = 0
0 - 0 = 0
0 - 1 = 0
0 - 0 = 0
1 - 1 = 1
1 - 0 = 0
1 - 1 = 1
1 - 0 = 0

0 + 0 = 0
1 + 0 = 1
0 + 0 = 0
1 + 0 = 1
0 + 1 = 1
0 + 0 = 0
1 + 1 = 1
1 + 0 = 1

0 = 1
i = 0
0 = 1
I = 0
0 = 1
1 = 0
0 = 1
I = 0

0
0 0 1 1
0 1 0 0
0 1 1 1
100 1
1 0 1 0
1 1 0 1
111 1

2.2.2 Algebraic Forms of Switching Functions
In our discussion thus far we have seen several different forms for switching
functions, including algebraic expressions, truth tables, and Venn diagrams.
We shall now define some other specific forms of functions that will prove to
be very useful.

SOP and POS Forms
Switching functions in the sum of products (SOP) form are constructed by
summing (ORing) product (ANDed) terms, where each product term is formed
by ANDing a number of complemented or uncomplemented variables, each
called a literal. An example SOP form of a function of four variables is

/(A , B, C, D ) = ABC + BD + ACD
Switching functions in product of sums (POS) form are constructed by taking
the product of (ANDing) sum (ORed) terms, where each sum term is formed
by ORing a number of literals. An example POS form of a function of four
variables is

/(A , 5, C, D ) = (A + B + C )( B + C + D)(A + C + D )

Canonical Forms
Canonical forms for switching functions are SOP and POS forms with special
characteristics. As was shown earlier, a switching function can be represented
by many different, but equivalent, switching expressions. The canonical SOP
and POS forms, however, are unique for each function.
Minterms. For a function of n variables, if a product term contains each of
the n variables exactly one time in complemented or uncomplemented form,
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Section 2.2 Switching Functions 95

the product term is called a minterm. If the function is represented as a sum
of minterms only, the function is said to be in canonical sum of products
(icanonical SOP ) form. For example,

fa (A, B, C) = ABC + ABC + ABC + ABC
is the canonical SOP form of function fa ( A , B, C), which has four minterms.

To simplify writing the canonical SOP form, a special notation is com-
monly used in which each minterm is represented by an n-bit binary code. Each
bit represents one of the variables of the minterm as follows:

Uncomplemented variable: 1
Complemented variable: 0

The variables are listed in the same order in each minterm. The significance
of this notation is that, for a minterm to evaluate to 1, each uncomplemented
variable in a minterm must be 1, and each complemented variable must be 0.
Using this code, the minterms of fa ( A , B , C ) may be written in one of the
following equivalent forms:

(2.1)

Minterm
Code

Minterm
NumberMinterm

010ABC
ABC
ABC
ABC

m2
110 m6
Oil m3
111 m7

Each minterm is written in abbreviated form as mi , where i is the decimal integer
equal to the corresponding binary code for the minterm.Thus, fa ( A, B, C) may
be written in compact form as

(2.2)B, C) = ra 2 + m3 + ra6 + m7
A further simplification results if the function is written in minterm list form as
follows:

fa ( A , B, C) = £]m (2, 3, 6, 7)
The three Eqs. (2.1), (2.2), and (2.3) illustrate three different, but equivalent
ways to represent the canonical SOP form for fa (A , B, C).

The order of the variables in the functional notation in equations (2.2) and
(2.3) is very important since it determines the order of the bits of the minterm
numbers. This fact can be easily demonstrated by changing the order relation
of the variables in the function fa ( A , B, C) to f p ( B , C, A ) as follows:

f„( B, C , A ) = J2 m(2.3, 6, 7)

= m2 + m3 + m6 + m7

(2.3)

010 O i l 110 111

= BCA + BCA -f BCA + BCA

= ABC + ABC + ABC 4- ABC (2.4)
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Note that Eq. (2.4) is not identical to Eq. (2.1) even though the minterm lists
are the same. Further manipulation of Eq. (2.4) yields

C ) = f p ( B , C, A )

= A^C + ABC + ABC + AB£
001 O i l 101 1 1 1

— m x + m3 + m5 + m1

= £«(1, 3, 5, 7)
Equations (2.4) and (2.5) are equal; the difference in minterm lists reflects the
ordering of the variables in the functional notation.

The truth table for f p ( A , B , C ) can easily be derived from its canonical

(2.5)

SOP form:

Row No. Inputs
A B C

Outputs
f8 ( A , B, C )

_m 3 m7
A B C A B C A B C A B CO')

0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 1

0 1 0 0 0 02 0 0
3 0 1 1 0 1 10 0
4 100 0 0 0 0 0
5 01 0 1 0 0 1 1
6 1 1 0 0 0 0 0 0

1 1 1 0 0 0 1 17

A careful examination of the table shows that each row is numbered according
to its decimal code, and that the only ones that appear in the table are those in
rows i , which correspond to minterms m r Hence, in general, we may eliminate
all intermediate steps and simply write down the truth table directly from the
minterm list, as shown next for the function f a ( A , B , C):

Outputs
f a ( A, B, C )

ComplementRow No. Inputs
A B C = 2, 3, 6, 7) = £>(0, 1,4,5)(0 f a ( A , B, C )

00 0 0 0 1 m0
1 0 0 1 0 1 m j

2 0 1 0 01 ra 0

3 0 1 1 01 m3
100 04 1 m4
1 0 1 05 1 m5
1 1 0 06 1 m6

7 1 1 1 1 0

In addition, it can be seen that the truth table for f a ( A , B , C ) has ones in rows
0, 1, 4, and 5. Therefore,

f a ( A , B , C ) = Y j m( 2, 3, 6, 7)

f a ( A , B , O = Ĵ m(0, 1, 4, 5)
and
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Notice that all the minterms that are composed of three variables (totaling
23 = 8) are contained either in the minterm list for f a ( A , B, C ) or that for
f a ( A , B , C ). In general, each of the 2n minterms of n variables will al-
ways appear in either the canonical SOP form for f ( x{ , x2, . . . , x n ) or that
of f ( x1 9 x2 , ... , x n ).

EXAMPLE 2.25 Given the function
/ (A, B,Q,Z ) = ABQZ. + ABQZ + ABQZ + ABQZ ,
let us express the functions f (A,B,Q,Z ) and
f (A, B,Q, Z ) in minterm list form.

f ( A , B , Q. Z ) = A B Q Z + A B Q Z + A B Q Z + A B Q Z

= m0 + m l + m6 + m1

= Yjm{0, 1, 6, 7)

/(A , B , Q , Z ) will contain the remaining 12 (24 — 4) minterms. The minterm
list for this function is

/(A , B, Q , Z ) = m2 + m3 + m4 + m5 + m% + m g
+ /n10 + mn + m 12 + m 13 + /n 14 + m15

= ^m (2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15)

At this point we should recall from switching algebra that
/(x, , x2 , . . . , X n ) + /(X J , X2 X n ) = 1

However, since
2M — 1

f ( x l , x2 , . . . , x n ) + f ( x v x2 , ... 9 x n ) = ^ r n
i =0

then
2n-\

J2 m, = l (2.6)
i=0

In other words, the sum (OR) of all the minterms of n variables (m Q, . .
is equal to 1. Finally, it is important to note that, although

A B + AZ? = 1

r _,)• •>

[ P6( a )i
and

[T l (b ) )A B + A + B = 1
are valid expressions,

A B + A B ^ 1.
Setting the last expression to 1 is a common mistake by students of switching
algebra.

Maxterms. If a sum term of a function of n variables contains each of the n
variables exactly one time in complemented or uncomplemented form, the sum
term is called a maxterm. If a function is represented as a product of sum terms,
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each of which is a maxterm, the function is said to be in canonical product of
sums (canonical POS ) form.For example,

f y ( A , B , C ) = ( A + B + C )( A + B + C )( A + B + C )( A + B + C ) (2.7)
is the canonical POS form of function f y ( A , B, C), which has four maxterms.

We adopt a special notation for maxterms, as for minterms, with one
major difference; the coding is interchanged as follows:

Uncomplemented variable: 0
Complemented variable: 1

The significance of this notation is that, for a maxterm to evaluate to 0, each
uncomplemented variable in a maxterm must be 0 and each complemented
variable must be 1. The maxterms of f y ( A , B, C) are thus represented as
follows:

Maxterm
Code

Maxterm
ListMaxterm

A + B + C
A + B + C
A + B + C
A + B + C

Each maxterm is written in abbreviated form as where i is the decimal
integer of the corresponding binary code for the maxterm. Thus,

f y ( A , B, C) = M0M, M4 M5

= n M(°’ 5)
The latter form is called the maxterm list form.Equations (2.7), (2.8), and (2.9)
are equivalent canonical POS forms for f y ( A , B , C ). A s was the case with
Eqs. (2.2) and (2.3), the ordering of the variables in Eq. (2.8) and (2.9) is very
important. The truth table for f y (A , B, C ) is

000 M0
001 M I
100 M4
101 M5

(2.8)

(2.9)

Row No. Inputs
ABC

M Outputs
f y ( A , B , C )

M0 M51
(0 A + B + C A + B + C A + B + C A + B + C

00 0 0 0 0 1 1 1
0 01 0 0 1 1 1 1

12 0 1 0 1 1 1 1
3 0 1 1 1 11 1 1

1 0 04 1 1 0 1 0
1 0 1 1 0 05 1 1

6 1 1 0 1 11 1 1
7 1 1 1 1 1 11 1

Each row in the table is numbered according to the decimal code, as was done
before in the minterm case. Note that the only zeros that appear in the table are
those in rows / , which correspond to maxterms M r Hence, as in the minterm
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case, the truth table can be generated by inspection directly from the maxterm
list. Comparing the truth tables for f a ( A , B, C) and f y ( A , B, C) indicates that

f a ( A , B, C ) =Yjm{2, 3, 6, 7)

= f y ( A , B , C )

=[lW(0, 1, 4, 5)
Hence the functions f a ( A , B , C ) and / (A , B, C ) are equal and therefore
Eq.(2.10) shows both the canonical SOP and canonical POS forms for

C).

(2.10)

EXAMPLE 2.26 Given the function f (A , B,C) =
( A + B + C)(A + B + C)(A + B + C)(A + B + C ),
let us construct the truth table and express
the function in both maxterm and minterm
form.

f ( A , B, C ) = ( A + B + C ) ( A + B + C ) ( A + B + C) ( A + B + C )
9 V

101001 on in

= f]Af(l,3, 5, 7)
The maxterms place zeros in rows 1, 3, 5, and 7 of the truth table.

Outputs
/(A , B , C )

Row No. Inputs
A B C — n A/(1 , 3, 5, 7)(/ )
0 0 00 1
0 0 1 01 M I
0 1 02 1

3 0 1 1 0 A/3
4 100 1
5 1 0 1 0 M5

1 1 0 16
1 1 1 07 Mi

From the truth table for /(A , B, C), we observe that
f ( A , B , C ) = J2m(0, 2, 4, 6)

/(A , B, C ) = J2 m( 1, 3, 5, 7)

= m { + m3 + m5 + m7

Therefore,

001 Oil 101 1 1 1

= A B C + A B C + A B C + A B C
Consequently,

/ (A, B, C ) = A B C + A B C + A B C + A B C

= A B C • A B C • A B C •
~
ABC
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= (A + B + C) (A + B + C) (A + 5 + C) (A + B + C)
^ V ' v 111 1 ^ ^ V

v ^ 1 1 “v* ^
001 011 101

= MJM3M5M7

= ]"]M(1, 3, 5, 7)
Therefore, we have algebraically shown that

/(A , C) = Y[ MQ > 3’ 5’ 7> = I>(°> 2> 4> 6>
which is clearly evident by inspection of the truth table.

in

In the manipulation of functions, a specific relationship between minterm
mi and maxterm A/, becomes apparent. As an example, for a function
/(A , 5, C)

m j = ABC = A + B + C = M {

001 001
(minterm code) (maxterm code)

and vice versa. What is illustrated here is true in the general case; that is,

= M
Af - mi - m i

Therefore, minterms and maxterms are complements of one another.

(2.11)
(2.12)

EXAMPLE 2.27 Given the function f (A,B,C ) of Example 2.26,
let us determine the relationship between the
maxterms for the function and its
complement.
The truth table is as follows.

Outputs
/(A, fl, C)

Row No. Inputs
A B C

Outputs
f ( A , B , C ) = n Af (0, 2, 4, 6)(0

0 0 0 0 0 <- M Q1
1 0 0 1 0 1
2 0 1 0 01 M2
3 0 1 1 0 1
4 1 0 0 1 0 <- AT4

1 0 15 0 1
6 1 1 0 01 <- ATo
7 1 1 1 0 1

Since zeros appear in rows 0, 2, 4, and 6, the canonical form for /(A , B, C ) is
f ( A , B , C ) =Y[ M (0. 2, 4, 6)

and therefore
f ( A , 5, C) = ]~[ M(l , 3, 5, 7)
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The function /(A , B , C ) has three variables and hence eight maxterms, all of
which appear in the list for either f ( A , B , C ) or /(A , B, C ). From switching
algebra we know that

/ (A, B, C ) • / (A , B, C ) = 0
and therefore

(M0M2M4M6)(M1 M3M5M7) = 0
or

23 —1

;=o
This example illustrates a relationship that is true in general, which is

2n — l

FK = °i=0
Finally, we note from the truth table that

/(A, B, C) = £m(0, 2, 4,6) = Y\M (1, 3, 5, 7)

/(A, B, C) = 1. 3, 5, 7) = f]Af(0,2, 4, 6)

(2.13)

and

2.2.3 Derivation of Canonical Forms
In the preceding examples, it was shown how canonical POS and SOP forms
of a function can be translated directly to truth tables, and vice versa. If a
function is expressed in a noncanonical form, it is often more convenient to
utilize switching algebra to convert it to canonical POS or SOP form, without
having to first derive the truth table.

The following theorem is frequently utilized in the expansion of switching
expressions to canonical form.
Theorem 10. Shannon’s expansion theorem

= *i ' f ( l * x
• . .*„) = [*j + f (0, x

The foundation for this theorem is Postulate 2 and Theorem 1. Since
Jtj = Jtj • JCj = JCj • 1, any x x inside the function in part (a) of the theorem may
be replaced by 1, and likewise + x x = x x + 0, allowing any x x inside
the function in part (b) of the theorem to be replaced by 0. Theorem 10 is useful
in expanding functions or adding literals to product terms.

(a) f ( x v x
(b) f ( x r x

. . , *n ) + i i • /(0, x2 ,
• • ,*„)][*, + f ( l , x2 , .. . , x n )]

2’ • 2’ ‘

2’ • 2’ •

EXAMPLE 2.28 Convert the following switching function to
canonical SOP form.

f (A , B,C ) = AB + AC + AC

Let us systematically apply Theorem 10a to this function for the three variables
A, B, and C. For variable A, Theorem 10a yields

/(A, B, C ) = A B + A C + A C

= A - /(1. B. C) + A • /(0, B. C)
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= A(1 • B + 1 • C + 1 • C). + A(0 • B + 0 • C + 0 • C)

= A( B + C ) + A C
Continuing for variable B, we obtain

/(A, C) = A( B + C) + AC
= £[A (1 + C) + AC] + B [ A( 0 + C) + AC]

= £[A + AC] + B [ A C + AC]

= A B + A B C + A B C + A B C
Finally, using variable C,

/(A , 5, C) = AB + A B C + A B C + A B C

= C [ A B + A B • 1 + A B • I + A B • 1]

+C [ A B + A Z? - 0 + A Z? - 0 + A Z? - 0]

= A B C + A B C + A B C + A B C + A B C

An alternative method for converting expressions to canonical SOP or
POS form is to apply Theorem 6 to add literals to product or sum terms until
minterms or maxterms are produced. The following examples illustrate this
procedure.

EXAMPLE 2.29 Convert the following function to canonical
SOP form:

/(A, B,C ) = AB + AC + AC

Let us apply Theorem 6a to each of the three product terms of this expression.
A B = A B C -f A B C = m6 + m1
A C = A C B + A C B = A B C + A B C = m4 + m6
A C = A C B A C B = A B C + A B C = m { + m 3

Therefore,

/ (A, B, C ) = A B + A C + A C

= (m6 + m7) + (m4 -h m6) + (m , + m3)

= £«(1, 3, 4, 6, 7)

EXAMPLE 2.30 Expand the following function to canonical
POS form:

AA, B,C ) = A(A + C )

Theorem 6b can be applied as follows to produce maxterms.
A — ( A + B )( A + B )

= ( A + B + C )( A + B + C ) ( A + B + C )( A + B + C )

= M3M2M, M0

( A + C ) — ( A + C + B )( A + C + B)

= (A + B + C )( A + B + C )
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= M,M i
Therefore,

A( A + C) = (M3M2MJ A/0)(Af3MJ )

= f]M(0, 1 , 2, 3)

2.2.4 Incompletely Specified Functions
In the design of digital circuits, we often encounter cases in which the switching
function is not completely specified. In other words, a function may be required
to contain certain minterms and omit others, with the remaining minterms
optional. In this case, the optional minterms may be included in the logic design
if they help simplify the logic circuit, or otherwise omitted. A minterm that is
optional is called a don't-care minterm. If we express a function in terms of
its maxterms, the don’t-care minterms are usually written in the corresponding
maxterm form, in which case they would be called don't-care maxterms.

Don’t-cares arise in two ways. First, certain input combinations might
never be applied to a particular switching network; hence, since they never
occur, their minterms may be used in any manner we choose. Such don’t-care
conditions arise quite naturally in many practical applications. For example,
suppose a switching network has inputs a3a2a{ a0, which represent binary coded
decimal (BCD) digits as defined in Table 2.6. (Recall that BCD codes were
discussed in Chapter 1.) Only 10 minterms, mQ . . . m9, can occur, corresponding
to the 10 decimal digits. The remaining six minterms, m10 . . . m 15, cannot occur
and are therefore don’t-cares in every situation. Consequently, these terms
may either be included or omitted as desired in switching expressions for any
function f ( a3a2a { a0) of these inputs.

TABLE 2.6 BINARY CODED DECIMAL (BCD)
CODES

Decimal BCD Code
Digit

Decimal BCD Code
Digita3fl2aifl0 a2>

a2a\a0

0 0000 5 0101
1 0001 6 0110
2 0010 01117
3 0011 8 1000
4 0100 9 1001

Don’t-care conditions also arise where all input combinations do occur
for a given network, but the output is required to be 1 or 0 only for certain
combinations.

When writing switching expressions, the don’t-care minterms will be
labeled d. instead of mr and don’t-care maxterms as Di instead of A/., as
shown in the following example.
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EXAMPLE 2.31 Suppose that we are given a function
f (A ,B,C ) that has minterms m0 , mv and m1
and don’t-care conditions d4 and ds . We wish
to express the function and its complement
in both minterm and maxterm form and then
reduce the function to its simplest form.
The minterm list form for this function is

/(A , 8, C) =£m (0, 3, 7) + </ (4, 5)
and the maxterm list is

/ (A, 8, C) = ]~[ M( l , 2, 6) • D(4, 5)
Note that the don’t-care maxterms £>. are simply the don’t-care minterms since
the terms may be either 1 or 0. Hence,

/(A , 8, C) = £/« (1, 2, 6) + d {4, 5)

= Y ] M (0, 3, 7) • D{4, 5)
To simplify the expression / (A, B, C), we list the terms as

/(A, B , C) = A £C + ABC + A £C + d(A £C + ABC )
Note that the second and third terms differ in a single literal and hence may be
grouped to produce

/(A, B , C) = ABC + BC + d ( ABC + ABC )
Without the use of the don’t-cares, no further simplification of the function is
possible. However, recall that the don’t-cares by definition can be either zero
or one. Therefore, we can either use them or omit them, depending on whether
they do or do not aid in the simplification. If in the preceding function we
choose to use dA and omit d5, the function becomes

/ (A , B, C) = ABC + BC + ABC

= BC + BC
which is the simplest form of the function. A similar analysis could be per-
formed with the function in maxterm form.

•2.3 Switching Circuits
Digital logic circuits, or switching circuits as they are often called, are com-
posed of serial and parallel combinations of switching elements called gates
or are implemented via programmable logic arrays or similar devices. From a
mathematical standpoint, gates are simply open or closed signal paths. From
a technological standpoint, they are high-speed electronic switching devices
capable of turning on or off in a few nanoseconds. In this chapter we examine
the use of gates to build logic circuits that realize switching functions. Design
with programmable logic arrays will be discussed in Chapter 6.
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2.3.1 Electronic Logic Gates
In digital logic circuits, switching variables may be associated with the input
conditions on the gates, that is, high or low voltage levels applied to the gate
inputs. Switching functions may correspond to the output of a gate or system
of gates, represented by a high or low voltage level on the output.

Electrical Signals and Logic Values
Truth tables defining the operation of logic gate circuits are presented in data
books in terms of high (H) and low (L) voltages. The designer may use these
voltage levels to represent the logic values 0 and 1 in different ways. The
positive logic convention uses a high voltage level ( H ) to represent logic 1 and
a low voltage (L) to represent logic 0. The negative logic convention uses L to
represent logic 1 and H to represent logic 0. In a mixed-logic system, positive
logic is used for some signals and negative logic for others.

A signal that is set to logic 1 is said to be asserted, or active, or true.
An active-high signal is asserted when it is high (positive logic), where as an
active-low signal is asserted when it is low (negative logic). If not asserted, that
is, if set to logic 0, a signal is said to be deasserted,or negated, or false.The term
polarity is used to refer to the active-high or active-low nature of a logic signal.

When representing signals by logic variables, active-low signal names
are written in complemented form (for example, a, a' , a* )\ active-high signal
names are written in uncomplemented form (a ). Each signal name should be
selected so that the name suggests the purpose of that signal. For example, the
signal name R U N suggests a signal that is asserted (high) to make a piece of
equipment start running. If the signal is active low, the signal name R U N should
be used to indicate that the equipment will be made to run when the signal is
asserted low. In this text we will primarily use active-high signals. However,
since many commercial circuit modules have active-low inputs and/or outputs, a
number of examples will also be presented in which active-low signals are used.

Gate Symbols
Each gate is represented in a logic circuit diagram by a representative symbol,
including inputs and outputs. The number of inputs to a gate is referred to as its
fan-in. Standard circuit modules are available that contain AND, OR, NAND,
and NOR gates with a limited number of fan-in options, usually gates with two,
three, four, or eight inputs. Programmable logic devices and custom circuits
typically provide a wider range of fan-in options, allowing each circuit to be
matched more closely to the logic expression being realized.

The shape of the symbol body represents the basic logic function, or
Boolean operator, realized by the gate (OR, AND, NOT, or other). Bubbles
drawn at the inputs and/or outputs of a logic symbol indicate active-low signals.
A bubble on an input indicates that the input is active low, that is, it must be
asserted low to produce a logic 1 as an input to the function. The absence of
a bubble indicates an active-high input; the input is asserted by setting it to
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logic 1. Likewise, a bubble on an output indicates an active-low output, which
implies that if the function evaluates to 1 a logic 0 is produced on the output.

To understand logic circuits, we must master completely the operators
shown in Fig. 2.4. Both sets of symbols illustrated are defined in IEEE/ANSI
Standard 91-1984 [7]. Each of these operators, or gates, will be examined in
the following section. In this text, when drawing circuits composed of discrete
gates, we will primarily use symbol set 1, which identifies logic functions via
distinctive symbol shapes. Symbol set 2 is used in later chapters for describing
larger functional modules.

a ) f (a, b ) = abAND ,b

a
f ( a, b ) = a + bOR ,

b

f (a ) = aaNOT

a
f {a, b ) = abNAND ,

b

a
f (a, b) = a + bNOR b

EXCLUSIVE “ f ( a, b ) = a © b
OR b

Symbol set 1

a
f ( a, b ) = abAND b

a
f ( a, b ) = a + bOR ,

b

a
f ( a ) = aNOT .b

a & >
_X /(a, b ) = abNAND ,b

a
f(a, b ) = a + bNOR ,b

EXCLUSIVE a
f ( a, b ) = a © b

OR b

Symbol set 2 (ANSI/IEEE Standard 91-1984)

Figure 2.4 Symbols for switching devices.
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Section 2.3 Switching Circuits 107

Commercially available circuit modules containing specific configura-
tions of discrete logic gates are presented in Fig. 2.5. These modules are used
in building functioning circuits for practical applications. Groups of individual
gates implemented in one logic module are called small scale integration (SSI)
modules and contain between 10 and 100 transistors to build the total module.
The modules described are available in dual-in-line packages (DIPs) with pin

7400: Y = A B
Quadruple two-input NAND gates

7402: Y = A + B
Quadruple two-input NOR gates

)

GND

7404: Y = A
Hex inverters Quadruple two-input AND gates

Figure 2.5 Standard TTL small scale integrated circuit devices (top view).
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GND

7410: Y = ABC
Triple three-input NAND gates

7420: Y - ABCD
Dual four-input NAND gates

Figure 2.5 Figure 2.5 standard TTL SSI devices (continued).

assignments as indicated in Fig. 2.5. Entire functions are often realized with a
single, custom, very large scale integrated (VLSI) circuit device. In such cases,
design is done with individual gates or with functional modules containing
predefined patterns of gates. Modular design will be discussed in Chapter 4.

2.3.2 Basic Functional Components
AND
The truth table for the AND operator may be determined from switching
algebra. The result is given in Fig. 2.6a. This truth table for the AND operator
illustrates that its output is 1 if and only if both of its inputs are 1 simultaneously.

The electronic AND gate is designed to realize the AND operator in a
positive logic system. The truth table of an AND gate is given in Fig. 2.6b,
where L represents a low voltage and H represents a high voltage. Note that
the AND operator of Fig. 2.6a is realized by substituting 0 for L and 1 for H
in the AND gate truth table in Fig. 2.6b. The standard symbols for the AND
gate are shown in Figs. 2.6c and d. In Fig. 2.6d, note that the standard IEEE
block symbol uses an ampersand (&) to indicate that the AND operation is
performed within the block.

OR
The OR function is identical to the OR operator of switching algebra. Its truth
table is given in Fig. 2.7a. Note that the output is 0 if and only if both of the
inputs are 0, and 1 if any one or more of the inputs are 1. The corresponding
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GND

7430: Y = ABCDEFGH
8-input NAND gate

7432: Y = A + B
Quadruple two-input OR gates

Vcc 4B 4A AY 3B 3A 3K

13 12 I I 10 9 814

)

53 74 6
2A 2 B 2Y GND\A 1B 1Y

7486: Y = A ® B
Quadruple two-input exclusive-OR gates

Figure 2.5 Figure 2.5 standard TTL SSI devices (continued).

truth table of an electronic OR gate is given in Fig. 2.7b. It should be noted that
the OR gate realizes the OR operator in a positive logic system. The standard
OR gate symbols are shown in Figs. 2.7c and d. In Fig. 2.7d, note that the IEEE
block symbol contains the designation > 1. This means that the mathematical
sum of the values of the input variables a and b determines the output of the
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/AND (a , b ) = a ba b A B Y

0 0 0 L L L
0 1 0 L H L

A
B

&1 0 0 H L L Y
1 1 1 H H H

(a) (b) (d)

Figure 2.6 The AND logic function and AND gate, (a) AND logic
function, (b) Electronic AND gate, (c) Standard symbol, (d) IEEE
block symbol.

a b /OR ( a, b ) = a + b A B Y

0 0 0 LL L
0 1 1 L H H

A >1
B

1 0 1 H L H Y
1 1 1 H H H

(b) (d)(a)

Figure 2.7 The OR logic function and OR gate, (a) OR logic
function, (b) Electronic OR gate, (c) Standard symbol, (d) IEEE
block symbol.

gate. The output is 1 when the sum of a and b is greater than or equal to 1, as
illustrated in the following table:

fOR( c i , b ) = a + ba b sum(a , b ) sum(a , b ) > 1?
0 0 False

True
True
True

0 0
0 1 11
1 0 1 1

2 11 1

NOT
A NOT gate (Fig. 2.8), or inverter, always has exactly one input and is used to
implement the complement concept in switching algebra. Any variable has its
true (uncomplemented) and false (complemented) forms, a and a, respectively.
A NOT gate is used to form one from the other.

The standard symbols for the NOT gate, shown in Figs. 2.8c and d,
include a bubble drawn at the output of the gate. As described earlier, a bubble
at the output of any logic circuit element indicates that an internal logic 1
produces an external logic 0, and likewise that an internal logic 0 produces
an external logic 1. No other logic function is performed within a NOT gate.
Hence, the logic value on the output of a NOT gate is simply the complement
of the logic value on its input.
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/NOT (a )- a A Ya
0 1 L H
1 0 H L

(a) (b)

Figure 2.8 The NOT logic function and NOT gate, (a) NOT
logic function, (b) Electronic NOT gate, (c) Standard symbol,
(d) IEEE block symbol.

A NOT gate can be thought of as changing the polarity of a signal from
active high to active low, or vice versa. Consequently, the NOT gate symbol
can be drawn with the bubble at either the input or the output. By convention,
the bubble is drawn at the gate input when the input signal is active low and at
the gate output if the signal being driven is active low. Figure 2.9a shows the
preferred usage of the NOT gate symbol, matching the bubbles to the active-low
signal, x.The diagrams in Fig. 2.9b, although not incorrect, are not considered
proper usage.

X

X X

(a) (b)

Figure 2.9 Matching signal
polarity to NOT gate inputs/outputs,

(a) Preferred usage, (b) Improper
usage.

Positive Versus Negative Logic
The AND and OR logic functions are realized by AND and OR gates, respec-
tively, if the positive logic convention is used for all gate inputs and outputs,
that is, if the signals connected to the gate inputs and outputs are all active high.
When the signals connected to the gate inputs and output are all active low, the
roles of these gates are reversed.

Recall that in the negative logic convention 1 is represented by a low
voltage and 0 by a high voltage. Therefore, the function realized by an AND
gate in a negative logic system can be derived by substituting 0 for H and 1 for
L in the AND gate truth table of Fig. 2.6b. The resulting table, presented in Fig.
2.10a, is identical to the OR operator truth table of Fig. 2.7a. Thus, an AND
gate with active-low inputs and output can be viewed as realizing the logical
OR function.

This may be verified with switching algebra by applying involution (The-
orem 3) and DeMorgan’s theorem (Theorem 8) to the expression for the logical
AND function as follows:

y = a • b

— a b
— a + b

= fORM
Equation 2.14 indicates that an AND gate symbol can be drawn as an OR
function with active-low inputs and output, as shown in Fig. 2.10b. While this
might seem awkward at first, this symbol better illustrates the function realized

(2.14)
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A B Y a ly = a + b
1 1 1 b i

A1 0 1 Y (c)B0 1 1
0 0 0 a

y - a b(a) (b)
b 4

(d)

Figure 2.10 AND gate usage in a negative logic system.
(a) AND gate truth table ( L = 1, H = 0). (b) Alternative AND gate
symbol (negative logic), (c) Preferred usage, (d) Improper usage.

r •

i

by an AND gate in a negative logic system than does the standard symbol of
Fig. 2.6c.

For example, consider the gate shown in Fig. 2.10c. The gate inputs are
connected to active-low signals a and b and the output to active-low signal
y. The logic expression for output y is formed by complementing each of the
inputs, taking the OR, and then complementing the result, as follows:

y = (a ) + ( b )

= a + b

Therefore, y is asserted (low) whenever one or both of the inputs are asserted.
Note that the alternative form, shown in Fig. 2.10d, is not incorrect but is more
difficult to analyze, and should therefore be avoided when negative logic is
being used.

(2.15)

In a similar manner, an OR gate realizes the logical AND operator when
its inputs and output are active-low signals. The function realized by an OR
gate in a negative logic system can be derived by substituting 0 for H and 1
for L in the OR gate truth table of Fig. 2.7b. The resulting table, presented in
Fig. 2.1la, is identical to the AND operator truth table of Fig. 2.6a. Therefore,
an OR gate with active-low inputs and output can be viewed as realizing the
logical AND function. This may be verified with switching algebra, as was
done earlier for the AND gate.

y — a + b

= a + b

= a • b
~ f A N D

Equation 2.16 indicates that an OR gate symbol can be drawn as an AND func-
tion with active-low inputs and output, as shown in Fig. 2.1lb. This alternative
symbol better illustrates the function realized by an OR gate in a negative logic
system than does the standard symbol of Fig. 2.7c.

(a , b ) (2.16)
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A B Y
y - a b

1 1 1 bA1 0 0 Y
B0 1 0

00 0
y = a + b(a) (b)

b

(d)

Figure 2.11 OR gate usage in a negative logic system, (a) OR
gate truth table (L = 1, H = 0). (b) Alternate OR gate symbol
(negative logic), (c) Preferred usage, (d) Improper usage.

For example, consider the gate in Fig. 2.1lc. Writing the logic expression
for active-low output y in terms of active-low inputs a and b gives

9 - (a ) - (b)

= a • b

= f A N D
Therefore, y is asserted only when both a and b are simultaneously asserted.
This operation is more difficult to see if the gate is drawn as in Fig. 2.lid.
Therefore, the form of Fig. 2.1lc should always be used with negative logic.

The following example demonstrates the use of AND and OR gates with
devices having active-low ipputs and outputs.

(2.17)

EXAMPLE 2.32 Design a logic circuit to implement a building
smoke alarm system.
The building is to be protected by a smoke alarm system that comprises two
smoke detectors, a sprinkler, and an automatic telephone dialer that calls the
fire department. The sprinkler is to be activated if either smoke detector detects
smoke, and the fire department should be called whenever both smoke detectors
detect smoke. The smoke detectors have active-low outputs, D1 and D2, that
are asserted whenever they detect smoke particles. The sprinkler has an active-
low input S P K that must be asserted to turn the sprinkler on. Likewise, the
telephone dialer initiates a call when its active-low input signal D I A L is
asserted.

The logic equations for the sprinkler and telephone dialer are derived by
determining the conditions that should activate each device. The sprinkler is
to be activated whenever either smoke detector output is asserted. The desired
operation i s S P K = D1 + D2.Since these signals are only available in active-
low form, we write

S P K = D\ + D2 (2.18)
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Likewise, the dialer is to be activated whenever both smoke detector outputs
are asserted; thus, DIAL = D1 • D2. Since these signals are only available in
active-low form, we write

(2.19)
Equations 2.18 and 2.19 are realized by the logic diagram in Fig. 2.12. Note
that gate G 1 is an AND gate used to realize the OR function of Eq. 2.18, while
G2 is an OR gate used to realize the AND function of Eq. 2.19.

DIAL = D\ • D2

Smoke
detectors

Sprinkler
D\ D1 + D2
D2

SPK

Telephone
dialer>D1 • D2

G2

DIAL

Figure 2.12 Smoke alarm system, illustrating negative
logic.

AND and OR gates are used whenever the inputs and outputs have the
same polarity. The next two gates to be presented, the NAND and NOR gates,
are used in mixed-logic systems, that is, when the inputs are active high and
the outputs active low, or ce versa.

NAND
The NAND gate is a combination of an AND gate followed by a NOT gate.
The NAND function is defined as

(ia, b ) — ab (2.20)/J N A N D
From Eq. 2.20, it can be seen that the NAND gate realizes the logical AND
function when its input signals are active high and its output active low. The
truth tables for the NAND function and NAND gate are derived by comple-
menting the output columns of the AND function and AND gate truth tables,
respectively. The resulting tables are given in Figs. 2.13a and b. The key to
understanding the NAND function is to notice that the output is 0 if and only
if its inputs are simultaneously 1.

The standard NAND gate symbols are shown in Figs. 2.13c, d, and e.
The bubble on the output terminal in Fig. 2.13c indicates the NOT operation,
differentiating it from the AND gate. The form in Fig. 2.13d is derived by
applying DeMorgan’s theorem to the NAND function switching expression of
Eq. 2.20:

/ ( c i , b ) = ab = a + b (2.21)NAND
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a b /NAND (0* b ) = ab A B Y

0 0 1 HL L
0 1 L H H1
1 0 1 H L H
1 1 0 H H L

(a) (b)

A A
B

&
B

(c) (d) (e)

Figure 2.13 The NAND logic function and NAND gate, (a) NAND
logic function, (b) Electronic NAND gate, (c) Standard symbol.
(d) Alternate symbol, (e) IEEE block symbol.

Thus, a NAND gate is used to realize the OR function when the input signals
are active low and the output active high. As discussed for the NOT gate earlier,
the bubbles on the NAND gate symbol should always be matched to the active-
low signals. Thus the symbol in Fig. 2.13c is used when the output signal is
active low, and the symbol in Fig. 2.13d is used when the input signals are
active low. Proper usage and improper usage of the two NAND gate symbols
are illustrated in Figs. 2.14a and b, respectively.

a a
y y

b — b

Figure 2.14 Matching
signal polarity to NAND gate
inputs/outputs, (a) Preferred
usage, (b) Improper usage.

Several other interesting properties of the NAND gate are shown next:
(a , a ) = a • a = a/NAND

(a , b ) = a • b = a • b = f (a , b )/,NAND AND

(a , b ) = a • b = a + b = f O R (a , b )f‘' NAND
Therefore, a NAND gate with both of its inputs driven by the same signal is
equivalent to a NOT gate, a NAND gate whose output is complemented is
equivalent to an AND gate, and a NAND gate with complemented inputs acts
like an OR gate.

Hence NAND gates may be used to implement all three of the elementary
operators (AND, OR, and NOT), as shown in Figure 2.15. Consequently, any
switching function can be constructed using only NAND gates. Gates that have
this property are called primitive or functionally complete.
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111
a

f (a, b ) = ab = ab a
b

AND gate NOT gate

OR gate

Figure 2.15 AND, OR, and NOT gates constructed exclusively from NAND gates.

NOR
The NOR gate is a combination of an OR gate followed by a NOT gate,
representing the function

/NOR(«» b ) = a + b
The NOR gate realizes the logical OR function with active-high inputs and
an active-low output. Hence, the truth table for the NOR function and NOR
gate are derived by complementing the output columns of the OR function and
OR gate truth tables, respectively. The resulting tables are given in Figs. 2.16a
and b. The key to remembering the function of a NOR gate is the first row of
the truth table; the output of a NOR gate is 1 if and only if both inputs are
simultaneously 0.

(2.22)

a b /NOR (<* , b ) = a + b A B Y

0 0 1 L L
L H

H
0 1 0 L
1 0 0 H L L

01 1 H H L
(b)(a)

A A A 1 D—YY Y
BB B

(c) (d) (e)

Figure 2.16 The NOR logic function and NOR gate, (a) NOR
logic function, (b) Electronic NOR gate, (c) Standard symbol,
(d) Alternate symbol, (e) IEEE block symbol.
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The standard NOR gate symbols are given in Figs. 2.16c, d, and e. The
bubble on the output terminal indicates the NOT operation, differentiating it
from the OR gate. The form in Fig. 2.16d is derived by applying DeMorgan’s
theorem to the definition of the NOR function defined in Eq. 2.22:

/NOR (^) = a + b = a • b
Thus, a NOR gate may be used to realize the AND function with active-low
inputs and an active-high output. As discussed for the NAND gate earlier, the
symbol in Fig. 2.16c is used when the output signal is active low, and the symbol
in Fig. 2.16d is used when the input signals are active low. Proper usage and
improper usage of the NOR gate symbols are illustrated in Figs. 2.17a and b,
respectively.

(2.23)

y y
b b

Figure 2.17 Matching
signal polarity to NOR gate
inputs/outputs, (a) Preferred
usage, (b) Improper usage.

As is the case for NAND gates, NOR gates are also primitive elements
in that they may be used to generate AND, OR, and NOT operations, as shown
next.

- /NOT^)

/NOR(0, b) = a + b = a + b = f Q R ( a, b )

f N O R(a , b ) = a + b = a ' b = f A N D (a ,b )
Figure 2.18 presents these three operations in symbolic form.

/NOR (^) = a + a = a

d> f ( a, a ) = a + a = a

NOT gateOR gate

AND gate

Figure 2.18 AND, OR, and NOT gates constructed exclusively from NOR gates.
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Since both are functionally complete, NAND and NOR gates are valuable
in that entire designs can be implemented with a single element type. It is easier
to build an integrated circuit chip using all NAND gates (or all NOR gates),
rather than combining AND, OR, and NOT gates. In addition,electronic NAND
and NOR gate circuits are typically faster and easier to fabricate than equivalent
AND and OR gates and are thus more cost effective to use.

Exclusive-OR (XOR)
The Exclusive-OR (or simply XOR) operation is defined functionally as

fxoR (^ , b ) = a (B b = ab + ab
The truth table derived from Eq. 2.24 is presented in Fig. 2.19a. The corre-
sponding XOR gate truth table is given in Fig. 2.19b, and the standard logic
symbols in Figs. 2.19c and d.

(2.24)

a b fxOR (a, b ) = a ® b A B Y
0 0 0 L L L
0 1 1 L H H
1 0 1 H L H
1 1 0 H H L

(a) (b)

Figure 2.19 The EXCLUSIVE-OR (XOR) logic function and XOR
gate, (a) XOR logic function, (b) Electronic XOR gate, (c) Standard
symbol, (d) IEEE block symbol.

The output of the Exclusive-OR gate is 1 if and only if its inputs are not
simultaneously equal. In other words, when the inputs are different, the output
is 1. The exclusive-OR is so named because of its relation to the OR gate. The
two differ in the input combination a = 1, b = 1. The exclusive-OR excludes
this combination, giving an output of 0, whereas the OR gate includes this
combination and is therefore synonymously called the inclusive-OR.

The product of sums form for the exclusive-OR is derived from the sum
of products form as follows:

a ® b = ab + ab

= aa + ab + ab + bb

= a(a 4- b ) + b(a 4- b)

= (a + b )( a + b )
Several other useful relationships involving the exclusive-OR are as follows:

(2.25)
(2.26)

(2.27)
(2.28)

[P2(a), P6(b)]
[P5(b)J
[P5(b)]

a 0 a = 0
a ® a = 1
f l 0 O = a
a 0 1 = a
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(2.29)
(2.30)

a 0 b = a 0 b
a 0 b = b 0 a

a 0 ( b 0 c ) — {a 0 b ) ® c
The reader may verify that these relations are valid by constructing truth tables
for them.

(2.31)

The IEEE standard block symbol for the exclusive-OR gate indicates that
the output will be asserted when the mathematical sum of the inputs is equal
to 1:

a b sum(a ,6) = 1? f ( a , b ) = a 0 bsum(a , b)
0 0 0 False

True
True
False

0
10 1 1
11 0 1

1 1 2 0

From this table it can be seen that the output of an exclusive-OR gate is the
modulo-2 sum of its inputs. Therefore, exclusive-OR gates are often used in
the design of arithmetic circuits that perform binary addition and subtraction.
This will be discussed in more detail in Chapter 4.

Exclusive-NOR (XNOR)
A common function that is related to the exclusive-OR is the coincidence
operation, or exclusive-NOR (XNOR), which is merely the complement of the
exclusive-OR. This function is defined as follows:

(2.32)f (a , b ) = a 0 b = a O bJ X NOR
The XNOR gate truth tables and logic symbols are presented in Fig. 2.20. The

a b /XNOR (a , b ) - a ® b A B Y

0 0 1 L L H
0 1 0 L H L
1 0 0 H L L
1 1 1 H H H

(b)(a)

Figure 2.20 The EXCLUSIVE-NOR (XNOR) logic function and
XNOR gate, (a) XNOR logic function, (b) Electronic XNOR gate,

(c) Standard symbol, (d) IEEE block symbol.

sum of products and product of sums forms of the coincidence operation are
derived as follows:

a O b = a 0 b

= a b + a b

= a b • a b
[P2]
[T8(a)]
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= (a + b )(a + b)

= ad + ab + ab + bb
[T8(b)J
[P5(b)]
[P6(b), P2(a)J= ab+ ab

It can also be easily verified that
a © b = a O b (2.33)

D 2.4 Analysis of Combinational Circuits
Digital circuits are designed by transforming a word description of a function
into a set of switching equations and then realizing the equations with gates,
programmable logic devices (PLDs), or other logic elements. Digital circuit
analysis is the inverse problem. Beginning with a hardware realization of a
digital circuit, a description of the circuit is derived in the form of switching
expressions, truth tables, timing diagrams, or other behavioral descriptions.
Analysis is used to determine the behavior of a logic circuit, to verify that the
behavior of a circuit matches its specifications, or to assist in converting the
circuit to a different form, either to reduce the number of gates or to realize it
with different elements.

This chapter will present the analysis and synthesis of digital circuits,
including the design and use of building block modules that are used to im-
plement larger designs. A number of more complex medium scale integration
(MSI) modules will be discussed in Chapter 4. These modules are higher-level
devices containing 100 to 1000 transistors. Chapter 5 will examine the use of
programmable logic devices to develop digital circuit designs.

2.4.1 Algebraic Method
Logic networks may be built by interconnecting the gates presented in the
previous section. These circuits are used to perform specific functions inside
a digital computing system. Any given switching network may be completely
represented by a switching expression or function, and, thus, all the power of
switching algebra may be applied to manipulate the switching function into
any form we desire.

An important point to remember is that all switching expressions may
be written in terms of AND, OR, and NOT operations. Hence, any switching
network may be constructed using only primitive elements such as NAND gates
(or NOR gates), as shown in Fig. 2.15 (or Fig. 2.18).

EXAMPLE 2.33 Find a simplified switching expression and
logic network for the logic circuit in
Fig. 2.21a.
We proceed by writing a switching expression for the output of each gate.

P{ = ab
P2 = a + c
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P3 = b ® c
P4 = P{ • P2 = ab ( a + c )

The output is
f ( a 9 b 9 c ) = P3 + P4

= ( b 0 c ) + ab (a + c )
To analyze this function, we may convert it to a simpler form using switching
algebra:

f (a , /?, c ) = (b 0 c ) + ab a + c

= be + be + ab a + c [Eq. 2.24]

= be + be + ( a + b )ac [T8]

= be + be + abc

— bc -\- bc
[T5(b)J
[T4(a)]
[Eq. 2.32]/ ( a , b, c ) = bQc

Therefore, from Eq. 2.32,
f ( a , b , c ) = bOc = b ($ c

This function has been reduced to a single exclusive-OR gate, which is shown
in Fig. 2.21b. Both switching networks shown in Fig. 2.21 have the same truth

a
b

PA

3> f ( a, b, c )

3D> f {a , b, c )3E>P3

(a) (b)

Figure 2.21 Equivalent switching networks.

table and are therefore equivalent. It is obvious that the one in Figure 2.21b is
more desirable since it is less complex.

EXAMPLE 2.34 Find a simplified switching expression and
circuit for the network of Fig. 2.22.
The logic expression for each gate output is shown on the logic diagram of Fig.
2.22. From these, we derive the output expression as
f ( a , b 9 c )

= (a 0 b )(b (& c ) • (a + b + a + c )

= ( a 0 b ) (b (& c ) + a + b + a + c [T8(b)J
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= (a © b )( b © c) + ( a + b ) ( a + c)

= (ab + ab )( bc + be ) + {a + b ) ( a + c )

= abbe + abbe + abbe © abbe + aa + ac + ab + be
= abc + abc + ac + ab + be

— abc + ac + ab + be

= abc + ac + ab

— ab + ac + ab

= ac + a © b
Notice that this is the form of the switching network in Fig. 2.22b.

[T8(a)]
[Eq. 2.24J
[P5(b)]
[P6(b),T4(a)l
[T4(a)]
[T9(a)]
[T7(a)]
[Eq. 2.24]

(a © b )( b © c )

f ( a, b, c)

a

f ( a, b, c )

a
(b)

Figure 2.22 Equivalent switching networks.

Truth Table Method
We previously derived the truth table for a function from a switching expression
by evaluating the expression one part at a time. The same approach may be
taken with logic diagrams, deriving the truth table one gate at a time.

The truth table for the function derived in the last example may be found
using the switching algebra technique previously described:

/ ( a , b , c )a 0 babc ac
000 0 0 0
10 0 1 1 0
10 1 0 0 1
11 10 1 1

1 11 0 0 0
10 11 0 1

0 01 1 0 0
0 01 1 1 0
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Column ac is 1 whenever a — 1 and c = 1 or whenever a = 0 and c — 1.
Column a ® b is 1 whenever a =/ b. These two columns are ORed to create
f ( a ,b, c )\ therefore, f (a,b, c ) is 0 whenever both ac and a ® b are 0.

In this section we have taken a given switching network, analyzed it by
writing down the switching function, simplified it using switching algebra, and
obtained an equivalent, but less complicated network.

2.4.2 Analysis of Timing Diagrams
Thus far, we have analyzed logic circuit diagrams by deriving switching expres-
sions and/or truth tables of the logic functions realized by the circuits. Another
method of analysis is to apply a sequence of values to the inputs of a circuit over
a period of time, either experimentally or with a logic simulation program, and
to observe the relationship between the inputs and the corresponding sequence
of outputs in the form of a timing diagram. From this timing diagram, we can
derive the logic function realized by the circuit and study the effects of gate
propagation delays on circuit operation.

Timing Diagrams
A timing diagram is a graphical representation of input and output signal re-
lationships in a switching network, as might be seen on the display of an
oscilloscope or logic analyzer or in a logic simulation program. Often, inter-
mediate signals are also illustrated. In addition, timing diagrams may show
propagation delays introduced by the switching devices as the signals propa-
gate through the network. A properly chosen timing diagram can depict all the
information contained in the truth table, as shown in the following example.

EXAMPLE 2.35 The circuit of Fig. 2.23a is stimulated with a
sequence of inputs, producing the timing
diagram of Fig. 2.23b. In this example, a 1 is
represented by a high signal and a 0 by a low
signal. Let us determine the truth table and
minterm lists for the two functions fa (A,B,C )
and fp(A,B,C ) realized by this circuit.
The input and output signals are drawn on the diagram for this circuit. The
input patterns have been selected so that each possible combination of inputs
A, B, and C occurs for one unit of time.

Examining the timing diagram at times r0, tv .. . , t
values of the inputs and outputs at each time and write them in truth table form
as in Fig. 2.23c. From the truth table we can write the minterm list and then
derive a simplified logic expression for each function, as follows:

4(A, £, C ) = Yjm{1, 2, 6, 7)

= ABC A- ABC A- ABC A- ABC

= ABC A- B C A- A B

we determine the7’
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fp { A , B , C) =^m(1, 3, 5, 6)

= ABC + ABC + ABC + ABC
= AC + ABC + ABC

In the previous example, all gate outputs were shown as changing instan-
taneously following an input change. In reality, there is always a delay between
the time of an input change and the corresponding output change in a circuit.
In the next section we consider the effects of gate propagation delays on circuit
operation.

J4

1 IB BY = f a( A, B, C )

1 I I f
Inputs

Outputs
I J L1 L I

c*> Y = f a ( A, B,QZ =/p ( A, B, C )

I I I [ IZ = f p ( A, B, C)
L
_

J J _1 I L _ i I
_

J I L
_

I
to t\ t2 h t4 t5 t6 t7(a)

(b)

OutputsInputs

A B CTime fct ( A, B, O f f i ( A , B, C )

0 00 0 0
0 0 1 11h
0 1 0 1 0h
0 1 1 0 1'3
1 0 0 0 0t4

11 0 1 0'5
1 1 0 1 1*6

1 1 1 1 0h

(c)

Figure 2.23 Derivation of a truth table from a timing diagram, (a) Logic circuit
realizing two functions, (b) Timing diagram, (c) Truth table.
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Propagation Delay
In addition to logic function, a designer must be concerned with a number of
physical characteristics of digital logic circuits, including the following:

•Propagation delays

•Gate fan-in and fan-out restrictions

•Power consumption

•Size and weight

These characteristics are physical properties of the lower-level circuits used to
create the logic gates, and the number and configuration of gates in a given cir-
cuit. Lower-level design is beyond the scope of this book; the reader is referred
to Wakerly [9]. However, propagation delays and fan-in/fan-out restrictions
have a significant impact on logic design, and must therefore be considered
during any digital logic circuit analysis and/or design.

A physical logic gate requires a nonzero amount of time to react to
input changes and produce changes in its output state. This delay between
the time of an input change and the corresponding output change is called a
propagat ion delay.Thus, if a logic circuit realizes a function z — f ( x x , . . . , xn ) ,
the propagation delay is the time that it takes changes to “propagate” from some
input x{ through the circuit to the output z. Propagation delays are functions
of the circuit complexity, the electronic technology used, and such factors as
gate fan-out (the number of other gate inputs driven by a single gate output),
temperature, and chip voltage.

Following various input changes, the outputs of electronic logic gate
circuits may take different amounts of time to switch from low to high than from
high to low. Hence, two propagation delay parameters are typically specified
for a given logic gate:

rpLH = propagation delay time, low- to high-level output

rpHL = propagation delay time, high- to low-level output
with tpLH and tpHL measured from the time of the input change to the time of
the corresponding output change.

Where precise timing information is not needed, a single propagation
delay parameter, denoted by tpD, is used to approximate both tPLH and t
Usually, tpD is computed as the average of tpLH and t

P H L

P H L'

P H L'

+ tt P L Ht P D ~

For the AND gate illustrated in Fig. 2.24a, Figs. 2.24b-d illustrate the
response of the gate output to a sequence of changes in its input values. In Fig.
2.24b, the ideal case is shown, in which the outputs change instantaneously,
that is, the propagation delay is 0. In Fig. 2.24c, all output changes are shown
as being delayed by an average propagation delay, tpD . Figure 2.24d presents
a more precise picture of the timing, with separate parameters for tPLH and

P H L'

2

t
Table 2.7 lists tpD values for two-input NAND gates from a number of

different logic families, along with the power dissipation per gate for each.
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a

b
a

c
b c

(a) (b)

a a

bb

d uc c

fPD *PD 'PHL*PLH
(d)(c)

Figure 2.24 Propagation delay through a logic gate, (a) Two-input AND gate,

(b) Ideal (zero) delay, (c) tPD = tPLH (d) t= t < tP H L' P L H P H L‘

Logic gates are available in a number of different technologies, eight of which
are shown in the table. As can be seen in this table, there are trade-offs between
speed and power dissipation among the different technologies. For example,
the 745x x devices are faster than the equivalent 74x x or 74LSx x devices,
while the 74L S x x devices are slower, but consume less power. A designer
often sacrifices speed for lower power consumption in applications for which
power supply current will be limited, such as in battery-powered systems.

TABLE 2.7 POWER DISSIPATION AND PROPAGATION DELAYS FOR SEVERAL LOGIC FAMI-
LIES [8]

Propagation Delay
tpo (ns)

Power Dissipation
Per Gate (mW)Logic Family Technology

7400 10 10 Standard TTL
High-speed TTL
Low-power TTL
Low-power Schottky TTL
Schottky TTL
Advanced low-power Schottky TTL
Advanced Schottky TTL
High-speed CMOS

74H00
74L00
74LS00
74S00
74ALS00
74AS00
74HC00

6 22
33 1
9.5 2

193
3.5 1.3
3 8
8 0.17

Propagation delays also differ among different gates implemented with
the same technology, since their transistor-level circuits are different. Table 2.8
lists t parameters for five primitive gates (AND, OR, NAND,
NOR, and NOT) from the 74LS family. Note that a typical and a maximum

and tP H L P L H
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Section 2.4 Analysis of Combinational Circuits 127

value are given for each parameter. Propagation delays vary from one device to
another, and are affected by the number of loads driven by the gate. Therefore,
most device data sheets specify a maximum delay time, corresponding to worst
case loading conditions, in addition to the typical delay time for each device.

TABLE 2.8 PROPAGATION DELAYS OF PRIMITIVE 74LS SERIES GATES [8]

t tPHLPLH

Chip
74LS04
74LS00
74LS02
74LS08
74LS32

Function Typical Maximum Typical Maximum
NOT

NAND
NOR
AND

9 15 1510
9 15 10 15
10 15 10 15
8 15 10 20

OR 14 22 2214

EXAMPLE 2.36 A sequence of inputs is applied to the circuit
of Fig. 2.25a, producing the timing diagram of
Fig. 2.25b. Each gate has propagation delay
tPD of one time unit. We wish to find the truth
table and minimum switching expression for
this circuit.
From the timing diagram, the truth table of Fig. 2.25c is derived by examining
the outputs of each gate following each of the input changes. Since signals take
different amounts of time to propagate to each gate output, we must wait until
all signal propagation is complete before determining the output corresponding
to the current input. Note that no signal will propagate through more than three
gates, therefore no more than three time units will elapse between an input
change and a stable output.

For example, at time t { input C changes from 0 to 1, which causes inverter
output D and AND gate output G to both change at time t { + 1. The change at
G causes OR gate output Y to change from 0 to 1 at time tx + 2. Thus the input
change required two time units to propagate from circuit input C to circuit
output Y . Therefore, we should wait until after ^ + 2 to determine the final
value of Y . Note that the input change at time t2 also required two time units
to propagate to the output, whereas the changes at times t4 and tn require three
time units.

From the truth table we can write the list of minterms and derive a
minimum switching expression as follows:

/(A , B, C ) = J2 m( 1 , 4, 5, 6)

= ABC + ABC + ABC + ABC

= AC -\- BC
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/04, B, QA B C

0 0 0 0
0 0 1 1
0 1 0 0

Y = f ( A, B, Q 0 1 1 0
1 0 0 1
1 0 1 1E GB 1 1 0 1
1 1 1 0(a)

(c)

A
i

lB ii i

l I lc I II II In R ! Ii

D i
ii i i iE in J i i
ii iii i i i ii i i

i i i i ii
F i ii ii iii i iil iii iG i ii ii ii i

i

\ \ V-II I I II II I/04, B, C) ii iTI I I III iI I I*1 \ I I '5 *7*0 *3 *4 *6i i i i iI
it ) + 2 t2 1 *2 + 2 ?4 + 3 1*7 + 3

t~j 4- 2
II

II + 2I

*2 + **1 + 1 /4 + I t2 + 1

(b)

Figure 2.25 Derivation of a truth table from a timing diagram, (a) Circuit diagram,

(b) Timing diagram, (c) Truth table.

•2.5 Synthesis of Combinational
Logic Circuits

Thus far, we have introduced several tools that may be used in analyzing
and synthesizing switching networks. These tools include switching algebra,
switching devices, truth tables, and timing diagrams. In this section we shall
employ some of these tools to design and implement switching networks.

2.5.1 AND-OR and NAND Networks
An AND-OR network employs AND gates to form product terms and an OR
gate to form the sum of these products. Therefore, a given switching function

k.
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that is to be implemented in AND-OR logic must be expressed in sum of
products (SOP) form. For example, the function

f8 ( p , q , r, s ) = pr + qrs + ps
is directly implemented in AND-OR logic in Fig. 2.26a.

Bubbles
“cancel”

yi*p — p — p —
q q q —/5 ip, q, r, s) /5 ip, q, r, s) /5 ip, q, r, 5)i2 JC'
r
5 5 5

VJ^3
p — p — p — *3

(a) (b) (c)

Figure 2.26 Implementations of fs( p, q , r, s ) = pr + qrs + ps. (a) AND-OR
network, (b) NAND network, (c) NAND network (preferred form).

A simple translation using switching algebra may be employed to trans-
form a sum of products expression into an appropriate form for direct NAND
implementation. Place two bars over the entire SOP function; then use DeMor-
gan’s theorem (Theorem 8) to find the NAND form for the function

f s ( p , q , r, s ) = pr + qrs + ps [T3]

[T8(a)]= pr • qrs • ps

= xl 'J j2
m X 3

where x { = pr , x2 — qrs, andx3 = ps.The NAND realization of this function
is shown in Fig. 2.26b.

Fig. 2.26c presents the same circuit, but with the output NAND gate
shown in its DeMorgan-equivalent form. Writing the logic expression for the
output,

f s ( p, <h r, s ) = xx + x2 + x3— pr + qrs + ps

= pr + qrs + ps
Note that the inversion bubbles on both ends of lines x{ , x2 ,and JC3 in Fig. 2.26c
effectively cancel each other, making the diagram resemble that of Fig. 2.26a,
and thus clearly illustrating that a sum of products form is being implemented.
Therefore, the format of Fig. 2.26c is preferred over that of Fig. 2.26b when
drawing a NAND circuit.

The techniques employed here may be used on any sum of products
function to derive an AND-OR or NAND network.
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2.5.2 OR-AND and NOR Networks
An OR-AND network employs OR gates to form sum terms and an AND gate
to form the product of these sums. Therefore, a specified switching function
that is to be implemented in OR-AND logic must be expressed in product of
sums (POS) form. For example, the function

/ (A, B, C, D ) = ( A + B + C ) ( B + C + D )( A + D)
is realized directly in OR-AND logic in Fig. 2.27a.

AA A
B B Byi y\c cc
B B Bk (A, B, C, D ) k (A, B, C, D ) k B, C, D ))C c
D D

A A Ay z y z
D D D

(a) (c)(b)

Figure 2.27 Implementations of f t ( 4, B, C, D ) = { A + B + C ) ( B + C +
D )( A + D ). (a) OR-AND network, (b) NOR network, (c) NOR network
(preferred form).

We may use the same switching algebra transformation that we employed
previously to express /f

(A , B , C, D ) in an appropriate form for direct NOR
implementation, again using DeMorgan’s theorem:

4 ( A , B , C , D ) = ( A + B + C )( B + C + D ) ( A + D ) [T3]

= A + £ + C + £ + C + D + A + D [T8(b)]- y{+ y2 + y3

where y ] = A + B + C , y2 = B + C + D, and y3 = A + D. The NOR real-
ization of this function is shown in Fig. 2.27b.

Fig. 2.27c presents the same circuit, but with the output NOR gate shown
in its DeMorgan-equivalent form. Writing the output logic expression,

f e ( A , B , C , D) = y t - y2 - y3

= ( A + B + C ) ( B + C + D ) ( A + D )

= ( A + B + C ) ( B + C + D )( A + D )
As was the case with two-level NAND circuits, the inversion bubbles effectively
cancel out. This format more clearly illustrates that a function in product of
sums form is being implemented and is therefore the preferred way to draw the
two-level NOR circuit.

The preceding method may be generalized to implement any product of
sums function in NOR logic.
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2.5.3 Two-level Circuits
Networks that have a structure like those shown in Figs. 2.26 and 2.27 are
referred to as two-level networks. Input signals must pass through two levels
of gates before reaching the output. As illustrated in Fig. 2.28a, the first level
is defined as the level containing the gate that produces the output. Gates that
receive the circuit inputs are on the second level. When NOT gates are required
on input lines, a three-level network is produced, as illustrated in Fig.2.28b. A
network has n levels when at least one input signal must pass through n gates
before reaching the output.

p — X\r

)m> >al><7 fb ( p, q, r, s ) 4 fb ( p, q, r, s )
r r
s s

>P *3 x3
ss

Level 1Level 2 Level 1 Level 3 Level 2
(b)(a)

Figure 2.28 Two-level and three-level network structures, (a) Two-level network,

(b) Three-level network.

Switching functions in the SOPor POS form can be implemented directly
in two-level networks when the inputs are available in both complemented and
uncomplemented form. A three-level network is required when only one form
of the inputs is available. In the latter case, only NOT gates are needed on
level 3.

Circuits with more than two levels are often needed where there are
gate fan-in limits. For example, the function f (a , b, c , d , e ) = abcde can be
realized with a single five-input AND gate as shown in Fig. 2.29a. However,
if the designer is restricted to working with only two-input AND gates, then
a three- or four-level circuit will be needed, as shown in Figs. 2.29b and c,
respectively. The reader should verify that these circuits are equivalent.

At this point the reader has all the tools necessary to take a switching
function expressed in minterm or maxterm list form and implement it in NAND
or NOR logic, respectively. The implementation procedure for NAND logic is
outlined next; the terms in parentheses are used if the implementation is to be
in NOR logic.
Step 1. Express the function in minterm (maxterm) list form.

Step 2. Write out the minterms (maxterms) in algebraic form.
Step 3. Simplify the function in sum of products (product of sums) form using
switching algebra.
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a
b —,

/ = abcde
d -r
e

(a)

a
ba

b

df - abcded > / = abcde

(b) (c)

Figure 2.29 Multilevel circuit made necessary by fan-in restrictions, (a) A
single five-input AND gate, (b) Three-level network of two-input gates, (c) Four-
level network of two-input gates.

Step 4. Use Theorem 8a (8b) and Theorem 3 to transform the expression into
the NAND (NOR) formulation.
Step 5. Draw the NAND (NOR) logic diagram.

This procedure will now be illustrated using f^ i X , Y, Z ) = ^ m{0, 3, 4, 5, 7)

EXAMPLE 2.37 Implement f ( X ,Y , Z ) = £>(0,3,4,5,7) in
NAND logic.

1. //X, y, Z) = £>(0,3, 4,5, 7)
2. />, y, Z) = m0 + m3 + m A + + m?

= X Y Z + X Y Z + X Y Z + X Y Z + X Y Z
[T6(a)]3. f^ X , Y, Z ) = Y Z + Y Z + X Z

4a. f^ X , Y , Z ) = Y Z + Y Z + X Z [T3]

or
4b. f^ X , Y , Z ) = Y Z + Y Z + X Z

= Y Z - Y Z - Y Z
The logic diagram of Fig. 2.30a is derived from the expression in step 4a and
is said to be a minimum two-level SOP realization of the switching function.
This example completely illustrates the design procedure.

[T31
[T8(a)]

EXAMPLE 2.38 Implement f^X , Y ,Z ) = £m(0,3,4,5,7) in NOR
logic.

l. /,(x, r, z) = rW. 2.6)
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Y
Z — X

Y
U ( X , Y , Z) )h ( X , Y, Z)zY

Z — Y

ZX
Z

(a) (b)

Figure 2.30 Canonical form of /0(X, Y , Z ) = J]m(0, 3, 4, 5, 7) to NAND and NOR
networks, (a) NAND realization, (b) NOR realization.

2. /0(X, y, Z ) M ] " A/2 " M_6

= ( x + y + z )( x + y + z)(x + y + z>
3. f / X , Y , Z ) = ( X + Y + Z )( Y + Z)

4a. //X, y, Z) = ( X + Y + Z ) ( Y + Z )

[T6(b)]

[T3]

or
4b. f / x, y, z) = (x + y + z)(y + z) [T3]

= ( X + Y + Z ) + ( Y + Z ) [T8(b)]

The NOR network derived from step 4a is shown in Fig. 2.30b and is said to be
a minimum two-level POS realization of the switching function. Each network
shown in Fig. 2.30 implements the function /?

. ( X , Y , Z ).

2.5.4 AND-OR-invert Circuits
An AND-OR-invert (AOI) circuit consists of a set of AND gates, the outputs of
which are fed into a NOR gate, and it hence can be used to readily realize two-
level sum of products circuits. A typical configuration, such as that employed
in the standard 7400 series logic (7454), is shown in Fig. 2.31. In general, the
circuits are defined by the number of inputs to the AND gates. For example, a
circuit employing three AND gates, one of which has two inputs, one of which
has three inputs, and one of which has four inputs, would be referred to as a
2-3^ AOI circuit.

The 7454 circuit shown in Figure 2.31 is a 2-2-2-2 AOI circuit, which
realizes the function

F = AB + CD + EF + GH
Although the AOI circuit may be used in a number of ways, we will

illustrate only one application here. If B, D, F, and H are operated as enable
(control) lines, and A, C, F, and G are information lines, then the preceding
circuit can be used to funnel information from the four sources A, C, E , and
G into a single channel (this circuit is called a 4-to-l multiplexer, and will
be described in Chapter 4). For example, if A = Yl , C = Y 2, E = Y 3 and
G = Y4 and B = 1 and D = F = H = 0, the output will be F = yi. If the
enable lines are then changed so that D = 1 and B = F = H = 0, the output
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Make no external
connection

B H G
A12 10 911 8 Y1
B

C >i
Y2

D

Y
Output

E
Y3

F

G
Y4

H

A C D F NC GND Enable linesE

(a) (b)

Figure 2.31 7454 2-2-2-2 AND-OR-invert circuit, (a) 7454 circuit package (top
view), (b) 7454 used as a 4-to-1 multiplexer.

will be F = Y 2. Therefore, by sequentially setting the signals on the enable
lines to logic 1 in the fashion illustrated, a set of data streams represented by
A, C, £, and G may be funneled into a single stream represented by F.

2.5.5 Factoring
Factoring is a technique for obtaining higher-level forms of switching functions
(which require circuits in which signals may propagate through more than two
levels of logic gates). The importance of these higher-level forms stems from
the fact that they often require less hardware and are therefore more economical
to implement. Higher-level forms are also needed in situations in which gates
with limited fan-in must be used. In these cases, factoring is used to reduce the
number of literals in large product or sum terms to values less than or equal
to the available number of gate inputs. However, higher-level forms are more
difficult to design than simple SOP or POS forms, and are generally slower due
to having more than two levels of logic gates.

Factoring, which normally involves the use of the distributive law (Pos-
tulate 5) of switching algebra, is essentially an art in which experience plays
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Section 2.5 Synthesis of Combinational Logic Circuits 135

an important role. The technique is further complicated by the fact that re-
dundancy may have to be added at an intermediate step in order to obtain a
simpler realization through factoring. This method will be demonstrated via
the following examples.

EXAMPLE 2.39 Suppose we are given the following
four-variable function:

fk (A,B,C,Z>) = AB + AD + AC

The two-level realization of this function using NAND gates is shown in Fig.
2.32a.

A —
B A (A, C, D )A

>^I>A ( A , B, C, D )A
5 — B

C
DA

C —
(b)(a)

Figure 2.32 Realizations of f x ( A , B , C , D ). (a) Original form, (b) After factoring.

Note that this second-order realization of the function requires four gates
and nine gate inputs. However, if we apply factoring to the function, we can
obtain a higher-order realization, as follows:

/X (A, B, C, D ) = AB + AD + AC

= A( B + D + C )

= A(BCD )
This realization of fk ( A , B, C, D), shown in Fig. 2.32b, requires only two
gates and five gate inputs.

EXAMPLE 2.40 Realize the function f (a,b,c,d) = £"*(8,13)
using only two-input AND and OR gates.
We begin by writing the canonical SOP form:

f (a, b, c, d ) = 13)

= abed -|- abed
The two product terms in Eq. 2.34 cannot be reduced using switching algebra.
Therefore, two four-input AND gates and one two-input OR gate would be
required to realize a two-level AND-OR circuit.

(2.34)
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Since only two-input gates are available, we can use factoring to reduce
the size of the product terms, as follows:

/(a, b, c, d ) = abed + abed

— (ac )(bd + bd )
In Eq. 2.35, no product or sum term contains more than two literals. Thus, this
switching expression can be realized entirely with two-input gates, as shown
in Fig. 2.33. Note that the circuit contains four levels of logic gates, including
the input inverters.

(2.35)

b

d

f - (a, b, c, d )L_D>°H
0°-

t>°H
Figure 2.33 Factoring used to realize / ( a , b, c , d ) = £m(8, 13) with two-input gates.

The algebraic approach demonstrated in this example can also be per-
formed using various graphical and tabular methods, such as the Karnaugh
map (K-map), which will be presented in Chapter 3. For more details on this
subject, the reader is referred to [3].

•2.6 Applications
Thus far, we have introduced several tools, such as switching algebra, truth
tables, and Venn diagrams, that are basic to the analysis and synthesis of logic
networks. In addition, the basic concepts of digital logic circuit analysis and
design have been introduced. The following examples illustrate the use of these
techniques in solving problems.

One area in which the basic tools find extensive use is in the areas of
symbolic logic and truth functions. We will not treat these subjects in any detail,
but rather illustrate the use of the logic in several very simple examples.
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EXAMPLE 2.41 A burglar alarm for a bank is designed so that
it senses four input signal lines. Line A is
from the secret control switch, line B is from
a pressure sensor under a steel safe in a
locked closet, line C is from a battery-
powered clock, and line D is connected to a
switch on the locked closet door. The
following conditions produce a logic 1
voltage on each line:
A : The control switch is closed.
B : The safe is in its normal position in the closet.
C : The clock is between 1000 and 1400 hours.
D : The closet door is closed.
Write the equations of the control logic for
the burglar alarm that produces a logic 1
(rings a bell) when the safe is moved and the
control switch is closed, or when the closet is
opened after banking hours, or when the
closet is opened with the control switch open.
The statement “when the safe is moved and the control switch is closed”
is represented by A B. “When the closet is opened after banking hours” is
represented by CD. “When the closet is opened with the control switch open”
is represented by A D. Therefore, the logic equation for the burglar alarm is

/(A, B, C, D ) = A B + C D + A D

EXAMPLE 2.42 John and Jane Doe have two children, Joe
and Sue. When eating out they will go to a
restaurant that serves only hamburgers or
one that serves only chicken. Before going
out, the family votes to decide on the
restaurant. The majority wins, except when
Mom and Dad agree, and in that case they
win. Any other tie votes produce a trip to the
chicken restaurant. We wish to design a logic
circuit that will automatically select the
restaurant when everyone votes.
If we let a 1 represent a vote cast for hamburgers and a 0 represent a vote cast
for chicken, the truth table for the voting circuit is given in Table 2.9. The logic
function is

/(A, B, C, D ) = A B C D + A B C D + A B C D
+ A B C D + A B C D + A B C D
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= A B C D + A B C D + A B

= A B + A C D + A B C D
= A B + A C D + B C D

The logic circuit for this function is given in Fig. 2.34.

TABLE 2.9 TRUTH TABLE FOR DOE FAM-
ILY VOTER

John Jane Joe Sue
A B C D

Vote for Hamburger
/

0 0 0 0 0
0 00 0 1
0 0 00 1

0 0 01 1
0 00 1 0
00 1 1 0

0 0 01 1
0 1 1 1 1

0 0 001
0 0 01 1
0 0 01 1
0 11 1 1

01 0 11
01 1 1 1

01 1 1 1
1 1 1 11

/4
B

D

Figure 2.34 Logic circuit for restaurant voter example.

EXAMPLE 2.43 We wish to derive the logic equations for a
circuit that will add the two 2-bit binary
numbers (A 1A0)2 and (B,fl0)2 and produce the
sum bits (SjS0)2 and the carry out bit C x ; that
is,

AtA0

+ B1B0

C l S l S0
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Bv and B0, and three outputs Cp S,, and 50.There are four inputs, Ap A
Therefore, the truth table is that shown in Table 2.10. Each line of the truth

0’

TABLE 2.10 TRUTH TABLE OF 2-BIT
BINARY ADDER

C. 5 SoAj A0 B Bo II i

0 0 0 T) 00 J j
0 0 0 1 0 0 1

0 0 00 0 1 1
0 0 1 10 1 1

0 0 00 0 11
0 1 00 0 11
0 10 0 11 1

0 00 1 1 1 1
00 0 0 0 11
11 0 0 1 0 1

0 001 0 1 1
01 1 11 0 1

01 0 0 1 11
0 00 11 1 1

0 0 11 11 1
01 11 1 1 1

table is derived as shown in the following calculation for the eighth line.
1 1

0 1
+ 1 1
1 0 0

The logic equation for the terms Cp 5p and SQ are obtained from the truth table
as:

S0 — AjA0£, B0 + Aj A0 B{ B0 + AlA0 Bl BQ + AXA^ BX B0

+AM + Aj AQ5J B0 + A , A0^ j BQ + Aj A0 ^j BQ

Sl — A , A0 Z? j B0 + A , A0 Z? j B0 + A j A0 Z? j BQ + Aj A^ BX B0
-\- A ^ AQB\ B0 A^ AQB^ BQ A^ AQB^ BQ A ^ AQB^ BQ

Ci — A , A0 B ] BQ -T A , A0 BX B0 + A , A0 B ] B0 + A j A0 Bx BQ
+AlA0 B\*0 + A\ A0 B\ Bo

These expressions can be reduced to the following:
SQ = A0 B0 -f- A0 B0

5j = A j AQZ?J + A ^ B ^ B Q A ^ A Q B^ B Q + A I A Q B^ B Q A ^ B^ B Q A ^ A q B J

C\ ~ AoB\ Bo AiAoBo A\ B\
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JB 2.7 Computer-aided Design of
Logic Circuits

2.7.1 The Design Cycle
Many of today’s digital logic circuits contain the equivalent of thousands to
hundreds of thousands of logic gates. Most of these circuits are fabricated
on single integrated circuit chips (ICs). Designing and fabricating a VLSI
(very large scale integrated) circuit chip is a complex and expensive process.
Therefore, it is necessary to verify the correctness of the logic circuit design
before beginning the design of the actual chip to ensure a high probability
of correct operation the first time the chip is fabricated. The same is true
when designing digital systems out of multiple ICs and circuit boards. Circuits
and systems of this complexity are virtually impossible to develop and verify
without the assistance of computer-aided design (CAD) tools.

The design cycle for a digital logic circuit comprises a number of steps
between concept and physical implementation, including design synthesis, sim-
ulation, realization, and testing. This process is depicted in Fig. 2.35. From a
statement of the problem, the designer begins by developing an abstract solution
that is systematically transformed into a digital logic circuit. This transforma-
tion is aided by modeling and evaluating the circuit at each level of design
abstraction. A design is evaluated by using its model to simulate its operation,
allowing the circuit’s response to various input stimuli to be verified. The model
is revised and resimulated as needed until the correct responses are obtained. In
addition to verifying correct operation, the effects of different design options on
circuit performance can be evaluated to assist in making cost-effective design
decisions. Once the modeled behavior of the design is acceptable, the physical
design is developed and implemented. Finally, the finished circuit is tested,
with the test results compared to the modeled behavior to detect faulty devices.

In this chapter we describe the CAD processes and tools used in the syn-
thesis and analysis phases of digital circuit design. Each block in the synthesis
and analysis phases of Fig. 2.35 will be examined. First, design modeling will
be discussed. The next section will describe schematic capture and other CAD
tools that capture digital circuit models and translate them into the format of
the design database. Then digital logic simulation will be discussed as applied
to verifying the logic behavior and timing of a design. Finally, CAD tools that
derive minimum switching expressions for logic functions will be examined.

2.7.2 Digital Circuit Modeling
Modeling a digital logic circuit or system serves several purposes. First, the
process of developing a model helps the designer formalize a solution. Second,
a circuit model can be processed by a digital computer to check for design
errors, verify correctness, and predict timing characteristics. In addition, a
number of CAD tools are available that automatically perform all or some of

www.youseficlass.ir

Albustani
Rechteck



Section 2.7 Computer-aided Design of Logic Circuits 141

C once p t

I
Modeling

and
design capture

Synthesis

Design
optimization

Design
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Test
vectors

Logic
simulation

Analysis

Fail Results
?

Pass

Implementation
Realization

I
Physical
design

Testing
Test
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F in i shed c i r c u i t

Figure 2.35 Computer-aided design of a digital logic circuit.

the synthesis steps, including design optimization and transformation of the
design from an abstract form to a physical realization.

A model can represent a digital system at different levels of design ab-
straction, ranging from behavioral to structural. This is illustrated in Fig. 2.36.
The designer often begins with a high-level abstract model that describes only
the desired behavior to be realized by the circuit without specifying actual cir-
cuit components. This allows the essential features of the design to be worked
out without becoming mired in implementation details, and also provides a
readable description of the design that can assist in developing, documenting,
and maintaining the circuit. Behavioral models are most often represented in
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Level Abstraction
Define the algorithms to be realized by the circuit.
Define the circuit as a structure of modules and define the
data flow between them, along with the control algorithm.
Define the circuit as a structure of primitive logic gates.
Define the circuit as a structure of transistors and other low-
level electronic components.
Describe the geometric patterns of materials that define the
physical IC layout.

Behavioral
Register Transfer

Gate
Transistor

Layout

Figure 2.36 Levels of model abstraction for digital logic circuits.

a hardware description language (HDL), such as VHDL [10-12] or Verilog
[13]. HDLs enable a designer to formally express the algorithms that describe
the behavior of the circuit. Logic equations, truth tables, and minterm or max-
term lists are other commonly-used mechanisms for describing circuit behavior
without implying a particular circuit structure. Another approach is to write a
computer program in a standard programming language, such as C or FOR-
TRAN, to model the behavior of the circuit. However, the resulting models are
typically not compatible with other simulation and other CAD tools, making
this approach less attractive.

Figures 2.37 and 2.38 present three different forms of a behavioral model
of a 1-bit full-adder circuit. As shown in the block diagram of Fig. 2.37a, a full
adder has two operand inputs, addend a and augend b, a carry input, cjn , a sum
output s ,and a carry output cout . Figures 2.37b and c list the truth table and logic
equations, respectively, that define the sum and carry functions of the full adder.

Figure 2.38 lists a VHDL behavioral model of a full adder. A VHDL
model consists of two parts: an entity and an architecture. The entity defines
the interface between the circuit and the outside world. Corresponding to the
block diagram of Fig. 2.37a, the VHDL entity description of the full adder lists
three input “ports,” a, b, and c. , and two output ports, 5 and c ur all declared

ba
cin

a b cin cout s
' ’

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0
0 1

i = f l 0 /? ® q n
cout = ab + acln + bcin

Full adder 0 1
1 0
0 1I (c)1 0
1 0

cout s 1 1

(a) (b)

Figure 2.37 Behavioral models of a full-adder circuit, (a) Block
diagram, (b) Truth table, (c) Logic equations.
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entity full.adder is
port{a,b,cin: in bit;

s,cout: out bit}
end full.adder;

architecture behavior of full.adder is
begin
process(a,b,cin)
variable ai.bi,ci,si: integer;
begin

— convert bit types to integers
if a ’0’ then ai : 0;

else ai := 1;
— convert a to integer

end if;
if b - 0* then bi :* 0;

else bi : 1;
— convert b to integer

end if;
if cin *0’ then ci : 0; — convert cin to integer

else ci : 1;
end if;

— compute the integer sum of the inputs
si := ai bi ci;

— convert the result to separate sum and carry bits
case si is
when 0 -> s <= *0*

when 1 *> s < *1 *
when 2 > s < *0*

when 3 > 8 < * 1*
end switch;

end process;
end full.adder;

cout < *0*

cout <= '0'
cout <- *1'
cout <= }1 *

Figure 2.38 VHDL behavioral model of a full adder circuit.

to be of data type “bit.” The first line of the entity declaration defines the name
of the model to be “fulLadder.”

While the entity describes the circuit from the viewpoint of the outside
world, the architecture defines the function implemented within the circuit. A
given circuit can be modeled and implemented in many ways, so VHDL allows
multiple architectures to be defined for a given entity. A designer does not need
to know the implementation details of a circuit in order to use it in a higher-level
design.Only the definitions of the signals into and out of the circuit and their var-
ious timing and loading parameters are needed to be able to work with it. Thus,
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the entity description supplies all the information needed by a user of the mod-
ule. In the full-adder architecture listed in Fig. 2.38, the first line indicates that
this particular implementation of “fulLadder” is called “behavior.” The adder
function is described here by a “process” in which the three inputs are converted
to integer values and added to produce a sum.The result is the converted into two
separate bits, a sum bit of 0 or 1, and a carry output if the sum is equal to 2. The
phrases beginning with two dashes are comments and are not part of the model.
The reader is referred to [11,12] for more information on modeling with VHDL.

A structural model is simply an interconnection of components, that
is, a “structure,” with no explicitly specified behavior. Behavior is deduced
by analyzing the behavioral models of the individual components and their
interconnection. The most common mechanism used to represent structural
models of digital circuits is the logic or schematic diagram. Textual represen-
tations of schematic diagrams, called netlists, are also used frequently, as are
HDL descriptions of circuit structures. Figures 2.39a and b present a structural
model of the full-adder circuit defined earlier in schematic and netlist formats,
respectively.

The netlist format is of particular interest since most CAD systems require
a netlist in order to simulate the operation of a circuit. If schematic diagrams
are used, they are typically translated to netlist form prior to simulation. A net
is defined as a wire or logic signal line whose value can be controlled and/or
monitored during circuit operation. In a netlist, each circuit element is typically
defined as follows:

gatejiame gate-type output input1 input2 ... inputN
where gate-name is a symbolic name assigned to this particular gate, gate-type
is the type of logic gate (AND2, OR3, and so on), output is the name of a net
connected to the gate output, and inputl through inputN are the names of nets
connected to the gate inputs. In this circuit and the following examples, gate

—V aID—: X 1XIb -—<23E> X2
i—v c‘nd>—r /1 IN a

12 IN b
/3 INa 1Al X\ XOR2
X2 XOR2
A1 AND2
A2 AND2
A3 AND2

bxl a
xlS Cm

a\ bacout <22] alA2 a Cm
b cm

a1 al a3
ab

R1 OR3
a3 OI OUT

02 OUT
sA3

(a) (b)

Figure 2.39 Structural models of a full-adder circuit, (a) Schematic diagram,

(b) Netlist.
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type AND2 is a two-input AND gate, XOR2 a two-input exclusive-OR gate,
and OR3 a three-input OR gate.

Figure 2.39b presents the netlist extracted from the schematic diagram
of Fig. 2.39a. In this example there are six primitive logic gates and nine nets.
Nets a,b,and cin are designated as external inputs, while 5 and cou[ are external
outputs. Nets al , al, a3, and x\ are all internal to the circuit. Note that the
IN and OUT gate types do not actually correspond to logic gates, but simply
designate external connections.

Figure 2.40 lists a VHDLstructural description of the full-adder schematic
of Fig. 2.39a. Note that the VHDL descriptions of both the structural and
behavioral models use the same entity definition. This is because the interface

entity full.adder is
port{a,b,cin: in

s,cout:
end full_adder;

bit;
out bit}

architecture structure of full_adder is
component X0R2

port{z: out bit;
x,y: in bit};

end component;

— declare XOR gate

component AND2
port{z: out bit;

x,y: in bit};
end component;

— declare AND gate

— declare OR gatecomponent 0R3
portfz: out bit;

w,x,y: in bit};
end component;

signal xltal,a2,a3: bit; — internal signal wires

— define the schematic by connecting component ports
— to signal wires

XI: X0R2 port map (xlfa,b);
X2: X0R2 port map (s,xl,cin);
Al: AND2 port map (al,a,b);
A2: AND2 port map (a2,a,cin);
A3: AND2 port map (a3,b,cin);
01: 0R3 port map (cout,al,a2,a3);

end full_adder;

begin

Figure 2.40 VHDL structural model of a full-adder circuit.
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with the outside world is independent of the internal implementation of the
function. The VHDL architecture of the structural model defines the imple-
mentation as simply an interconnection of components XOR2, AND2, and
OR3. Each component to be used is declared by a “component” statement list-
ing the entity name and port list of the component. When the model is compiled,
the models of these components will be obtained from a component library.
In the body of the architecture, each component to be used is instantiated in a
separate statement, with each instance assigned a unique gate name. The circuit
structure is defined by associating signals (wires) with input or output ports of
the components. For example, signal x\ in the full-adder architecture of Fig.
2.40 is connected to output port z of XOR2 gate X 1 and to the x input of XOR2
gate X 2. Likewise, external inputs a and b are connected to input ports x and
y of XOR2 gate X 1. The reader may refer to [11,12] for further information
on creating structural models with VHDL.

Digital circuit models need not be exclusively behavioral or structural.
Most large designs are developed in a modular fashion, beginning with a behav-
ioral model that is partitioned into modules. Digital circuits for each module are
then designed separately until the entire circuit is realized. During this process,
some of the modules may have behavioral models and some structural. Circuit
models that contain both behavioral and structural components are referred to
as mixed-mode models. As the logic circuit for each module is developed, it is
inserted into the overall model in place of the behavior it realizes, and the entire
model is verified to ensure that the overall behavior is correct. This allows each

*a Sum
module

b S

cin

Carry
module

cout*

(a)

a b cin cout
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
0
0
1
0
1
1

(b) 1

(c)

Figure 2.41 Mixed-mode model of the full-adder
circuit, (a) Full-adder block diagram, (b) Circuit for the
sum function, (c) Truth table of the carry function.
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entity full.adder is
portfa,b,cin: in bit;

s,cout: out bit}
end full.adder;

architecture structure of full.adder is
component X0R2

port{z: out bit;
x,y: in bit};

— declare XOR gate

signal xl ,al ,a2,a3: bit; — internal signal wires

begin— realize sum bit with XCIR gate structure
XI: X0R2 port map(xl,a,b);
X2: X0R2 port map(s,xl,cin);

— describe behavior of carry
process(a,b,cin)
begin — carry out 1 if at least two inputs 1

if a = ’1 y and b = * 1 * then
cout <- * 1};

elsif a * and cin = ,1* then
cout < * 1 * ;

elsif b - 'l * and cin - *1* then
cout <- *1';

else
cout < *0* ;

|I end if;
iff end process;
end full.adder;

Figure 2.42 VHDL mixed-mode model of the full-adder circuit.

individual circuit to be tested within the context of the overall design without
waiting for the entire logic circuit to be developed.

Figure 2.41a shows a mixed-mode model of the full adder, which has
been partitioned into separate modules to compute the sum and carry bits. In
Fig. 2.41b, the sum is realized by a structure of two XOR gates. The carry
output, as shown in Fig. 2.41c, is modeled by its truth table. The next step in
the design would be the design of the logic circuit for the carry output from its
truth table.

Figure 2.42 presents the same mixed-mode full-adder model in VHDL.
As in Fig. 2.41, the sum is realized by a structure of two XOR gates, while the
carry output is described only by its behavior. It should be noted that VHDL,
as well as a number of other HDLs, are capable of representing circuits and

www.youseficlass.ir



I
148 Chapter 2 Algebraic Methods for the Analysis and Synthesis of Logic Circuits

systems at any desired level of abstraction or any mixture of levels, allowing
the designer to work within a single environment from concept to logic circuit
realization.

2.7.3 Design Synthesis and Capture Tools
The Design Synthesis Process
As described earlier, logic synthesis is the process of designing a digital circuit
from some initial specification of a problem. As illustrated in Fig. 2.43, a
number of activities are associated with the synthesis of a logic circuit.

Behavioral models

HDL model Truth table Logic equations

I
Automatic
synthesis

Automatic
synthesisFunction

library
* Structural models

Schematic Netlist

Logic
equations Design

optimizationComponent
library

>

' '
MinimizeConstraints *

Schematic

Optimized
logic

equations
Back

annotation Netlist
generation

Map design
onto circuit
elements

Component
library

*

Circuit
netlist

Figure 2.43 Synthesis of a logic circuit from a behavioral or structural model.
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If the designer begins by developing a behavioral model, this model must
be transformed to a structural model that can be realized with available com-
ponents. This transformation begins by deriving a set of logic equations from
the model. These equations are then reduced or otherwise manipulated to sat-
isfy given constraints for the design. These constraints may include limitations
on total cost, number or types of gates that may be used, gate fan-in and/or
fan-out, physical space (restricting the number of gates or circuit packages),
timing characteristics (restricting the design to, say, two versus three or more
levels), power consumption, and design time. Finally, the reduced equations
are mapped onto specific circuit elements. The final output is a logic circuit
netlist which indicates the elements used and their interconnection.

Some or all of these steps in the transformation can be done automatically
with special CAD tools. We will discuss design minimization in more detail
later in this chapter. The reader is referred to [14] for further information on
the automatic synthesis of logic circuits from behavioral models.

If the designer develops a structural model in schematic or netlist form,
rather than beginning with a behavioral model, then the steps described above,
that is, derivation and minimization of logic equations and mapping onto circuit
components, must be performed manually. In this case, only the final circuit
is stored in the final circuit database. However, many CAD systems include a
function called back annotation,shown in Fig. 2.43, that extracts logic equations
from a schematic netlist that can be fed back into the design process. This
allows the design to be processed by the minimization tools and remapped onto
selected circuit components to make whatever improvements or corrections are
desired.

Each circuit model created in the design process must be captured in a
format that can be stored and processed by a digital computer. CAD tools used
in design capture vary according to the type of model. Schematic diagrams are
created with a schematic capture or schematic editor program, which provides
an interactive graphics environment in which the designer can draw and edit
schematic drawings. Nonschematic model formats are created and stored in
a CAD system as ASCII text files and can thus be developed with standard
text editors. Some CAD systems provide special text editors that have been
customized for a particular HDL, netlist, or other model format. These special
editors aid in formatting the model and checking for errors, as well as providing
shortcuts for model creation, such as model templates that can be filled in with
element names and parameters.

Before a design can be processed by a computer, it must often be trans-
lated into an intermediate format that can be manipulated by the various CAD
tools. This intermediate format would be independent of the method used to
develop the model. During translation, the model is typically checked for er-
rors. These errors include connectivity errors, such as dangling (unconnected)
gate inputs, multiple gates driving a single line, and one gate output driving
too many gate inputs, as well as such errors as unnamed nets and missing,
improper, or inconsistent circuit parameters. These are often referred to as de-
sign rule errors, since they violate basic logic circuit design rules. However,
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these checks do not determine the logical correctness of the function. Logical
correctness must be verified via logic simulation, as will be discussed later.

Designs represented with an HDL, such as VHDL, are likewise checked
for errors while being translated to intermediate formats, much as a standard
FORTRAN or C program would be checked for syntax errors while being
compiled. Errors detected during translation include language syntax errors, as
well as design rule errors similar to those just described.

Schematic Capture
A schematic capture program is an interactive graphics tool with which a
designer “draws” a logic diagram to be processed by a CAD system. The basic
steps in the schematic capture process are as follows:

1. Create (or “open”) a drawing sheet.
2. Select components from a library and place them on the drawing sheet.
3. Draw nets (wires) to interconnect the components.
4. Assign symbolic names to each component and net.
5. Define or adjust component characteristic parameters.
6. Check the schematic for errors.
7. Save the schematic in the database.
In schematic capture, a single component symbol may represent a primi-

tive logic element or an entire circuit module. A primitive component is defined
as one that is not a composition of smaller components. Each primitive compo-
nent is represented by a graphical symbol, to be used in drawing schematics, and
an underlying model that describes its behavior, to be used during simulation.
In digital logic circuit design, primitive components typically include basic
logic gates, input and output connectors, and latches and flip-flops (latches and
flip-flops will be defined in Chapter 6). Input and output connectors are not
really circuit elements, but serve to identify connections to external signals.

Components are kept in one or more libraries in the CAD system
database, from which they are retrieved as needed. Typically, one or more
libraries of standard primitive components are supplied with the CAD sys-
tem, providing the designer with a collection of commonly used logic gates
and similar elements. In the full-adder schematic of Fig. 2.39a, the logic el-
ements AND2 (two-input AND gate), XOR2 (two-input exclusive-OR gate),
OR3 (three-input OR gate), IN (connector for an external input signal), and
OUT (connector for an external output signal) were selected from a library of
primitive logic gates.

Libraries of nonprimitive circuits are used in the creation of hierarchical,
modular designs, as will be described in Chapter 4. These libraries may be
supplied by the CAD system vendor or obtained from a third party, such as the
manufacturer that will fabricate the VLSI chips or circuit boards designed with
this system. Most CAD systems also support user-created libraries, allowing an
individual designer to develop and store circuit designs in a special library for
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future use. The remainder of this chapter will focus on modeling combinational
logic circuits with primitive gates.

Figure 2.44 illustrates the schematic capture process, using the full-adder
circuit of Fig. 2.39a as an example. Figure 2.44a shows a typical schematic
capture screen. A menu of operations is displayed to the left of the drawing
area. An operation is performed by positioning a cursor on the menu selection
with a mouse or similar pointing device and then clicking a mouse button or
pressing a key to initiate the operation. For this discussion, we shall refer to this
process as simply clicking on a selection. Most systems also allow commands
to be entered from a keyboard.

A drawing sheet is opened by clicking on OPEN SHEET in the menu.
Components are then selected from the library and positioned on the sheet.

MENU DRAWING AREA MENU DRAWING AREA

Parts LibraryZOOMZOOM

I> <DOUTIN and2
and3 OSELECT DELETE or2
or3COPY MOVE
nand2
nand3
nor2
nor3
xor2

DRAWPLACE
COMP NET

NAME PARAM
not
inOPEN

SHEET
SAVE

SHEET out

(a) ( b)

DRAWING AREA MENU DRAWING AREAMENU

3HZOOMZOOMZOOM ZOOM
OUT !>ININ OUT

cmO Q3>SELECT DELETE SELECT DELETE

COPY MOVE MOVECOPY

) al
A!

PLACE
COMP

DRAW PLACE
COMP

DRAW
NET NET

a2 coutA2 02RI
PARAMNAME PARAM NAME

a3
A3OPEN

SHEET
SAVE

SHEET
OPEN

SHEET
SAVE
SHEET

<d)(c)

Figure 2.44 The schematic capture process, (a) Main menu and drawing area,

(b) Gates selected from a library, (c) Nets drawn to connect gates, (d) Names
added to gates and nets.
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Clicking on PLACE COMP produces a menu of available components, as
shown in Fig. 2.44b. A component is selected from the library by clicking on
it in the menu. The selected component is then placed on the drawing sheet by
moving the cursor to the desired location and clicking again. Once on the sheet,
a component can be copied, moved around, or deleted as desired by clicking
on the component to select it and then clicking on COPY, MOVE, or DELETE
in the main menu. Other common operations include scaling and rotation of
components. Figure 2.44b shows the full-adder drawing after all gates have
been placed on the sheet.

After components have been placed on the sheet, they must be inter-
connected by nets (wires). One end of a net is connected to a component by
clicking on one of the component’s input or output terminals. The net is then
drawn by moving the cursor; a segment of the net is drawn from the initial end
point to the cursor. The net is completed by clicking on the gate terminal or net
to which it should be connected. Nets with multiple segments are created one
segment at a time by moving to and clicking at the end point of each segment.
Some CAD systems automate this process, allowing the user to simply click on
the two points to be connected. The computer then automatically routes the net
between them. The completely wired full-adder circuit is shown in Fig. 2.44c.

The next step in creating a schematic drawing is to assign symbolic
names to the components and nets, as shown in Fig. 2.44d. A component or
net name is assigned or changed by clicking on NAME in the menu, clicking
on the component or net in the drawing, and then entering the desired name
from a keyboard. These symbolic names are used for several purposes. During
simulation, each net is identified by its symbolic name to specify where to
apply test stimuli and/or observe logic values. For testing, failures of selected
gates are simulated and test vectors applied to detect the failures. The symbolic
gate names are used to identify the locations of faults during this process. In
addition to use during logic and fault simulation, the naming of components
and nets helps to document the design.

In addition to assigning symbolic names, many CAD systems allow
various parameters to be defined for each gate, including timing delays and
other properties. Parameters are added and changed in the same manner as
symbolic names, using the PARAM menu option.

After the schematic drawing has been completed, the final step is to check
it for errors and then save it in the database by clicking on SAVE SHEET in
the main menu. At this point, any connectivity or other design errors will be
identified so they can be fixed during the next drawing session.

2.7.4 Logic Simulation
Simulating the operation of a digital logic circuit serves three primary purposes:
logic verification, performance analysis, and test development. A block diagram
of the simulation environment is illustrated in Fig. 2.45. The circuit model is
typically given to the simulator in a flattened netlist form. Flattening is the
process of replacing all nonprimitive circuit modules with the networks of
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primitive logic elements that they represent. To process a netlist, the simulator
accesses a primitive component library to get the simulation models of the logic
gates specified in the netlist.

Design

Test
vectors

Netlist

Component
models

Simulator

Timing
analysis

data

Logic
verification

data

Figure 2.45 Digital logic simulation environment.

A logic circuit design is verified by applying test vectors to stimulate
the circuit inputs. A test vector is an ordered list of ones and zeros, each
corresponding to a stimulus value to be applied to a specified circuit input. The
output responsesof selected gates are then captured and checked for correctness
by comparing them to the truth table, logic equations, or other specification from
which the model was developed. At the early stages of the design cycle, logical
correctness is the primary interest. Therefore, simplified or “ideal” component
models are used, which do not exhibit time delays in their responses to input
stimuli. This separates timing information from logic function to simplify the
preliminary analyses.

To analyze the performance of a circuit, each component model must
approximate with high fidelity the physical characteristics of its corresponding
device. In particular, the amount of time a device takes to respond to input
stimuli, referred to as its propagation delay, must be modeled accurately. With
accurate models, simulation results can be analyzed to predict overall propaga-
tion delays between selected input and output pins of a circuit (called pin-to-pin
delay). In addition, potential timing problems, including spikes and hazards as
will be described in Chapter 3, can be detected. When the designer is faced
with design options, simulation provides a method for evaluating the effects of
each option on circuit performance, allowing the optimal choices to be made.

After a circuit has been fabricated, it must be tested to determine if it
contains any faulty components or signal lines. For each potential fault, test
vectors are applied that will produce outputs from the faulty circuit that will
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differ from those of the fault-free circuit, enabling the tester to determine if the
fault is present. Fault simulation is the process of simulating the occurrence of
various faults (called fault injection) and determining if they are detectable by
a given set of test vectors. The results typically indicate the percentage of faults
that can be detected by the test set. Thus, fault simulation assists in developing
an optimal test set for a logic circuit, that is, a test that will detect an acceptable
percentage of the potential faults in a minimum amount of testing time. Testing
and design for testability will be discussed in Chapter 12. The remainder of
this chapter will consider only logic verification and performance analysis. The
reader is referred to [15] for further information on fault simulation and testing.

Simulation Test Inputs
Proper evaluation of a design requires a carefully designed set of test inputs,
called a test set. If logic verification of a combinational logic circuit is the
objective of the simulation, time may be ignored in the specification of test
inputs. In this case, the test set comprises a list of input vectors to be applied,
one after the other. As each input vector is applied, the circuit outputs are
computed and recorded and then the next input is applied, and so on. A test set
is listed in Fig. 2.46 for the full-adder circuit of Fig. 2.39a. This is an exhaustive
test; that is, all possible input combinations are used, allowing the entire truth
table to be verified. In general, 2n vectors are required to exhaustively test an
n-input combinational logic circuit, which might not be practical for circuits
with many inputs. In such cases, test sets are designed that allow verification
of the most common and critical circuit operations, leaving the designer with
some degree of confidence that the design is error free. The number and nature
of the test vectors used determine how high this degree of confidence is.

If circuit timing is to be studied, then test inputs must be applied at
specific times, allowing the circuit sufficient time to respond to each vector.
Therefore, the time of each input change must be specified with each vector
in the test set. Figure 2.47a shows a set of waveforms to be applied to inputs
a, b, and c of a circuit. Figures 2.47b and c illustrate two different formats
commonly used to specify test input waveforms. In Fig. 2.47b, the test set is
listed in tabular form, organized as one test vector per line. The first number on

a b cin

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Figure 2.46
Functional
test set for
the full-adder
circuit.

a
Time a b cjn

b
0 0 0 0
5 0 1 0

10 1 1 0
1 5 1 0 0

a = 0:0, 10:1;
b = 0:0, 5:1,1 5:0;

cin = 0:0;

c

0 5 10 1 5

(a) (b) (c)

Figure 2.47 Full-adder test set specifying input waveforms, (a) Test input
waveforms, (b) Tabular format, (c) Waveform format.
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each line is the simulation time at which the vector is to be applied. This same
test is given in a different format in Fig. 2.47c. In this case, each line comprises
an input name and the specification of a signal waveform to be applied to that
input. A waveform is specified as a list of {time:value} pairs, each indicating a
time at which the waveform is to be changed and the value to which the signal
should be changed. The reader should verify that the test sets of Figs. 2.47b
and c describe the same test.

Event-Driven Simulation
Some logic simulation programs compute the output of every logic gate during
every interval of simulated time. However, most digital logic circuit simulators
are event driven, where an event is defined as a change in the value of a signal
at a given time. For example, consider the AND gate of Fig. 2.48a and the
timing diagram of Fig. 2.48b. At time T{ ) the AND gate inputs are a = b = 1,
as illustrated in the timing diagram. At time T ] the event ( T x , a,0) takes place,
i.e. at time 7, , signal a changes to 0 from its present value. As a result of
this event on input a, the AND gate output c will change from 1 to 0 at time
Tj -FAt , where A t is the propagation delay through the AND gate. Therefore,
the event -F Af , c, 0) results from event (7, , a, 0). Now assume that the
event (T v b, 0) occurs, i.e. input b changes from 1 to 0 at time 72. Since the
AND gate output c is already 0, it is not affected by the new value of b, and
no additional events are triggered. In this manner, each input event propagates
through the circuit until it either reaches an output of the circuit or until no
further signal changes result, i.e. the events “drive” the simulation.

b

a

b

To 7, + At7 T2

(a) (b)

Figure 2.48 Event-driven simulation example, (a) AND gate model,
(b) Timing diagram.

An event-driven simulator is organized around an event queue or event
list, in which events are stored in order of their scheduled time of occurrence.
In each simulation step, the first event is removed from the queue, i.e. the event
that is scheduled to occur next. The event is made to occur by changing the
value of the indicated net. If this net is an input to one or more gates, then
the output of each affected gate is recomputed. For each computed output that
differs from its present output, a new event is created for the net driven by that
output and placed in the event queue. The time at which this event is scheduled
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is computed as the current time plus the gate delay. In this manner, simulation
continues until the event queue is empty or until a specified time interval has
elapsed.

Simulation is initiated by converting the input test set into a set of events
and inserting them into the event queue at their scheduled times. During sim-
ulation, a record of all events is maintained from which simulation results can
be generated and examined, either in tabular or timing diagram form. Figure
2.49 illustrates the event sequence that would occur during a simulation of the
full-adder circuit of Fig. 2.39a using the test set of Fig. 2.47a. In this example,
each gate was assumed to have a delay of one time unit. In the figure, the value
x represents the initial unknown value of a logic signal.

The results of the simulation, showing only the external inputs and out-
puts, can be displayed as waveforms, as illustrated in Fig. 2.50a, or in tabular
format, as in Figs. 2.50b and c, which list samples of the waveform taken at
the indicated times. The designer usually specifies the signals that are to be

Event
Initial state
(0,0,0)
(0A0)
(0,c.„,0)
(U1,0)
( U2,0)
(U1.0)
( U3,0)
(2,5,0)
(2^°)

Resulting Events a3 *1b a1 a2Cin S Ca out
X X X X X X X X X

( 1 ,01,0),( 1 ,02,0)
(1 ,*1,0),( 1,03,0)
(1 ,01 ,0),(1,02,0)

0 x X X X X X X X

00 X X X X X X X

00 0 X X X X X X

0 0 0 0 X XX X X

0 0 0 0 0 XX X X

(2,5,0)
(2^°)

0 0 0 0 0 0x x x
0 0 0 0 0 0 0 X x
0 0 0 0 00 0 0 X

0 0 0 0 0 0 00 0
(5A1)
(6,*1,1)
(7,5,1)

(6,*1,1)
(7,5,1)

0 0 0 01 0 0 0 0
0 0 0 01 0 0 1 0
0 0 0 11 0 0 1 0

(10,0,1)
(11,*1,0)
(11,a l l )
(12,5,0)

02^,1 )

(11,*1,0),(11 ,01,1)
(12,5,0)

02^1)

1 1 0 0 0 0 1 1 0
01 1 0 0 0 0 1 0

1 1 0 1 0 0 0 1 0
1 1 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0 1

( 15A0)
(16,*1,1)
(16,01,0)
(17,5,1)

(16,*1,1),(16,01,0)
(17,5,1)

01 0
1 0
1 0
1 0
1 0

1 0 0 0 0 1
0 1 0 0 1 0 1

1) 0 0(17,c 0 0 1 0 1
OM /’

0 0 0 10 1 1
(17,c 1) 0 00 0 0 1 1out ’

Figure 2.49 Event sequence in the full-adder simulation.
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Time a b Cjncoul s Cl b C jn ^ out STime
a

0 0 0 0 X X
0 0 0 0 0
0 0 0 0 0
0 l 0 0 0
0 l 0 0 l
I 1 0 0 1
1 1 0 1 0
1 1 0 1 0
1 0 0 1 0
1 0 0 0 1
1 0 0 0 1

0 0 0 0 X X
0 0 0 0 0
0 1 0 0 0
0 1 0 0 1
1 1 0 0 1
1 1 0 1 0
1 0 0 1 0
1 0 0 0 1

I 22b I
I 4 5i i
i 6 7icin 108i i

10 12i iQ>ut 12 15ii 14 17i i
i 165

ii i ii 18i

200 5 7 10 12 15 17 20

(b) (c)(a)

Figure 2.50 Full-adder simulation results, (a) Waveform format, (b) Samples
at fixed intervals, (c) Samples at each event.

displayed and may often generate requests for multiple displays for a given
simulation, displaying different information each time. The table in Fig. 2.50b
lists the values of the selected signals taken every two time units, while Fig.
2.50c lists values only at those times at which events occurred. The latter form
makes it easier for the designer to identify significant events during the sim-
ulation. However, if the number of events is large, sampling at fixed intervals
might be preferred, with the sampling interval selected to limit the total number
of samples.

To illustrate the use of simulation to verify a logic function, let us debug
the full-adder circuit of Fig. 2.51a, which contains one error. Each gate and
inverter is assumed to have a delay of one time unit. Applying the test set of
Fig. 2.47 produces the simulation results shown in Fig. 2.51b. Comparing the
results to the truth table of the full adder given in Fig. 2.37b, we see that the
output 5 at time 3 is incorrect for input vector abcin = 000 (output s should
be 0 and not 1), but is correct for the other input vectors. To isolate the source
of the error, we capture more information by adding signals nvnv ny and n4
to the output trace, as shown in Fig. 2.51c. Examining this trace, we see that
net n3 = 0 at time 2 for input vector abcin = 000, whereas the correct value
should be n3 = 1. This directs us to the input of that NAND gate, where we
see that a connection is missing to this gate from input b, i.e. the gate realizes
the expression ac instead of abc. Therefore, we have identified the error and
can now correct it and resimulate to verify proper operation.

We can also use logic simulation to identify potential hazards/glitches
in a logic circuit. For example, the logic circuit of Fig. 2.52a is suspected to
contain a static hazard. If the inputs are initially all 1’s and we apply test vector
(a , b , c ) = 011 at time tv the simulation produces the waveforms of Fig. 2.52b,
where each gate is assumed to have a delay At .Output g was expected to remain
constant, since g = 1 for both input vectors. However, it is obvious from the
output waveform that there is a glitch in the output at time ty Looking at the
inputs to the OR gate, we see that the glitch is caused by both e and / being
0 momentarily between times t2 and ty until / finally changes to 1, returning
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C>° Va

Time a b cm s1 «20°b 0 0 0 0 X
3 0 0 0 1
5 0 1 0 1

10 1 1 0 1
1 3 1 1 0 0
1 5 1 0 0 0
1 8 1 0 0 1

s

0°cin

(a) (b)

Time a b cm nx n2 n3 n4 s

0 0 0 0 X X X X X
1 0 0 0 1 1 X 1 X
2 0 0 0 1 1 0 1 X
3 0 0 0 1 1 0 1 1
5 0 1 0 1 1 0 1 1

10 1 1 0 1 1 0 1 1
12 1 1 0 1 1 1 1 1
1 3 1 1 0 1 1 1 1 0
1 5 1 0 0 1 1 1 1 0
1 7 1 0 0 1 0 1 1 0
1 8 1 0 0 1 0 1 1 1

(c)

Figure 2.51 Debugging a full-adder containing an error, (a) Erroneous full-adder
circuit, (b) Simulation output showing error in 5 at time 3. (c) Expanded simulation
results, isolating error to ny

output g to 1. Having identified the hazard, we can apply the procedures to be
discussed in Chapter 3 in order to eliminate it.

Not all simulators are event driven. In some cases, the circuit model is
transformed into a computer program which is then compiled and executed
by the host computer, just as any other program. Instead of processing events,
the output of each gate is recomputed during each time interval. During the
model transformation, the gates are ordered so that the inputs of each gate
depend only on the external inputs and the outputs of gates which have already
been computed during the current time interval. The primary benefit of using
a compiled model and careful gate ordering is that the speed of execution of a
compiled simulation is typically much faster than that of an event-driven sim-
ulation in terms of the number of gate simulations performed per unit of time.
However, since compiled simulators recompute each gate output during every
simulation time interval, whether or not the gate inputs have changed, much
time is used in evaluating inert gates, i.e. gates whose inputs have not changed
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b
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(b)

Figure 2.52 Static hazard detected via simulation, (a) Network with static
hazard, (b) Simulation output waveforms.

and therefore whose output will not change. Note that overall simulation time
can be computed as

time
^simulation — x gates evaluated

gate
In event-driven simulation, only the outputs of those gates affected by input
events are recomputed, improving overall performance in most cases by more
than making up for the slower evaluation time for each gate. In addition, many
compiled simulations impose limits on the types of delay models that can be
used, which is not the case in event-driven simulation.

Symbolic Logic Signal Values
In Chapter 1 we defined 0 and 1 to be the only possible values of a digital logic
signal. When evaluating a real electronic circuit, the designer may need infor-
mation about a given signal other than its logic value, such as how strongly it is
being driven or whether it is rising or falling. For this reason, logic simulators
often provide signal “values” other than 0 and 1 to allow various conditions to
be represented. In these simulators, the value of a logic signal is represented
by a state and a strength, where the state represents a particular condition and
the strength provides information about the gate which is supplying the signal.

The minimum set of states used in logic simulation is {0, 1}. Many
simulators add a third state value, X, to represent an unknown state or a
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potential problem on a signal line, such as a voltage spike or multiple gates
trying to drive a single net to different states. Signals are often initialized to
X at the start of simulation, as shown in the example presented in Fig. 2.49,
to indicate the unknown initial condition. These initial X values are replaced
by normal logic values as the circuit is exercised. If a signal line remains at X
throughout the simulation, it indicates potential problems to the designer, since
that particular line was not affected by any of the test inputs.

With the addition of the X state, new truth tables for each of the prim-
itive logic gates must be defined. Figure 2.53 gives the truth tables for AND,
OR, and NOT gates. The reader should verify that these can be derived from
the definitions of null and identity elements presented earlier in this chapter.
States other than 0, 1, and X may also be used by simply defining new truth
tables for the elements. Common states used in commercial simulators include
rising/upward-changing (U), falling/downward-changing (D), and others.

AND 0 1 X OR 0 1 X NOT 0

0 0 0 0
0 1 X
0 X X

0 0 1 X
1 1 1
X 1 X

0 1
1 1 1 0
X X X X

Figure 2.53 Truth tables for three-valued logic.

In some circuits, the outputs of multiple gates can be connected to a
single line, as illustrated in Fig. 2.54. In these cases, the strength with which

Vcc

/1
{> F lt>°

F0 R1 F0

F0 Ux

12

t>°
12

t>°
F1 F 1

F0 F0

(b)(a)

Figure 2.54 Signal strength used to resolve conflicting gate outputs,
(a) Output resolved in favor of stronger signal, (b) Output value unable
to be resolved.

each gate drives the signal line must be considered so that the resulting signal
value on the line can be determined, especially if the gates attempt to drive the
same line to different states. Typical signal strength values used in simulation
include the following:
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Forcing ( F ): the signal line is strongly forced to a given state.
Resistive (R): the signal line is weakly forced to a given state.
Floating (Z ): the signal line is not forced at all. This happens when
a signal line is not driven by the output of any logic gate.
Unknown (U ): the signal strength cannot be determined.

Each signal value is specified by a combination of a state and strength. For
example, F0 indicates forced strongly to 0, FI indicates weakly forced to 1,
and so on. If the outputs of two different circuit elements are connected to the
same signal line and try to force the line to different states, the strength values
are used to resolve the conflict. For example, consider the circuit of Fig. 2.54a,
in which the output of open-collector inverter / 1 is R1 and output of normal
inverter /2 is F0. In this case the resolved state would be F0. If a value cannot
be resolved, say if one output is F0 and the other is FI , as shown in Fig. 2.54b,
the value U x would be assigned, indicating an unknown strength and state.
This condition alerts the designer that there is a potential problem with this
circuit.

If it is not important to monitor signal strength, state alone may be
specified, with F usually assumed to be the default strength.

Primitive Device Delay Models
Every primitive logic gate is characterized by a logic function and an intrinsic
delay, that is, the amount of time that it takes for its output to respond to
an input event. Delays are functions of the circuit complexity, the electronic
technology used, and such factors as gate fan-out (the number of other gate
inputs driven by a single gate output), temperature, chip voltage, and so on. A
typical model for a primitive AND gate is illustrated in Fig. 2.55, comprising
an ideal (zero-delay) AND gate followed by a delay element. For each output
change, the actual change is delayed by time At , which is the value assigned
to the delay element.

In processing an event at time T at an input of the AND gate, the simulator
would first compute the output of the ideal gate, c*, using a truth table or other
model. The computed value of c* would then be scheduled to appear at the
output c of the delay element at time T + At. This behavior is often referred
to as transport delay, since the output waveform at c appears to be transported,
or shifted in time by At from the output of the ideal gate, c*.

The delay element may incorporate other delay models to represent differ-
ent physical characteristics of the gate. The most commonly used delay models
include unit, nominal, rise/fall, and min/max delays. These are described in the
following sections.

c*
At

b —
Ideal Time

delaygate

Figure 2.55 AND gate
modeled as an ideal gate
and a transport delay.

Unit/Nominal Delay
Verification of the logical correctness of a design does not require detailed
timing information. In such cases, it is sufficient to assume that each gate has
some fixed delay associated with it. The simplest approach is to assign to each

www.youseficlass.ir



I
162 Chapter 2 Algebraic Methods for the Analysis and Synthesis of Logic Circuits

a a

bb
i ii
i ii

i
i i

ii i
i ic c ii T

I III II
III IAt At *PLH

( rise time)
fpHL

(fall time)

(b)(a)

a

b
i

i
i
i

c T
I]

^ min — ii
i
i

ii t max

(C)

Figure 2.56 Effects of different transport delay models, (a) Unit/nominal delay,
(b) Rise/fall delay, (c) Min/max delay.

gate in the circuit the same unit delay, that is, assume that each gate output
responds to an input event in exactly one time unit. All simulation times are
then measured in terms of an integral number of time units. The actual amount
of time represented by one time unit is not important to the simulator; the
designer can simply multiply a given number of time units by the physical time
represented by a single unit.

Since different logic gates have different characteristics, more accuracy
can be achieved by assigning nominal delays, which are transport delays that
are determined separately for each type of gate. For example, a simple gate,
such as a NAND or NOR gate, might be assigned a nominal delay of one time
unit, while a more complex element, such as an XOR gate, might be assigned
a nominal delay of two time units. Figure 2.56a illustrates the operation of the
AND gate of Fig. 2.55, assuming a nominal delay of At for the gate.

A degenerate case of the unit and nominal delay models is the zero delay
model, in which an input change is assumed to have an immediate effect on the
output. The zero delay model, however, does not always provide a true picture
of how a circuit operates, particularly in the case of sequential circuits, as will
be described later in this text. Thus the use of zero delay models is primarily
restricted to verifying the logic equations realized by a combinational circuit.
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Rise/Fall Delay
The outputs of many electronic logic gate circuits take different amounts of
time to rise from 0 to 1 than they do to fall from 1 to 0. This is modeled
by replacing the single unit or nominal delay with a separate rise time, t
(propagation delay from low to high), and fall time, t

P L H
(propagation delayP H L

from high to low). When scheduling an output event, the simulator delays the
signal by t on a 0 1 change, and by t

1 event occurring at time T would be scheduled at T + 1
0 event occurring at time T would be scheduled at T + 1

for a 1 0 change. Thus,
while

P L H P H L
a 0 P L H ’
a 1 . This isP H L
illustrated in Fig. 2.56b for the AND gate model.

Ambiguous or Min/Max Delay
The characteristics of real electronic devices are affected by manufacturing
process variations or by such factors as chip voltage, temperature, and fan-
out. This makes it impossible to predict the exact rise or fall time of a signal.
For applications in which timing is critical, designers often perform worst-
case analyses of a circuit to determine the effects of gates performing at their
fastest or slowest speeds. This is handled by specifying a range of values, [ tmin ,
t 1 for each timing parameter, where t . is the minimum delay and t

nY

the maximum delay. Each shaded area in Fig. 2.56c indicates the time interval
during which the output event might occur, with the interval beginning at time
T + f . and ending at T + t . The output may change at any time within

JillH JflL+A

this interval.
One problem with using min/max delays is that the results tend to be

pessimistic.This is because the very worst case of all gates operating with their
slowest delays or all with their fastest delays is indicated in the results. This
will rarely be the case in actual circuits.

Consider for example the circuit of Fig. 2.57a and assume that each gate
has minimum delay tmin = 2 and maximum delay tmax = 5. The circuit will be
simulated with initial conditions of the inputs set to a = b = d = 0 and c — 1,
and then input d will change from 0 to 1 at time t = 10. Figure 2.57b shows the
output waveforms produced by the simulator using the min/max delay models
of the gates. Note that the width of the ambiguity region, that is, the region
within which a change can occur, is wider at each successive level of the circuit.
The minimum time at which output h can change is equal to the time of the
input change plus the sum of the minimum delays for signals e, g , and h, or
10 + 3 x tmin = 16. Likewise, the maximum time that it could take for output h
to change is determined by the maximum delays of the gates along the path from
the input to the output, or 10 + 3 x tmax = 25. Thus, the output may change
any time within the time interval [16, 25]. In reality, it is unlikely that all the
gate delays will be either the extreme minimum or maximum. Therefore, the
actual change can normally be expected to occur somewhere near the middle
of this region. However, the designer must consider the two extremes to ensure
proper circuit operation under all conditions.
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h Figure 2.57 Simulation
illustrating accumulation of
min/max delays, (a) Circuit
model, (b) Worst-case delays
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An alternative approach for examining minimum and maximum delays
is to perform a critical path analysis. In critical path analysis, no simulation is
performed. Instead, each possible signal path between the inputs and outputs
of the circuit is identified. The minimum and maximum delays of all the gates
along each path are then added to determine the minimum and maximum out-
put responses. Paths whose minimum or maximum delays represent potential
problems are identified as the critical paths through the circuit. The designer
can then modify the design along the critical paths to prevent these problems.

Inertial Delay
The delay models described are all examples of transport delay; that is, a new
value is “transported” to the output of the gate after the designated delay. This
does not always model accurately the operation of a physical electronic device.
For many devices, an input value must persist for some minimum duration of
time to provide the output with the needed inertia to change. In such cases,
short spikes at the inputs do not affect the output. The minimum input signal
duration needed to produce an output change is referred to as inertial delay.

The effect of inertial delay on circuit operation is illustrated in the timing
diagrams of Fig. 2.58. In Fig. 2.58a, a transport delay model is assumed. Any
input change results in a corresponding output change after At seconds, no
matter how brief the duration of the input value. In Fig. 2.58b an inertial delay
of At seconds is assumed, which implies that any input change shorter than At
seconds will not affect the output. In this case, two of the input changes do not
produce corresponding output changes.

Inertial delays are often modeled as delays at the inputs of a gate, as
illustrated in Fig. 2.59. For an input change on input a at time 7\ an event
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Figure 2.58 Transport versus inertial delay models, (a) Transport delay model,
(b) Inertial delay model.

is scheduled for line a* at time T -f- At. If a second change in line a occurs
before time T -f- At , then the event on line a* is canceled by removing it from
the event queue. The net result is that no changes have been scheduled for the
output c of the gate.

a*At
c* At

b At
b* Figure 2.59 Inertial delay

model implemented with input
delays.

Inertial
delay

Transport
delay

Ideal
gate

•2.8 Summary
Boolean algebra is the foundation upon which the analysis and synthesis of
switching circuits rests; therefore, much time was spent in developing Boolean
algebra as a familiar tool. In addition, the concepts of Venn diagrams, truth
tables, minterms, maxterms, and the like have been discussed in order to provide
the reader with the proper foundation necessary to attack the problems of
combinational logic network analysis and synthesis.

In addition, this chapter has examined the basic elements of computer-
aided design as they apply to combinational logic circuits. We have shown
several methods for modeling digital circuits, capturing them into the database
of a CAD system, and simulating their operation to verify the design and to
predict timing and other characteristics of a circuit before actually constructing
it. In addition, we have examined some of the automated synthesis operations
that can be performed with CAD systems, including the generation of a circuit
design from an abstract model.

The discussions of this chapter were not based on any one particular
CAD system or program. Rather, the intent was to provide an overview of
the basic processes involved in computer-aided design and analysis of digital
logic circuits. The reader is encouraged to consult the documentation and
tutorial material available with those CAD tools that are available for specific
information on how to perform the operations described here.
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2.

3.
4.
5.
6.

7.

8.
9.
10.

11.

12.

13.
14.
15.

PROBLEMS 2.1 Using switching algebra, simplify the following expressions:
(a) f ( w , x , y , z ) = x 4- x y z 4- x y z 4- w x + w x -1- x y
(b) f ( A , B, C, D, E ) = ( A B 4- C 4- D )( C 4- D)(C 4- D + E )
(c) f ( x , y , z ) = y z( z 4- z x ) 4- ( x 4- z )( x y 4- x z )

Simplify the following switching expressions.
(a) /(A , B , C , D ) = ( A+ C + D)( B 4- C )( A+ B + D)( B 4- C )( B 4- C + D)

(b) /(A, B , C, D ) = A B+ A D+ B D+ A B+ C D A+ A D+ C D+ A B D
(c) /(A , B, C, D ) = A B C + A B + A B C 4- A C 4- A B C
(d) /(A , B, C) = ( B 4- A )( A B 4- C) 4- A B A 4- A B C 4- (A 4- B ){ A 4- C)

2.2

(e) /(A , B , C) = (A 4- B )( A 4- A B )( A + B + A B C ) 4- (A 4- B )( A 4- C)

2.3 Prove part (b) of the Theorem 4 (absorption).
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2.4 Prove part (b) of the Theorem 5 (absorption).
Prove part (b) of the Theorem 9 (consensus).

Simplify the following switching expressions.
(a) /(A , X, Z) = X(X + Z) + A + AZ
(b) f ( X , Y t Z ) = ( X Y + X Z )( X + Y )
(c) f ( x , y , z ) = x y( z + y x ) + y z

2.5

2.6

2.7 Find the simplest switching expression for the following functions.
(a) /(A , fl, C) = X>( l , 4, 5)
(b) /(A , B , C, D ) = n A*(0, 2, 4, 5, 8, 11, 15)
(c) /(A , B , C , D ) = J>(0, 2, 5, 8, 9, 10, 13)

2.8 Given the function f ( x , y, z) = xy 4- write /(x, y, z) as a sum of minterms
and as a product of maxterms.

2.9 Use Venn diagrams to determine which of the following switching functions are
equivalent.

/j ( A , B, C) = A £C 4- # 4- A £C

/2(A , £, C) = A £C 4- B + A £C

/3(A , B, C) = AC 4- AC 4- £C + A £

/4(A , £, C) = AC 4- A £ + AC 4- AC

2.10 Sketch the following functions on a Venn diagram.
(a) f ( A , B ) = A B + A B
(b) f ( A , B , C) = A B + A C
(c) f ( A , B , C, D ) = A + B C D + A B D
(d) f ( A , B , C, D ) = A B + C D
Hint: Each new variable is represented by a contour that divides each disjoint
segment of the Venn diagram into two segments. A four-variable Venn diagram
is shown in Fig. P2.10.

A B

r\
A

y 1

D
Figure P2.10

2.11 Prove that the following expressions are valid using Venn diagrams.
(a) A -\- B = A B -\- A B -\- A B = A B
(b) AC 4- B C + A B B C + A B + A C
(c) A C + A B + B C = A£ + £C + AC
(d) A D + A C D + A B + A B D + A B C = A B + B D + A D + B C

www.youseficlass.ir



I
168 Chapter 2 Algebraic Methods for the Analysis and Synthesis of Logic Circuits

2.12 Use Theorem 5 to simplify the following expressions:
(a) X -f X A B C + B C
(b) xy + (x + y)z

(c) Z(Z + A £C) + A £
(d) (x + y)(xy + z)

2.13 Use Theorem 8 (DeMorgan’s) to complement the following expressions:
(c) X Y + A C + I Q
(d) ( A + B C ){ A + D E )

(a) X( T + Z( <2 + /?))
(b) x + y(z + e/?)

2.14 Apply switching algebra Theorem 9 (consensus) to simplify the following ex-
pressions:
(a) Q R + X Q + R X
(b) ( X + Y )Z + X Y W -{- Z W
(c) ( X + Y )W Z + X Y V + V W Z
(d) (x + y + z + w)( F + x)( F + y + z + w)

2.15 Use Theorem 10 (Shannon’s expansion theorem) to transform each of the fol-
lowing functions into the format

f ( A , B , C, 0) = Q f a( A , B , C) + Q f^ A , B , C )

= [0 + f Y ( A , B , C ) ] [ Q 4- f h { A , B , C)]
Find f f R , f , and /. when

(a) /(A , tf /c, 0) = (0 + A )(* + C) + QC
(b) /(A , 8, C, 0) = A B C + Q A + Q C
(c ) f ( A , B , C , Q ) = ( A + B + Q )( A + 0 + 0
(d) f ( A , B , C , Q ) = A B C + A C

2.16 Find truth tables for the following switching functions.
(a) f ( A, B ) = A -\- B
(b) f ( A , B , C ) = A B + A C

(c) f (a , b , c ) = a b c + b c
(d) f (a , b , c ) = a(b+ c )( b + c)

Find truth tables for the following switching functions.
(a) f ( A , B , C , D ) = A B C D + A B C D
(b) f ( A , B , C , D ) = A B + A B + C D
(c) f ( A , B , C , D ) = A( B + C D ) + A B C D

2.17

Find the minterm and maxterm list forms for the switching functions of Problem
2.16. Use any method.
Find the canonical SOP form for the switching functions of Problem 2.17. Use
any technique.
Expand the following function into canonical SOP form.

f ( x ] , X 2 , X 3 ) = X { X 3 + *2X3 + *,*2*3

2.18

2.19

2.20

2.21 Expand the following function into canonical POS form.
f ( W , X, 0) = (0 + W ) ( X + Q )( W + X + Q )( W + X)

2.22 A burglar alarm is designed so that it senses four input signal lines. Line A is
from the secret control switch, line B is from a pressure sensor under a steel
safe in a locked closet, line C is from a battery-powered clock, and line D
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is connected to a switch on the locked closet door. The following conditions
produce a logic 1 voltage on each line.

A : The control switch is closed.
B : The safe is in its normal position in the closet.
C : The clock is between 1000 and 1400 hours.
D : The closet door is closed.

Write the switching expression for the burglar alarm that produces a logic
1 (rings a bell) when the safe is moved and the control switch is closed, or when
the closet is opened after banking hours, or when the closet is opened with the
control switch open.

2.23 A long hallway has three doors, one at each end and one in the middle. A switch
is located at each door to operate the incandescent lights along the hallway.
Label the switches A, B, and C. Design a logic network to control the lights.
Find the minimum equivalent circuit for the one shown in Figure P2.24.2.24

D

A —[>0—I /(A, B, C, D )> >B

T>C

Figure P2.24

2.25 Given the timing diagram in Fig. P2.25, find the simplest switching expression
for /(A , B, C).

A

B

C

/(A, B, C )

Figure P2.25
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2.26 Find a minimum two-level NOR realization for the following switching function.
f ( A , B , C ) = £»11(1, 2, 3, 5, 6, 7, 8, 9, 12, 14)

2.27 Given the network shown in Fig. P2.27, find the minimum two-level NOR
realization.

A —
C —
/1 —
D >/04, B, C, D )

C —
5—
B
D

Figure P2.27

2.28 For the timing diagram shown in Fig. P2.28, find both a minimum NAND and
a minimum NOR realization.

A

B

C

I

f ( A, B, C)

Figure P2.28

2.29 Find a minimal two-level NAND realization for each of the following switching
functions.
(a) f ( A , B, C ) = E M0, 2, 3, 7)
(b) /(A , B.C, D ) = £>(0, 2, 8, 10, 14, 15)
(c) f ( A , B , C , D, E ) = £m(4, 5, 6, 7, 25, 27, 29, 31)
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2.30 Obtain a minimal two-level NOR realization for the following switching func-

tions.
(a) /(A , 5, C) = £m (0, 2, 3, 7)
(b) /(A , B , C, D ) = J>(0, 2, 8, 10, 14, 15)
(c) /(A , £, C, D, £) = £ m(0, 1, 2, 3, 8 to 24, 26, 28, 30)

2.31 Joe, Jack, and Jim get together once a week to either go to a movie or go bowling.
To decide what to do, they vote and a simple majority wins. Assuming a vote
for the movie is represented as a 1, design a logic circuit that automatically
computes the decision.

2.32 Derive the logic equations for a circuit that will subtract two 2-bit binary
numbers, (X, X0)2 — ( Y x TQ)2, and produce as an output the resulting number
( D ] Dq )2 and borrow condition Bv

*i*o-yiyo

^1 ^1 ^0

2.33 Derive the logic equation and circuit diagram for a circuit with three inputs A,
B, and C. The output is to be high only when exactly one of the three inputs is
high. Use only NAND gates in the design.

2.34 We wish to design a logic circuit with four inputs A, B, C, and D. The output
is to be high only when a majority of the inputs is high. Draw the final circuit
using only NOR gates.

2.35 A logic circuit has four inputs A, B, C, and D.Find the logic equations for the
circuit if the output is to be high only when an odd number of the inputs is high.
Draw a circuit diagram using any desired logic gates.

2.36 The input to a logic circuit consists of four signal lines A, B , C, and D. These
lines represent a 4-bit binary number, where A represents the most significant
bit and D the least significant bit. Design the logic circuit such that the output
is high only when the binary input is less than (0111)2 = 710. Use any desired
logic gates.
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In Chapter 2 we learned how Boolean al-
gebra can be used to eliminate unnecessary

terms and literals from a switching expression,
allowing it to be realized witha minimum number

of logic gates. Unfortunately, algebraic manipula-
tion relies heavily on the ability of the user to identify

where the different postulates and theorems can be ap-
plied, making this process error-prone and impractical
for all but the simplest switching functions. In this chap-
ter we will examine several methods for automating the
minimization of completely-specified and incompletely-
specified switching functions. Karnaugh maps will be
used to graphically derive minimal sum of products and
product of sums expressions for switching functions, and
the Quine-McCluskey tabular method will be used to
simplify single- and multiple-output functions. We will
then examine minimization algorithms that can be read-

ily programmed and incorporated into computer-aided
design systems.
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Simplification of Switching Functions:

fj? i
i

•3.1 Simplification Goals
The simplification of switching functions is a common and worthwhile goal.
Its importance stems from the fact that the simpler the function, the easier it
is to realize. The goal of simplification is to minimize the cost of realizing a
function with physical circuit elements, where the definition of cost depends
on the nature of the circuit elements to be used. In general, it is desirable to
minimize the number of circuit elements and to make each element as simple
as possible. In a two-level sum of products realization of a switching function,
minimizing cost implies reducing the number of product terms in the expression
representing the function (to reduce gate count) and minimizing the number
of literals in each product term (to minimize gate complexity, measured here
in terms of the number of gate inputs). When using some programmable logic
devices (to be described in Chapter 5) the number of inputs to the logic forming
the product terms is constant, so reducing the number of inputs to a gate provides
no hardware savings, and thus only the number of terms is significant. In other
cases, algebraic forms other than two-level sum of product or product of sums
might be desirable if the gate count can be reduced. In designing printed circuit
boards (the flat card-shaped modules used inside computer systems), the total
number of integrated circuit (IC) devices may be a more limiting factor than
the number of individual gates.

In all cases, a design must be made to fit within the constraints of the
circuit elements to be used. The elements might have a limited number of
inputs, or fan-ins, and may be limited in the number of output gates they can
drive, ox fan-outs. In some cases, the designer may be restricted to a specific
type of circuit element. Finally, timing considerations may dictate that a faster
two-level realization be utilized, rather than a slower, three-level or higher,
one. In addition, steps may need to be taken to prevent undesirable momentary
output changes, called hazards, from occurring due to uneven propagation
delays through a circuit.

In this chapter, it will be assumed that we desire to minimize first the
number of gates needed for a two-level realization (minimum number of prod-
ucts in a SOP form, or minimum number of sums in a POS form). If two
or more expressions can be found containing the same number of terms, the
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expression with the fewest number of literals will be identified to allow gates
with the lowest fan-in to be used. Remember, a l i t e r a l is each appearance of a
variable or its complement.

EXAMPLE 3.1 Determine the number of terms and literals in
the following functions:

g( A,B,C ) = A B + A B + A C
f ( X ,Y ,Z ) = X Y(Z + Y X ) + Y Z

g( A , B, C ) is a two-level form having three product terms and six literals.
/ (X, 7, Z) is a four-level form having seven literals, combined via three prod-
ucts and two sums.

•3.2 Characteristics of Minimization
Methods

The postulates and theorems of switching algebra are the mechanisms we will
employ to minimize the number of terms and literals in a switching function.
Various algorithms have been developed to apply these postulates and theorems
in a methodical fashion. The methods presented in this chapter are heuristic,
that is, they utilize information derived from the problem to direct the solution,
often allowing arbitrary decisions to be made when no optimal choice is readily
apparent. As such, heuristic methods are not always guaranteed to find the
minimum solution and are generally considered suboptimal, although they do
find minimal solutions much of the time.

Optimal approaches exist in the form of formal algorithms that are always
guaranteed to generate a minimum solution for a problem. However, most of
these algorithms are more complex and more difficult to apply than heuristic
methods. Therefore, many designers are content to utilize heuristic methods,
trading complexity for optimality of the solution.

The following examples demonstrate the application of various postulates
and theorems of switching algebra to simplify switching functions. The follow-
ing sections will then examine methods to automate the simplification process.

EXAMPLE 3.2 Use switching algebra to find minimal SOP
and POS forms for the function f ( X ,Y ,Z) of
Example 3.1.
This expression can be minimized as follows.

f ( X , Y, Z ) = X Y ( Z + Y X ) + Y Z

= X Y Z + X Y Y X + Y Z

= X Y Z + Y Z

= X Z + Y Z

= ( X + Y )Z

[P5(b)]
[P6(b), P2(a)]
[T7(a)]
[P5(b)]
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The last two forms represent the minimum SOP and POS forms, respectively.
The minimum SOP form has two terms and a total of four literals. It therefore
requires two two-input AND gates and one two-input OR gate to realize.
However, the POS form requires one two-input OR gate and one two-input
AND gate to realize.

EXAMPLE 3.3 Use switching algebra to find a minimal SOP
expression for the function
/(A,B,C,D ) = ABC + ABD + ABC + CD + BD

which has four variables and 13 literals.
/(A, B, C, D ) = ABC + ABD + ABC + CD + BD

= ABC + AB + ABC + CD + BD

= ABC + AB + B C + C D + B D
= AB + BC + C D + B D
= AB + C D + B( C + D )

= AB -\- CD -\- BCD
= AB + CD + B

= B + CD
Note that the number of literals has been reduced from 13 to 3.

[T7(a)]
[T7(a)]
[T4(a)]
[P5(b)]

mm
[T5(a)]
[T4(a)]

In the preceding examples, the optimality of the final expression depends
on the ability of the designer to determine the best postulate or theorem to apply
at each step of the simplification. This becomes a difficult task as the complexity
of the expressions to be simplified increases. The methods presented in this
chapter are designed to automate these steps and thus increase the chances of
finding optimal solutions for functions of arbitrary complexity.

•3.3 Karnaugh Maps
In our previous work we found that the simplification of switching functions
via the switching algebra is a difficult task, at best. In other words, in switching
algebra no road map exists to be followed, and hence we must search for the
best approach like a mountain climber relying on intuition and past experience.
To perform the minimization of switching functions efficiently, we obviously
must have at our disposal viable techniques that are standard and systematic
and thus provide a road map to the desired answer. The Karnaugh map is such
a tool for switching functions of up to six variables [1, 2].
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3.3.1 Relationship to Venn Diagrams
and Truth Tables

The Karnaugh map is actually nothing more than an extension of the concepts
of truth tables, Venn diagrams, and minterms. To make the extension explicit,
let us now transform a Venn diagram into a Karnaugh map. Consider the Venn
diagram shown in Fig. 3.1a. The two variables A and B are represented by

A
L

(b)(a)

B < m i m3

(d)

10 A B f ( A B)
o 2

0 00 » 0 1LI31 1 01
11

(g)

Figure 3.1 Venn diagram and equivalent K-map for two variables.

designated subdivisions of the universal set. Figure 3.1b illustrates that each
unique disjoint subdivision of the Venn diagram is formed by the intersections
AB, AB, AB, and AB. The reader should note that these intersections are
just the minterms of two variables. The subdivisions of the Venn diagram are
relabeled as minterms mQ,m { , m2,and m3 in Figure 3.1c. This form of the Venn
diagram has unequal areas for the four minterms. However, we may adjust the
areas and make them all the same, as shown in Fig. 3.Id. Note that adjacent
areas of the Venn diagram are also adjacent in Fig. 3.Id. However, now one half
of the diagram represents the variable A and one half also represents B. Since
the minterm notation is identified with each square on the diagram, we may
omit the letter m and leave only the subscript, as seen in Fig. 3.1e. This is one
form of the Karnaugh map. A second form for the Karnaugh map is shown in
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Section 3.3 Karnaugh Maps 177

Figure 3.If. In this last form, the association of a map square with a particular
variable, say A, is indicated by 0 for A and 1 for A.

It is important to note that the Karnaugh map is a graphical or pictorial
representation of a truth table and hence there exists a one-to-one mapping
between the two. The truth table has one row for each minterm while the
Karnaugh map has one square per minterm. This is illustrated in Fig. 3.1g.
Likewise, there is also a one-to-one correspondence between truth table rows
and Karnaugh map squares if maxterms are being utilized.

The development of the Karnaugh map for three variables is shown in
Fig. 3.2. An important point that requires careful analysis is the step between
Fig. 3.2c and d. For example, consider the minterm mQ.This minterm is adjacent
to mv mv and ra4 in Fig. 3.2c. However, in Fig. 3.2d, m0 is not physically
adjacent to m4. To reconcile this inconsistency, the left and right edges of the
map are considered to be the same line. In other words, the left edge can be
folded over until it touches the right edge, making the Karnaugh map for three
variables appear as a cylinder. In practice, the map is drawn as in Fig. 3.2e or
f, and the left and right edges are imagined to be coincident.

(a)

A

m0 m2 m6 rri4

C1 C <m i
* m3 m~j m5

B B

(0(d) (e)

Figure 3.2 Venn diagram and equivalent K-map for three variables.

3.3.2 K-maps of Four or More Variables
The K-maps for four, five, and six variables are demonstrated in Figs. 3.3a
through f. Note that the four-variable map is simply an extension of the three-
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A

C l

B
(b)

A

E

" F

F

Figure 3.3 K-maps for four, five, and six variables, (a) /(A , B, C, D) - form 1.
(b) /(A, B, C, D) - form 2. (c) /(A, B, C, D, E ) - form 1. (d) /(A, B, C,D, E ) -
form 2. (e) /(A, C, D, F ) - form 1. (f) /(A , C, D, E,F) - form 2.
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variable map. The five-variable map for /(A, B , C, D, E ) is split into two
halves, the left representing minterms containing A and the right representing
minterms containing A. The two halves should be viewed as being stacked
one on top of the other, with vertically adjacent cells differing only in variable
A and thus adjacent. For example, the cells corresponding to minterms m5
{ A B C D E ) and m21 (A B C D E ) are adjacent.

Likewise, the six-variable map is divided into four quadrants, each rep-
resenting one combination of variables A and B. The quadrants should be
viewed as being stacked on top of each other, with vertically adjacent cells
being adjacent.

The maps presented in Figs. 3.1e and f, 3.2e and f, and 3.3a through f
combine all the familiar features that logic designers use in switching circuit
synthesis. Either of the two formats for an n-variable K-map may be used at
the reader’s discretion. K-maps of more than six variables are impractical for
most problems.

•3.4 Plotting Functions in Canonical Form
on the K-map

Switching functions may be expressed in a wide variety of forms, ranging
from minterm/maxterm lists to simple SOP/POS expressions to more complex
expressions. However, each has a unique canonical POS/SOP form. In this
section we will examine methods for plotting switching functions of different
forms on a Karnaugh map.

Switching functions may be readily plotted on a K-map if they are ex-
pressed in canonical form, since each minterm/maxterm of the canonical form
corresponds to one cell on the K-map. Suppose we wish to find the K-map for
the following function:

/(A , B , C ) = m{0, 3, 5) = raQ + ra 3 + m5

=nM0 2 4 6 = M,M2M4M6M7

Recall from Chapter 2 that the maxterm list is readily derived from the minterm
list, and vice versa. First, let us consider the representation of the function as
the sum of minterms 0, 3, and 5. Using the Venn diagram form of the K-map,
the function /(A , B, C ) represents the shaded areas shown in Fig. 3.4a. This
same function plotted on a K-map is shown in Fig. 3.4b. Note that shaded areas
are normally not used on K-maps. Instead, we employ the familiar 1 and 0 used
in truth tables, with each shaded area (each minterm) represented by 1 and each
unshaded area (each maxterm) represented by a 0. Under these conditions, the
K-map of Fig. 3.4b corresponds directly to the truth table of the function, with
each cell of the K-map corresponding to one row of the truth table. When the
function is represented as a sum of minterms, we normally omit the maxterms
from the map and represent the function as shown in Fig. 3.4c. Likewise, if
the function is expressed as a product of maxterms, we omit the minterms and
represent the function as shown in Fig. 3.4d.
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AA B
A

C 00 01 11 10
: 6 4

0 0 01 0

3 7 51

0 1 0 1C l 1C l

B B
(b)(a)

A A

00 01 11 10 00 01 1011
2 6 4 0 2 6 4

0 1 0 0 0 0

3 7 5 3 7 5l

C l 1 1 1 C l 1 0 0

B B
(c) (d)

Figure 3.4 Plotting functions on K-maps. (a) Venn diagram form, (b) 1’s
represent minterms, 0’s represent maxterms. (c) Plot of minterms only,
(d) Plot of maxterms only.

EXAMPLE 3.4 Let us plot the following function on a K-map:
f (a, b,Q,G ) = »i(0,3,5,7,10,11,12,13,14,15)

= f[ M(1, 2, 4, 6, 8, 9)

The function, expressed as a sum of minterms, is plotted on a version of the
K-map labeled with both conventions in Fig. 3.5a. The function, expressed as
a product of maxterms, is shown on the K-map in Fig. 3.5b.

A most important point should be noted about the ordering of the vari-
ables. As was demonstrated in the last section, the minterm and maxterm
numbers in the list change if the order of the variables is altered. Therefore,
the order of the variables in the function fixes the order of the variables on the
K-map.

EXAMPLE 3.5 Let us repeat Example 3.4 with the variables
reordered to give f (Q,G ,b,a ).

First, write the minterms of f (a , b , Q , G ) :
f (a , b, Q , G ) = J2 MO, 3, 5, 7, 10, 11, 12, 13, 14, 15)

= abQG + abQG + abQG + abQG + abQG

+ai> QG + abQG + abQG cibQG + abQG
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aa b
Q G 00 01 11 10

12 80 4
00 00 00

5 13 9
01 01 0 0

> G G3 7 15 11
11 11

Q 1 Q 1 2 6 14 10
10 10 0 0

b b
(a) (b)

Figure 3.5 K-mapsfor f (a, b, Q , G ) in Example 3.4. (a) Minterm form . (b) Maxterm
form.

Next, rearrange the variables:
f ( Q , G, b, a ) = QGba + QGba + QGba 4- QGba 4- QGba

-\- QGba 4- QGba -f QGba + QGba 4- QGba

= m(°’ 12 > 6’ 14> 9- 13- 3, 7, 11, 15)

=Y,m{0, 3, 6, 7, 9, 11, 12, 13, 14, 15)
The function is plotted on the map of Fig. 3.6, which is equivalent to the one
in Fig. 3.5a.

Q

00 01 11 10
4 12 80

00 11

5 131 9

01 1 1
r a3 7 15 1 1

11 1 1 1 1
b < 2 6 14 10

10 1 1
Figure 3.6 K-map of Figure
3.5(a) with variables reordered:
f ( Q , G, b, a ).G

K-maps can also be conveniently used toexpand a function into canonical
form. To illustrate this technique, we shall continue to use a combination of the
two K-map forms shown in Fig. 3.3.
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EXAMPLE 3.6 Consider the following function, which is
expressed as a sum of products.

f (A, B,C ) = A B + B C
We wish to plot the function on a K-map and
determine its minterm and maxterm lists.
The map illustrating the two product terms is shown in Fig. 3.7a. The term A B
represents the portion of the map where both A and B are 1, that is, minterms 6
and 7, as seen in Fig. 3.7b. The term BC represents the area on the map where
B is 1 and C is 0, that is, minterms 2 and 6. Rather than shade in areas on the
K-map, we usually plot the ones directly on the map, as shown in Fig. 3.7b.
The map illustrating the maxterms of the function is derived directly from the
minterm map and is shown in Fig. 3.7c.

Universal set

AmBC

B AB
(a)

A ABC

2 FF
dz

11 10 00 01 11 1000
4 0 2 6 4

fT)0 0 0 0

31 7 5 1 3 7 5

D\c < 1 c< 1 0 0 0

' AB
B B

(b) (c)

Figure 3.7 K-maps for Example 3.6. (a) Map drawn in Venn diagram
form, (b) Sum of minterms. (c) Maxterms of the function.

From Figs. 3.7b and c, the function can be expressed in minterm and
maxterm forms as

/(A , B, C ) = m( 2, 6 , 7) = f] M (0, 1, 3, 4, 5)
In this example we note that minterm 6 is used twice, that is, is “covered” by
both of the original product terms. The multiple use of minterms and maxterms
is often the rule, rather than the exception, in switching functions. Also, note
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that it was not really necessary to draw the K-map of Fig. 3.7c since the
maxterms can be identified directly on the K-map of Fig. 3.7b by simply noting
the cells not set to 1.

EXAMPLE 3.7 Let us plot the following function on the
K-map and determine its minterm and
maxterm lists.

/(A, C,Z>) = (A + C )( B + C )( B + C + D)

Since this expression is in POS form, we may plot the zeros (its maxterms)
on the K-map. The map illustrating the maxterms is shown in Fig. 3.8a. The
term A + C will force the function to have a zero value when A = C = 0, so it
represents the area of the map for which A — 0 and C — 0, representing, that

A AAB (A + C )

\ oo Voi ii io
AB + C )

CD 00 01 11 10
o 12 8 84 0 4 12

TS\oo 000 0 1

1 5 13 9 1 5 13 9
01 0J 0 lo 1

> DD3 7 15 1 1 15 1 1

11 1 1
CM C2 6 14 10 14 10

0)(010 1

( B + C + D) B B

(b)(a)

AACAB BC
CD 00 I I 1 0

o 12 8i.
Tj (Tf i loo

91 5 13
01 U! U II

> D3 157 1 1
11

o 6 14 10

DS10

BCD B

(c)

Figure 3.8 K-maps for Example 3.7. (a) K-map showing maxterms. (b) K-map
showing minterms. (c) K-map showing minterms of f ( A , B, C, D ).
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is, covering, maxterms 0, 1, 4, and 5. Likewise, B + C represents maxterms 0,
1, 8, and 9. The term B + C -f D represents maxterms 6 and 14 because the
term is 0 when B = 1, C = 1, and D = 0. The corresponding map illustrating
the minterms is shown in Fig. 3.8b.

From Figs. 3.8a and b, the function can be expressed as
/ (A, B, C, D ) = ]“[ M(0, 1 , 4, 5, 6, 8, 9, 14)

= "*(2, 3, 7, 10, 11, 12, 13, 15)
Some designers find plotting POS expressions to be awkward. An alter-

native method is to complement the function and apply DeMorgan’s theorem
to obtain a SOP expression for /(A , B, C, D ).

/(A , B y C, D ) = (A + C)(£ + C)(£ + C + D)

= (A + C) + ( B + C) + ( B + C + D )

= A C + B C + B C D
The SOP form of /(A , B, C, D ) is then plotted on a K-map as shown in
Fig. 3.8c. Recalling that the minterms of /(A , B, C, D ) are the maxterms of
/(A , B, C, D ) y and vice versa, the K-map of Fig. 3.8a is produced by simply
converting each 0 cell (maxterm) in the K-map of /(A , B, C , D ) to a 1 cell
(minterm) in the K-map of /(A , B , C, D ). Note, also, that the expression for
each product term plotted in Fig. 3.8b is the complement of the expression of
the corresponding sum term in Fig. 3.8c.

As was indicated in Example 3.5, it was not necessary to draw the K-map
of Fig. 3.8b to determine the minterm list, since the minterms are simply the
nonzero cells in the K-map of Fig. 3.8a.

An alternative procedure for plotting the POS form of a function / is
to complement the function and apply DeMorgan’s theorem to produce a SOP
form for /. Then / is plotted on the K-map, from which the minterm list of /
can be read, with the minterms of / corresponding to the zero cells of /.

EXAMPLE 3.8 Derive the minterm list of the function
/(A, B,C,D) = (A + B )(A + C + D )( B + C + D )

We begin by complementing the function and applying DeMorgan’s theorem:
/(A, B, C, D ) = (A + B ) ( A + C + D )( B + C + D )

= ( A + B ) + ( A + C + D ) + ( B + C + D )

= A B + A C D + B C D
/(A , B, C , D ) = A B + A C D + B C D is plotted on the K-map as shown in
Fig. 3.9a. From this K-map we can write

/(A , B, C , D ) = J2 9, 12, 13, 14, 15)
Since the zero cells in the K-map of Fig. 3.9a represent /(A , B, C, D), by
inspection of the K-map we can write

/(A , B, C , D ) = J2 m(0, 1 , 2, 3, 4, 5, 6, 8, 10, 11)
The function is plotted on the K-map of Fig. 3.9b.
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A AAB
CD00 01 ll 10 00 01 1011

0 4 1 2 8

00 1 11

5 131 <)

01 1 1

> D3 7 15 1 1
11 1 1

c 2 6 14 TO
10 1 1 1

B B
(a) (b)

Figure 3.9 K-maps for Example 3.8. (a) K-map of /04, B , C, D ). (b) Corresponding
K-map of /04, B, C, D ).

B 3.5 Simplification of Switching Functions
Using K-maps

In the previous section we derived a SOP or POS expression for a function from
its K-map without consideration of whether the expression was the simplest
possible for that function. The K-map will now be used to obtain a minimal sum
of products expression for a switching function. By minimal sum of products
we mean an expression that is equivalent to the original expression, but that
contains a minimum number of product terms in which a minimum number
of literals are present. Minimizing the number of product terms allows the
fewest number of gates to be used to realize the function, while minimizing the
number of literals allows gates with the smallest possible fan-in (and therefore
the lowest cost) to be used to realize each term.

Simplification of functions on the K-map is expedited by the fact that
on the map switching terms that are logically adjacent are also physically
adjacent. Let us define logically adjacent minterms as follows: two minterms,
mj and m ., are logically adjacent if they differ in only one variable position.
For example, A B C D and A B C D are logically adjacent minterms of four
variables since they differ only in variable position D. From Theorem 6(a) we
know that A B C D + A B C D = ABC', therefore, terms A B C D and A B C D
combine, eliminating variable D. In general, any two logically adjacent terms
can be combined, eliminating one variable.

On the K-map we illustrate combining terms by drawing a ring around
the terms that, when combined, yield a simpler expression, that is, one with
fewer literals.

The following example illustrates the process of combining logically
adjacent terms, using both switching algebra and K-map methods.
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EXAMPLE 3.9 We wish to simplify the following function
using both switching algebra and the K-map.

f (A,B,C,D ) = J2 m( 1, 2, 4, 6, 9)

The simplification of this function via switching algebra may be performed as
follows:
Step 1. Combine m x and m9.

f ( A , B, C, D ) = A B C D + A B C D + A B C D + A B C D + A B C D

= ( A B C D + A B C D ) + A B C D + A B C D + A B C D

= B C D + A B C D + A B C D + A B C D
Step 2. Combine m2 and ra6, duplicating ra6 first.

/ (A , B, C, D) = B C D + A B C D + ABCD + (ABCD + ABCD)

= BCD + (ABCD + A B C D) + ABCD + ABCD

= B C D + A C D + A B C D + A B C D
Step 3. Combine m4 and m6.

/(A , B, C, D) = BCD + ACD + (ABCD + ABCD)

= BCD + ACD + ABD
The corresponding K-map simplification is shown in Fig. 3.10. The simplifi-
cation involves circling sets of physically adjacent squares, corresponding to
groups of logically adjacent minterms. Note that, since opposite edges of the
map are actually coincident, the horse shoe shapes in Fig. 3.10 are really circles.
Each circle indicates the manner in which the circled minterms are combined
to yield a simpler switching expression.

* Figure 3.10 K-map for
Example 3.9.BStep 3

In step 1, minterms m x and ra9, which are adjacent on the K-map, are
combined by circling the corresponding squares. Comparing these two squares,
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we see that the variable that changes from 0 in m } to 1 in m9 is the variable
A; hence, when the two minterms are combined, this variable is eliminated,
as shown in step 1 of the switching algebra approach. Minterms m4 and m6
are combined on the K-map in step 2. Comparing these two squares we see
that they differ only in the variable C; hence, this variable is eliminated when
squares 4 and 6 are combined. Finally, in step 3, combining squares 2 and 6
eliminates the variable B. Thus, the three steps on the K-map are equivalent to
the corresponding steps indicated in the switching algebra simplification. The
reader is reminded, as is demonstrated in steps 2 and 3, that minterms can be
used more than once because X — X -f- X by idempotency (Theorem 1).

3.5.1 Guidelines for Simplifying Functions
Using K-maps

There are five important points to keep in mind when simplifying functions on
K-maps:

1. Each square (minterm) on a K-map of two variables has two squares
(minterms) that are logically adjacent, each square on a K-map of three
variables has three adjacent squares, and so on. In general, each square
on a K-map of n variables has n logically adjacent squares, with each
pair of adjacent squares differing in exactly one variable.

2. When combining terms (squares) on a K-map we always group squares
in powers of 2, that is, two squares, four squares, eight squares, and so
on. Grouping two squares eliminates one variable, grouping four squares
eliminates two variables, and so on. In general, grouping 2” squares
eliminates n variables.

3. Group as many squares together as possible; the larger the group is, the
fewer the number of literals in the resulting product term.

4. Make as few groups as possible to cover all the squares (minterms) of
the function. A minterm is covered if it is included in at least one group.
The fewer the groups, the fewer the number of product terms in the
minimized function. Each minterm may be used as many times as it is
needed in steps 4 and 5; however, it must be used at least once. As soon
as all minterms are used once, stop. A minterm that has been used in at
least one group is said to have been covered.

5. In combining squares on the map, always begin with those squares for
which there are the fewest number of adjacent squares (the “loneliest”
squares on the map). Minterms with multiple adjacent minterms (called
adjacencies ) offer more possible combinations and should therefore be
combined later in the minimization process.

3.5.2 General Terminology for Switching
Function Minimization

The previous discussion illustrated the relationship between the switching alge-
bra and K-map procedures for simplifying a switching function. We now define
four terms that are not only useful in K-map simplification, but also provide
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the basis for the more general switching function minimization techniques that
will be presented later. These terms are implicant, prime implicant, essential
prime implicant, and cover.

An implicant is a product term (that is, a product of one or more literals)
that could be used to cover minterms of the function. In the K-map of Fig. 3.11
there are 11 implicants:

5 Minterms: {A B C , A B C , A B C, A B C , A B C )
5 Groups of two minterms: [ A B , A B, A C, B C , B C ]
1 Group of four minterms: (5)

A prime implicant is an implicant that is not a part of (covered by)
any other implicant of the function. Recall from the previous example that
as we combine minterms (implicants) we eliminate variables. As we combine
implicants (in powers of 2) into maximal groups, we form prime implicants. On
the K-map a prime implicant is equivalent to a set of squares that is not a subset
of any set containing a larger number of squares. Prime implicants represent
the largest groupings of minterms that can be derived for the function. In the
K-map of Fig. 3.11, there are only two prime implicants: B and AC. Prime
implicant B covers implicants A B C, A B C, A B C, A B C, A B, A B, B C, and
B C. Prime implicant A C covers implicants A B C and A B C.

An essential prime implicant is a prime implicant that covers at least one
minterm that is not covered by any other prime implicant. In the K-map of Fig.
3.11, prime implicant AC is essential because it is the only prime implicant
that covers minterm 1, and prime implicant B is essential because it is the only
prime implicant that covers minterms 2, 6, and 7. An essential prime implicant
is easily identified on the K-map by noting that it covers at least one minterm
that is circled only once.

Finally, a cover of a function is a set of prime implicants for which
each minterm of the function is contained in (covered) by at least one prime
implicant. All essential prime implicants of a function must be selected in any
cover of a function. For the K-map of Fig. 3.11, the set of prime implicants
[ B , AC ) represents a cover of the function.

B

Figure 3.11 K-map illustrating
implicants.

3.5.3 Algorithms for Deriving Minimal SOP
Forms from K-maps

Our primary goal in minimizing a function is to find a minimum set of prime
implicants that covers a function, from which a minimum sum of products
expression can be derived. With these points in mind, we now present two
algorithms for finding a minimum cover of a function that is plotted on a
K-map. These algorithms are designed to help the user follow the five guide-
lines presented previously, thereby simplifying the minimization process and
ensuring a high likelihood of finding the minimum cover of any arbitrary
function.

!

I
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Algorithm 3.1

1. Count the number of adjacencies for each minterm on the K-map.
2. Select an uncovered minterm with the fewest number of adja-

cencies. Make an arbitrary choice if more than one choice is
possible.

3. Generate a prime implicant for this minterm and put it in the cover.
If this minterm is covered by more than one prime implicant, select
the one that covers the most uncovered minterms.

4. Repeat steps 2 and 3 until all the minterms have been covered.

This algorithm is easy to apply and generally finds a minimal solution. However,
since arbitrary choices are allowed in steps 1 and 2, it is not optimal. Therefore,
it is not guaranteed to find the minimum cover for every function.

The following algorithm for generating a minimum cover of a function
from a K-map is an efficient alternative to Algorithm 3.1 if the number of prime
implicants is not too large.

Algorithm 3.2

1. Circle all prime implicants on the K-map.
2. Identify and select all essential prime implicants for the cover.
3. Select a minimum subset of the remaining prime implicants to

complete the cover, that is, to cover those minterms not covered by
the essential prime implicants.

This algorithm generates more terms and therefore requires more work than
Algorithm 3.1. However, since all prime implicants are identified and consid-
ered, it is often better able to find a minimal cover. Again, arbitrary decisions
may be needed in step 3, and thus the algorithm is not optimal. Once we have a
minimum cover of the function, we derive the minimum SOP form by writing
out the sum of the prime implicants in the cover.

We now illustrate the application of these two algorithms with the fol-
lowing examples.

EXAMPLE 3.10 Let us use the K-map and Algorithm 3.1 to
simplify the following function.

f (A, B,C , D ) = «(2,3,4,5,7,8,10,13,15)
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To initiate the simplification process, we first plot the function on the map as
shown in Fig. 3.12a.

AA

00 01 11 10 00 01 11 10
o0 4 12 8 4 12 8

00 1 1 00 1 I
91 5 13 9 1 5 13

0101 1 I 11

r D > D3 3 7 15 1 17 15 1 1
11 111 1 1 1 1 1

C C2 6 14 10
10 101 1

BB

(b)(a)
AA

00 01 11 10 00 01 11 10
o 4 12 8 0 4 12 8

0000 I I
13 9 13 91 5 5

01 011 1 W l

r D > D7 7 153 15 1 1 3 1 1

1 1111 1 1 1 1
C < c14 10 14

1010 1

B B

(c) (d)

Figure 3.12 K-maps Illustrating Algorithm 3.1. (a) Plot of the function, (b) Prime
implicants 4-5 and 8-10. (c) Prime implicant 2-3 covers mv (d) Prime implicant
5-7-13-15 completes the cover.

We now count the adjacencies for each minterm. From Fig. 3.12a we see
that minterms m4 and ms each have one adjacency, minterms m2,m3, m10, m
and m15 each have two adjacencies, and minterms m5 and m7 each have three
adjacencies.

13’

Since m4 and ms each have only one adjacency, we begin with them.
Prime implicant 4-5 is the only prime implicant that covers m4, and prime
implicant 8-10 is the only cover of ra8. Therefore, we add these two prime
implicants to the cover by circling them on the K-map as shown in Fig. 3.12b.

Examining the remaining uncovered minterms in Fig. 3.12b, we see that
four of them have two adjacencies, therefore we make an arbitrary selection,
say m2. Minterm m2 is covered by two prime implicants, 2-3 and 2-10. Since
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prime implicant 2-3 covers more of the remaining uncovered minterms, we
select it for the cover by circling it as shown in Fig. 3.12c.

Since m ]3 and m15 each have two adjacencies, we again make an arbitrary
selection, say ra 13. Minterm m 13 is covered only by prime implicant 5—7—13—
15, so we add this prime implicant to the cover by circling it as shown in
Fig. 3.12d.

From Fig. 3.12d we see that all minterms are now covered. Therefore,
our minimum cover is {4-5, 8-10, 2-3, 5-7-13-15}.

The product terms that the prime implicants represent are obtained as
follows. On the map, prime implicant 2-3 is located outside A and B and
inside C; therefore, the term is ABC. The prime implicant 4-5 is outside A
and C and inside B, therefore, the term is ABC. Prime implicant 5-7-13-15
is inside B and D\ therefore, the term is BD. Finally, prime implicant 8-10 is
located inside A and outside B and D; hence, the term is ABD. Therefore, the
minimized function is

/(A, B, C, D ) = ABC + ABC + BD + ABD

EXAMPLE 3.11 Repeat Example 3.10 using Algorithm 3.2.
We begin by circling all prime implicants on the K-map as shown in Fig. 3.13a.
The prime implicants, listed according to the minterms covered, are {2-3, 3-7,
4-5, 5-7-13-15, 8-10, 2-10}.

In step 2 of the algorithm, we select essential prime implicants. From
Fig. 3.13a, we can see that prime implicant 4-5 is essential because it covers
m4, which is not covered by any other prime implicant. A similar argument
holds for prime implicants 8-10 and 5-7-13-15. Consequently, these essential
prime implicants must be part of the cover for the function; they are plotted on
the K-map of Fig. 3.13b.

A A

00 01 11 1000 01 11 10
0 12 84 0 4 12 8

(T| 0000 T 11

5 131 9 1 5 13 9
0101 1 1 11

> D> D > D3 7 15 11 3 7 15 11

D11 1 11 1 11
c c2 6 14 10 2 6 14 10

3) 1010 1

BB B

(b) (c)(a)

Figure 3.13 K-maps Illustrating Algorithm 3.2. (a) All prime implicants.
(b) Essential prime implicants. (c) Minimum cover.
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In step 3 of the algorithm we select a minimum number of prime impli-
cants to cover the remaining minterms. The only minterms in Fig. 3.13b that
remain uncovered are m2 and m y Minterm m2 is covered by prime implicants
2-3 and 2-10, while m3 is covered by prime implicants 2-3 and 3-7. Selecting
prime implicant 2-3 would cover both minterms, adding only one product term
to the cover. Selecting 2-10 to cover m2 would also require the selection of
another prime implicant (3-7 or 2-3) to cover ra 3; this would add two more
product terms to the cover. Therefore, to obtain a minimum realization, we
choose prime implicant 2-3, as plotted in Fig. 3.13c.

Hence our minimum cover contains the prime implicant 2-3 and the
essential prime implicants 4-5, 5-7-13-15, and 8-10, which is the same result
obtained in the previous example, as was plotted in Fig. 3.12d.

It is very important that the reader understand that the use of the K-map is
simply a convenient method for performing switching algebra reductions. For
example, if we had combined minterms 5-7-13-15 using algebra, we would
in essence perform the following process.

m5 + m7 + r a 1 3 + ra 15 = A B C D + A B C D + A B C D + A B C D

= ( A B C D + A B C D ) + ( A B C D + A B C D )

= A B D + A B D

= B D
Thus, we repeatedly combined terms using Theorem 6a, first to eliminate the
variable C and then to eliminate the variable A. Thus, circling four squares
eliminates two variables. The reader should verify that the same result would
be obtained algebraically by eliminating variable A first, and then C.

EXAMPLE 3.12 Let us use the K-map to simplify the
following function.

f (A , B,C ,D) = J2 »»(0,5,7,8,10,12,14,15)

The function is plotted on the map in Fig. 3.14a.
Using Algorithm 3.1, we begin by selecting minterm ra0, which has only

one adjacency, and generate prime implicant 0-8. Likewise, m5 has only one
adjacency and is covered by prime implicant 5-7. Looking at minterms with
two adjacencies and selecting m ,0, we generate prime implicant 8-10-12-14.
At this point the only uncovered minterm is m15, which is covered by prime
implicants 7-15 and 14-15. Since these two prime implicants cover the same
number of cells and are thus of equal complexity, we can choose either for the
cover of the function. Figure 3.14b shows the resulting minimal cover if prime
implicant 7-15 is chosen, and Fig. 3.14c shows the minimal cover if prime
implicant 7-15 is chosen.

If Algorithm 3.2 is used, we would begin by circling all the prime impli-
cants, as in Fig. 3.14d. From this map, we can identify as the essential prime
implicants 0-8, 5-7, and 8-10-12-14. Selecting the essential prime implicants
for the cover leaves only m 15 uncovered. Therefore, to complete the minimum
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Figure 3.14 K-maps for f ( A , B, C, D ) = £m(0,5, 7, 8, 10, 12, 14, 15). (a) Plot of the
function, (b) Minimal cover 1. (c) Minimal cover 2. (d) All prime implicants.

cover we select either prime implicant 7-15 or 14-15 to cover m 15, result-
ing in the same two solutions of Figs. 3.14b and c that were obtained with
Algorithm 3.1.

Keep in mind that minterms may be covered any number of times. In
this example, m 8 is covered twice in each of the two solutions. Multiple use of
minterms occurs more often than not.

Now, from minimal cover 1 of Fig. 3.14b, the minimum SOP form of
function /(A , B, C, D ) can be written as

/ (A , B, C, D ) = B C D + A B D + A D + B C D
and from minimal cover 2 we get

/(A , B , C, D ) = B C D + A B D + A D + A B C
Since both SOP forms contain the same number of terms and literals, either
represents a minimal SOP expression for the function.
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Several other examples are now presented in rapid order. Each example
contains, first, the function to be minimized, second, a K-map with the prime
implicants of the minimum cover identified (circled), and, finally, an expression
for the minimized function, which is a minimal covering of the function selected
from the prime implicants.

EXAMPLE 3.13 Find a minimum SOP expression for
/(A, B,0 = X>(1,2, 3, 6).
The function is plotted on the K-map of Fig. 3.15. Using Algorithm 3.1, we
begin with minterms m } and m6, which each have one adjacency and generate
prime implicants 1-3 and 2-6, respectively.Since these cover all four minterms,
no additional prime implicants are needed.

Using Algorithm 3.2, we see that this function has two essential prime
implicants, 1-3 and 2-6, and one additional prime implicant, 2-3, which is not
needed since the two essential prime implicants cover the function.

Uc < 1

Figure 3.15 f ( A , B , c) =
£>(1 , 2, 3, 6) = A C + B C.B

The minimum SOPform is therefore the sum of the two prime implicants:
/(A , B, C) = A C + B C

EXAMPLE 3.14 Find a minimum SOP expression for
/(A,B,C,D) = X>(0,1,2,7,8,9,10,15).
For this function, as seen in Fig. 3.16, there are three prime implicants, 7-
15, 0-1-8-9, and 0-2-8-10, all of which are essential and therefore form the
minimum cover of the function. Note that prime implicant 0-2-8-10 covers
the four comers of the K-map. The four comers are adjacent by virtue of the
fact the top and bottom rows are adjacent (differing in variable C), as are the
leftmost and rightmost columns (differing in variable A).

EXAMPLE 3.15 Find a minimum SOP expression for
/(A,B,C,D ) = j:m(0,4,5,7,8,10,14,15).
From the K-map of Fig. 3.17a, we can see that each minterm is covered by two
prime implicants, and therefore none of the prime implicants is essential. In
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AA B
00 01 11 10C D

2)
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3
01

Y D5 ]ai i
c <
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B Figure 3.16 /(A, B, c, D) =
B D + B C + B C D.(a)

addition, each minterm has exactly two adjacencies. This condition is referred
to as a c y c l e in the K-map. Whenever a cycle occurs, we must break it by
making an arbitrary initial selection.

Let us begin by covering minterm m Q.We see that it can be covered with
either of prime implicants 0-4 or 0-8. Selection of 0-4 leads to the minimum
cover shown in Fig. 3.17b, for which the minimum SOP expression is

/(A , £, C, D ) = A C D + A B D + A B C + A B D
Selection of prime implicant 0-8 to cover m0 leads to the minimum cover
shown in Fig. 3.17c, for which the minimum SOP expression is

/(A , B, C, D ) = B C D + A B C + B C D + A C D
Thus, there are two totally different minimal SOP expressions for the function,
which have the same number of terms and literals and therefore the same cost.

A AA A B
C D00 01 11 00 01 11 1000 01 11 10 10

2) 2 ) 2 )

r% ma a a) )00 D 00 00“

3 3 3)

m01 0101 U> U
> D Y D Y D5 5 I5 1 1

)a i i ai i u i i
c c C i4 o 4 0 4 0>

)a10 a 1010 U

B B B

(b) (c)(a)

Figure 3.17 Function with no essential prime implicants. (a) All prime
implicants. (b) Minimal cover 1. (c) Minimal cover 2.
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EXAMPLE 3.16 Find a minimum SOP expression for
f (A , B,C ,D, E ) = J2 »*(0,2,4,7,10,12,13,18,23,26,28,29)

Using Algorithm 3.1, we cover minterm mQ with prime implicant 0-4, m1 with
prime implicant 7-23, m { 3 with prime implicant 12-13-28-29, and mU ) with
prime implicant 2-10-18-26. Plotting these on the K-map of Fig. 3.18, we see

A
BABC

DE 000 001 011 010
0 4 12 8

5 D00 T
5 91 13

01 1
> E3 7 15 1 1 19 23 31 27

11

D 1 2 6 10 18 22 30 2614

I)10 (f (I1

c c
(b)(a)

Figure 3.18 Minimizing a five-variable function.

that all four of these prime implicants are essential and form a complete cover
of the function. The minimum SOP form of the function is

/(A, £, C, D, E ) = ABDE + BCD + BCDE 4- CDE
Note that care must be taken to identify adjacencies between the two halves
of a five-variable map. For example, implicant 12-13 is adjacent to implicant
28-29 and they thus combine to form prime implicant 12-13-28-29. The same
is true for prime implicants 7-23 and 2-10-18-26.

For five-variable maps, as shown in Fig. 3.18, each minterm has only
five possible adjacencies; for example, the adjacencies for rag are raQ, ra9, ra 10,
m|2, and ra 24. Note that m16 is not adjacent to rag; that is why we leave a space
between halves of the map. Hence, minterms that appear in similar positions
in the two parts of the map are adjacent and can be combined.

Another way to look at this is to imagine that the two halves of the
map are transparent and stacked so that we look through squares 0-15 and
see squares 16-31. In this configuration, similar minterms on each half are
logically adjacent and hence combine. For example, the minterm combination
m ,3 and m29 can be grouped to eliminate the variable A, as can minterms m7
and m 23, m2 and m18, and others.
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•3.6 POS Form Using K-maps
Thus far we have concentrated our discussion on the use of the K-map in
minimizing a function in SOP form. An identical procedure can be employed
to minimize a function in POS (product of sums) form. Furthermore, all the
techniques we have learned for combining minterms can be applied in the
combination of maxterms to produce a minimum POS form.

3.6.1 General Terminology for POS Forms
In a manner analogous to the minimization of SOP forms, we define the terms
implicate, prime implicate, essential prime implicate, and cover for use in
deriving minimum POS forms.

An implicate is a sum term, that is, a sum of one or more literals, that could
be used to cover maxterms of the function. Note that an implicate represents
an input combination for which the function evaluates to 0. On the K-map, an
implicate is a group of adjacent maxterms, or 0 squares. A prime implicate
is an implicate that is not covered by any other implicate of the function.
On the K-map, a prime implicate is a group of adjacent maxterms that is not
covered by a larger group of maxterms. An essential prime implicate is a prime
implicate that covers at least one maxterm that is not covered by any other
prime implicate. On the K-map, an essential prime implicate covers at least one
maxterm that is circled only once. A cover of a function is a set of implicates
for which each maxterm of the function is contained in (covered by) at least
one prime implicate.

3.6.2 Algorithms for Deriving Minimal POS
Forms from K-maps

Algorithms 3.1 and 3.2 for generating minimum covers of a function, from
which minimum SOP expressions are produced, are easily modified to pro-
duce minimum covers from which POS forms can be derived. The process of
grouping cells into maximal groups and then selecting groups of cells to cover
the function is identical, except that the cells represent maxterms rather than
minterms, and the groups are called implicates rather than implicants. There-
fore, we have the following two algorithms for generating a minimum cover of
the maxterms of a function.

Algorithm 3.3

1. Count the number of adjacencies for each maxterm on the K-map.
2. Select an uncovered maxterm with the fewest number of adja-

cencies. Make an arbitrary choice if more than one choice is
possible.
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3. Generate a prime implicate for this maxterm and put it in the cover.
If this maxterm is covered by more than one prime implicate, select
the one that covers the most uncovered maxterms.

4. Repeat steps 2 and 3 until all the maxterms have been covered.

Algorithm 3.4

1. Circle all prime implicates on the K-map.
2. Identify and select all essential prime implicates for the cover.
3. Select a minimum subset of the remaining prime implicates to

complete the cover, that is, to cover those maxterms not covered
by the essential prime implicates.

After we have obtained a minimum cover of the function, we derive the
minimum POS expression by writing each prime implicate as a sum term and
then forming the product of the sum terms.

We will demonstrate the minimization process by considering one ex-
ample in some detail and then provide several additional examples in rapid
succession.

EXAMPLE 3.17 Let us find the minimum POS form for the
function

f (A,B,C,D ) = J""J M(0,1,2,3,6,9,14)

This function is plotted on the map as shown in Fig. 3.19a.
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00 01 11 10 00 01 11 10
8 12 80 4 12 4

00 000 0

5 13 5 13 99 1

I (001 0100

Y DY D7 15 7 15 113 11
11 11 00

c C6 14 10 6 14 10
10 $0 (00 0 10 A

B B
(a) (b)

Figure 3.19 K-maps for Example 3.17. (a) Plot of the function, (b) Minimum cover.
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Using Algorithm 3.3, we begin by counting adjacencies, noting that
maxterms M9 and M14 each have one adjacency. Therefore, we cover M9 with
prime implicate 1-9, and we cover Af14 with prime implicate 6-14. Next,
looking at maxterms with two adjacencies, we select maxterm M0 and cover
it with prime implicate 0-1-2-3, which completes the cover. This minimum
cover is plotted in Fig. 3.19b.

If we use Algorithm 3.4 to produce the minimum cover, the same result
is obtained. Examining Fig. 3.19b, we can see that the three prime implicates
0-1-2-3, 1-9, and 6-14 are all essential and cover all the maxterms of the
function. There is one additional prime implicate, 2-6, which is not needed for
the cover.

The minimum POS form is derived from the minimum cover as follows.
Prime implicate 0-1-2-3 represents the area on the map where A and B are 0.
Therefore, the sum term for this essential prime implicate is (A + B ). In other
words, / (A , £, C, D) = 0 when ( A + B ) = 0, which occurs when A = 0 and
B = 0. Prime implicate 1-9 represents the portion of the map where B is 0, C is
0, and D is 1. Therefore, the sum term for this prime implicate is ( B + C + D ).
The last prime implicate is 6-14, which represents the area of the K-map where
B is 1, C is 1, and D is 0. Therefore, the sum term for this prime implicate is
( B + C + D ). Hence, the minimum POS form for this function is

/(A , B, C, D) = (A + B )( B + C + D )( B + C + D )

Some digital designers find working with maxterms and prime impli-
cates awkward and prefer to perform K-map simplification using one of the
algorithms for producing minimum SOP forms. SOP methods can be utilized
to produce a minimum POS form of a function, /, by dealing with / instead
of /. We begin by plotting the complement of the function / on the K-map.
This converts the maxterms (zeros) into minterms (ones). We then use one of
the SOP procedures to derive a minimum SOP expression for /. Next, this
SOP expression is complemented and DeMorgan’s theorem (Theorem 8) is
applied to produce the desired POS form of /. Thus we minimize / as a SOP
function and then complement it to get /. This procedure is summarized as
follows:

Algorithm 3.5

1. Plot the complement of the function / on the K-map.

2. Use Algorithm 3.1 or 3.2 to produce a minimum SOP expression
for /.

3. Complement the expression and apply DeMorgan’s theorem to
produce a minimum POS expression.

> r!
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EXAMPLE 3.18 Repeat Example 3.17 using Algorithm 3.5.
Given the function

/(A , B, C , D ) =[7 Af (0, 1, 2, 3, 6, 9, 14)
as illustrated in Fig. 3.19a, we begin by plotting its complement on another
K-map:

/(A , B, C , D ) = J2 m <0’ l ' 2’ 3’ 6’ 9’ 14)
This is shown on the K-map of Fig. 3.20a. Note that this map is identical to
that of Fig. 3.19a, but with the zeros replaced by ones.

tDD ?

t
\

s

B B
(a) (b)

Figure 3.20 K-map of f ( A , B, C , D ) (a) Minterms of the function, (b) Minimal cover.

Using either Algorithm 3.1 or 3.2, we obtain the minimum cover {1-9,
6-14, 0-1-2-3}. Note that the order in which terms are considered and the
resulting cover are the same as in Example 3.17, except that here the cover
represents prime implicants of /, rather than prime implicates of /.

We now write the minimum SOP expression for / from the prime impli-
cants in the minimum cover:

/ (A, B, C, D ) = A B + B C D + B C D
Finally, we complement the expression and apply DeMorgan’s theorem to
obtain the minimum POS form of /(A , B, C , D )\

/(A , B, C, D ) = A B + B C D + B C D

= ( A B ){ B C D ){ B C D )

= (A + B ) { B + C + D ){ B + C + D )

The primary advantage of this method is that we can use the SOP rules for
K-map simplification on both SOP and POS functions. However, the additional
steps of complementing the expression and applying DeMorgan’s theorem are
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required to produce a minimum POS form. The following examples are done
with both methods.

EXAMPLE 3.19 Find a minimum POS expression for
C,D) = n 4, 6, 8, 9, 11, 12, 14).

The maxterms of the function are plotted on the K-map of Fig. 3.21a. Using
Algorithm 3.3, we first cover maxterm M3 with prime implicate 3-11, M4 with
4-6-12-14, and then Mg with 8-9. The resulting minimum cover is shown
in Fig. 3.21a. The minimum POS form is derived by writing the product of
the sum terms corresponding to the prime implicates, where 3-11 represents
( B + C + D ), 4-6-12-14 represents ( B + D), and 8-9 represents (A + B +
C). The resulting POS expression is

/(A , B, C, D ) = ( B + D ) ( B + C + D ) ( A + B + C )
To use Algorithm 3.5, we plot the complement of the function, as shown

in Fig. 3.21b, and then form the same combination of cells: 3-11, 4-6-12-14,
and 8-9. Writing the sum of these prime implicants,

/(A , B, C , D ) = B D + B C D + A B C
Complementing the expression and using DeMorgan’s theorem,

/(A, B, C, D ) = B D + B C D + A B C

= ( B D )( B C D )( A B C )

= ( B + D ) ( B + C + D )( A + B + C )

AA AB
CD00 01 1 10 00 01 1 10

8 ) I 12 83 X 12

f0) m00 00flj U0

13) 8 )5 13 11
01 010

y D15 7 15 1 13 7 11
11 (0 11 (I

c < l s 14 107 3 14 10
1010 1

B
(a) (b)

Figure 3.21 Minimum covers of f ( A , B, c, D) = f[ M(3,4, 6, 8, 9, 11, 12, 14) and its
complement, (a) f ( A , B, C, D). (b) /(A, B, C,D).

EXAMPLE 3.20 Derive a minimum POS expression for the
function
f {A, B,C ,D, E ) = Y\M(0,2,4,11, 14,15,16, 20,24,30,31)
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The function and its minimum cover are plotted on the K-map of Fig. 3.22.
The minimum cover contains five prime implicates, all of which are essential.

A
B BABC

DE 000 001 011 010 100 101 111 110
0 4 12 8 16 20 28 24m o)3)(51 (5oo

2?5 13 9- 17 21 20

01

r E7 23 31 2715 1 1 19

5)n o
D < 266 14 10 18 22 30

(0110 £ £

c c
Figure 3.22 Finding a minimal POS expression for a 5-variable function.

Writing these prime implicates as sums and taking their product, we get
/(A, B, C, D, E ) = (A + B + C + E )( B + D + £)(B + C + D)

(A -I- B D E )( A + C -P Z) -F £")
The reader should verify that the same result is obtained by finding a minimum
SOP expression for / and then complementing it to obtain /.

EXAMPLE 3.21 Find minimum POS and SOP expressions for
the following function:

f (A,B,C,D ) =nm0,2,3,9,11,12,13,15)

To find the minimum POS expression, we plot the maxterms of the function as
shown in Fig. 3.23a. Using Algorithm 3.3, we generate prime implicate 0-2 to
cover Af2, 12-13 to cover M x v and 9-11-13-15 to cover M g.This leaves M v
which can be covered with either 3-11 or 2-3. Since each contains the same
number of literals, let us arbitrarily select 2-3. The resulting POS expression
is thus

/(A, B, C, D) = (A + B + D )( A + B 4- C)(A + D )( A + B + C)
We can also generate the minimum POS form by plotting /, as in Fig. 3.23b,
and then deriving a minimum SOP expression for /:

/(A , B, C, D ) = A B D -f A B C -F A D + A B C
Complementing, we get

/(A , C, D ) = A B D A- A B C -f A D + ABC

= ( A B D ){ A B C ){ A D ) ( A B C )

= (A + B + £>)(A + B + C)(A + D)(A + B + C)
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To generate a minimum SOP expression for f ( A, B, C, D), we plot the
minterms of the function instead of the maxterms, as shown in Fig. 3.23c.
Using Algorithm 3.1 or 3.2 produces the minimum cover shown in Fig. 3.23c.
Taking the sum of the prime implicants gives

/(A , B, C, D ) = A C D + A B D + A B + B C D

A A AA B AB
CD CD00 01 11 10 01 11 10 00 01 11

4 12 8 0 4 12
00 001 1

1 5 13 9 I 3 13

V £ r01 01 1 01

r D Y D Y D3 7 15 11 3 7 15

11 11 1 1 11 1
C < Cl C l 26 14 10 6 14 TT)2

£ 1010 10 1

B B B
(a) (b) (c)

Figure 3.23 Deriving POS and SOP forms of a function, (a) Maxterms of /.
(b) Minterms of /. (c) Minterms of /.

Example 3.21 illustrates an important point. From any description of a
function, we can generate either a minimal SOP or a minimal POS expression.
To generate the minimal SOP expression, we work with the minterms of the
function, whereas for a minimal POS expression we work with the maxterms.
Once we have plotted the maxterms of a function on a K-map, as in Example
3.21, we automatically have a map of the minterms, and vice versa. Therefore,
the initial function format need not affect whether we choose a SOP or POS
form for the minimized function.

•3.7 Incompletely Specified Functions
If don’t-care terms are present, we adjoin one additional rule to those previ-
ously discussed for minimizing functions via maps. Recall that don’t-cares by
definition can be either 0 or 1. Hence, in minimizing terms in SOP or POS form,
we choose the don’t-cares to be 1 or 0 if, in doing so, the set of squares on the
map that can be grouped together is larger than would otherwise be possible
without including the don’t-cares. Then, when deriving the minimum cover,
we ignore the don’t-cares and select only enough prime implicants/implicates
to cover the specified terms. In other words, with regard to don’t-cares, we can
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take them (or leave them) depending on whether they do (or do not) aid in the
simplification of a function.

EXAMPLE 3.22 We wish to minimize the following function in
both SOP and POS forms using K-maps.
f (A,B,C,D ) = m(1,3,4, 7,11) + d(5,12,13,14,15)

= Y[ M(0,2,6,8,9,10) D(5,12,13,14,15)

The maps for the function /(A , B , C, D ) are shown in Figure 3.24a and b.

A
01 11 10

124 8

1d

13 v5
0Jd Id

> D7 15 11
d

6 14 10

L$>0 d

B B
(a) (b)

Figure 3.24 K-maps for Example 3.22. (a) Sum of products, (b) Product of sums.

The minimum SOP form derived from the map of Fig. 3.24a is
/ (A , £, C, D ) = BC + AD + CD

The minimum POS form derived from the map of Fig. 3.24b is
/(A , B , C, D ) = ( B + D )( C + D)(A + C)

Note that, if we use Boolean algebra on the minimum POS form to produce a
POS form, we get

/(A, B, C, D ) = ABC + AD + CD
which is not identical to the minimum SOP form obtained from the map.
This situation often occurs because of the presence of don’t-cares, which can
be used differently when optimizing each derived expression. In this case,
several don’t-care terms (5, 12, 13) were used as ones to derive the mini-
mum SOP form and as zeros to derive the minimum POS form. However,
in each case, the required minterms and maxterms have been implemented
correctly.

The following example will serve to illustrate how don’t-cares occur and
how they are used.
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EXAMPLE 3.23 We wish to design a 4-bit binary-coded
decimal (BCD) input/single output logic
circuit that will be used to distinguish digits
that are greater than or equal to 5 from those
that are less than 5. The input will be the BCD
representation of the decimal digits 0,1. . . . , 9,
and the output should be 1 if the input is 5, 6,
7, 8, or 9 and 0 if the input is less than 5.
The block diagram of the circuit is shown in Fig. 3.25a, and the truth table for
this operation is shown in Fig. 3.25b. Note that the don’t cares appear in the
table because these particular inputs do not represent BCD digits and hence
cannot possibly occur. Therefore the output function / is

f ( A , B , C , D ) = J2 m( 5 ,6 , 7, 8, 9) + </(10, 11, 12, 13, 14, 15)
This function is plotted on the map of Fig. 3.26a. From the map we obtain the
minimum SOP form:

/(A , B, C, D ) = A + B D + B C
The reader should verify that if we combine maxterms and don’t-cares, as
shown in Fig. 3.26b, we can obtain the minimum POS form:

/(A , B , C, D ) = (A + B )( A + C + D ).
Note that this function is much simpler than it would have been without the
inclusion of the don’t-cares. In addition, note in Fig. 3.26a that all the don’t-
cares were used, that is, chosen to be ones, whereas in Fig. 3.26b none of the
don’t cares was used, that is, chosen to be zeros.This will not always be the case.

ABCD Minterm /04, B, C, D )

0000 0 0
0001 1 0

20010 0
30011 0

0100 4 0
0101 5 1A

Logic
circuit

0110 6 1B * / 0111 7 1*
1000 8 1*D

91001 1
(a) 1010 10 d

1011 11 d
1100 12 d
1101 13 d
1110 14 d
1 1 1 1 15 d

(b)

Figure 3.25 Example 3.23 block diagram and truth table,

(a) Block diagram, (b) Truth table.
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A AAB A B
CD CD00 01 11 10 00 01 11 10

4 12 80

5)00 d

5 13 9

01 0 d

> D > D3 7 15 11
11 0 d d

C < C < 14 106

10 £ d d

B B
(a) (b)

Figure 3.26 Use of don’t cares for SOP and POS forms, (a) Minimum SOP cover,
(b) Minimum POS cover.

•3.8 Using K-maps to Eliminate
Timing Hazards

Thus far we have assumed that the optimum approach for designing each
combinational logic circuit is to generate a minimum SOP or POS expression
and then realize it with logic gates. Unfortunately, timing considerations often
require that a less-than-minimum circuit be used.

As discussed in Chapter 2, every physical logic gate has a measurable
response time or delay associated with it, which is the time it takes the gate
output to change following an input change. This response time is denoted by
rpHL for an output change from high to low and TpLH for a change from low to
high.

The response time of most logic devices is very short (nanoseconds to
fractions of a nanosecond, depending on the technology, fan-in, fan-out, and
the like). However, the response time cannot be exactly the same for any two
devices, even of the same type. Such relative differences in response time may
cause undesirable events to occur in a switching network. These undesirable
events are referred to as hazards [3].

To illustrate a hazard, consider the network shown in Fig. 3.27a. Let
us first examine the ideal case by assuming that gates G1, G2, and G3 have
identical response times T,
diagram of the circuit for a particular input sequence. Note that the change of
x3 at r, causes y2 to change at t2 = t { + At , which in turn produces a change
in z at r3 — t2 + At. A change of x2 at r4 causes no change in output of any
gate. At t5 the change of xx initiates changes of y2 from 1 to 0 and of y3 from 0
to 1, both at t6 = t5 -b At. Since z = y{ + yv the result of yx and y2 changing
simultaneously is that there is no change in z.

= At . Figure 3.27c gives the timing= T,PHL PLH
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Vl yiX \ *i
G1 G1

x2 *2
Z(X \ , X2, X y )r( \ \ . X2» Xy )

G3 G3/1
-Vl

G2 G2>’2 .>'2*3 *3

(a) (b)

-vi

-V2

•V3

Tl

yi
i
i
i

z
I -*> <

Ar Af A /i
i i

Time i i

'l h h 4 h 4
(c)

-Vl

-V2

-V3

Tl

yi
1
1
1
1z
I

«*—>
At2 1 A/31* I

A /3A t2 1 1
1 1

Time 1 < -1 1—I | At\ ! A ^3
4 h 4 4

> 1
t

4 44 4 ty

(d)

Figure 3.27 Illustration of a static hazard, (a) Network with static hazard,

(b) Equivalent network, (c) Timing diagram with identical delays At . (d) Timing
diagram with delays Atl > At2 > A/r
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Now let us examine a more realistic case in which the gate delays are not
equal. Assume that gates G1, G2, and G3 have response times Atv Ar2, and
Atv respectively, with Atx > At2 > Aty For convenience, let A = 2Atv
This discrepancy in delays can be the result of gates having different physical
characteristics.This situation can also arise in circuits having a different number
of gates in each path, as in the circuit of Fig. 3.27b, which realizes the same
function as the circuit of Fig. 3.27a. Let us assume that all four gates have
identical response times. For a change in input xv the output of AND gate G1
changes after one gate delay, whereas the output of G2 does not change until
after two gate delays, since the change in x { must propagate through inverter
11 and then through AND gate G2. The net result is that the overall delay at the
output of G2 following a change in is two times the delay at the output of G1.

Figure 3.27d gives the timing diagram of the circuit for the same input
sequence discussed previously. The change of x3 at t { causes y2 to change at
t2 , which in turn produces a change in z at ty This is the expected sequence of
events with t2 = tx + At2 and t3 = t2 + Aty However, at t5 the change of x{

initiates an interesting sequence of events. First, since At2 < At{ , the change
causes y2 to change from 1 to 0 at t6 , prior to yx changing from 0 to 1 at fg.

As a result, z changes from 1 to 0 at t7 and then from 0 to 1 at tg.This change
in z is different from that of the ideal case presented in Fig. 3.27b, and is not
indicated by the logic description of the network. Hence, it is not the correct
behavior of the network.

Momentary output changes such as the one illustrated are referred to as
static hazards or glitches. In general, a static hazard is a condition for which a
single variable change ( xx in the example) may produce a momentary output
change when no output change should occur. The reader should verify that no
hazard would occur in the preceding example if the relative delays were such
that Atx < At2. As illustrated by this example, a static hazard is the result of
unequal delays along different paths between one input of the circuit and an
output gate.

in x I

*i

x2 x2
(b)(a)

Figure 3.28 Identifying hazards on a K-map. (a) K-map with
hazard condition, (b) K-map with hazard eliminated.
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The cause of the preceding hazard condition can be seen by examining the
K-map of the network in Fig. 3.28a. In the corresponding circuits of Figs. 3.27a
and 3.27b, product term xxx2 is produced by AND gate G1, and product term
xlx3 is produced by AND gate G2.As illustrated in Fig. 3.27c, the hazard exists
when a changing input (from xx = 0, x2 = 1, x3 = 1 to xx = x2 = x3 = l )
requires the corresponding minterms to be covered by different product terms.
In the circuit, this means that the output of one AND gate changes from 1 to 0
while the output of the other AND gate changes from 0 to 1. The hazard occurs
when the output of G1 goes to 0 before the output of G2 goes to 1.

Static hazards can be prevented by using careful logic design to make
the output independent of the order in which the signals change. The hazard
shown in Fig. 3.27c can be avoided by grouping the minterms as shown in Fig.
3.28b, adding a third product term to the sum of products expression that would
not ordinarily be used. The resulting circuit is presented in Fig. 3.29. In this
circuit the added product term, produced by AND gate G4, remains 1 while the
outputs of G1 and G2 change. Therefore, the output of OR gate G3 remains
constant at 1 regardless of whether G1 or G2 changes first.

In general, hazards can be removed by covering each pair of logically
adjacent minterms with a common product term. Therefore, the removal of
hazards requires the addition of redundant gates to a network, resulting in a
nonminimum realization.

*i
G1

-*2

z( x h x2, X3 )*\ G2 G3x3

X 2
G4

x3

Figure 3.29 Hazard-free network.

The preceding discussion was primarily concerned with static hazards
known as static 1 hazards, for which the output should remain at logic 1 but
temporarily drops to logic 0, producing a transient pulse, which is sometimes
called a glitch.Static 0 hazards are also implied by the definition of static hazard
and can occur. Static 1 hazards occur primarily in AND-OR circuits, which
realize SOP expressions, while static 0 hazards occur in OR-AND circuits,
which realize POS expressions.

For example, consider the circuit of Fig. 3.30a and its corresponding
K-map in Fig. 3.30b. For input B = 1, C = 0, D — 1, a static 0 hazard occurs
when input A changes from 0 to 1. Referring to the logic diagram, the hazard
results if the output of OR gate G1 changes from 1 to 0 before the output of
OR gate G2 changes from 0 to 1. Hence, although the output should remain 0,
it momentarily changes to 1.

As with static 1 hazards, static 0 hazards are prevented by ensuring that
each pair of adjacent maxterms is covered by a sum term. Figures 3.30c and d
show a hazard-free realization of the circuit and the corresponding K-map
created by adding the redundant sum term ( B -f- C + D ).

A second type of hazard known as a dynamic hazard may also exist in
a network. A dynamic hazard is a condition in which an output is to change
from 0 0 (that is, the output behavior is to be dynamic versus
static), but changes more than once before settling into its new state. Like static
hazards, a dynamic hazard is also caused by a special relative response time
condition that occurs after an input transition that normally produces an output

1 or 1
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A

A
C

z( A , B, C, D))A > DG4
D

A C <B
C

(a)

B
(b)

A

z( A , B, C, D ))G4 > D

C <

B
(d)

Figure 3.30 Example of a static-0 hazard, (a) Circuit with static-0 hazard, (b) K-map
containing the hazard, (c) Hazard-free circuit, (d) K-map with hazard eliminated.

(a) (b)

Figure 3.31 Dynamic hazards, (a) Dynamic hazard on 0 to 1
change, (b) Dynamic hazard on 1 to 0 change.

change. Such hazards cause output responses of 0
1 changes, as illustrated in Fig. 3.31a, or 1
0 changes, as shown in Fig. 3.31b. Dynamic hazards can be shown to be

the result of static hazards that exist within the circuit. Consequently, networks
that are free of static hazards are also free of dynamic hazards. The reader is
referred to [4] for further discussion of detecting and eliminating static and
dynamic hazards.

1 0 1 for normal
0 for normal0 0 1

1
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•3.9 Quine-McCluskey Tabular
Minimization Method

The Quine-McCluskey ( Q-M ) method is a tabular approach to Boolean function
minimization [ 5, 6, 7]. Basically, the Q-M method has two advantages over the
K-map. First, it is a straightforward, systematic method for producing a minimal
function that is less dependent on the designer’s ability to recognize patterns
than the K-map method. Second, the method is a viable scheme for handling
a large number of variables as opposed to the K-map, which, practically, is
limited to about five or six variables. In general, the Q-M method performs an
ordered linear search over the minterms in the function to find all combinations
of logically adjacent minterms. As will be shown, the method can also be
extended to functions with multiple outputs.

The Quine-McCluskey method begins with a list of the n-variable
minterms of the function and successively derives all implicants with n — 1
variables, implicants with n — 2 variables, and so on, until all prime implicants
are identified. A minimal covering of the function is then derived from the set
of prime implicants. The four steps of the process are listed next. The exact
meaning of each step will be illustrated by the examples that follow.

Step 1. List in a column all the minterms of the function to be minimized in
their binary representation. Partition them into groups according to the number
of 1 bits in their binary representations. This partitioning simplifies identifica-
tion of logically adjacent minterms since, to be logically adjacent, two minterms
must differ in exactly one literal, and therefore the binary representation of one
minterm must have either one more or one fewer 1 bit than the other.
Step 2. Perform an exhaustive search between neighboring groups for adja-
cent minterms and combine them into a column of (n — 1)-variable implicants,
checking off each minterm that is combined. The binary representation of each
new implicant contains a dash in the position of the eliminated variable. Repeat
for each column, combining ( n — l )-varible implicants into (n — 2)-variable
implicants, and so on, until no further implicants can be combined. Any term
not checked off represents a prime implicant of the function, since it is not
covered by a larger implicant. The final result is a list of prime implicants of
the switching function.

Step 3. Construct a prime implicant chart that lists minterms along the hori-
zontal and prime implicants along the vertical, with an x entry placed wherever
a certain prime implicant (row) covers a given minterm (column).
Step 4. Select a minimum number of prime implicants that cover all the
minterms of the switching function.
A complete example will now be presented that demonstrates these four steps.

EXAMPLE 3.24 Let us use the Q-M technique to minimize the
function

f (A, B, C, D ) = J2 m(2- 4, 6, 8, 9, 10, 12, 13, 15)
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The K-map for this example is shown in Fig. 3.32, and the reader is encouraged
to try his or her hand at obtaining a minimal function via the map method.

A

oo 01 n 10
o 4 12 8

00 1 1 1

! 5 13 9

01 1 1

> D3 7 15 1 1

11 1
c < 14 10

10 1 1

Figure 3.32 K-map for
Example 3.30.B

Step 1. To begin the Q-M minimization technique, the minterms are grouped
according to the number of ones in the binary representation of the minterm
number. This grouping of terms is illustrated in the following table:

Minterms A B C D
2 0010
4 0100 Group 1 (a single 1)
8 1000
6 0110

Group 2 (two l’s)9 1001
10 1010
12 1100

1101 Group 3 (three l’s)
1111 Group 4 (four 1’s)

13
15

Step 2. Once this table has been formed, an exhaustive search for all combi-
nations of logically adjacent terms is initiated. The method of performing this
functional reduction is summarized here and explained in detail later. Consider
the minimizing table shown next containing the three minterm lists. The two
terms can be combined if and only if they differ in a single literal. Hence, in
list 1 we can combine terms in group 1 only with those in group 2. When all
the combinations between these two groups have been made and they have
been entered in list 2, a line is drawn under these combinations, and we begin
combining the terms in group 2 with those in group 3. This simple procedure
is repeated from one list to another in order to generate the entire minimizing
table.
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List 1
Minterm A BCD

List 2 List 3
Minterms AB CD Minterms A BCD

2 0010 2, 6 8, 9, 12, 13 1-0- PI0-10 PI2 i
oioo v 2, 104 -010 PI3

V8 1000 4, 6 01-0 PI4

V 4, 126 0110 -100 PI5

V9 1001 8, 9 100-
V10 1010 8, 10 10-0 Pl6
V12 8, 121100 1-00

1101 V V13 9, 13 1-01

V V15 mi 12, 13 no-
13, 15

There are a number of items in the table that beg for explanation. Note that
the first element in list 2 indicates that minterms 2 and 6 have been combined
since they differ in only a single literal. The terms differed in the variable B
and hence a dash appears in that position in the combination 2, 6, indicating
that variable B was eliminated when the two minterms were combined. This
combination can easily be checked by Boolean algebra:

minterm 2 = A B C D,

11-1 PI7

minterm 6 = A B C D
and

A B C D + A B C D = A C D ^ O - 10
Each minterm in list 1 that is combined with another is checked off with

a y/ y indicating that it has been included in a larger set. Although a term may
be combined more than once, it is only checked off once.

Once list 2 has been generated from list 1, an exhaustive search is made
to combine the terms in list 2 to generate list 3. It is at this point that it
becomes evident why it is important to indicate which of the variables has been
eliminated. Since, as before, two terms in list 2 can be combined only if they
differ in a single literal, only terms that have the same missing literal (a dash
in the same position) can possibly be combined. Note that in list 2 minterm
combinations 8, 12 and 9, 13 and also 8, 9 and 12, 13 can be combined to yield
the combination 8, 9, 12, 13 in list 3.Inspection of list 2 shows that minterm
combinations 8, 12 and 9, 13 both have the same missing literal and differ by
one other literal. The same is true for the other combination. Hence all four
terms are checked off in list 2 in the table. No other terms in list 2 in the table
can be combined. Hence, all the terms that are not checked off in the entire
table are prime implicants and are labeled PIj . . .PI7. The function could now
be realized as a sum of all the prime implicants; however, we are looking for a
minimal realization, and hence we want to use only the smallest number that
is actually required.

A convenient way to check for errors in lists 2, 3, 4, and so on, is to
perform the following test on each entry: subtract the minterm numbers to
verify that the proper variables have been omitted. For example, the entry (4,
6 01-0) in list 2 indicates that the variable with weight 6 — 4 = 2 should be
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eliminated. In this example, the possible weights are 8, 4, 2, and 1. For the
entry in list 3 (8, 9, 12, 13 => 1-0-):

9 - 8 = 1
13- 1 2 = 1

so variables with weights 1 and 4 should be eliminated.

Step 3. To determine the smallest number of prime implicants required to
realize the function we form a prime implicant chart as follows:

12-8 = 4
13- 8 = 4

V V
2 64 8 9 10 12 13 15

* * PI x x XI

Pl2 X X

PI3 XX

Pl4 X X

P15 X X

PI6 X X

(8)PI7 X* *

The double horizontal line through the chart between PIj and PI2 is used to
separate prime implicants that contain different numbers of literals.
Step 4. An examination of the minterm columns in the prime implicant chart
indicates that minterms 9 and 15 are each covered by only one prime implicant
(shown circled). Therefore, prime implicants 1 and 7 must be chosen, and hence
they are essential prime implicants (as indicated by the double asterisks). Note
that in choosing these two prime implicants we have also covered minterms
8, 12, and 13. All five of the covered minterms are checked in the table; the
checks are placed above the minterm numbers.

The problem now remaining is that of selecting as few additional (nones-
sential) prime implicants as are necessary to cover the minterms 2, 4, 6, and 10.
In general, this is accomplished by forming a reduced prime implicant chart.
This reduced chart is shown next; note that the chart contains only the minterms
that remain to be covered and the remaining prime implicant candidates for
inclusion in the cover.

V V
2 6 104

PI2 xx

*PI3 X X

*PI4 X X

PI5 X

XPl6
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Which Pis should we select? Prime implicants PI5 and PI6 are obviously
bad choices because they cover only one minterm, and that minterm is also
covered by another PI that covers two minterms. Notice that the minterms 2, 4,
6, and 10 can be most efficiently covered (with the minimum number of prime
implicants) by choosing PI3 and PI4. The single asterisk indicates our selection,
and the checks above all the remaining minterms mean we have generated a
complete cover. Therefore, a minimal realization of the original function would
be

PIj+ Pl3+ PI4+ PI
1-0- + -010 + 01-0 + 11-1
A C + B C D + A B D + A B D

The corresponding groupings of the minterms on the K-map are shown in Fig.
3.33.

C, D ) 7

AAB
CD 00 01 11 10

00

01

> D
11

C <
10

Figure 3.33 Grouping of
terms.B

3.9.1 Covering Procedure
The problem of selecting a minimum number of prime implicants to realize a
switching function is sometimes called the covering problem. The following
procedure may be employed to systematically choose a minimum number of
nonessential prime implicants from the prime implicant chart.

The first step is to remove all essential prime implicant rows, as well as
the minterm columns that they cover, from the chart, as in the last example.
Then this reduced chart is further simplified as described next.

A row (column) i of a PI chart covers row (column) j if row (column)
i contains an x in each column (row) in which j contains an x . Each row
represents a nonessential prime implicant PL, while each column represents a
minterm of the switching function. For example, consider the following PI
chart for the switching function

f ( A , B , C, D) = £ m (0, 1, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15)
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V V V V V V
6 8 9o 5 7 10 l l 13 14 15

PI i* * x x X

PI2 X X X X

PI3 X XX X

PI4 X X X X

Pis X X X X

PI6 XX X X

Ply X X X* *

For this PI chart, PI, and PI7 are essential PI and are marked with double
asterisks. Now we remove these two rows as well as all columns in which the
rows have x entries. The following reduced PI chart is generated:

5 10 l l 13

PI2 x X

PI3 X X

PI4 X X

PI5 X X

PI6 X X

According to the definition of row and column covering stated earlier, row
PI2 covers row PI3 (and vice versa), row PI4 covers row PI6 (and vice versa),
column 11 covers column 10, and column 13 covers column 5.

In view of the previous discussion, the rules for PI chart reduction can be
stated as follows:

Rule 1. A row that is covered by another row may beeliminated from the chart.
When identical rows are present, all but one of the rows may be eliminated. In
the example, rows PI3 and PI6 may be eliminated.
Rule 2. A column that covers another column may be eliminated. All but one
column from a set of identical columns may be eliminated. In the example,
columns 11 and 13 can be eliminated.

If we apply these rules to the previous PI chart, the following reduced PI
chart is obtained:

V V
5 10

* PI2 X

*PI4 X

Hence we may choose PI2 and PI4 along with the essential PI , and PI7 to obtain
a minimum cover for the switching function.
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A type of PI chart that requires a special approach to accomplish reduction
will now be discussed. A cyclic PI chart is a chart that contains no essential PI
and that cannot be reduced by rules 1 and 2. An example of a cyclic chart is
shown next for the switching function

C ) = J2 m( 1, 2, 3, 4, 5, 6)

V V
1 2 3 4 5 6

*PI x xl

PI? X X

PI3 X X

PI4 X X

Pis X X

Pl6 X X

Verify that no row or column covers another row or column. The procedure
to follow for cyclic chart reduction is to arbitrarily select one PI from the
chart. The row corresponding to this PI and the columns corresponding to the
minterms covered by the PI are then removed from the chart. If the resulting
reduced chart is not cyclic, then rules 1 and 2 may be applied. However, if
another cyclic chart is produced, the procedure for a cyclic chart is repeated
and another arbitrary choice is made. For example, arbitrarily choose in the
preceding cyclic chart. The following noncyclic chart is obtained by removing
row PI, and columns 1 and 3.1

4 5 62

PI2 x
PI3 X X

PI4 X X

PI5 X X

Pl6 X

Rules 1 and 2 may now be applied to further reduce this chart. PI3 covers
row PI2; hence row PI2 may be removed. Row PI5 covers row PI6, so we can
eliminate PI6. The resulting reduced chart is

VV V
2 5 64

*PI3 xx
PI4 X X

-Pis X X

PI3 and PI5 must be chosen to cover the chart.
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A minimum cover for the switching function is PI, , PI3, and PI5. Other
minimal covers also exist. The previous discussion can be summarized as
follows:

Step 1. Identify any minterms covered by only one PI in the chart. Select
these Pis for the cover. Note that this step identifies essential Pis on the first
pass and nonessential Pis on subsequent passes (from step 4).
Step 2, Remove rows corresponding to the identified essential and nonessen-
tial Pis. Remove columns corresponding to minterms covered by the removed
rows.
Step 3. If a cyclic chart results after completing step 2, go to step 5. Otherwise,
apply the reduction procedure of rules 1 and 2.
Step 4. If a cyclic chart results from step 3, go to step 5. Otherwise, return to
step 1.
Step 5. Apply the cyclic chart procedure. Repeat step 5 until a void chart
occurs or until a noncyclic chart is produced. In the latter case, return to
step 1.

The procedure terminates when step 2 or 5 produces a void chart. A void
chart contains no rows or columns. On the first application of step 1, prime
implicants are found that must be identified to cover minterms for which only
one x appears in this column. They are identified by a double asterisk and are
essential Pis. On the second and succeeding applications of step 1 (determined
by step 4), nonessential prime implicants are identified by an asterisk from
reduced PI charts.

3.9.2 Incompletely Specified Functions
The minimization of functions involving don’t-cares proceeds exactly as shown
in the preceding example with one important exception, which will be demon-
strated by the next example.

EXAMPLE 3.25 We want to use the Q-M approach to
minimize the function

f (A,B,C,D,E ) = m( 2,3,7,10,12,15,27)

+ </(5,18,19,21,23)

Following the procedure demonstrated in the preceding example, all the
minterms and don't-cares are listed in the minimizing table and combined
in the manner previously illustrated. The results of this procedure are shown in
the following table:
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List 1
Minterm A B C D E

List 2 List 3
Minterms A B C D E Minterms A B C D E

00010 V 2, 3 0001- V 2, 3, 18, 19 -001- PI2 l

V 2, 10
V 2, 18

3 00011
00101

0-010 PI4 3, 7, 19, 23 -0-11 PI2
-0010 V 5, 7, 21, 23 -01-1 PI35

01010 V 3, 7
01100 PI7 3, 19
10010 y 5, 7

10 00-11
-0011
001-1

12

V18

y 5, 21

V 18, 19
V7 00111

10011
-0101
1001- V19

y 7, 151010121 0-111 PI5
y 7, 23
y 19, 23
y 19, 27

21, 23

y01111
10111
non

15 -0111
y23 10-11

1-01127 PI6
y101-1

A prime implicant chart for the example must now be obtained. It is at
this point that the method differs from that described earlier. Since some of
the terms in list 1 are don’t-cares, there is no need to cover them. Only the
specified minterms must be covered, and thus they are the only minterms that
appear in the prime implicant chart shown next. Do not list don’t-cares in the
PI chart.

It can be seen from the chart that the essential prime implicants are PI4,
PI5, PI6, and PI7. Since only minterm 3 is not covered by the essential prime
implicants, a reduced prime implicant chart is not necessary. Minterm 3 can be
covered using or PI2, so there are two minimal covers for this function. The
minimal realizations for the function are

/(A , B, C, D, E ) = Pl{ + PI,+ PI5 + PI6 + PI,
or

/(A , B, C , D, E ) = PI2 + PI,+ PI5 + PI6 + PI,
V V

3 102 7 12 15 27

Ph x x

PL x X

PI3 X

PI4 X* *

PI5 X* *

0Pl6* *

Pb* *
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In terms of the variables,

/(A , B, C, D, E ) = £CD + ACDE + ACDE + ACDE + ABCDE
or

/(A , C, D, £) = EDE + ACDE + ACDE + ACDE + ABCDE

3.9.3 Systems with Multiple Outputs
In the design of digital systems, it is often necessary to implement more than
one output function with some given set of input variables. Using the techniques
developed thus far, the problem can be solved by treating each function indi-
vidually. However, there exists a potential for sharing gates and thus obtaining
a simpler and less expensive design.

The extension of the Q-M tabular method to the multiple-output case is
performed like the singular case with the following exceptions:

1. To each minterm we must affix a flag to identify the function in which it
appears.

2. Two terms (or minterms) can be combined only if they both
possess one or more common flags and the term that results
from the combination carries only flags that are common to both
minterms.

3. Each term in the minimizing table can be checked off only if all the
flags that the term possesses appear in the term resulting from the
combination.

EXAMPLE 3.26 Let us use the tabular method to obtain a
minimum realization for the functions

fa(A,B,C,D ) = J2 «(0.2.7,10) + </(12,15)

fp(A,B,C,D ) = J2 m(2,4,5) + d(6,7,8,10)

fy (A,B,C,D) - 7/I(2, 7,8) + d(0,5,13)

Note that this example will also demonstrate a minimization with don’t-cares
present. The minimizing table is shown next.

List 2Min List 1 Min List 3Min

ABCD Flags ABCD Flags ABCD Flagsterm terms terms

0, 2 PI2 4, 5, 6, 7 01--0 onnn 00-0 P PI1ay ay

2 <*PY0010 PI10 0, 8 -000 PI3Y

VP 2, 64 0100 0-10 P PI4
PI11 2, 108 1000 PY -010 ap PI5

PY -J5 0101 010-4, 5 P
V6 0110 P 4, 6 01-0 P
V10 1010 ap 8, 10 10-0 P PI6

12 1100 PI12 5, 7 01-1 PY PI7a

7 0111 apy PI13 5, 13 PI8-101 Y

V13 1101 6, 7 011- PY

V15 m i 7, 15 - i l l P I9a a
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Consider the combination 0, 8 in List 2. This term is generated for
function f y ( A , B , C, D ) from minterms 0 and 8 in list 1. Minterm 8 cannot be
checked because its entire label f l y is not included in the label for minterm 0.
Minterm 0 has a check due to the term 0, 2 in List 2.

It is important to note at this point that although our minimizing tables
thus far have had three lists, in general, the number of lists can be any integer less
than or equal to n + 1, where n is the number of input variables for the switching
function, or functions in the multiple-output case. The prime implicant chart
for the minimizing table is shown next (remember, n o don’t-cares across the
top):

fa /p ft

VV V V V
0 2 7 10 2 4 5 2 7 8

PI , P x* *

PI2 ay xx* *

PI3 7 x

P L P x

PI5 ap x x* *

PLP
PI7 Py X X

Pi8 y

PI9 a x

PI10 apy X X X

Pill PY X

PI , 2 a
PI13 apY X X

The chart illustrates that PIp PI2, and PI5 are essential prime implicants. The
reduced prime implicant chart is shown next; note that all prime implicants
covering only don’t-cares have been omitted.

fa fy

VV
7 7 8

* PI3 Y x

PI7 py X

PI9 a x

Pin PY X

" PI13 «PY X X
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It is obvious that the best set of remaining prime implicants is PI3 and PI13. We
choose PI3 rather than PIn because it has fewer literals. Hence the minimum
realizations for the three functions are

/« = pi
2 + pi5 + pii3

ffi = PI1 +PI5
/r = p I

2 + p I
3 + p I,3

o r
f = A B D + B C D + A B C D

•* Of

f p = A B + B C D
f = A B D + B C D + A B C Dj y

It is important to note that PI2, PI5, and PI13 are generated only once, but are
used to implement two of the functions, as shown in Fig. 3.34.

A B D

A B C D

y
fa

)PI2

PI3

f yPI5

)Pin

Figure 3.34 Reduced multiple-output circuit.

D 3.10 Petrick's Algorithm
As stated previously, the methods presented in the previous section for selecting
a minimum cover are heuristic and therefore not guaranteed to find an optimum
solution. In particular, the final steps of K-map Algorithms 3.2 and 3.4 and the
final step of the Quine-McCluskey method all rely on heuristics and the talent
of the designer to identify a minimum set of prime implicants to complete a
cover after the essential prime implicants have been found. Often trial and error
is used to identify and evaluate multiple possible covers.
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A number of methods have been developed that can generate optimal
solutions directly, at the expense of additional computation time. One such
method is Petrick’s Algorithm [8], which uses an algebraic approach to generate
all possible covers of a function. The following algorithm for finding minimum
covers is based on Petrick’s algorithm.

Algorithm 3.6

1. Use Algorithm 3.2, Algorithm 3.4, or the Quine-McCluskey
method to find all prime implicants of the function.

2. Create a prime implicant table and then identify and remove all
essential prime implicants, as in step 3 of the Quine-McCluskey
method.

3. For the remaining table, write a POS logic expression representing
all possible covers as follows:

a. For each minterm column mi % write an expression for the
sum (OR) of all Pis that cover mr This expression indicates
that any one or more of these Pis can be selected to cover m

b. Form the product (AND) of all the sum terms from step a.
This product indicates that all minterms must be covered.

4. Convert the logic expression from step 2 from POS to SOP format
using distributive law, and then simplify the expression by using
involution and absorption to remove redundant terms. Each product
term in the resulting SOP expression represents one possible cover.

5. Select the cover with the lowest cost; here, “cost” is computed as
the number of Pis in the product term and the number of literals in
each PI.

r

The examples from the previous section will be used to illustrate Petrick’s
algorithm.

EXAMPLE 3.27 Use Algorithm 3.6 to derive a minimum cover
for the function of Example 3.24.
After forming the prime implicant table and removing the essential Pis, the
following reduced PI table was obtained.

V V V
2 6 104

PI2

*PI3

*PI4

PI5
Pl6
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We see that m2 can be covered by PI2 or PI3, minterm m4 by PI4 or PI
minterm tn6 by PI2 or PI4, and minterm m10 by PI3 or PI6. The SOP expression
representing all covers, C, of these minterms is

C = (PI2 + PI3)(PI4 + PI5)(PI2 + PI4) (PI3 + PI6)
Converting to minimum SOP form, we obtain

C = PI2PI3PI5 + PI3PI4 + PI2PI4PI6 + PI2PI5PI6
From this expression, we see that there are four nonredundant covers of the
remaining four minterms. Of these, the cover comprising PI3 and PI4 represents
the lowest-cost solution, consisting of only two product terms, while the other
three covers require three terms each.

5’

The following example demonstrates the usefulness of Petrick’s algo-
rithm in dealing with PI tables that cannot be reduced by row or column
dominance.

EXAMPLE 3.28 Use Algorithm 3.6 to find a minimal cover for
the function f (A, B,C ) = £ m(l,2,3,4,5,6)
from the following PI table.

VV
l 2 3 4 5 6

* PI x xi

PI2 X X

PI3 X X

PI4 X X

PI5 X X

Pl6 X X

Note that the table is cyclic; that is, there are no essential Pis. In addition, all
Pis contain the same number of literals, so there is no obvious first choice in
selecting a cover. Using Algorithm 3.6, the POS form of all covers, C, converted
to minimal SOP form is
C = (PI, + PI6) (PI2 + PI3) (PI, + PI2) (PI4 + PI5)(PI5 + PI6)(PI3 + PI4)

= PI,PI3PI5 + PhPhPl5 Ph + PI, Pl2PI4PI5 + PhPhPl6 + PI2PI3Pl5Pl6
From this expression we see that there are five nonredundant covers. Three
of these contain four prime implicants, while covers PI, PI3PI5 and PI2PI4PI6
contain only three. For this function, all the prime implicants contain the same
number of literals. Therefore, PI, PI3PI5 and PI2PI4PI6 both represent minimal
solutions.

Although Petrick’s algorithm identifies all possible nonredundant cov-
ers and therefore allows an optimal solution to be identified, its complexity
increases considerably with the number of minterms and prime implicants,
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and it is therefore not practical for large functions. The next section discusses
computer-aided methods that can be applied to arbitrarily large functions.

•3.11 Computer-aided Minimization of
Switching Functions

Although the Karnaugh map is one of the most efficient tools available for
manually minimizing switching functions when the number of variables, n, is
small, it becomes almost intractable for n greater than 4 or 5. Being a graphical
technique, manipulation of K-maps is not easily implemented by computer
programs.

Switching circuit minimization methods that manipulate tables, such as
the Quine-McCluskey method, or methods that work directly with switching
expressions are more readily extended to functions of arbitrary numbers of
variables. Many of these methods can be automated by programming them on
digital computers.Consequently, tabular and algebraic methods are used instead
of K-maps for practical design work, and they form the basis for the switch-
ing function minimization algorithms incorporated into computer-aided design
(CAD) systems. As described earlier for the K-map and Quine-McCluskey
methods and illustrated in Fig. 3.35, there are four basic steps in deriving a
minimum sum of products switching expression for a logic function.

1. Represent the function in a format suitable for the method to be used.
2. Determine the complete set of prime implicants of the function.
3. Determine the essential prime implicants from the prime implicant set.
4. Select nonessential prime implicants as necessary to complete a minimal

cover of the function.
For incompletely specified functions, don’t-care terms are treated as 1

terms in steps 1 and 2, to make the prime implicants as large as possible, and
then ignored during steps 3 and 4, since they do not need to be covered when
realizing the function.

Comparisons of different switching function minimization algorithms
show trade-offs in memory utilization, execution time, and optimality of re-
sults [9, 10]. For this reason, many CAD systems make available several dif-
ferent algorithms to allow the designer to choose the one that best exploits the
characteristics of the function to be minimized.

Factors that influence memory utilization and computation time include
the number of minterms of the function, the number of prime implicants, the
number of minterms that are not covered by the essential prime implicants of
the function, and the number of circuit outputs, that is, the number of functions
that must be simultaneously minimized. The nature of the algorithm itself will
also influence computation time, including the method with which terms are
represented, the efficiency with which individual steps are performed, the order
in which terms are considered, and the degree to which the assumptions made
in developing the heuristics of the algorithm fit the function being manipulated.
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Switching function

t
Create cube

representation

Determine prime
implicanl set

PI

Determine essential
prime implicants.

Move from PI to HPI.

All
Select best term
from PI and put

into EPI

cells
covered
by EPI

Yes

19

Minimum SOP expression
(sum of elements of EPI)No

Figure 3.35 Minimization of switching functions.

For example, computer storage and computational requirements of tabu-
lar minimization algorithms increase rapidly as the number of function inputs
and/or minterms increases. The Quine-McCluskey method requires generation
of the entire minterm list of the function to be minimized. (Note that the total
number of possible minterms may be as large as 2n for an n-input function.)
All these minterms must be stored individually in the memory of the computer,
even though the function may be describable by a small number of product or
sum terms. Then, to derive the prime implicants, all minterms must be pairwise
compared to produce 1-cubes, all pairs of 1-cubes compared to form 2-cubes,
and so on. Hence, the number of compare operations can be prohibitively large
if the number of minterms is large. This is demonstrated by the following
example.

EXAMPLE 3.29 Determine the number of minterms in the
function

/(«,b,c,d,e , f ) = a + abedef
and determine the number of compare
operations that are needed to reduce the
expression via the Quine-McCluskey
method.
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Expansion of the function produces 32 minterms, which are combined via the
Quine-McCluskey method into sixteen 1-cubes, eight 2-cubes, four 3-cubes,
two 4-cubes, and one 5-cube, for a total of 63 cubes to be stored. All together,
651 compare operations must be performed to derive the single 5-cube, a.

Using switching algebra, the function can be reduced by one application
of Theorem 4 (absorption):

f ( a, b, c, d ,e , f ) = a 4- abcdef = a

This example illustrates that algebraic manipulation of the original prod-
uct terms of a switching expression is often preferred to applying the Quine-
McCluskey method, especially when the number of terms is small.

In the following section, we examine algebraic methods used in CAD
systems for automating the steps of the minimization process. This is not an
exhaustive list of techniques, but is intended to provide the reader with a general
idea of the nature of the algorithms utilized. The reader is referred to [9, 10] for
further discussions and examples of computer programs that implement several
of the algorithms described in this chapter.

3.11.1 Cube Representation
of Switching Functions

The notation most commonly used in CAD systems for representing switching
expressions during design entry and printout, as well as for internal use, is
cube notation. An ^-dimensional geometric cube {n-cube for short) comprises
2n vertices, each connected to n other vertices by lines (edges) along the n
dimensions of the figure. Each vertex is uniquely identified by an n-bit binary
number, represented by an ft -tuple x 1 x2 . . .xn. Each pair of adjacent vertices
of an n-cube (vertices directly connected by an edge) differ in exactly one bit
position, JC ., corresponding to the ith dimension along which the connecting
edge lies. This is illustrated in Fig. 3.36a for a 3-cube.

A switching function of n variables, f ( x x , . . . , xn ),can be represented by
a mapping of its minterms onto the vertices of an n-cube. This mapping uses the
binary minterm coding described in Chapter 2, in which x. = 0 indicates that
x . is complemented in the minterm, and JC. = 1 indicates an uncomplemented
variable. For example, let

fs ( a , b, c ) = m (2, 4, 6) = abc 4- abc + abc = {010, 100, 110}
These three minterms map onto a 3-cube at vertices 010, 100, and 110, respec-
tively, as shown in Fig. 3.36b. Each minterm is shown as one vertex (a heavy
dot) in the figure.

An r-variable implicant of an n-variable function, formed by combining
adjacent minterms, can be represented by a subcube (or r-cube) of the ft -cube.
For example, referring to Fig. 3.36, the edge (1-cube) connecting vertices 010
and 110 corresponds to implicant be since, by Theorem 6(a),

abc -j- abc = be
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no 100 no

7
100

000 010 000 010

101101 111 111

001 Oil 001 O i l
( x h x2, x3 ) ( a, b, c )

(b)(a)

Figure 3.36 Mapping switching functions onto n-dimensional
cubes, (a) 3-cube, (b) f s (a , b, c) = £ m{ 2, 4, 6) mapped onto a
3-cube.

Implicants are represented in cube notation by using the dash (-) in
place of each eliminated variable. For example, implicant be of f8 (a , b,c ), is
represented by — 10. In general, an r-cube of an n-variable function is formed
by combining 2r adjacent minterms, which eliminates r variables. Thus an
r-cube contains r -symbols. A sum of products form of an ^-variable function

. . , xn ) can be expressed as a list of cubes, each representing one productf i x1’ •

term.

EXAMPLE 3.30 Determine the cube representation of
f (x , y , z) = y + *z.

-1-y =>
x z => 0-1

Therefore, the function can be represented by the set of cubes 0-1}.

When implementing logic minimization and simulation tools on a dig-
ital computer, variations of the basic cube representation are often used to
allow programmers to exploit the inherent data structures and operations of the
particular programming language used to implement the tools. Many of these
programs allow switching expressions to be entered and/or printed out in the
form of algebraic expressions, minterm lists, and so on, and then converted to
cube representation for internal use. Examples can be found in [9, 10].

3.11.2 Algebraic Methods for Determining
Prime Implicants

After a switching function has been represented in a suitable format, the min-
imization process begins by finding the prime implicants of the function. On
a K-map, this involves identifying and circling the largest grouping of cells
covering each minterm on the map. In the Quine-McCluskey method, pairs of
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cubes are compared, with cubes differing in exactly one literal combined to
create larger cubes until no further combinations can be made.

Algebraic methods apply selected theorems of switching algebra to lists
of product terms. These algorithms minimize memory requirements by working
directly with supplied implicants (product terms) represented in cube notation,
rather than requiring the function to be expanded into a minterm list. For
functions described by a small number of implicants, computational efficiency
is increased, even though the number of input variables may be large, since the
number of operations will be minimized.

Most algebraic algorithms are based on the consensus theorem of Boolean
algebra (Theorem 9) and are easily implemented in computer-aided design
packages. In these algorithms the consensus theorem is used to combine ad-
jacent implicants into larger ones and to identify new implicants that overlap
implicants already in the list. These two operations are illustrated by the fol-
lowing example.

EXAMPLE 3.31 Use the consensus theorem to simplify the
function

/(A, B,C,D ) = ABD+ ABD -f ABC

The function, plotted in Fig. 3.37a, is covered by the set of three implicants:
[ A B D, A B D, A B C } . Let us begin by applying the consensus theorem to the
first two terms in the list.

A B D + A B D = A B D -f A B D + ( B D )( B D )

= A B D A A B D A B D

= B D

[T9(a), consensus]
[T1(b), idempotency]
[T4(a), absorption]

The consensus term B D covers (absorbs) both A B D and A B D and can there-
fore replace both in the set of implicants. Note that this is equivalent to com-
bining the two adjacent implicants A B D and A B D by Theorem 6(a).

AA

T

rr(Tt1

> D > D
1 1

c < c <

BB
(b)(a)

Figure 3.37 Determining prime implicants of /(A , B, c, D) = A BD 4-

A B D + ABC. (a) Given terms, (b) Prime implicants.

www.youseficlass.ir



230 Chapter 3 Simplification of Switching Functions

Now, applying the consensus theorem to the remaining two terms in the
implicant list, we obtain

ABC + BD = ABC + BD + ACD [T9(a), consensus]
As shown in Fig. 3.37b, the consensus term ACD covers neither ABC nor BD
completely. ACD thus represents another prime implicant of the function and
is added to the list.

The final prime implicant list, { ABC , BD, ACD ] , is plotted in Fig.
3.37b.

Application of the consensus, idempotency, and absorption theorems to
terms represented in cube notation are easily automated by special operators.
The most commonly used is the STAR product, described in [11], which is an
operator that identifies the bit positions in which two cubes differ.

In the iterative consensus algorithm [10, 11], a complete prime implicant
list for a function is produced from any list of cubes that describes the function
by appying the consensus theorem toall pairs of cubes in the list, using the STAR
product, and identifying consensus cubes as shown in the previous examples.
Each consensus cube is added to the list if it is not covered (absorbed) by any
cube already in the list, and any cubes covered (absorbed) by a newly added
consensus cube are eliminated from the list. This process of adding a new cube
to a list is referred to as forming the absorbed union of the list and the cube.
After all pairs of cubes in the list have been compared, only those representing
the prime implicants remain.

The number of applications of the STAR product in the iterative consensus
algorithm is large when the number of product terms is large. The generalized
consensus algorithm [10, 12] uses the same basic principle, but reduces the total
number of operations by systematically organizing the terms prior to applying
the STAR operator, much as the minterms were grouped in step 1 of the Quine-
McCluskey method to facilitate identification of logically adjacent terms.

3.11.3 Identifying Essential Prime Implicants
After finding the set of prime implicants, PI, of a function, selection of a
minimal cover begins by identifying any essential prime implicants (EPIs) of
the function. On a K-map, EPIs are easily spotted by locating each minterm cell
on the map that is circled only by a single PI. In the Quine-McCluskey method a
prime implicant table is utilized; EPIs are identified by noting minterm columns
in the table containing a single check.

In this section we examine two algebraic methods for determining the
EPIs of a function from its complete set of prime implicants.

Essential Prime Implicants Using the
Sharp Product
Given a set PI of prime implicants of a function represented in cube notation,
we wish to know if a selected prime implicant covers one or more minterms of
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the function that are not covered by the other prime implicants of PI. This can
be determined using an operator called the sharp product as follows.

Let PI. and PI^ be prime implicants of a function, each representing the
set of minterms covered by that prime implicant. The sharp product, PIt- # PI;,
is defined as the set of minterms covered by PI. that are not covered by PI

^
.,

that is, set PIf with any minterms common to PI. and PI^
. removed. In terms of

set operations,
PI.#PI. = PI - (Pi. nPI ).

Given a set of prime implicants PI — {P, , . . . , P n } that cover a function, the
sharp product

(3.1)

5 = P, #{P2, (( P, #P2)#P3) . . . #P„)
takes the set of minterms covered by P{ and removes from it all minterms
covered by at least one other prime implicant of PI. If S is nonempty, it con-
tains those minterms that are covered by P{ and by no other prime implicant in
{ P2 , . . . Pn }. P, is thus essential to the function and must be included in EPI.
If S is empty, each minterm covered by P, is also covered by at least one other
prime implicant in { P2, . . . Pn ] , making Px nonessential to the function.

For incompletely specified functions, where DC is the set of don’t-care
terms, the sharp product S# DC is also computed to remove any don’t-care
terms from S. If the result is an empty set, the only terms covered exclusively
by P{ are don’t-care terms, and therefore P} is not essential to the function.
This check ensures that only specified (non-don’t-care) terms are considered
for the cover of the function.

Essential Prime Implicants Using
Iterative Consensus
The iterative and generalized consensus algorithms can be extended to identify
essential prime implicants of a function from its prime implicant set. Given
prime implicant set PI = {Pp P2 . . . , Pn }, each prime implicant, P , can be
determined to be either essential or nonessential as follows.

P is removed from PI and one of the consensus algorithms applied to
the remaining set of prime implicants (PI — P

{
.). The two consensus algorithms

are guaranteed to produce the entire set of prime implicants from any set of
implicants that describe a function. Therefore, if P. is regenerated, then (PI
— P) completely covers the function; that is, each minterm covered by P is
also covered by at least one other prime implicant in (PI — P). Therefore, P is
not essential. If P is not regenerated, it covers at least one minterm that is not
covered by any of the other prime implicants of PI and is therefore essential to
the function and must be included in EPI.

3.11.4 Completing a Minimal Cover
If the essential prime implicants cover all of the minterms of a function, then set
EPI of essential prime implicants is a unique minimum cover of the function.
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Otherwise, one or more additional prime implicants must be selected to com-
plete the cover.

Most minimization algorithms vary significantly in the methods used to
extract a minimum cover from a prime implicant set after removing the essential
prime implicants. Various heuristics, based on properties of the function or of
the target circuit structure, are used to direct the solution process. The goal
of a minimization algorithm is to find the minimum-cost solution, that is,
the most cost effective set of nonessential prime implicants to complete a
cover. However, given the cost of finding an optimal solution, especially for
multiple-output functions, we are often willing to make trade-offs, settling for
a near-optimum solution but one that can be generated in a reasonable amount
of computation time.

The basic algorithm for determining the minimum cover of a function,
given the essential prime implicant set EPI and the remaining set of nonessential
prime implicants, PI, is illustrated in Fig. 3.38. Each step in this process is
explained in the following.

Inputs: EPI, PI, DC

1
Compute uncovered

minterms UC «
^ ,

Move lowest-cost
prime implicant from

PI to EPIMinimum SOP expression ^
Yes

(sum of elements of EPI)
UC = <I>

?

No
No

New YesEPIRemove redundant
prime implicants

from PI
found

*>

Look for new essential
prime implicants in PI.

Move to EPI.
Remove “undesirable”

terms from PI

Figure 3.38 Selection of a minimum cover of a function.
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Determining the Remaining Uncovered
Minterms
After computing EPI, we must determine which minterms of the function, if
any, are not yet covered by EPI. To do this, we can use the sharp product as
follows to remove from PI any minterms covered by EPI and any don’t-care
terms.

(3.2)UC = (PI#EPI)#DC
The resulting set, UC, contains all uncovered minterms of the function. If UC
= d>, no minterms remain uncovered and EPI completely covers the function.
Otherwise, one or more prime implicants from PI must be selected to cover the
elements of UC.

Eliminating Redundant Prime Implicants
To simplify the selection of terms from PI to cover the remaining minterms in
UC, we begin by removing from PI any prime implicants that are redundant;
that is, they that do not cover any of the cubes in UC. If a prime implicant is
determined to be redundant, it cannot contribute to the solution and should be
eliminated from consideration by removing it from PI. A prime implicant P.

can be identified as redundant if
uc n p. = <s>

The intersection UC HP. can be computed by using the STAR product described
earlier.

(3.3)

Eliminating Undesirable Prime
Implicants
After removing any redundant prime implicants from PI, we should determine
if any of the remaining prime implicants are more or less cost effective than
others for completing the cover. A prime implicant P is undesirable as a choice
for the solution if there exists some other prime implicant P. such that P. covers
the same uncovered minterms as P and is of lower cost (contains fewer literals).
In other words, selection of P cannot lead to a lower-cost solution than P. and
should therefore be eliminated from consideration by removing it from PI. P
is undesirable if there can be found in set PI a prime implicant P such that

(uc n P. )#P. = o
J

(3.4)
and

(3.5)cost Pt > cost Pj
Equation 3.4 indicates that Pj covers every minterm of UC that is covered by
Pt , and Eq. 3.5 indicates that P. is of lower or equal cost.
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Selection of Nonessential Prime
Implicants
After any redundant and/or undesirable prime implicants have been removed
from PI, we must determine if the elimination of these terms has resulted in
any of the remaining cubes in PI becoming essential. This will happen if all but
one of the prime implicants covering an element of UC have been eliminated.
Prime implicants made essential in this manner can be identified by reapplying
to PI the algorithm described earlier for finding the essential prime implicants
of a function.

If no prime implicant of PI is found to be essential, a cycle exists. In this
case, the cycle is broken by selecting an arbitrary term from PI to add to EPI.
The process of reducing set PI and selecting additional prime implicants to add
to EPI continues until UC = <£> . However, whenever an arbitrary selection is
made, it is possible that the final solution might not be optimal. Many CAD
programs are designed to compute all possible solutions and evaluate the results
of each possible decision to determine the best choice for breaking each cycle.
However, for large functions this might utilize more computation time than is
practical, in which case we simply accept the results achieved by making a
single choice to break each cycle.

3.11.5 Other Minimization Algorithms
Only single-output functions were discussed in this section. However, most of
the algebraic algorithms presented have been extended to simultaneous mini-
mization of several functions; this extension is needed for logic circuits with
multiple outputs, which includes most practical applications. The reader is
referred to [9-12] for information on extending the iterative and generalized
consensus algorithms to multiple-output functions.

Minimization algorithms differ primarily in the methods used to extract a
minimum cover of a function from a set of prime implicants. The heuristics used
by many of these algorithms are targeted at particular circuit structures, taking
advantage of the unique characteristics of these structures to guide the search
for an optimal solution. A primary example is the programmable logic array
(PLA), which will be described in Chapter 5. A PLA basically realizes sum of
product expressions by forming product terms with a programmable AND array
and then forming sums of these product terms with a programmable OR array.
In general, PLA circuits are characterized by having a relatively large number of
inputs and a relatively small number of product terms.Consequently, algorithms
that require the generation and manipulation of all the minterms of the function
are significantly less efficient than those that work directly with product terms.

One of the most widely-used minimization programs for PLAs is
ESPRESSO-II, developed at the University of California at Berkeley [13].
ESPRESSO-II was developed after extensive study of two existing minimiza-
tion algorithms: MINI, developed at IBM in 1974 [14] and PRESTO [15].
The development of ESPRESSO-II essentially took the best features of these
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predecessors, provided more efficient algorithms for the individual steps, and
then worked with the final stages of the algorithm to more efficiently complete
the minimum cover after the essential prime implicants have been found. Since
the development of ESPRESSO-II, many additional minimization programs
have been developed. The reader is referred to the documentation accompa-
nying the CAD tools available at his or her site to identify the algorithm(s)
available with those tools.

•3.12 Summary
Graphical and tabular methods for the minimization of switching functions
have been presented. The ramifications of each technique were discussed in
detail. The graphical technique employs the Karnaugh map, which was shown
to be nothing more than a convenient representation of the Venn diagram. The
Quine-McCluskey method, which is a tabular approach, employs an efficient
linear search in the minimization process. This minimization technique is also
suitable for programming on a digital computer. Petrick’s algorithm for deriving
the minimum covers of a function from its prime implicant set was presented
as an example of an optimal approach. Finally, minimization techniques that
can be efficiently programmed for inclusion in computer-aided design systems
were discussed, including the iterative and generalized consensus algorithms.
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PROBLEMS 3.1 Plot the following functions on the Karnaugh map.
(a) /(A , B , C ) = AB 4- BC 4- AC
(b) /(A , B , C , D ) = BCD 4- ABC 4- ABD
(c) /(A , B, C, D, E ) = BCE + BCE 4- CDE + A B C D 4- A B C D E

Minimize the following functions using the K-map.
(a) /(A, fl, C) = £ m(3, 5, 6, 7)
(b) f ( A , B, C, D) = Y.I '«(0, 1.4. 6, 9, 13, 14, 15)
(c) / ( A , B, C , D ) = Z m( 0, 1, 2, 8, 9, 10, 11, 12, 13, 14, 15)
(d) f ( A , B , C , D, E ) = £ m(3, 4, 6, 9, 11, 13, 15, 18, 25, 26, 27, 29, 31)
(e) f ( A , B , C , D , E ) = Y, «0.5, 8, 10, 12, 13, 14, 15, 17, 21, 24, 26, 31)

Minimize the following functions containing don’t-cares using the K-map.
(a) /(A , B , C , D ) = J2 m( 2, 9, 10, 12, 13) + d ( 1, 5, 14)
(b) /(A, B, C, D) = D m(l, 3, 6, 7) 4- d ( 4, 9, 11)
(c) / (A , B , C , £>, £) = £ m(3, 11, 12, 19, 23, 29) + d{5, 7, 13, 27, 28)

3.2

3.3

3.4 The circuit in Fig. P3.1 accepts BCD inputs for the decimal digits 0 to 9. The
output is to be 1 only if the input is odd. Design the minimum logic circuit to
accomplish this.

A
Logic
circuitBCD inputs ^ /(A, B , C , D )

D Figure P3.1

3.5 Use the K-map to expand the following POS functions to canonical form.
(a) /(A , B, C) = (A 4 fi)(A 4 W 4 C)
(b) /(A, B , C , D ) = (A 4 D)(A 4- C)

Minimize the following functions using a K-map.
(a) /(A, B , C , D ) = j: m (3, 4, 6, 8, 9, 12, 14)
(b) /(A , B, C , D, E )

3.6

£ 3, 4, 9, 11, 12, 13, 15, 17, 19, 22, 25, 27, 29, 30, 31)
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Use K-maps to expand the following switching functions to canonical SOP
form.

(a) /(A , B , C) = (A + B ) ( A + £ + C)(A + C)
(b) f { A , B , C , D ) = A B + A C D + B C D
(c) /( A , £ , C, D) = (A + f l)(C + D)( A + C)
(d) /(A , C, £), £) = A E 4- B C D

Determine which of the following functions are equivalent.

/, (A , B , C, D) = A C + B D + A B D

/2 (A , £, C, D) = A £D + A B + A B C

/3(A , £, C, D ) = B D + A B D + ACD + A £C

/4 (A , £ , C, D ) = A C + Af lCD + A £ D + £CD

/5 (A , C, D) = ( Z? + D)( A + B ) ( A + C)

Use a K-map to find the following forms of the given switching function.

(a) Canonical SOP form

/(A , B , C, D, £) = + AflZ) + A C D E + AC£

3.10 Design a multiple-output combinational network that has two input signals x Q
and x v two control signals c Q and c, , and two output functions f{ ) and /, . The
control signals have the following effect on the outputs:

co ci

3.7

3.8

3.9
(b) Canonical POS form

/o f 1

0 0
0 1
1 0
1 1

0 0
X0 0
0 x x
X0 x {

For example, when c0 = 0 and c, = 1 , then f0 ( x Q , x v c0, c, ) = x Q and
fi ( x0’ xi’ co’ c\ ) = °-

3.11 Use K-maps to find the following functions.

/i (A , C, D) = /a (A , B , C , D ) • /̂ ( A , B , C, D)

/2 (A , £, C, D) = /a ( A , B , C, D) + //A, C, D)

/3 (A , B , C, D) = /j (A , C, D) • /2(A , Z?, C, D)

/4 (A , Z?, C, D) = /a(A , C, D) 0 B , C, D)
where

/a(A , C, D) = A B + Z? Z) + A B C
f A A , B , C , D ) = A B + B D

3.12 (a) Use K-maps to generate all the prime implicants for the following output
logic network.

f a ( A , B , C , D ) = A B + B D + A B C

f p ( A , B , C, D ) = A B + B D
(b) Repeat part (a) using the multiple-output Quine-McCluskey technique.

Compare your prime implicant charts.

Minimize the following functions using the Quine-McCluskey method.

(a) /(A , B , C , D ) = £ «(0, 2, 4, 5, 7 , 9, 1 1 , 12)
(b) /(A , B , C, D , E ) = £ m(0, 1 , 2, 7 , 9, 11 . 12, 2 3, 2 7, 28)

3.13
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Use the Quine-McCluskey method to minimize the following functions with
don’t-cares.
(a) /(A , B , C, D) = E 6, 9, 10, 13) 4- </(1, 3, 8)

(b) / (A, B , C, D) = E 4, 7, 10, 13) + </(5, 14, 15)

Minimize the following multiple-output functions using the Q-M technique.
(a) f a ( A , B , C, D) = E (0, 2> 9> 15)

f p ( A , B , C , D) = X>(0, 2, 8, 12, 15)

(b) /a (A , 5, C, D ) = E m (3, 7, 9, 14) -Uz/(1, 4, 6, 11)
f p ( A t B, C, D) = E w(6, 7, 12) 4- </ (3, 14)

Design a switching network that accepts BCD inputs and gives an output of
logic 1 only when the input decimal digit is divisible by 3. Use a four-variable
K-map to design your circuit.
Design a switching network that has five input variables and one output variable.
Four of the input variables represent BCD digits, and the fifth is a control line.
While the control line is at logic 0, the output should be logic 1 only if the
BCD digit is greater than or equal to 5. While the control line is high, the output
should be logic 1 only if the BCD digit is less than or equal to 5.

Design a multiple-output logic network whose input is a BCD digit and whose
outputs are defined as follows: fx : Detects input digits that are divisible by 4,
f2: Detects numbers greater than or equal to 3, /3: Detects numbers less than 7.

3.14

3.15

3.16

3.17

3.18

Apply the covering procedure to obtain a minimum list of prime implicants for
the function

3.19

f ( A , B , C, D ) = J2 m( 1, 3, 4, 6, 7, 9, 13, 15)

Plot the following functions on the K-map and determine the minterm lists.
(a) f ( A , B , C ) = B A A C
(b) f ( A , B , C ) = A C + A B + B C

3.20

Plot the following functions on the K-map and determine the minterm lists.
(a) /(A , £, C) = A B A B C A A C A A B
(b) f ( A , B, C ) = B C + A B + B C

Plot the following functions on the K-map and determine the minterm lists.
(a) / (A , B , C , D ) = A B C 4- A C D + B C D + A B D
(b) f ( A , B , C , D ) = A B C + B C D + A B D + A B C

Plot the following functions on the K-map and determine the minterm lists.
(a) /(A , B, C , D ) = B C D + A B D + B C D + A B D
(b) /(A , B, C, D ) = B C D 4- A B C 4- A C D 4- B C D 4- A B C

Plot the following functions on the K-map and determine the minterm lists.
(a) /(A , B, C, D , E ) = B C D 4- B D E 4- A B C D 4- B C D E 4- A B D E

4- B C D E 4- A B C E
(b) /(A , B , C , D, E ) = A B D E 4- A B D A B E A A B C D -f A C D E

Plot the following functions on the K-map and determine the maxterm lists.
(a) f ( A t B , C ) = ( A + B )( B + C )
(b) f ( A , B , C ) = B( A A C )

3.21

3.22

3.23

3.24

3.25
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3.26 Plot the following functions on the K-map and determine the maxterm lists.
(a) f ( A , B , C ) = A( B + C )
(b) /(A , £, C) = (£ 4 C)(A 4 fl)

3.27 Plot the following functions on the K-map and determine the maxterm list.
(a) /(A , B , C, D ) = (C + D)(A + B + D )( A + C 4 D) (A 4 C 4 D)

( B + C + D )
(b) /(A , C, D ) = ( B 4- C)(A 4- C 4- D)(A 4 B -f D )( B 4- C + D )

3.28 Plot the following functions on the K-map and determine the maxterm list.
(a) / (A, B, C , D ) = ( A + D ) ( A 4- B )( B 4 D )( A + C + D)
(b) /(A , B , C, D ) = ( A -f B 4- C) (A 4 4 D)(A 4 C 4 D ) ( B 4 C 4 D)

3.29 Plot the following function on the K-map and determine the maxterm list.
/(A , B, C, £>, £) = (5 4 C 4 D ) ( A 4 C 4 D)(A 4 B 4 D )

( A + B + D + E ) ( B + D + E )

3.30 Use the K-map to simplify the following functions.
(a) /(A. tffO = 2Xl, 5, 6, 7)
(b) f ( A , B , C ) = Z m(0, 1, 2, 3, 4, 5)

3.31 Use the K-map to simplify the following functions.
(a) /(A , £, C) = X>(0, 2, 3, 5)
(b) f ( A , B , C ) = E (0, 3, 4, 6, 7)

3.32 Simplify the following functions using a K-map.
(a) / (A , B , C, D ) = E m(0, 2, 5, 7, 8, 10, 13, 15)
(b) / (A , 5, C , D ) = Y1 m( 1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15)

3.33 Use the K-map to simplify the following functions.
(a) /(A , B, C, D) = £ m(0, 4, 5, 7, 8, 10, 11, 15)
(b) /(A , C, D) = E w(l, 4, 5, 6, 9, 11, 15)

3.34 Simplify the following functions using a K-map.
(a) / (A , 5, C , D ) = Y.m(l , 2, 5, 6, 7, 9, 11, 15)
(b) /(A , 5, C, D) = £ m (0, 1, 2, 5, 12, 13, 14, 15)

3.35 Use the K-map to simplify the following functions.
(a) /(A , B , C, D) = £ m ( l , 4, 5, 6, 8, 9, 11, 13, 15)
(b) f ( A , B , C, £>) = £ m(l , 2, 4, 5, 6, 9, 12, 14)

3.36 Simplify the following functions using a K-map.
(a) f ( A , B , C, D, E ) = J2 "*(0, 4, 6, 7, 8, 11, 15, 20, 22, 24, 26, 27, 31)
(b) f ( A , fi , C, D, E) = £ m (2, 7, 10, 12, 13, 22, 23, 26, 27, 28, 29)

3.37 Use the K-map to simplify the following functions.
(a) /(A , B, C, D, E ) = Z m( 1, 3, 8, 9, 11, 12, 14, 17, 19, 20, 22, 24, 25, 27)

(b) f ( A , B , C, D, E ) =Y.m (0, 7, 8, 10, 13, 15, 16, 24, 28, 29, 31)

3.38 Simplify the following functions using a K-map.
(a) /(A, 5, C, £, £) = £ m ( l , 2, 5, 6, 13, 15, 16, 18, 22, 24, 29)
(b) /(A , B , C, D , E ) = J2 m( 1, 7, 9, 12, 14, 15, 16, 23, 24, 28, 30)

3.39 Use the K-map to simplify the following functions.
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(a) /(A , fl, C, D, E ) = 'E m(0, 5, 10, 11, 13, 15, 16, 18, 29, 31)
(b) /(A , B, C, A £) = E (4, 5, 7, 8, 9, 12, 13, 16, 18, 23, 24, 25, 28, 29)

Find the minimum POS form for the following functions.
(a) /(A , 5, C) = n A/(0. 2, 3, 4)
(b) /(A , B, C) = FI 4/ (0, 3, 4, 7)

Find the minimum POS form for the following functions.
(a) /(A . B. C) = n 4/(0, 1, 4, 5, 6)

(b) /(A , 5, C) = n Af (l , 2, 3, 6)

Find the minimum POS form for the following functions.
(a) /(A, B, 0 = 114/(1, 2, 5, 7)
(b) /(A, B, C) = n Af (l , 2, 3.4)

Find the minimum POS form for the following functions.
(a) /(A, 5, C) = nA/(0, 1, 3, 4, 6, 7)
(b) /(A , 5, C) = n 4/(2, 3, 5, 7)

Find the minimum POS form for the following functions.
(a) /(A , 5, C, A =[] M(0, 1, 5, 7, 8, 10, 11, 15)
(b) /(A , 5, C, D) = fl 4/(0, 1, 2, 4, 6, 7, 8, 10, 14)

Find the minimum POS form for the following functions.
(a) /(A , 5, C, D) = fl 4/(2, 3, 4, 5, 7, 12, 13)
(b) /(A , B, C, £>) = [~[ 4/(1, 2, 5, 7, 11, 13, 15)

Find the minimum POS form for the following functions.
(a) /(A , B. C, D) = fl 4/(0, 2, 4, 5, 6, 9, 11, 13)
(b) /(A , B, C, D) = f[ 4/(1, 3, 4, 5, 6, 9, 11, 12, 13)

Find the minimum POS form for the following functions.
(a) /(A , B, C, D) = n 4/(0, 1, 5, 7, 9, 11, 12, 14)
(b) /(A , B, C, D) = f[ 4/(3, 4, 5, 7, 8, 9, 10)

Find the minimum POS form for the following functions.
(a) /(A, B, C, £> , B) = n 4/(3, 4, 6, 13, 15, 16, 19, 24, 29, 31)
(b) /(A , B, C, A £) = [I 4/(1, 4, 7, 9, 15, 17, 20, 22, 25, 30)

Find the minimum POS form for the following functions.
(a) /(A , B, C, Z),£) =fl 4/(0, 1, 2, 5, 7, 8, 10, 15, 17, 21, 22, 24, 26, 29)
(b) /(A , B ,C , D, E ) =114/(0, 2, 4, 6, 9, 11, 13, 15, 16, 19, 20, 25, 27, 29, 31)

Find the minimum SOP form for the following functions.
(a) /(A, B, C, A = £ «(1, 2, 7, 12, 15) + d(5, 9, 10, 11, 13)
(b) /(A , B, C, A = E m(0, 2, 5, 15) + «/ (8, 9, 12, 13)

Determine the minimum SOP form for the following functions.
(a) /(A, B, C, D) = E m(4, 7, 9, 15) + fl(1, 2, 3, 6)
(b) /(A , B, C, A = E m(0- 2, 3, 4, 5) 4- d (8, 9, 10, 11)

Find the minimum SOP form for the following function.
f ( A , B, C, D, E ) = J2m{l , 9, 12, 13, 19, 22) + d(0, 3, 20, 25, 27, 28, 29)

3.40

3.41

3.42

3.43

3.44

3.45

3.46

3.47

3.48

3.49

3.50

3.51

3.52

www.youseficlass.ir



Section 3.12 Summary 241

3.53 Determine the minimum POS form for the following functions.
(a) /(A , B. C, D ) = ft A#(4, 7, 9, 11, 12) • D(0, 1, 2, 3)
(b) /(A , B, C, D ) = PI M(0, 3, 7, 12) £>(2, 10, 11, 14)

3.54 Find the minimum POS form for the following functions.
(a) /(A, B, C , D ) = n M(3, 4, 10, 13, 15) D(6, 7, 14)
(b) /(A, B, C, D) = n 37(0, 7, 11, 13) - 0(1, 2, 3)

3.55 Find the minimum POS form for the following function.
/(A, B, C, D, E ) =|“[ M(0, 5, 6, 9, 21, 28, 31) • D( 2, 12, 13, 14, 15, 25, 26)

3.56 Use the Quine-McCluskey method to minimize the following functions.
(a) f ( A , B, C, D) = £>(0, 2, 3, 5, 7, 11, 12, 14, 15)
(b) /(A , C, D) = £ m( 0, 1, 6, 8, 9, 13, 14, 15)

3.57 Use the Quine-McCluskey method to minimize the following functions.
(a) /(A , B, C, D) = £ m( 1, 4, 5, 6, 8, 9, 10, 12, 14)
(b) /(A , 5, C, £>) = £ (4, 5, 6, 8, 11, 13, 15)

3.58 Minimize the following functions using the Quine-McCluskey method.
(a) f ( A , B , C , D ) = ^ m ( l , 3, 6, 7, 8, 9, 12, 14)
(b) /(A , B , C , D ) = Y1 w (0f 2, 4, 5, 10, 11, 13, 15)

3.59 Use the Quine-McCluskey method to minimize the following functions with
don’t-cares.
(a) / (A , B , C, D ) = E m( 1, 6, 7, 9, 12) + d(8, 11, 15)
(b) /(A , fl, C, D) = £ m( 7, 8, 13, 15) + </ (3, 4, 10, 14)

3.60 Minimize the following functions with don’t-cares using the Quine-McCluskey
method.
(a) /(A , B, C, D) = £ m(5, 7, 11, 12, 27, 29) + </(14, 20, 21, 22, 23)
(b) /(A, 5, C, D) = £ m ( l , 4, 6, 9, 14, 17, 22, 27, 28)

+ </(12, 15, 20, 30, 31)

3.61 Minimize the following multiple-output functions using the Quine-McCluskey
method.
(a) f a ( A, B, C , D ) = Y."'(4, 5, 6, 15) 4- </(8, 11)

f„(A , B, C , D ) = Z «(0, 2. 3, 4, 5) + </ (8, 11)
(b) f a(A, B, C , D ) =Y.m( 3, 4, 6, 11, 12) + </(14. 15)

//A, B. C, D ) — m( 4, 5, 6, 11, 14) + </(8. 12)

3.62 Minimize the following multiple-output function using the Quine-McCluskey
method.

/„ (A , B, C, £> , £) = £ 2, 8, 9, 20, 24) + </(4, 10, 14, 26, 30)

(A , B, C, D , E ) = J2 "i(3, 4, 8, 11, 24) + </(10, 14, 20, 26, 30)

3.63 Use the Quine-McCluskey method to minimize the following multiple-output
function.

4(A, B, C, D, E ) = J2 m 4’ 6- 20’ 22) + rf (2, 10, 18)

//A, B, C, = m(4’ 6- n - 19> 20, 27) + </ (18, 22)
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4
For small digital circuits, the design ap-

proaches presented in Chapters 2 and 3 are
very effective. However, it is usually impracti-

cal to describe a large-scale circuit with a single
truth table, minterm list, or set of logic equations.

Structured top-down design methodologies must be
utilized to effectively manage the complexity of large
designs. In this chapter we introduce top-down mod-
ular design methods for combinational logic circuits.
Then we will examine a number of common combi-
national logic modules. For each module type we will
study its basic function, gate-level circuit realizations
of the function, and how the module is used to create
larger circuits. The top-down modular design process
will then be illustrated by means of a comprehensive ex-
ample in which a computer arithmetic/logic unit will be
designed. The chapter will conclude with a discussion
of computer-aided design support for modular design.
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Modular Combinational Logic

•4.1 Top-down Modular Design
Top-down design is a process in which a function is initially specified at a high
level of abstraction and then decomposed into lower-level subfunctions, each of
which is more concrete. The decomposition process continues until the design
is reduced to a set of functions, each of which is well defined and can be realized
with a relatively simple circuit. Hence, the design has been developed from the
“top” level “down” to a level at which the individual modules are manageable.

After all functions have been defined, each is realized with a circuit
module that is designed, implemented, and tested individually. The finished
modules are then interconnected to complete the design. This implementation
process is often referred to as a bottom-up process, since it begins with the
bottommost elements of the design and works toward the topmost function.

The decomposition of a design is often represented in the form of a tree
structure, as illustrated in Fig. 4.1a. Let us suppose that we wish to design a
circuit for a data acquisition system in which data are read from two sensors,
with one of the four computations listed in Table 4.1 performed on these values,
as selected by a 2-bit code, s{ s2 -

TABLE 4.1 DATA ACQUI-
SITION SYSTEM
FUNCTIONS

Select Code
Output Functions S2l

0 0 A + B
A - B
min(A, B )
max(A, B )

0 1
1 0
1 1

The root of the design tree of Fig. 4.1a is the top-level function, 5, which
represents the complete system. Three basic functions are needed to implement
the process control system: a circuit to create digital input signals from the two
sensors, a circuit to perform the four computations on the two sensor values,
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B
Data acquisition Top level

system

I
*i B2 *3

Level 2Input sensor data Compute values Select output

*
T

*12 *21 *22 *23 *24 Level 3Sensor 5 Min(A, 5) Max(/4, B )Sensor A A + B A - B

* * * *

*232
Select
Min

*241
Compare
A & B

*231 *242
Select
Max

Compare
A & B

Level 4
* = Leaf node

** * *
(a)

B 1 - Input
Sensors B2-Computation*nE> Convert A

*12E> Convert B
< ’

J

*21 *22
Binary
adder

Binary
subtractor 1 1< r ' r ' r

*231
Compare *232 *241

Compare
*242* Select Select

*23 *24
Minimum Maximum
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J

Function
select

<nB B3Process control system Output select <H
Output

(b)

Figure 4.1 Top-down design of a function, (a) Hierarchical design tree,

(b) Hierarchical block diagram.
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and a circuit to select the desired result as the system output, according to the
selection code sxs2. Therefore, top-level block B is decomposed into second-
level blocks Bv Bv and By representing the input, computation, and output
functions, respectively.

Next, each of the second-level functions is examined. Input function B
must convert data from the two sensors into binary numbers. Therefore, function

is decomposed into two modules: conversion circuits B } , for sensor A and
B } 2 for sensor B. Both of these functions represent modules that are not broken
down into smaller circuits. Functions that are not further decomposed are called
leaf nodes of the design tree.

The computation function B2 must generate four values: A + B, A — B,
Min(A, B), and Max(A, B ). These four subfunctions are defined as Z?21, B
B2V and B24 , respectively. Subfunctions B2 ] and B22 can be implemented with
simple binary adder and binary subtracter circuits, respectively, and are thus
leaf nodes. Subfunction B23 is further decomposed into Z?23 I , which compares
A and B, and Z?232, which selects one of A or B according to the result of the
comparison. Subfunction B04 is similarly decomposed into B24 ] and B

The output circuit is a function that selects one of four values, according to
selection code sxs2.This can be done with a standard circuit module. Therefore,
block B3 is a leaf node of the design tree.

From the design tree of Fig. 4.1a, a schematic diagram can be developed
in block diagram form, as illustrated in Fig. 4.1b. Each block in this diagram
represents one of the leaf nodes of the design tree, with all block inputs and
outputs precisely defined. Each block output represents the function performed
by that block, and the block inputs represent the arguments of the function.

After completion of the block diagram, the designer is faced with the de-
cision of whether to use a previously-designed module or to develop a new one
for each block. Many different modules have been developed and are available
as standard functions that can be used as building blocks for complex digital
circuits. In VLSI design, commonly-used modules, or standard cells, are main-
tained in libraries of functions from which they can be selected and incorporated
into designs as needed. For developing circuit boards and other multi-chip sys-
tems, there is a number of standard modules available commercially as MSI
circuit components.

In the following sections, we examine the design and applications of
a number of standard combinational circuit modules. The modules described
in this chapter correspond to standard 7400-series TTL functions, which are
readily available off-the-shelf as MSI components in a variety of technologies,
and are also available in most VLSI design libraries used in creating custom-
and semi-custom VLSI circuits.

l

22’

242 *

•4.2 Decoders
An n-to-2" decoder is a multiple-output combinational logic network with n
input lines and 2n output signals, as illustrated in Fig. 4.2. For each possible
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246 Chapter 4 Modular Combinational Logic

input condition, one and only one output signal will be at logic 1. Therefore,
we may consider the n-to-2n decoder as simply a minterm generator, with each
output corresponding to exactly one minterm. Decoders are important tools in
the logic designer’s repertoire. They are used for such things as interrogating
memory in order to select a particular word from the many that are available,
code conversion (for example, binary to decimal), and routing of data.

Vo
LSB y i

X ]

n-to-2”
Decoder

MSB xn_ ]

Figure 4.2 n-to2n decoder
module.

yin-\

4.2.1 Decoder Circuit Structures
Before we look at applications of n-to-2n decoders, let us examine some basic
circuit structures used to implement these modules.

The logic circuit of a 2-bit parallel decoder is shown in Fig. 4.3a. In
general, this decoder is very simple, but also expensive. As can be seen from
the figure, an input combination or vector of BA = 00 selects the m0 output
line, BA = 01 selects the m ] output line, and so on.

mQ = BA
m ] = BA
m2 = BA
m3 = BA

Figure 4.3b shows an alternative implementation of the 2-to-4 decoder,
using only NAND gates. Figure 4.3c presents another configuration, using
only NAND gates with no inverters. In both NAND gate designs, an output of
0 indicates the presence of the corresponding minterm. In this case, the outputs
are said to be active low since an output value of 0 (the “active” level) signifies
the occurrence of a “significant” input (the occurrence of a particular minterm).
The output value is 1 (the “inactive” level) at all other times. An active high
signal uses the value 1 to indicate a significant event and is 0 otherwise, such
as in the decoder circuit of Fig. 4.3a. The output signals of the decoder in Fig.
4.3b may also be considered to be in complemented form.

Note that in the AND and NAND gate realizations of the n-to-2n decoder
shown in Figs. 4.3a and b there is only a single level of logic and that one «-input
AND gate is required for each of the 2n output lines. However, a problem is
soon encountered in this configuration as n becomes large because the number
of inputs to the AND gates (the fan-in ) exceeds practical limits (five or six).
This problem can be alleviated through the use of a tree decoder, such as that

(4.1)
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£>° 1>°LSB A LSB A
m0C>° t>°MSB B MSB B

m , m\

mi m2

m3 m3

(b)(a)

m ,
LSB A

m0
MSB B

m2

m3
(c)

Figure 4.3 Two-bit parallel decoder circuit structures, (a) Parallel (active-high
outputs), (b) Parallel (active-low outputs), (c) Alternate structure.

shown in Fig. 4.4b, which can be compared to the single-level decoder of Fig.
4.4a. This type of decoder employs multilevel logic with only two-input AND
gates, independent of the number of input lines. A final structure, called the dual
tree, is illustrated in Fig. 4.4c for a 4-to-16 decoder. In the dual-tree structure
the n input lines are divided into j and k groups ( j + k = n ), and then two
smaller decoders y-to-27 and &-to-2* are used to generate 2 j and 2k internal
signals. Then two-input AND gates are used to combine these signals to form
the 2n output lines for the total decoder network.

4.2.2 Implementing Logic Functions
Using Decoders

Decoder output signals in complemented form are suitable for further process-
ing using NAND logic. For example, if

/ (A , B, . . . , Z) = mi -f ntj -J \- mk
then by DeMorgan’s theorem

(4.2)/ (A , B, . . . , Z) = mi rrij mk
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B A

¥V ¥ A >mo
By mo = CBA y mi
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m ] = C/M /4 >m2

£m2 = CZM
m3

4
m3 = C/M A >m45 >fm4 = CBA

m5
A

m5 = CBA A y m6>f/»6 = CBA B y m-j
Ay m-j = CBA (b)

(a)

Xm2m1 m3
1

EE E
Xm4 V«5 Nm7m6m0

C- m,
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Nmn\ nhD- mio
m2MSB

V«12 Vi"*13 mj4m3

m2mi
m0 m3

2-to-4

5 A
LSB

(c)

Figure 4.4 n-\o-2n decoder structures, (a) 3-bit parallel-type decoder, (b) 3-bit
tree-type decoder, (c) 4-bit dual-tree type decoder.
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This function can be implemented using a single &-input NAND gate and a
decoder with active-low outputs.

Another way of using the decoder of Fig. 4.3b is to consider each output
to represent a maxterm of a function, because

M . = mi
Therefore, a function can be implemented from its maxterm list canonical form:

f ( A , B , ... , Z ) = M r M j
using a decoder with active-low outputs and an AND gate.

The following example illustrates that a given function can be realized
from its minterm or maxterm list in several ways with a decoder and one
additional logic gate. Since these circuits are easily derived, we can examine
all of them to identify the most cost effective.

(4.3)Mk

EXAMPLE 4.1 Let us implement the following logic
functions using decoders and logic gates.

f (Q,X ,P ) = 2̂ m(0, 1, 4, 6,7)

= ]"~[ M(2,3,5)

We may implement the function in several ways:

1. Use a decoder (with active-high outputs) with an OR gate:
/(2, X , P) = m0 + m 1 + m4 + m6 + m?

2. Use a decoder (with active-low outputs) with a NAND gate:
/ (2, X, P ) = m Q • m ' m, • m6 • m7

3. Use a decoder (with active-high outputs) with a NOR gate:
/(2, X , P ) = m2 + m 3 + m5

4. Use a decoder (with active-low outputs) with an AND gate:
/(2, P ) = m2 - m3 • m5

The four resulting implementations are shown in Figs. 4.5a through d, respec-
tively.

4.2.3 Enable Control Inputs
Decoders and other functional modules often include one or more enable
inputs, as shown in Fig. 4.6, which can be used to either inhibit (disable)
the designated function or allow (enable) it to be performed. The decoding
function of a decoder is inhibited by forcing all its outputs to the inactive
state. For example, output y0 of the 2-to-4 decoder in Fig. 4.6a is given by
y0 — x { x{ ) E — m( ) E. In general,

(4.4)y k = m k E
When E = 0, all outputs are forced to 0, whereas for E = 1, each output y k is
equal to m k .

A common use of the enable function of a decoder is to extend the
decoding capability by allowing multiple decoders to be cascaded as shown
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oo
pp

lA A
XX

B 22B
QQ m nC 3 C 3 D
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7
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00 3
PP 1 D1 AA

X X 22 BB
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Figure 4.5 Using decoders to implement logic functions, (a) Active-high decoder with
OR gate, (b) Active-low decoder with NAND gate, (c) Active-high decoder with NOR
gate, (d) Active-low decoder with AND gate.

t>> J— >0

•*i >’o> + *0
>4 y \X \

> y2y2
E

*>'3
V3

E
(b)(a)

Figure 4.6 2-to-4 decoder with enable input #, (a) Schematic
diagram, (b) MSI symbol.
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in Fig. 4.7, which illustrates 3-to-8 and 4-to-16 decoders realized with the 2-
to-4 decoder module of Fig. 4.6b. In Fig. 4.7a, input I2 = 0 enables the top
decoder, which is thus enabled for input codes I2 l } /0 equal to 000, 001, 010,

O0Jo/0 *0

Oh X l y i i— o2yi

E
03J3

— 04Jo
*o

05X\ y i

Joh *o

h x\

J2
Ey i — o7J3

J2
E

J3

— o8Oo JoJo/0 *0*0 — 09o,h X\ y iJi

O\oJ2 02 J2D>° EEh
Ou03 J3J3

Ol 2OA JoJo *0*0

J1 013— 05 X\y1*1

J2 0\4Ofty2
EE

J3 0 ] 5J3

(b)(a)

Figure 4.7 Use of 2-to-4 decoder modules to realize larger decoders, (a) 3-to-8
decoder, (b) 4-to-16 decoder.
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and 011 (codes 0 through 3). The bottom decoder is enabled by I2 = 1, enabling
that module for input codes 4 through 7. Figure 4.7b illustrates a hierarchical
decoding of a 4-bit number, with the first-level decoder enabling exactly one
of the four second-level decoders.

4.2.4 Standard MSI Decoders
A number of standard MSI decoder modules are available that feature varying
values of n and different configurations of enable control inputs. In this section
we will examine a common 3-to-8 decoder, the 74138, and a 4-to-16 decoder,
the 74154.

74138
The 73138, presented in Fig. 4.8, is a widely-used 3-to-8 decoder module.
As seen in the logic diagram of Fig. 4.8a, the circuit has active-low outputs,
and is enabled by a combination of three enable inputs: Gl, G2A, and G2B.
Examining a typical output, T- , the output equation is:

Y. = m. • (Gl • G2A • G2 B )
where mi is the ith minterm of inputs C, By and A. From this equation, note
that the decoder is enabled only when Gl = 1, G2A = 0, and G2 B = 0 (Gl
is active high, and G2A and G2 B are active low). For example,

Y6 = m6 - ( G1 G2A G2 B )
where ra6 = C B A, with C being the most significant bit in the minterm code.

The dual-in-line package pin layout for the 74138 is shown in Fig. 4.8b.
A functional table describing its operation is presented in Fig. 4.8c. In the table,
L (low) represents a logic 0 and H (high) represents a logic 1.

(4.5)

74154
Another commonly used module is the 4-to-16 decoder (74154) of Fig. 4.9.
Let us examine the logic diagram of Fig. 4.9a. Consider a typical minterm, say
mI4, of a four-variable function. The switching expression realized by output

14 of the 74154 is DCBA{ G\ • G2) = mI4 (Gl • G2). So, in general,

Y( = mi ( Gl • G2)
It is important to note that D is the most significant bit and A is the least
significant bit of the minterm code (D, C, B, A ) and that the outputs are active
low (that is, when the decoder is enabled, output 14 is simply mI4). In this
module, two gate control signals, Gl and G2, provide the enable function, that
is, the decoder's outputs are enabled only when Gl and G2 are both equal to 0
(Gl - G2 = 1).

The dual-in-line package pin layout for the 74154 is shown in Fig. 4.9b.
A functional table describing its operation is presented in Fig. 4.9c.

(4.6)
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Figure 4.8 74138 decoder module, (a) Logic circuit, (b) Package pin
configuration, (c) Function table, (d) Generic symbol, (e) IEEE standard logic
symbol. Source: The TTL Data Book Volume 2, Texas Instruments Inc., 1985.

4.2.5 Decoder Applications
Address Decoding
Decoders find many applications in the synthesis of digital switching networks.
However, their use as address decoders in computer memories and input/output
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Figure 4.9 74154 decoder module, (a) Logic circuit, (b) Package pin
configuration. Source: The TTL Data Book Volume 2, Texas Instruments Inc.,
1985.

systems is perhaps one of the most important. In this application, each of
2n devices (memory cells or input/output ports) is assigned a unique n-bit
binary number, or address, that allows it to be distinguished from the other
devices. A computer designates a specific device to take part in an operation by
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Figure 4.9 (Continued) 74154 decoder module, (c) Function table, (d) Generic
symbol, (e) IEEE standard logic symbol. Source: The TTL Data Book Volume 2, Texas
Instruments Inc., 1985.

broadcasting its address over n signal lines. As shown in Fig. 4.10, an n-to—2”
decoder decodes the n-bit address by activating one of 2n select lines to access
one of the devices. For example, in a computer memory, each address would
correspond to one group of bits (binary digits) of information stored in the
memory. In a simple 4K ( IK = 210 = 1024) memory, where n — 12, a total of
4096 select lines are required.
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«-Bit address

S Device 0i
S Device 1*0 y\

A x\

yin-\

Device access
control signal

S Device 2n-\

S = select device

Figure 4.10 Address decoding in a digital system.

Minterm Generation
The n-to—2" decoders also find many applications in the synthesis of digital
switching networks by acting as minterm generators, since the outputs represent
all possible minterms of the n input variables.

EXAMPLE 4.2 Realize the following functions using a 74154
and logic gates:
f l ( W , X , Y , Z) = J2 m<1* 9,12,15)

f2(W , X ,Y , Z ) = m(0’ L2,3,4,5,7,8,10,11,12,13,14,15)

Using implementations 2 and 3 from Example 4.1:
/, ( W, X, Y , Z ) = m ] m9t h [ 2m X 5

and
f2 ( W , X, y, Z) = m6

. m9
Therefore, we may use the 74154 to generate the complemented minterms and
the 7420 and 7408 to generate /, and f2 as shown in Fig. 4.11. Note that we
must connect W = D, X = C, Y = B , and Z = A .

BCD to Decimal Decoders
Combinational logic circuits are often used to convert data coded in one scheme
into another format. Code converters are used for converting BCD to decimal,
excess-3 to decimal, binary to excess-3, and so forth. For example, a BCD to
decimal decoder is shown in Fig. 4.12a, with the BCD codes and their corre-
sponding digits shown in Fig. 4.12b.This decoder is similar to the4-to-16 binary
decoder described earlier, but with only 10 outputs, one for each decimal digit.

To design the BCD to decimal decoder, we can draw a K-map for each of
the 10 outputs and derive its logic equation. Each K-map contains exactly one
minterm, corresponding to the decimal number of that output, and six don’t-
care terms, 10 to 15, since these numbers don’t exist in BCD code. Three of
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l
2 3
3 D 7408/4

23 44 0AZ
6 /2 = fIA/(6, 9)5 J22 5B 6

21 7 3CX
8 320 DW 9> 9

/i = Im( l , 9, 12, 15)1010 3 8
12

11 3 il
12 7420/2G1 13 D

G2 14 3
15

74154

Figure 4.11 Realization of switching functions with a decoder.

BCD code
DCBA0 Decimal digits
0000 02 0001 1

3 20010D
4 0011 3“ Decimal

“ outputs
C>BCD

input 5 0100 45
0101 56A
0110 6
0111 78
1000 89
1001 9

(a) (b)

Figure 4.12 BCD to decimal decoder, (a) Logic symbol, (b) BCD codes
and decimal digits.

the K-maps are shown in Fig. 4.13. The complete set of logic equations that
describes the BCD decoder is:

Decimal 0 D C B A
1 D C B A
2 C B A
3 C B A
4 C B A

Decimal 5 C B A
6 C B A
1 C B A
8 D A
9 D A

Since the binary and BCD codes are identical for the digits 0 to 9, a 74154 4-

to-16 binary decoder can also be used to implement a BCD to decimal decoder
by simply using outputs m0 through m9 and ignoring outputs m10 through m ]5.
The 74154 may be more expensive than a minimum realization of the logic
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D D

00 01 11 10 00 01 11 10
0 4 12 8 o 4 12 8

©00 d 00 d

i 5 13 9 5 13 91

D01 £ 01
M AM3 3 7 157 15 1 1 11 3 7

11 1 1 </ 1 1
B B B i2 6 102 6 14

10 10 d d 10 d d

C C c
(a) (b) (c)

Figure 4.13 K-maps for outputs 0, 5, and 9 of a BCD to decimal code converter,
(a) Decimal 0 = DC B A. (b) Decimal 5 = C B A. (c) Decimal 9 = D A.

a a
ia a

b bto Of Of
b b

f§B>Common
anode

Common
cathode8 8

i

e 0wce+ e+
f<}

d
d d

d
(a) (b)

Figure 4.14 7-segment display elements, (a) Common anode (MAN 72A).
(b) Common cathode (MAN 74A).

equations for the BCD decoder listed here, but it would be a convenient solution
if readily available.

Display Decoders
Another common decoding application is the conversion of encoded data to
a format suitable for driving a numeric display. For example, digital watches
and other electronic equipment often display BCD-encoded decimal digits on
seven-segment displays. Seven-segment LED displays comprise seven light-
emitting diodes (LEDs) arranged as shown in Fig. 4.14. Selected combinations
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of the LEDs are illuminated to create numeric digits and other symbols. For
example, the segments normally activated to display the decimal digits are
shown in Fig. 4.15.

I I I _l _l l_l
I I I I I I

I I I l_ l l_ l Figure 4.15 Decimal digits
| displayed on 7-segment display

elements.I l l I I I
An LED emits light when the voltage at its anode is made sufficiently

higher than the voltage at its cathode. This is illustrated on diode a in Figs.
4.14a and b, in which the anode is marked with a and the cathode with a

In digital circuits, these voltages are created by applying a high voltage
to the anode and a low voltage to the cathode.

To minimize the number of control signals, the anodes of the LEDs are
usually connected at a common point, called the common anode, as shown in
Fig. 4.14a, or else the cathodes are connected at a common cathode, as in Fig.
4.14b. In the common-anode configuration, the anodes are usually connected
to a high voltage and the cathodes are controlled individually. Consequently,
a logic 0 applied to a cathode illuminates that LED, whereas a logic 1 voltage
disables the LED. The opposite conditions are used in the common-cathode
configuration. Therefore, the inputs to the common-anode configuration may
be considered active low, since low signals activate the LEDs, and the inputs
to the common cathode configuration are active high.

To display a number encoded in BCD format, we can design a decoder
to convert the BCD codes to the logic values needed for the seven segments.
We begin by creating a truth table listing the segments to be activated for each
decimal digit, as shown in Table 4.2. Using this table, a K-map can be drawn
for each of the seven segments from which minimum logic equations can be
derived. For example, Fig. 4.16 shows the K-maps for segments a and b, with
product of sums expressions derived.

This design procedure can be generalized to design logic circuits for
converting data from any arbitrary code format to another. Using the truth table
format of Table 4.2, all input codes are simply listed as inputs to the circuit,
with the corresponding output codes as circuit outputs. Then a K-map is drawn
and a logic equation derived for each output, with any unspecified input codes
mapped as don’t-care conditions.

m 4.3 ENCODERS
An encoder is a combinational logic module that assigns a unique output code
(a binary number) for each input signal applied to the device; as such, it is the
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TABLE 4.2 BCD CODE TO SEVEN-SEGMENT CODE CONVERSION

Display Segments
d If} f g

1111110
0 1 1 0 0 0 0

1 0 1 1 0 1 1 0 1
1 1 1 1 0 0 1

0 0 0 1 1 0 0 1 1
0 1 1 0 1 1 0 1 1
1 0 0 0 1 1 1 1 1

1 1 1 0 0 0 0
1 1 1 1 1
1 0 0 1 1

BCD Code
D C B A
0 0 0 0
0 0 0 1
0 0
0 0
0 1
0 1
0 1

Decimal
Digit b ca

0
1
2

1 13
4
5
6

1 1 1
0 0 0 1 1
0 0 1 1 1

7 0
8 1
9 1

AA B
C D 00 01 11 10

00

01

> DD
11

c 4
10

BB

(b)(a)

Figure 4.16 K-maps for a BCD to 7-segment code converter, (a) Segment a =
( B + D ){ A + B+ C + D ). (b) S e g m e n t b = { B + C + D ){ B + C + D ).

opposite of a decoder. If an encoder module has n inputs, the number of outputs
5 must satisfy the expression

2s > n (4.7)
or

s > log2 n

4.3.1 Encoder Circuit Structures
Encoders with Mutually Exclusive Inputs
Consider first the case in which the inputs are mutually exclusive; that is, one
(and only one) of the input lines is active at any particular instant in time;
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two or more input lines are never simultaneously active. In this case the input
combinations that never occur may be used as don’t-care conditions.

EXAMPLE 4.3 Design an encoder for four input lines if one
and only one is active at any moment in time.
See Fig. 4.17a.
Let us define the code:

A t A0
0 0
0 1
1 0
1 1

The output functions yield the binary value of the input variable’s subscript.
The truth table and K-maps for the encoder are presented in Figs. 4.17b and c.
From the K-maps,

X I

*2

*3

A , = X3 + X2

The logic circuit diagram for the encoder is given in Fig. 4.17d.

The preceding encoder requires that one (and only one) of the inputs be
active at all times, a unique condition. Suppose that we relax the constraints
somewhat and design an encoder that allows all input combinations to occur,
but which outputs a nonzero code only if one of the input lines is active.

EXAMPLE 4.4 Design a four-line encoder that outputs a
zero code unless one and only one input line
is active.
Let us define the code:

A2 A I
0 0 1
0 1 0
0 1 1
1 0 0
0 0 0

X .1x2

*3

*4
All others

This encoder also outputs the subscript of the active input line. However, it
outputs the all-zero code if no input line is active or if multiple lines are active.
Figure 4.18 details the design:

A 2 = x4x3x2x,
A j = X4 X 3 X 2 X l + X4 X 3 X 2 X
A0 = X 4 X 3 X 2 X { + X4 X 3 X 2 X

Note that the logic required to implement the second encoder is more complex
than for the first.

l

l
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*3

4 12 8
d ]1 1d

135 9

0 d d d
Xo * f *o7 1 5 IIAQ
*1 dd d d* 4-to-2

Encoder*2 *1 1* 106 14
Al 0 d)X3 *

*2(a)

A ] = X2 *f X j

X3 X2 X, X0 Aj A0

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

d d
0 0
0 1
d d
1 0
d d
d d
d d
1 1
d d
d d
d d
d d
d d
d d
d d

*2

Ao= Xj + X3

(c)(b)

£>*1 A0*3

ox2 Ai*3

(d)

Figure 4.17 Four-to-two line encoder, (a) Functional diagram, (b) Truth table,
(c) K-maps. (d) Logic diagram.
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x4

124
1

1351>X\ 1- ^0

* 4-to-3
Encoder

*2 ”*13 157

-«3

*2 1**4 2 6 14

(a)

*3

X4

12 8
1X4 XT, X2 X\ A2 A [ Ag

0 0 0
0 0 1
0 1 0
0 0 0
0 1
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

13 9

r * 115 113 7

1

*2 1 102 6 14
1

*3

*4

12 8
1

13 9
(b)

” *11 5

14

*3X\ x2 (c)x3 r_
x4

X \ -
*3

-«2
x4 A2X ]

*2
*3 -x4

*1 -
•*•3 -

X2
x4

Figure 4.18 Four-to-three line encoder, (a) Functional diagram, (b) Truth
table, (c) K-maps. (d) Logic diagram.
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Priority Encoders
Another type of encoder is the priority encoder. The priority encoder allows
multiple input lines to be active and sends out the binary value of the subscript of
the input line with highest priority. To simplify the design, the highest priority is
assigned to the highest subscript, the next highest priority to the second highest
subscript, and so on. Consider the priority encoder of Fig. 4.19. The input lines
are encoded

A , A0
0 0
0 1
1 0
1 1

If no input line is active, the priority encoder sends out (A ] A ()) = (00). If a
single line is active, the encoder sends out the binary value of the subscript of
the active line. If more than one input is active, the encoder sends out the binary
value of the largest subscript of the active lines. Figure 4.19b displays the truth
table for the encoder. Note that the two additional output lines indicate that
no input line is active ( EO = 1) and one or more inputs are active ( GS — 1).
Figures 4.19c and d present the K-map and logic diagram of the function, which
reduces to

*0

*1

*2x3 -»

(4.8)Aj — X2 -f- X 3
A0 =: X3 + X1 X2 (4.9)

and

(4.10)EO = GS = X ^ + X 2 + X J + X0

The two output functions A , and A0 are independent of XQ. Note that the
priority encoder can realize the truth table of Fig. 4.17b. Consequently, the
priority encoder can also function as a minterm encoder.

4.3.2 Standard MSI Encoders
Two modular priority encoders (74147 and 74148) are demonstrated in Figs.
4.20 and 4.21. Both of these devices have active-low inputs and outputs. Look
for this property in the logic diagram and function table for each device.

74147
The 74147, as shown in the logic circuit of Fig. 4.20a, takes 10 lines (0, 1, . . . , 9)
and encodes them to 4 lines (D, C, B, A), as summarized in the function table
of Fig. 4.20b. Notice that the input line 0 is not connected to the circuit, as
suggested in Eqs. 4.8 and 4.9. The dual-in-line package pin layout of the 74147
is shown in Fig. 4.20c.
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> xo
AQ
A\

*o >

4-to-2
Priority
encoder

*
x2 * GS

EOx3 > -*2

4 1 = 2̂+ 3̂(a)

*3_
A
_

00 01 11 10
Outputs

A\ AQ GS EO

4 12 XInputs
X3 X2 X, XQ TIn00

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 0 0 1
0 0 1 0
0 1 1 0
0 1 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 0

5 13 9
01 1 1

* •*07 13 11

D fl11 1

*1 1 6 14 TO
10 u UJ

x2

Ao= X3 + X|X2 !

(c)

*1(b)
x2

Aox3

ox2
Ai

£>| EO

L-T>0-G5
(d)

Figure 4.19 Four-to-two line priority encoder, (a) Functional diagram, (b) Truth
table, (c) K-maps. (d) Logic diagram.
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OutputsInputsH>1 >i 2 3 4 5 6 7 8 9 D C B A

H H H H H H H H H
x x x x x x x x L
x x x x x x x L H
x x x x x x L H H
x x x x x L H H H
x x x x L H H H H
x x x L H H H H H
x x L H H H H H H
x L H H H H H H H
L H H H H H H H H

H H H H
L H H L
L H H H
H L L L
H L L H
H L H L
H L H H
H H L L
H H L H
H H H L

>i
A

y
y

(b)>14H> {>
5 ~0 {>

y
6H> >i

7H>
8-cO

D
9 —$> OutputsInputs

(a) (c)

Figure 4.20 74147 priority encoder module, (a) Logic diagram, (b) Function
table, (c) Package configuration. Source: The TTL Data Book Volume 2, Texas
Instruments Inc., 1985.

74148
The 74148 logic circuit, shown in Fig. 4.21a, takes eight lines (0, 1, . . . , 7)
and encodes them to three lines (A2, A1, AO) according to the function table
in Fig. 4.21b. An input enable signal El is connected to all the first-level logic
gates to control their operation; when El is active (low) the circuit operates.
The 74148 also has two additional output signals, EO and GS. EO is active
(low) when none of the input lines is active. GS is active (low) when one or
more input lines are active. The dual-in-line package pin layout of the 74148
is shown in Fig. 4.21c.
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o

OutputsInputs

0 1 2 3 4 5 6 7 A2 A 1 AO GS EOEl
H H H
H H H
L L L
L L H
L H L
L H H
H L L
H L H
H H L
H H H

H H
H L
L H
L H
L H
L H
L H
L H
L H
L H

H x x x x x x x x
H H H H H H H H
x x x x x x x L
x x x x x x L H
x x x x x L H H
x x x x L H H H
x x x L H H H H
x x L H H H H H
x L H H H H H H
L H H H H H H H

O L
L
L
L
L2
L
L
L
L

<o3 (b)

4
InputsOutputs

A Output
EO GS 3 2VVc
15 14 12cOH>° 16 135

ry ft A
m<01-0°6

V -if
M i

<*> v T J v T J T J T J7

y LUHJHJ Li 84 61

Al GNDEl A 25 6 74
<£>El

OutputsInputs
(c)(a)

Figure 4.21 74148 priority encoder module, (a) Logic diagram, (b) Function
table, (c) Package configuration. Source: The TTL Data Book Volume 2, Texas
Instruments Inc., 1985.

EXAMPLE 4.5 For the 74148, what is the output code
(.EO,GS,A2,A\,AO ) under the following
conditions:

(£/,7,6,5,4,3,2,1,0) = (0,1,0,1,0,1,0,1,1)

Since the device is enabled and three lines are active (inputs 6, 4, and 2), GS
will be active low and A2, Al, AO will encode line 6 (001):

( E O , G S , A2, Al , A0) = (1, 0, 0, 0, 1)
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•4.4 Multiplexers/Data Selectors
In general, a multiplexer (also called a data selector) is a modular device that
selects one of many input lines to appear on a single output line. A demultiplexer
performs the inverse operation; it takes a single input line and routes it to one
of several output lines. A simplified diagram illustrating the general concept of
multiplexing and demultiplexing is shown in Fig. 4.22a. The rotary switch Wj
moves from input line A to B to C, and so on. The rotary switch SW2 at the
output of the channel is synchronized to SWj and it too moves from output line
A to B to C, and so on. This multiplex/demultiplex configuration illustrates
one manner in which data are selected and routed. The logic configuration is
shown in Fig. 4.22b. Here the signals a, b, . . .k are control signals that select
which set of inputs/outputs will be using the “single channel.” The channel in
this configuration could be contained within a computer system or could be a
mechanism with which the computer communicates with the outside world.

4.4.1 Multiplexer Circuit Structures
In an n-to-1 line multiplexer, one of the n input data lines ( Dn_ x , D
is designated for connection to the single output line (T) by a selection code

• • » D0 )n-2’ *

Multiplexer Demultiplexer

O O4in -̂ out

o o#in Bout

T sw2

o o K0u,*in Single
channel

(a)

>1^i n Single
channel

\a

^in

b

yKin —
k k

(b)

Figure 4.22 K-channel multiplexing/demultiplexing
system, (a) Multiplex/demultiplex operation, (b) Simple logic
configuration for (a).
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. . . , S0), where n = 2k . Examine Fig. 4.23a, which depicts a 4-to-l line
multiplexer, with B = S ] and A — SQ. The circuit will connect data line Z) to
the output Y when the code

( S.k-1’

i = ( BA )2
is applied to the selection terminals. Figure 4.23b displays the truth table of the
multiplexer. From the truth table we may write

Y = ( BA ) D0 + ( BA ) D ] + ( BA ) D2 + ( BA ) D3
The selection code forms the minterms of two variables, B and A. Hence we
may write

(4.11)

(4.12)

Y = £,miD (4.13)i
/
•=0

Do
D i * 4-to-1

Multiplexer Y
D2

D3 *

/i K

0 0
0 1
1 0
1 1

Do
D iB A D2
D3Selection code

(a) (b)

>nDo Do

D i D i

F F
/>2 ^2

^3D3

0 31 2

W.

2-to-4
Decoder

B A B A
(c) (d)

Figure 4.23 Four-to-one multiplexer design, (a) Functional diagram, (b) Truth
table, (c) Logic diagram, (d) Equivalent two-level circuit.
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where the m. are the minterms of the selection code. The logic diagram for the
4-to-1 multiplexer is shown in Fig. 4.23c. An equivalent circuit, using two-level
AND-OR logic, is presented in Fig. 4.23d.

The 4-to-l multiplexer of Fig.4.23can also be used in a tree-type network,
as shown in Fig. 4.24 in which four multiplexers are used to feed another 4-to-l
multiplexer, thereby creating a 16-to-l multiplexer. Even larger configurations
can be generated in the same manner.

4.4.2 Standard MSI Multiplexers
74151A
The 8-to-l multiplexer (74151A) is shown in Fig. 4.25. For this circuit we may
write the output equation as

Y = [(CBA) D0 + (CBA) D1 + (CBA ) D2 + (CBA ) Di
+( CBA ) D4 + (CBA ) D5 + (CBA ) D6 + (CBA ) D1 ] G

imAW) (4.14)
i=0

The strobe (G ) acts as an enable signal (active low), forcing the output to 0
when G — 1. The second output W is the complement of F.

74150
The 74150 is the 16-to- l multiplexer shown in Fig. 4.26. This is a 24-pin device
with two lines for power and ground, 16 data input lines (£)), a strobe (G),
four selection code lines ( D, C, B, A), and one output line ( IT). The output of
this device is

15

IZmiE (4.15)W = Gi
/=0

where mi is a minterm (D, C, B, A ).

74153
Computer systems often require that several multibit sources of information
be multiplexed over a single bus. To support such applications, two or more
multiplexers are often combined in a single module with a common select code
input. Figure 4.27 illustrates a module containing two 4-to- l multiplexers, often
referred to as a dual (2-bit) four-input multiplexer. The behavior of this module
is illustrated by the rotary switch shown in Fig. 4.27b, in which one set of two
inputs (1C7, 2Ci ) is connected to the two output lines { IF, 2F}, when select
lines ( BA )2 = (i )T An alternative symbol for the dual four-input multiplexer
is shown in Fig. 4.27c. The logic diagram and IEEE standard symbol of the
74153 are given in Figs. 4.27d and e, respectively.
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Do*/0
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Do*/4
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024
03

B A
Do*
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£ A
0o4
o,4

53 S2

Selection code
(higher-order bits)

02ho
03>/11

5 A

0o/12

0i43
02*44
03*45

A

Si SO
Selection code

(lower-order bits)

Figure 4.24 16-to-1 multiplexer realized with a tree-type network of 4-to-1
multiplexers.
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Figure 4.25 74151A 8-to-1 multiplexer, (a) Package configuration.
(b) Function table, (c) Logic diagram, (d) Generic logic symbol, (e) IEEE
standard logic symbol. Source: The TTL Data Book Volume 2, Texas Instruments
Inc., 1985.
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Figure 4.26 74150 16-to-1 multiplexer, (a) Package configuration.
(b) Function table, (c) Logic diagram. Source: The TTL Data Book Volume 2
Texas Instruments Inc., 1985.
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'150 150

EN£0
(15)E 1 0 1^ (14)
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14£14G (16)
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Figure 4.26 (Continued) 74150 16-to-1 multiplexer, (d) Generic
logic symbol, (e) IEEE standard logic symbol. Source: The TTL Data
Book Volume 2, Texas Instruments Inc., 1985.

74157
Figure 4.28 shows the 74157 quad (4-bit) two-input multiplexer module, which
connects one of two 4-bit inputs to the 4-bit output as selected by control signal
S . Control signal G enables and disables the output; the output lines are all
forced to 0 if G = 1.

Multiple 74157 modules can be utilized to create other multiplexer con-
figurations of different path widths and numbers of inputs. In Fig. 4.29a, two
74157s are used to create an octal (8-bit) two-input multiplexer by controlling
the select line S on both modules with the same select signal. In this case, the
8-bit input from source X is routed to the destination when select = 0, with the
upper 4 bits routed through one module and the lower 4 bits through the other.
Source W is routed to the destination in the same manner when select = 1.

Figure 4.29b shows a quad (4-bit) four-input multiplexer realized with
two 74157 modules. Select signal 51 enables one of the two modules and
disables the outputs of the other, forcing one of the two inputs to each of
the OR gates in Fig. 4.29b to be 0. Select signal 50 selects one of the two
4-bit inputs of the enabled module, sending the 4 bits of the selected source
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ICOPair 0 '
2CO

1 C1Pair 1 ICO2C1 01Y [Output
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-*2Y1C2 2Pair 2 1C1 CO2C2 1 22C1 ir 7̂ 2Cl
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1YyData 1 -<
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2Y2C 1 ( ID2CI
Data 2 < Output (12)

2C22Y2C2
(13)

2C3
2C3

<o (e)Strobe ~^(enable) 2G (d)

Figure 4.27 74153 dual (2-bit) four-input multiplexer, (a) Generic symbol.
(b) Equivalent switch, (c) Alternative symbol, (d) Logic diagram, (e) IEEE
standard logic symbol. Source: The TTL Data Book Volume 2, Texas Instruments
Inc., 1985.

to the other OR gate inputs. Consequently, each OR gate output is simply the
corresponding bit of the selected source.
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Figure 4.28 74157 quadruple 2-to-1 multiplexer, (a) Package configuration,

(b) Function table, (c) Logic diagram, (d) IEEE standard logic symbol. Source:
The TTL Data Book Volume 2, Texas Instruments Inc., 1985.
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D3 D2 DO 1 1D1 P
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Figure 4.29 Using multiple 74157 4-bit two-input multiplexers,
(a) 8-bit two-input multiplexer, (b) 4-bit four-input multiplexer.

4.4.3 Applications of Multiplexers
The multiplexers/data selectors presented so far may also be used conveniently
to implement switching functions. The fundamental idea is to use the selection
code to generate the minterms of the function, and to use the data lines D. to
enable the minterms present in a specific case.
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EXAMPLE 4.6 Use a 74151A to implement
f (xvx2,x3) = ro(0,2,3,5).
Figure 4.30a lists the truth table for the function. The minterms are gated onto
the output Y by setting D0 = D2 = D3 = D5 = 1. The remaining data lines
are grounded as shown in Fig. 4.30b. Note that (JC,, JC2, x3 ) are connected to
(C, B, A ). The order of the variables is very important.

Vcc
74151A

DoC B A Y1
D1/X \ x2 x3
D20 0 0 0

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

1 D0 = l
0 Dj = 0
1 £>2 = 1
1 £>3 = 1
0 £>4 = 0
1 £>5 = 1
0 £>6 = 0
0 £>7 = 0

D31
2 £>4 f ( xhx2, x3 )Y
3 DS w
4

£>65
6 D~/
1 G

C B A
(a) H7

*1 *2 *3
Selection code

(b)

Figure 4.30 Realization of f ( xvx2 , x3 ) = £ m(0, 2, 3, 5). (a) Truth table,

(b) Implementation with 74151A.

The concept demonstrated in Example 4.6 may be extended to imple-
ment higher-order functions. That is, an n-to-1 line multiplexer can be used to
implement a k + 1 variable function (n = 2k ) by connecting k of the variables
to the selection lines of the multiplexer, with the ( k + l )st variable used (along
with ground and the power supply) to establish the data input lines.

EXAMPLE 4.7 Implement f (a,b,c ) = ab + bc using the 4-to-1
multiplexer of Fig. 4.23.
In this case, there are three variables and two selection lines on the multiplexer.
The first step is to express the function in canonical SOP form.

f ( a, b, c) = ab + be

= abc + abc + abc + abc
The next step is to select two of the variables to connect to the multiplexer
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Doc
0 D i f (a, b, c)a b f {a, b, c) MUX Inputs

£2c
0 0 D0 = c

D, = 0
D2 - c
D3 = 1

c 1 £30 1 0
1 0 c B A
1 1 1 T(a) a b

Selection code
(b)

0 Do
1 D1 f ( a, c)/(«, b, c ) MUX Inputs& c

YD2a
0 0 0 Do = 0

D\ = 1
D2 = a
D3 - a

D3a
0 1 1
1 0 a B A
1 1 a n(c) b c

Selection code
(d)

Figure 4.31 Realization of f ( a, b,c ) = ab + bc with 4-to-1
multiplexers, (a) Truth table; f ( a , b, c) evaluated for all values
of a and b. (b) Multiplexer realization, (c) Alternate truth table;
/ ( a , b, c ) evaluated for all values of b and c. (d) Alternate realization.

select lines and factor these terms out of the canonical SOP form. Let us use a
and b for this example. Factoring out a and b gives

f ( a , b, c ) = ab(c ) + ab( c ) + ab{c + c)
From this expression, f ( a , b, c) can be evaluated for each combination of a
and b. The result is listed in truth table form in Fig. 4.31a, which shows the
expression for /(a , b, c ) for each combination of a and b. This truth table is
implemented by the multiplexer of Fig. 4.31b. Note that each row of the truth
table corresponds to one of the multiplexer inputs.

Any two variables can be connected to the multiplexer select lines. For
example, if variables b and c are chosen, the truth table given in Fig. 4.31c
results. This table is implemented by the multiplexer of Fig. 4.3Id.

EXAMPLE 4.8 Implement
f ( XvXvX3,X4 ) = £ m{0,1,2,3,4,9,13,14, 15)
using a 74151A.
In this case, the logic function has four input variables, while the multiplexer
has only three selection code bits. One approach to use is to factor the minterms
of the function using Postulate 5(b).
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Since the canonical SOP form contains many terms, it is simpler to omit
the factoring step and work directly from the function’s truth table, which is
given in Fig. 4.32a.

Note that the input variables have been divided into two groups, with X
X 2 , X 3 being assigned to the selection code C, B, and A. The fourth variable is
standing alone to be used as a data input variable. The three selection code bits
effectively divide the truth table into eight parts, as indicated by the horizontal
lines.When bits XJ 9 X 2,and X 3 are applied to the selection code, they designate
one of the eight double rows of the table. Each double row may have the bit
pattern

p

Q logic 0 ^ variable X 4

1 1
Q variable X 4

So by choosing each data input to be one of these four conditions, we implement
the function as shown in Fig. 4.32b.

logic 11

C B A Y
x4 Vccf fX i X 2 X3 *4/

74151A00 0 0 0
0 0 0

1
1 1 1 />o = 1 Do>

0 0 1
0 0 1

0 11 Di>1 1 1 D2>2 10 1 0
0 1 0

0
D3* f (x h x2, x3. x4 )1 0 />2 =*4
D4*3 0 1 1

0 1 1
0 0

D51 0 0 D3 = 0 w
4 1 0 0

1 0 0
0 0 D6
1 1 D4 = X4x4 Dn>
0 05 1 0 1

1 0 1
c i

C B A0 01 />5= 0
6 1 1 0

1 1 0
0 0 TTT1 1 *4 />6 = X4
07 1 1 1

1 1 1
1 x l x2 x3

Selection code1 1 1 D7 = 1

(b)(a)

Figure 4.32 Realization of f ( x v x v x v x4 ) = £ m(0, 1, 2, 3, 4, 9, 13, 14, 15) with a
74151A multiplexer, (a) Truth table, (b) Logic diagram.

•4.5 Demultiplexers/Data Distributors
In the last section we examined a combinational logic circuit that multiplexed
n lines to one line by using a selection code to specify which input line to
connect to the output line. In this section we will examine the inverse circuit, a
demultiplexer or data distributor. A demultiplexer connects a single input line
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to one of n output lines, the specific output line being determined by an s-bit
selection code, where

2 5 > n
A functional diagram for a 1-to-n demultiplexer is shown in Fig. 4.33a.

The selection code is used to generate a minterm of s variables; that minterm
then gates the input data to the proper output terminal. See Fig.. 4.33b for a
specific example. This l -to-4 data distributor has an enable signal ( E ) that
controls the operation of the circuit. When E is 1, the circuit is operational. We
may thus describe the operation of the device by

Yi = ( m i D ) E
where D is the input signal to be distributed to the n output lines. Compare Eq.
4.17 to Eq. 4.6. We see for the 74154 that

(4.16)

(4.17)

T = m i ( G1 • G2)
If we specify that

1. the selection code inputs (Z), C, B, A) to the 74154 generate m. in Eqs.
4.17 and 4.6, and

2. G2 in Eq. 4.6 is the complement of the enable signal ( E ) in Eq. 4.17,

then we may use the 74154 4-to-16 decoder of Fig. 4.9 as a 1-to-16 demulti-
plexer.

Consider the operation of the 74154 with G2 = 0 and a specific selection
code applied, say (D, C, B, A ) = (1110):

Y i = 1 for / 4 14

Input
D — ) > n>E —

Enable > Y\YQ

Y 7

l -to-rt
DemultiplexerInput Outputs > > 3

m0 mi m21 m3Yn-1 2-to-4
Decoderrrr n2 S

Selection
code

1
B A

Selection
code(a)
(b)

Figure 4.33 Demultiplexer/data distributor, (a) Functional diagram, (b) 1-to-4
demultiplexer with enable.
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and

Yu = mu( Gl - G2 y
But mu — 1 and G2 — 1, so

Yu = Gl = Gl
So if we set G1 = D, then the 74154 implements Eq. 4.17 for the demultiplexer.

EXAMPLE 4.9 Design a 16-line to 16-line
multiplexer/demultiplexer system using a
74150 and a 74154.
The goal is to replace a cable of 16 lines with a smaller number of signals
in order to save wire. Suppose the 16 signals are to be transported 1000 feet.
Figure 4.34 displays a solution in which the 16 signals (X0, Xv . . . , X ] 5 ) are
multiplexed onto one line (Q) using the signal channel code ( Cv C2, Cp C0).
At the distant end, the five lines are then used to demultiplex the data back to 16
parallel lines for further processing. It is important to note that the 16-to-5 line
reduction has come at the expense of system utility since now, at any instant in
time, one and only one of the 16 signal channels may be in use. That is, time
slots must be assigned to each of the 16 lines, and a time schedule for line Q
must be enforced. In this configuration, the 16 output lines will be high when
they are not scheduled to use the single input channel Q.

l
-to 5 -to0E01 £*1 *1E x 74150 74154 16 E2 X -)25 H*3 E3 *334 Single data

channel (Q)*4 s-E4 £ *44<u3 E5 *552 7a*6 E6 u •IJ2 *66&>1

D-2
x*7 3E7 10 *77B23 a*8 Es Y 4J *8822 a
3 10*9 E9 *99G121 s a>

§-*10 11Eio

o-£
o-H

*io1020
•tu Eii19 11Q*12 E\218 I-t1212*13 ;En i17 *1313*14 ^14 1616 *1414*15 E15 17

r-2—r *15D C B A 15G D C B A
1311 14 15 20 21 22 2316 lines C3

C2c1
Co

5 lines

Figure 4.34 Demultiplexer/data distributor example.
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B 4.6 Binary Arithmetic Elements
The basic fundamentals of performing arithmetic operations in various num-
ber systems were introduced in Chapter 1. All digital computers contain logic
circuits to implement selected arithmetic operations in the particular number
systems selected for use in those computers. The most commonly used number
system for representing integers is the two’s complement number system, be-
cause it simplifies the representation of both positive and negative values and
the implementation of addition and subtraction circuits.

The following sections will examine the design of binary addition and
subtraction circuits that can be used to manipulate two’s complement numbers.
Many other arithmetic modules are available for performing binary arithmetic
operations, including multiplication, division, and others. The reader is referred
to [1] for further information.

4.6.1 Basic Binary Adder Circuits
In many computer logic applications it is necessary to add binary numbers. In
Chapter 1 it was demonstrated that addition of binary numbers in the two’s
complement number system is sufficient to perform the normal addition and
subtraction operations of the digital computer. Of course, the adder circuits
must be accompanied by the proper complementing network and arithmetic
registers. Here we shall design several serial and parallel adder circuits.

Half-adder
A half-adder (HA) is a multiple-output combinational logic network that adds
2 bits of binary data, producing sum-bit and carry-bit output signals. See Fig.
4.35a. The input bits xt and yf are added mathematically in binary, as shown in
the truth table of Fig. 4.35b. From the truth table we observe

© yt

ci = x< yi
A two-input NAND gate realization of these switching functions is presented
in Fig. 4.35c.

(4.18)

Full-Adder
In performing binary addition, it was shown in Chapter 1 that at each bit
position we, in general, will be adding two data bits and one carry bit. Hence,
a full-adder (FA) is a multiple-output combinational logic network that adds 3
binary bits. See Fig. 4.35d. The truth table for the full-adder is shown in Fig.
4.35e. From the truth table or a K-map, we can show that

= xt © y . © ci _ 1

ci =w + xici-i + v/c,-!
A NAND implementation for a full-adder is shown in Fig. 4.35f. This imple-
mentation uses nine gates and two levels of logic. An exclusive-OR circuit for
the same output s. is shown in Fig. 4.35g.

(4.19)
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X j*i y,

i t
*i yi Ci Si
o o
o 1
1 o

o o
o 1
o 1
1 o

X-HA yi

l l

>-o Ci
(b)

Si
(c)(a)

*i yi Ci_ i
*i yi Q-i C j S j

Si0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0
0 1
0 1 Ci-1
1 0FA
0 1
1 0
1 0
1 1

(e)
(d)

(f )

:)E>X j

yi

ci~i
(g)

Figure 4.35 Binary half-adder and full-adder circuits, (a) Half-adder, (b) HA truth
table, (c) NAND gate HA circuit, (d) Full-adder, (e) FA truth table, (f) NAND gate FA
circuit, (g) XOR gate realization of FA s. output.

The digital logic designer uses the full-adder as a module to create large
circuits, using the logic symbol shown in Fig. 4.35d. Two applications of the
module will now be illustrated.

Pseudoparallel Adder Unit
An adder unit that employs n — 1 full-adders and one half-adder is illustrated
in Fig. 4.36. This configuration uses one adder circuit for each bit position of
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*1 yi c0*7i-i yn-1 C/i-2 Cl( f
FA FA

Zn-1 Z 1
£//

(end carry)

Figure 4.36 Pseudoparallel (ripple carry) adder.

the two input data words. The operation to be performed is
*1*0)2

• • yi yn)?.+ Y +( yn-ixn-2 *

(ZnZn-lZn-2 * * ' Z1 Z0^ 2
The configuration is called pseudoparallel because carries must propagate, or
ripple, through the length of the adder unit. This configuration is also referred to
as a ripple-carry adder. In general, the worst-case propagation path is through
one half-adder and n — 1 full-adders from the inputs x0 and y0 to the end sum
and carry positions zn_ x and zn.

Z

4.6.2 MSI Binary Adder Modules
• • • - . . . ft • — i«»H-

7482 Two-bit Adder
The 7482 is the 2-bit, pseudoparallel adder module shown in Fig. 4.37. The
signal CQ is a carry-in and C2 a carry-out. The internal signal Cx is the carry
from FAX to FAv By examining the logic diagram we may write

Cx = CQ " Ax -f- CQ " Bx 4- Ax • Bx
Sj = CQ " Cx + Ax • Cx 4* #1 • Cx + Aj • B x " CQ

= Ci (C0 4- Ax 4- B x ) 4- Ax • B x • C0

= (C0 4- Aj)(C0 4- B l )( A l + 5j)(C0 4- Aj + B x ) -f- A x • B x " C0

= (CQ 4- Aj • 5j)(Aj 4- Bx )( c0 4- Aj 4- B x ) 4- Aj • B x • C0

= [^0(^1 A* ^1 ) + 0̂ ‘ ^1 ’ ^il (Aj 4- iij) 4- Aj • B x • C0

= CQ " AJ * 4* C0 " AJ * 4- CQ " AJ " 4 AJ * " CQ
= C0 © Aj 0 Bx

In a similar manner,

(4.20)

(4.21)

C'
2 — C|• A2 4“ Cj • i?2 4- A2 • Z?2

£2 = Cj © A 2 © z?2
In each full adder, the carry is generated by two levels of logic. The carry is
then combined with the input signals to generate the sum with two additional
levels of logic. Carry propagation requires only two levels of logic at each full

(4.22)
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Figure 4.37 The 7482 pseudo-parallel adder module, (a) Package pin
configuration, (b) Function table, (c) Logic diagram. Source:The TTL Data Book
Volume 2, Texas Instruments Inc., 1985.

, for aadder. Hence we may say, in general, that the worst-case delay, t
pseudoparallel adder constructed from these modules is

'delay = ( 2tl +
where n is the word length of the adder unit. Here, fdelay is measured in terms
of the total number of levels of logic through which the carries must propagate,
each level delaying the signal by an amount of time t . The worst-case path

delay

(4.23)gate

gate'
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is from the carry-in of the least significant bit to the sum output of the most
significant bit.

7483 Four-bit Adder
Another adder module that can be used to build long-word-length adder units
is the 7483, shown in Fig. 4.38. For this 4-bit module, C0 is the carry-in and C4
the carry-out. The internal carries (Cp C2, C3) are not propagated explicitly;
that is, within the adder module the output bits (Dj , E2, £3, E4) are formed in
parallel. From the logic diagram we may write

Pi = (VAT)(A . + B( )

= (A . + fl. )(A, + B. )

= A. © B;

= pi © c
= A. © Bi © C,

(4.24)
l

i-\
(4.25)-l

and
C\ — (C0 • Aj • ^j ) + (Aj + B x )

= (C0 - A 1
. f l1 ) . (A 1 + 2?1 )

= (C0 + (A1.51)) . (A 1 + 51 )

— C0 • A i + C0 * + A j • (4.26)
In a similar manner, we may find

C • — C. _ , • A . + C.__ j • A . • B (4.27)
i i ii

65 81 4

13 A3 B3 12 fi2 A2A4 ĉc
(a)

Figure 4.38 The 7483 four-bit adder module, (a) Package pin
configuration. Source:The TTL Data Book Volume 2, Texas Instruments
Inc., 1985.
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y i
i
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y C3

)B 3

O 53

t>A3

) C2

)
52 > P2

A 2

51

£>A 1
CO

CO {>
(b)

Figure 4.38 (Continued) the 7483 four-bit adder module, (b) Logic diagram.
Source: The TTL Data Book Volume 2, Texas Instruments Inc., 1985.

which agrees with Eq. 4.19. Within the 7483, the P( signals are valid in two
gate delays, the C. signals in three gate delays, and the E. outputs one XOR
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gate delay after the C- terms. Since the 7483 generates four sum terms, we can
build an n-bit pseudoparallel adder of

(4.28)
modules, where the notation [ x ~\ means the smallest integer greater than x.
Thus, the resulting unit will have an overall worst-case delay of three gate
delays for the carry out of each module except the last, which will have four
gate delays to its sum outputs:

m = [>7 /4]

= (3m + \ )t
The pseudoparallel adders are simple to build and are reasonably fast. However,
these designs are unsatisfactory in some high-speed applications because of the
increased delay as n becomes large.

(4.29)tdelay gate

4.6.3 High-speed Adder Units
In the design of arithmetic circuits, we often strive to improve circuit perfor-
mance by increasing the speed with which different operations, such as binary
addition, can be done. The speed of a circuit can be improved by selecting a
technology in which the individual logic gates have shorter propagation delays
or by designing the circuit to minimize the number of gate delays required to
complete the operation. In most cases, the number of gates needed to realize
a design must be increased to reduce the total propagation delay, resulting in
a trade-off of cost for performance. In the following sections we examine a
number of methods used to reduce the number of propagation delays in binary
adder circuits. In each case we will evaluate the number of gates needed for the
design and the total number of gate delays needed to produce the sum of two
numbers.

Fully Parallel Adders
The fastest adder design would be strictly parallel. That is, all the inputs would
be applied simultaneously and propagate through two levels of logic to obtain
the result. However, this approach would require an enormous amount of logic
circuitry and is not practical to employ. Consider the generation of the first
three carry bits of a pseudoparallel adder:

(4.30)c*o = *0%
C\ = xx y { c0 + *1 >vC0 + *1 yx c0 + xx yx c0

= xxyx + ( xx 0 yx )c0

=*xyx + ( x{ ® y{ )( x0 y0 )
c2 =^2 + (*2 © »)C1

= x2 y2 + ( x2 0 y2 )Uxyx + (*! 0 yx )( x0 y0 ) ]

= x2y2 + ( x2 0 y2 ) ( xxyx ) + ( x2 0 y2 )( xx 0 yx )( x0 y0 )

(4.31)

(4.32)
These equations can be further simplified into sum of products form, allowing
each to be realized with two levels of logic, independent of the word width of

www.youseficlass.ir



I
290 Chapter 4 Modular Combinational Logic

i
the adder. However, the gate count increases considerably with each higher bit
position.

i

Carry Look-ahead Adders
Several compromises are employed between the pseudoparallel and strictly
parallel alternatives. Carry look-ahead adders divide the full adders into groups
and employ carry bypass logic to speed up the carry propagation. This technique
is reasonable to employ when numerical data are to be added at high-speed fixed
intervals. Examining Eqs. 4.30 through 4.32, let us define the two terms

8i =*/?,•

;
i

(4.33)
and

(4.34)Pi = xi 0 yt
Using these terms, Eqs. 4.30 through 4.32 can be rewritten as follows:

co = £()

c i = #i + P i c o
— £i + P\8o

C2 = 82 4" P2Cl
= g2 + P2 g { + PlPlgQ

Within each bit position, if g . = 1 a carry is generated, independent of the
carry input ci _ { .Likewise, a carry input of 1 will be propagated from the input
to the output of stage i if /? . = 1. Hence, the terms g . and pt are referred to as
the carry generate and carry propagate terms, respectively, for stage i . Note
that these terms can be derived in parallel for all bit positions in a single gate
delay and that the carry bits can be computed in parallel from the generate and
propagate terms in two additional gate delays. A circuit realizing Eqs. 4.33 and
4.34 is given in Fig. 4.39a, and a circuit realizing Eqs. 4.35 through 4.37 is
given in Fig. 4.39b.

The sum term realized by a full adder, as defined by Eq. 4.19, can be
rewritten in terms of the carry and propagate terms as follows:

(4.35)

(4.36)

(4.37)

si - x, © yf 0 c,
= p i ® c j _

l
Therefore, once the carry terms are available, the sum terms can be computed
in one additional gate delay, resulting in a total adder delay of

?cla = 4t
independent of the word width of the adder. Circuits for a single adder module
and a complete 3-bit carry look-ahead adder are presented in Figs. 4.39a and c.
It should be noted that the delays of exclusive-OR gates may be almost twice
those of simple NAND/NOR gates. Therefore, a more realistic delay estimate

-1
(4.38)

gate

IS

4rgate < fcla < 61
where rgate is the delay through a typical NAND gate.

gate
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Xi yi ci

8\82 Pi P 1 80

un W Y

8i Pi Si C2 C 1 Co
(b)(a)

*o yo o*2 ^2 *i yiu t’ ’ ' ’

AdderAdder Adder

82 P2 ^f 8\ Pi ^ 80 Po ^s2 S\ ^0

CLA circuit

C2 C 1 Co

(C)

Figure 4.39 Carry look-ahead adder design, (a) Adder module producing g . and pr
(b) Carry look-ahead (CLA) circuit, (c) Complete carry look-ahead adder.

74182 MSI Carry Look-ahead Generator
Carry look-ahead generators are also available as standard MSI modules, such
as the 74182 module shown in Fig. 4.40, which produces three carry terms
from four sets of Pt and G( terms and is cascadable by producing P and G
outputs that can be supplied to additional 74182 modules.

Carry-completion-detection Adders
For asynchronous applications a carry-completion-detection adding scheme
can speed up the addition process remarkably. This scheme adds logic circuitry
to each full adder, which signals to a control circuit when it has finished adding.
On average, the carries will propagate only about one-fifth the length of the
adder unit; so, rather than wait for the worst-case propagation delay each time
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Inputs Outputs

Inputs Output
(a)

Inputs

G3 G2 G 1 GO P3 P2 P\

Output OutputInputs

P3 P2 P 1 POG P

L x x x x x x
x L x x

x x L x L L x
x x x L L L L

All other combinations

L L L L L L
L Lx x All other

combinationsL H
L
H

(c)
(b)

Inputs

GO PO Cn
Output OutputInputs

G 1 GO P 1 PO C„C cn+.x n+y

L x x
x L H
All other

combinations

H HL X X X
x L L x x
X X L L H

All other combinations

x
H H

H
L L

(d) (e)

OutputInputs

G2 G1 GO P2 P\ PO Cn Cn+z

L x x x x
x L x L x x x

L L L x x
L L L H

All other combinations

Hx x
H
Hx x
HX X X

L

(f )

Figure 4.40 The 74182 look-ahead carry generator, (a) Package
pin configuration, (b) Function table for G output, (c) Function table
for P output, (d) Function table for Cn+x output, (e) Function table
for Cn+y output, (f) Function table for Cn+z output. Source: The TTL
Data Book Volume 2, Texas Instruments Inc., 1985.
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o P or X

)
)~1

G o v YV
)P3 or X3

G3 or 73

)P2 or X2
G2 or Y 2

P1 or XI
G1 or 71

PO or XO
GO or 70

{>c„ or Cn
(g)

Figure 4.40 (Continued) the 74182 look-ahead carry generator,
(g) Logic diagram. Source: The TTL Data Book Volume 2, Texas
Instruments Inc., 1985.

two numbers are added, the carry completion signal allows new additions to
begin as soon as the last addition is finished.

Carry-save Adders
Still another speedup technique is useful when a string of numbers is to be
totaled, or accumulated. A carry-save technique inhibits carry propagation by
saving the carries between stages in storage elements called flip-flops. Then,
on the last addition, the carries are allowed to propagate in the pseudoparallel
manner. Circuits with flip-flops will be introduced in Chapter 6.
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Complete details on these techniques .are available in references [4]
through [6] and are beyond the scope of this chapter.

i

4.6.4 Binary Subtraction Circuits
Circuits to perform subtraction of binary numbers can be developed in the
same manner as for binary addition. Half- and full-subtracter modules can be
designed using the procedure illustrated for half and full adders in Fig. 4.35, and
then these modules can be cascaded to form n-bit pseudoparallel subtracters.
This procedure is left as an exercise for the reader.

When both addition and subtraction must be performed, such as in the
arithmetic circuitry of a digital computer, the overall design can be simplified
by the use of two’s complement arithmetic. Recall that subtraction in the two’s
complement number system is performed as follows:

( R )2 = ( P )2 - ( Q )2

= ( P )2 + (-Q )2

= ( P )2 + i Q\2

= (/>)2 + (G)2 + 1
where [ Q ] 2 = ( Q )2 + 1 from Algorithm 1.4. Figure 4.41 illustrates the use of
a binary adder to perform both addition and subtraction. The adder module
realizes the function

( E)2 = (A )2 + ( B )2 + C0
When the select line is 0, the multiplexer routes its inputs A to its outputs Y , so
( Q )2 is connected to the B inputs of the adder module. Since the select line is
also connected to CO of the adder, CO = 0. Under these conditions, the adder
performs the following operation:

(4.39)

(S)2 = ( A )2 + ( B )2 + CO
where

( A )2 = ( P )2
( B )2 = ( Q )2

co= o
So

( R )2 = (E)2

= ( P )2 + (G)2 + 0
= (/,)2 + ( G)2

This is the addition operation.
Now consider the case when S = 1. For S — 1, the multiplexer module

routes its B inputs to its Y outputs, so the complement of (Q )2 is connected to
the B inputs of the adder module. The select line S also drives the CO input of
the adder module, so

(*)2 = (S)2

= (A )2 + ( B )2 + CO
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r

4A3A 2AIA 4B 3B 2B 1B

MUX (74157) 5 h
4Y 3Y 2Y 1 Y G D—|

'

A4 A3 A2 A\ B4 B3 B2 B1

ADDER (7483)C4 CO *
Select Function

14 2:3 X2 X1
0 R = P + Q

R = P + Q + 11

Figure 4.41 Two’s complement adder/subtracter.

where
(A)2 = ( P )2
( B )2 = ( Q )2

C0 = 1
So

R = ( P )2 + ( Q )2 + i
= ( P )2 + [ Q ] 2

= ( P )2 - ( Q )2
This is the subtraction operation.

Therefore, both addition and subtraction functions can be implemented
with a single adder module and a multiplexer, as illustrated in Fig. 4.41.

4.6.5 Arithmetic Overflow Detection
As discussed in Chapter 1, the range of values that can be represented by Az-bit
numbers in the two’s complement number system is

< N < 2
Any arithmetic operation that attempts to generate a value outside this range is
said to produce an overflow condition. In these cases the resulting n-bit number
is not a valid representation of the result. Therefore, all overflow conditions
should be detected so that invalid results are not used inadvertently.

/i — i /2-1-2 - 1
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In Chapter 1 it was shown that, in two’s complement arithmetic, overflow
conditions are produced by adding two positive values whose sum is greater
than T ~ x — 1 or two negative values whose sum is less than — 2n ~ { . In both
cases the result will have an incorrect sign bit. Therefore, overflow detection
can be done by observing the sign bits of the operands and the result.

Table 4.3 shows the eight possible situations that can occur in the most
significant stage of an n-bit adder. Bits an _ x and bn_ x represent the sign bits
of the numbers being added and are therefore inputs to the stage, along with
carry bit cn_v The outputs of the stage are the carry-out and sum bits cn
and s n _ , , respectively. As seen in the table, an overflow condition occurs in
two cases: the addition of two positive values producing sign bit sn_ x = 1,
indicating a negative result, and the addition of two negative values producing
sign bit sn _ x = 0, indicating a positive result. Therefore, a logic expression for
the overflow condition V is

- l

v = an_lbn_lsn_
i +an_ lbn_ lsn_ ,

An AND/OR logic circuit realization of Eq. 4.40 is presented in Fig. 4.42a.
(4.40)

TABLE 4.3 MOST SIGNIFICANT STAGE OF AN n-BIT ADDER

Adder Inputs Adder Outputs
r„-i

Overflow
b Van-1 SCn-2n-1 n —1

0 0 0 0 0 0
0 00 1 1 1
0 0 0 01 1
0 1 1 0 01
1 0 0 0 01

01 1 1 0 0
01 1 0 1 1

1 1 1 1 01

Overflows can also be detected by observing the carry-in and carry-
out bits, cn_

2 and cn_ x , respectively, of the most significant full-adder stage.
Looking at the two rows of Table 4.3 in which overflows occur, it can be seen
that these are the only two situations in which cn 2 cn_ v As seen in the first
two rows of Table 4.3, the addition of two positive numbers always results in
a carry output cn_ x = 0. Therefore, the carry input to the most significant bit,
cn_v must also be 0 to produce a correct positive sum. A carry of 1 into this
bit results in 5 = 1, which is incorrect. A similar situation exists in row 7 of

/i- i
Table 4.3. The sum of two negative numbers produces cn_ x = 1. The absence of
a carry into this bit results in an incorrect sign bit sn _ x = 0. Thus, the overflow
condition is signaled by cn _ 2 =/ cn _ x or cn_ 2 0 cn _ x = 1. Therefore,

(4.41)V = Cn-2 © Cn-1

www.youseficlass.ir



Section 4.6 Binary Arithmetic Elements 297

an-1 bn-1 an-2 ^/z-2

FA FA«*w ^/i-i c/i-2 Cn-3

f */i-1 **'/1—2

(a)

fln-2 ^n-2bn-1^/i-l

1

^ n-2
FA FA* * cn-3cn-l

*/i-2

(b)

Figure 4.42 Two’s complement overflow detection, (a) Using sign bits,

(b) Using carry bits.

The corresponding logic circuit requires a single XOR gate, as shown in
Fig. 4.42b. This circuit is simpler than than of Fig. 4.42a, but requires ac-
cess to the carry bit cn_2 between the last two adder stages. This bit is not
always accessible, as is the case when using the 7482 or 7483 MSI adder mod-
ules and a number of other parallel-adder designs. In these cases, overflows
must be detected by examining sign bits, using Eq. 4.40.
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•4.7 Comparators
A comparator is an arithmetic device that determines the relative magnitude
of two binary numbers and finds applications in numerous digital systems. In
general, a comparator can perform a magnitude comparison of two words A
and B in either straight binary or BCD codes. Three fully decoded decisions
about the two words are made and are available at the outputs; that is, A > B,
A < B, and A = B. See Fig. 4.43a. If

A = (\-l A • • ^0^2 (4.42)n —2 ‘

B = ^ Bn-\ Bn-l * • '^2
then the comparator will generate three output signals as follows:

/*

1 = 1.
f2 = 1,
f3 = U

In other words, a comparator is a 2n-input, 3-output combinational logic
module.

if A < B
if A = B
ifA > B

(4.43)

EXAMPLE 4.10 Design a comparator that will compare the
two words A = (A1A0)2 and B = ( B X B0 )2 in
binary code.
The truth table for the output signals defined by Eqs. 4.43 is shown in Fig. 4.43b,
and the K-map for the output function (AJA0)2 < ( BlB0 )1 is shown in Fig.
4.43c. Note that a 1 appears in every block where the binary value of (A , AQ)2
is less than that of ( BlB0 )1. The K-maps for the outputs (A 1 A0)2 = ( Bx B0 )2
and (AjA0)2 > { Bx B0 )2 are also shown in Fig. 4.43c. The output functions for
these maps are

for (A 1 A0)2 < ( BlB0 )2f\ = A\ B\ + Mo*o +\B\ Bo
fi ~ ^

+A\\B\ Bo A\ A0 B\ Bo
f3 = A X B X + A0 B } B0 -b A j A0 B Q

One logic gate realization of this circuit is shown in Fig. 4.44.

for (AJA0)2 = ( BXB0 )2
for (AjA0)2 > ( BXBQ )2

7485
A comparable 4-bit magnitude comparator similar to the one derived in Exam-
ple 4.10 is the 7485 circuit shown in Fig. 4.45. Note that this circuit can be put
in block diagram form as shown in Fig. 4.46a. The module data inputs are

A = (A3, A2, Ap AQ)2

B = ( Bv Bv Bv B0 )2

(4.44)
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f \ h hA\ AQ B\ B0i

0 0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

0 1 0
1 0 0
1 0 0
1 0 0
0 0 1
0 1 0
1 0 0
1 0 0
0 0 1
0 0 1
0 1 0
1 0 0
0 0 1
0 0 1
0 0 1
0 1 0

0 0
0 0
0 0
0 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

1
2
3
4f h A < B2 5

A 6Magnitude
comparator h, A = B 1

8B * 92 h, A > B 10
11
12

(a) 13
14
15

(b)

A\A\f\ , A < B

120 4

135

®1

” B0” B0 3 7 15 113 157
(D3;

«i i 14 1014 10 62 6

X 1

Ai/3,

12 84

d ®
i 5 13 9

u1

\ Bo3 7 15 11

Bi < 6 14 10

1

^0

(c)

Figure 4.43 Two-bit comparator design, (a) Functional diagram, (b) Truth
table, (c) K-maps.
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>^ 1

h

OHB i

t>o-X^0

/]

Bo

) h

Figure 4.44 Logic realization of a 2-bit comparator.

and it also has cascade inputs
(4.45)Cl -* A < B

C2 -» A = B
C3 A > B

In this form it is clear that words of length greater than 4 bits may be compared
by cascading these units. For example, the outputs of a stage handling the 4 least
significant bits can be connected to the input terminals A < B, A = B, and
A > B of the next stage, together with the 4 most significant bits to generate
an 8-bit comparator. In a similar manner, these units can be fully expanded to
any number of bits.

EXAMPLE 4.H Use the 7485 to construct a 16-bit magnitude
comparator.
Four 7485 modules may be cascaded as shown in Fig. 4.46b to produce a 16-bit
comparator. Note that the initial conditions on the first state must be

(CpC2, C3) = (0, 1, 0) (4.46)
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input Cascade inputs Cascade outputs
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inputs Outputs

A > B A < B A = BA O. B O A > B A < B A - BA3. B3 A2, B2 A 1 , B 1
L LHA3 > 53

A3 < 53
A3 = 53
A3 = 53
A3 = 53
A3 = 53
A3 = 53
A 3 = 53
A3 = 53
A3 = 53
A3 = 53
A 3 = 53
A3 = 53
A3 = 53

x x XX XX
H LLx XX XX X
L LHA2 > 52

A2 < 52
A2 = 52
A2 = 52
A2 = 52
A2 = 52
A2 = 52
A2 = 52
A2 = 52
A2 = 52
A2 = 52
A2 = 52

x x xx x
L H Lx xx xx

L LHA 1 > 51
A 1 < 51
A 1 = 51
A 1 = 51
A 1 = 51
A 1 = 51
A 1 = 51
A 1 = 51
A 1 = 51
A 1 = 51

x x XX
L H Lx XX X

LH LAO > 50
AO < 50
AO = 50
A0 = 50
A0 = 50
A0 = 50
A0 = 50
A0 = 50

x x X
L H Lx xx
H L LL LH

LL HH LL
L HLL L H
L HH Lx x

L L LH LH
LL L H HL

(b)

Figure 4.45 The 7485 4-bit magnitude comparator, (a) Package pin configuration,
(b) Function table. Source: The TTL Data Book Volume 2, Texas Instruments Inc., 1985.

indicating A = B . The circuit output is fv /2, /3 from the most significant
stage. The circuit compares the numbers

A = (A15 , A
B = (*15, B

(4.47)• , 7i0)214’ * *

’ 0̂^214’ * * '

www.youseficlass.ir



I
302 Chapter 4 Modular Combinational Logic

A3
B3

>i
A > B

A2
B2

)A < B

A = BA = B

A > B

i;
A 1 >1B 1 I

)A < B

y
AO
B O

(c)

Figure 4.45 (Continued) the 7485 4-bit magnitude comparator, (c) Logic diagram.
Source: The TTL Data Book Volume 2, Texas Instruments Inc., 1985.

•4.8 Design Example: A Computer
Arithmetic Logic Unit

Designs of most computer systems combine the arithmetic and logical oper-
ations, which we have described in Chapter 2 and earlier in this chapter, into
a single functional unit called an arithmetic logic unit, or ALU. The standard
logic symbol for an ALU is shown in Fig. 4.47. The output of the ALU is
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o 1 o

C3 C2 C\Bo
Ao

B
A i 7485Bi
A ->

B3

*3 /3 /2 f x

w , r Cascaded inputs

C3 C2 Cl«4
A 4

*5

^5 74857485
^64

#7* AData
^7-iU

Cascade c2
inputs

h h fxA < B A < B
Cascaded inputs* A = B

A > B
f i A = B ' '

h A > B c3 C2 Ci*85Data
^84 «9
Ay 7485(a)

Bio
A io

B \ \

^ 11 h h fx

, - , . Cascaded inputs' '

C3 C2 Cj
*12 *

^ 12

*13 > A < B
A i 3 7485 /2 A = BB14 >

/3 A > B
Circuit
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^ 14
£15

^ 15 *

(b)

Figure 4.46 Cascading the 7485 4-bit magnitude comparator, (a) Functional diagram,

(b) 16-bit comparator.

an n-bit binary number, F = (/,
performing some arithmetic or logical operation on two n-bit binary numbers,

. . /0)2, which is the result produced byn-1 *
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Operands

A = ( a„_ i ... a0)2 B - (bn_\ ... />0)2

- - n - - n

\/
Selection

code
S = ( sk_\ ... 50)2ALU *—h

k

- - n

F = (f n-l - f0h
Result

Figure 4.47 ALU logic symbol.

. . a0 )2 and B = ( b . . bQ )2. The operation to be
. . 50), where the

or operands, A = (a
performed is determined by a &-bit selection code S = ( S
number of possible ALU operations is 2k .

Let us design an ALU module that will realize eight functions: the four
standard arithmetic operations add (A + B ), subtract ( A — B ), increment (A -f
1), and decrement (A — 1), and the four logical operations AND (A fl B),

n —1 ' /1— 1 ‘

k-1 *

OR (A U B ), XOR (A ® B ), and NOT (A). Since there are a total of eight
operations, the selection code must contain 3 bits; that is, S = S2 S{ S0. Let us
define the selection codes as given in Table 4.4 for the eight ALU functions.

We wish to develop the design in a hierarchical, top-down fashion. This
means that the top-level ALU design should initially be decomposed into
a small number of modules. These modules are subsequently decomposed

TABLE 4.4 ALU FUNCTION TABLE

Selection Code ALU
DescriptionFunction

F = A + B
*2

00 0 Add
0 0 1 F = A - B

F = A +\
F = A - 1
F = A H B
F = A U B
F = A
F = A ® B

Subtract
Increment
Decrement

0 1 0
0 1 1

0 0l AND
0 OR1 1

1 1 0 NOT
1 1 1 XOR
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further until the entire design can finally be represented by an interconnected
hierarchy of small, well-defined functional modules. Then the logic circuits for
these modules are designed, implemented, and tested individually. Finally, the
modules are interconnected to form the complete ALU circuit.

The desired range of numbers to be manipulated by the ALU for an
intended application determines the number of bits, n, in the binary numbers
A, B, and F.To facilitate the development of an ALU circuit design that can be
used for arbitrary values of n , let us begin our top-down design by decomposing
the ALU into one-bit slices, where slice i performs the desired functions on
bits a. and b( of the operands and produces result bit /., as illustrated in Fig.
4.48a. For the arithmetic functions, note that each slice has a carry input C
and a carry output Cr Once we have designed the circuit for the basic 1-bit
slice, we then create an n-bit ALU (that is, an ALU for which A, B, and F are
n-bit numbers) by simply cascading n of the 1-bit slices as illustrated in Fig.
4.48b, with a special circuit to generate the initial carry input C

Now let us consider the design of the basic one-bit ALU slice. Since
the four arithmetic operations are somewhat related, as are the four logical
operations, we can partition the ALU slice into three separate modules: an
arithmetic unit (AU), a logic unit (LU), and an output multiplexer. This is
illustrated in the block diagram of Fig. 4.49. The selection codes in Table
4.4 were defined so that bit S2 determines whether the output f . is to be an

i-1

-r

bia -,

i t
Q-iQ «-
s2*ALU

*
So

I
fi

(a)

bo
C-1
« C-GEN

ALU
«

S2
Si
So

fn-1 /l /()

(b)

Figure 4.48 Partitioning an ALU into 1-bit slices, (a) 1-bit ALU slice, (b) n-bit ALU
as a cascade of n one-bit slices.
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b,at

Q-1
' rr

y x y cin

LU * AU *
* cout

5
SoC,

f u J i /AUI

*1 *o

MUX ^ S2

y

T
f i

Figure 4.49 One-bit ALU partitioned into separate
arithmetic and logic units.

X \ X Q arithmetic or logical result. Therefore, the output multiplexer selects the AU
output ( f . = fAU ) for S2 = 0, and the LU output ( f . = f L U ) for S2 = 1.

We now develop the designs of each of the three modules of Fig. 4.49.
The output multiplexer is a standard 2-to-l multiplexer module, as discussed
earlier in this chapter. Since this is a simple, straightforward design, it is not
decomposed further. A two-level NAND gate circuit for the 2-to-1 multiplexer
is given in Fig. 4.50.

Now let us turn our attention to the design of the logic unit. The logic
functions of a digital computer system are parallel, bit-wise operations. This
means that bit i of the result, fLU , is a logic function of input bits ai and as
summarized in Table 4.5. One approach to implementing the LU module is to
use a single primitive logic gate to realize each of the four logic functions, with
the output of the desired gate selected using a 4-to-l multiplexer, according to
the selection code S{ S0. This circuit is shown in Fig. 4.51a, where LU inputs

.v

y

Figure 4.50 2-to-l
multiplexer.

TABLE 4.5 LOGIC UNIT FUNCTIONS

Function f w.So
AND: 0 0 a.bF = A D B

F = A U B
F = A
F = A © B

i i

OR: a. -f b0 1
i i

NOT:
XOR:

01 a i
a. © b.

i i
1 1
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JC and y are connected to ALU inputs at and b.9 respectively, and LU output
/ is connected to fLU . The 4-to-l multiplexer module can be realized by the
circuit of Fig. 4.23d, which was described earlier.

If minimization of the number of gates in the LU module is important,
the information in Table 4.5 can be plotted on a K-map, as shown in Figs. 4.5lb
and c, with the following reduced logic equation derived from the K-map:

/ = Sxxy -f S0xy + S0xy + SxS0x
A two-level NAND gate implementation of Eq. 4.48 is given in Fig. 4.5Id.

(4.48)

51 SQ x v ^LU
x y 0 0 0 0

0 0 0 1
0 0 1 0
0 0 1

0
0 xAND y
0U l l

0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1

0
1 * OR ;y
1V l

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1

1
*0 x2 x3x\ 1 NOT xSoSo 0MUX

1 0*\y 1 1 0 0
110 1
1 1 1 0
1 1 1 1

o
1 XXORyI 1
0/

(a) (b)
x

S\

So

111

f
(d)

Figure 4.51 Realizations of the logic unit, (a) Simple multiplexer realization,

(b) Truth table, (c) K-map of the LU. (d) Minimized LU circuit.
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The arithmetic unit of our ALU can be designed using the method de-
scribed earlier in this chapter. Addition and subtraction will be performed by
a single full-adder circuit, using two’s complement arithmetic. For this design,
let us use the full-adder (FA) circuit of Figs. 4.35f and g. When the ALU slices
are cascaded, the FA stages will be connected in the ripple-carry adder config-
uration of Fig. 4.36. Now, recall that an /i-bit full adder realizes the expression

F = X + Y + C
where F, X , and Y are n-bit binary numbers, and C_

l is the carry input. The four
desired arithmetic operations can be easily implemented by manipulating the
values of Y and C_ x in Eq.4.49.Therefore, we will design a circuit that will pro-
duce the y. input for each FA module, according to the selection code bits S{ and
S0,and another circuit to derive C_ v The overall 1-bit AU slice configuration is
shown in Fig. 4.52. Note that FA input JC . is simply connected to ALU input a..

Let us consider each of the four arithmetic operations separately.
Add: F = A + B. Here, for the FA module, we simply set X — A, Y = B,
and C_ x — 0. Therefore, the Y-GEN module should connect input b( to the y.
input of the FA.
Subtract: F = A — B. Recalling the definition of two’s complement,

F = A - B

(4.49)-l

= A + [ B ]2

= A + ( b . .b } b0 ) + 1 (4.50)n-i *

Therefore, the subtract function is implemented by setting y. = b{ and C_ , = 1.
Consequently, the Y-GEN module should connect the complement of bt to the
y. input of the FA.
Increment: A = A + 1. In this case we simply set Y = 0 and C
Eq. 4.49. Therefore, the Y-GEN module should supply 0 to the y. input of the

= 1 in-l

FA.

bia,
\

S i
Y-GEN So

Xi yi

FA CM CM*

SiCi

Figure 4.52 Block diagram of
the AU slice./AU/
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Decrement: A = A — 1. Again, we call on the definition of two’s comple-
ment as follows:

F = A — 1

= A+ (—1)

= A + [00 . . . 01]2

= A + (11 . . . 11)

= A + (11. . . 11) -I- 0 (4.51)
Therefore, we realize the decrement function by setting the FA inputs

y - = 1 and C_ x = 0.
Table 4.6 summarizes the preceding discussion by listing the required

values of FA inputs y. and C_ x for each of the four arithmetic operations. From
this table, we can derive logic circuits for the Y-GEN module of Fig. 4.52 and
the C-GEN module of Fig. 4.48b.

TABLE 4.6 VALUES OF y . AND C_, FOR THE
ARITHMETIC FUNCTIONS

Function S *0 C-1y,l

Add 0 0 b 0i

bSubtract
Increment
Decrement

0 1 1
*

01 0 1
1 1 1 0

For the Y-GEN circuit, we plot y- on a K-map as shown in Figs. 4.53a
and b. The logic equation for the output, yt-, is derived as follows:

yt = Sx S0bi + SQB - + Sx S0

= W) +VSi “b B>i )

= S0 @ Csxbi )
A logic circuit realizing Eq. 4.52 is given in Fig. 4.53c.

For the C-GEN circuit, we plot C_ x on a K-map, as shown in Figs. 4.54a
and b and derive the following logic equation:

(4.52)

C_
j — S x SQ “I" *$1So

(4.53)= Sx © S0
Equation 4.53 is realized with a single XOR gate, as shown in Fig. 4.54c.

The 1-bit ALU slice is now formed by interconnecting the individual
modules developed previously (LU, FA, YGEN, and MUX). The complete
circuit for the 1-bit ALU slice is shown in Fig. 4.55.

The final step of the design process is to create our n-bit ALU by cascad-
ing n of the 1-bit ALU slices and connecting the C-GEN module, as shown in
Fig. 4.48b.
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biSi S0 >7
0 0
0 0

0 Add0
1 1

0 1
0 1

1 Subtract0
01

1 0
1 0

0 Increment0
1 0

1 1
1 I

0 1 Decrement
1 1

(a)

b j

01 11 10
6 4

Da0 0 0
!

3 7 5 J

CDI oo X

I(b)

V/
(C)

Figure 4.53 Y-GEN circuit module design, (a) Truth table, (b) K-map.
(c) Logic circuit.

S, So C-,
0 Add
1 Subtract
1 Increment
0 Decrement

Figure 4.54 C-GEN circuit module design, (a) Truth
table, (b) K-map. (c) Logic circuit.
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bi

r—

Y-GEN
5,
50

3d
Ci II

LU

AUfLUi
/AU,-Ci

S >

V V

MUX
y;

Figure 4.55 Complete 1-bit ALU slice.
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D 4.9 Computer-aided Design of Modular
Systems

The computer-aided design (CAD) methods and tools described in Chapter
2 for developing circuits of elementary logic gates are readily extended to
the development of hierarchical, modular designs. At the topmost levels of
the design hierarchy, schematic diagrams are drawn in block diagram form,
as illustrated in Fig. 4.56. Each block in the diagram represents a specific
abstract function that is defined by one or more lower-level models. At lower
levels in the hierarchy, the functional blocks become successively less abstract,
with the modules at the lowest levels realized by elements that are not further
decomposed, such as schematic diagrams of primitive logic gates, hardware
description language models, switching equations, truth tables, and so on.
Therefore, CAD systems that support large designs allow block diagrams, gate-
level schematics, and other types of models to be mixed within a single project.

Implementation of a design is typically done in a bottom-up fashion. Each
component of a modular design is evaluated independently. An existing design
may be used for that component if applicable. Such designs are maintained in
design libraries, which are discussed in the next section. If no existing design
is applicable, a new design must be developed. In this case, components are
interconnected to create modules at the higher levels of the design hierarchy
until the top-level design is complete.

4.9.1 Design Libraries
Modules used in hierarchical design projects include pre-designed standard
functions and modules that are custom-designed for specific projects. The
former are maintained in one or more design libraries that are either supplied
with the CAD system, obtained from a third party, or developed by the user. Each
design library contains a numberof predefined modules that can be incorporated
into designs as needed. These modules may be off-the shelf devices, such as
the 7400-family MSI functions described in this chapter, industry-standard
functions that can be embedded within other circuits, or other unique functions
developed by the user or by an outside vendor.

If a desired function is not available in a design library, a custom module
must be created as a gate-level circuit or modeled in some other manner. This
module should be designed, simulated, and debugged as if it were to be used as
a stand-alone circuit. When the circuit design and debugging are complete, a
graphical symbol is created to represent it in higher-level designs. If the design
is one that can be reused in this or other projects, it may be saved in a user
design library, from which it can be extracted as needed.

Library Modules
As with primitive logic gates, each higher-level module in a design library has
two components: a graphical symbol for use in creating schematic drawings and
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Figure 4.56 Hierarchical design.
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a functional model for use in logic simulation and verification. The functional
model can be a schematic diagram, hardware description language model, or
some other simulation model.

The graphical symbol may be a simple block or a complex shape, with
all input and output signals shown as pins. Each pin is characterized by the
direction of the corresponding signal and the number of bits in the signal. In
many cases special lines called whiskers are drawn on the symbol to represent
the pin locations. Inversion bubbles may also be used to indicate active-low
inputs or outputs.

A given graphical symbol is often used to represent more than one sim-
ulation model. For example, two-input NAND gates are available in a wide
variety of standard components: 7400, 74S00, 74LS00, and so on. These parts
differ in various parameters such as propagation delay and power consumption,
but all realize the same logic function. Therefore, the same symbol can be used
to represent any of these devices.

The simulation model may be in any of the formats described in Chapter
2, including schematic, hardware description language, truth table, logic equa-
tions, and others. The various timing and other parameters of the module may
either be incorporated into the simulation model or left undefined, to be sup-
plied by the user. The latter approach allows a single technology-independent
function to be supplied in a library that can be adapted to the target technology
that is ultimately used to implement the circuit.

It should be noted that a designer can incorporate a module from a design
library into a hierarchical design without having access to the implementation
details of the module. For example, if a full-adder module is to be used, it is
not necessary to know the specific circuit structure used to realize the adder.
Each design library module can be treated as a black box. All that is needed is
the graphical symbol of the module, which defines its input and output signals,
a description of its function, and selected timing and other parameters.

4.9.2 Drawing Hierarchical Schematics
In most CAD systems, the process of drawing a block-diagram-level schematic
diagram is similar to that of drawing a gate-level diagram, as described in
Chapter 2. The process begins by selecting and placing module and connector
symbols on the drawing sheet, interconnecting these elements with wires, and
assigning symbolic names to the modules and nets.

Naming Conventions
Each copy of a module used in a drawing is referred to as an instance of that
module. Each instance is assigned a unique reference name to be used during
simulation and documentation of the design. For example, in Fig. 4.56, the 4-
bit full-adder module FA4 is assigned the reference name Adder. This module
is realized using four instances of the one-bit full adder module FA1. These
instances have been assigned names addO, addl , add2, and add3. Likewise,
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each individual logic gate and signal line in module FA1 has been assigned a
reference name.

For debugging purposes, it is often necessary to examine a signal within
a specified instance of a module. For example, suppose that the operation of
the 1-bit full-adder module FA1 of Fig. 4.56 is suspect and that it is desired to
monitor the value of signal x\ of this circuit during simulation of the complete
system. Since there are four instances of FA1, the instance name is incorporated
into the signal name as follows:

top-level-module-name/leve12-module-name.‘signal-name
Therefore, to monitor signal line JCI within instance add2 of the full adder of
Fig. 4.56, the signal name would be Adder/add2:xl , which indicates signal x\
within module add2, within module Adder of the top-level design. This naming
convention may be extended to any number of levels in a design hierarchy.

Hierarchical Connectors
To create hierarchical schematic drawings, the input and output pins of a module
at one level of abstraction must be uniquely associated with the correspond-
ing signals of the lower-level schematic. This is handled in the lower-level
schematic by terminating each signal with a hierarchical connector, which sig-
nifies that the signal is to be visible in a higher-level drawing. This connector
is associated with the corresponding input or output pin on the module symbol
by assigning the same reference name to the pin and the signal line attached to
the connector.

For example, Fig. 4.57a shows the graphical symbol for a 1-bit full adder
and Fig. 4.57b shows the corresponding schematic diagram. Each pin on the
graphical symbol has a reference name corresponding to one of the signal
lines terminated by hierarchical connectors in the schematic. Note that, since
the associations are made by names, the physical locations of the hierarchical
connectors in the schematic need not match those of the corresponding pin on
the symbol.

Many CAD systems provide a tool for automatically generating graphical
symbols from schematic drawings. Typically, each symbol is similar to that
shown in Fig. 4.57a, that is, a simple block figure with a separate pin for each
hierarchical connector in the schematic drawing, input pins on the left and
output pins on the right.

Buses
Many modules have multiple related input/output signals. In these cases, in-
terconnections are often drawn as buses. A bus is a collection, or bundle, of
related signal wires. Each bus is assigned a symbolic name to allow the bundle
of wires to be referenced as a single unit during simulation and documentation
of the circuit design.

For example, Fig. 4.56 shows a 4-bit full-adder module FA4 having eight
inputs and four outputs, representing three 4-bit numbers. In this case it would
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A2 Figure 4.57 Hierarchical
connectors between a full
adder symbol and schematic.
(a) Graphical symbol.
(b) Schematic model.

A3

(b)

be more convenient to represent the four wires carrying each of the three
numbers as a 4-bit bus, defined as follows.

A (3 : 0) = {A (3), A (2), A (1), A (0)}
B(3 : 0) - {*(3), B( 2), B( 1), B(0)}
S(3 : 0) = {5(3), 5(2), 5(1), 5(0)}

Each individual wire retains a unique name [for example, A (3)] to allow it
to be connected to a device pin or selected for stimulation and/or monitoring
during logic simulation. The simplified block diagram, with A (3 : 0), B( 3 : 0),
and 5(3 : 0) drawn as buses, is shown in Fig. 4.58a. This simplification is even
more pronounced in modem computer systems in which buses of 32 to 64 bits
are frequently used to interconnect components.

In most schematic capture programs, buses are drawn in the same way as
individual wires. In some cases a normal wire is drawn and then subsequently
defined to be a bus by assigning an indexed signal name, such as A(3 : 0). In
other cases, a separate bus tool is provided to draw the wire bundle, with the
bus drawn as a thicker line or with a different color to distinguish it from single
wires. The former is illustrated in Fig. 4.58a.

Figure 4.58a also illustrates the use of a bus ripper, which is a mechanism
for splitting individual wires or groups of wires out of a bus to make connections
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/4(3:0)o- MO )
AO

A{ 1) 5(3:0)D/41
/4(2 ) S( 0 ) y
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/42 50AO )
/43 515(3:0)O FA4 525(0)
50 535( 1 )
51

5( 2 )
52V BQ )
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/4(3:0)O o— Pin /4(3:0)

5(3:0)D—oPin 5(3:0)

5(3:0)C>—-o— Pin 5(3:0)

FA4

(b)

Figure 4.58 Use of buses to simplify logic diagrams,
(a) Bus with bus ripper, (b) Module with multibit pins.

to device pins and other connectors. In this figure, each of the three buses is
separated into individual wires for connection to the t2 pins on the FA4 symbol.

Further simplification of modular schematic drawings is often made by
defining multibit pins on modules, for which each pin represents a collection of
related signal connections in the same manner as a bus represents a collection
of related wires. This allows a bus to be connected directly to the pins of a
module without having to separate it into individual wires. For example, Fig.
4.58b presents another version of the circuit of Fig. 4.58a, but with each pin on
the module representing four signal connections.

•4.10 Simulation of Hierarchical Systems
Design verification and debugging of a system are most often done using a
bottom-up approach. The bottommost components in a design hierarchy are
simulated and evaluated first, using the methods described in Chapter 2. When
correct operation of these modules has been fully verified, circuits at the next
level of abstraction that instantiate these components can be verified. A design
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that has not been fully debugged as a stand-alone circuit is much more difficult
to debug within the context of a higher-level design.

When working with hierarchical designs, most simulation tools begin by
flattening the circuit, that is, by replacing each module with its corresponding
lower-level circuit until the entire circuit contains only primitive logic gates. All
propagation delays and other parameters are then derived from the individual
gates.

The process of working with signals in a hierarchical design is similar
to that used with a flat design. However, during the flattening process, all
components and all signal wires are assigned their full hierarchical names, as
described earlier. These hierarchical names are used when selecting signals for
stimulation and/or monitoring.

In addition to simplifying schematic drawings, buses are often used to
make the selection and display of signals easier during simulation. Figures 4.59a
and b show simulation results for a 4-bit binary adder, displayed in tabular and
waveform formats, respectively. Note that in the waveform display each bus is

Time a( 3:0) 6(3:0) 5(3:0)

0000 0000 0000
0110 0101 0000
0110 0101 1011
0110 0001 1011
0110 0001 0111

0
5
7
10
12

(a)

a(3:0) 0000 0110

X0000 0101 00016(3:0)

XX5(3:0) 0000 1011 0111

0 5 10 15
Time

(b)

Figure 4.59 Simulation values for buses, (a) Tabular format,
(b) Waveform format.
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shown as a pair of lines in the logic 0 and 1 states, with the individual values
displayed between them. This is done since some of the bus lines may be logic
1 and others logic 0. The crisscrossing of signal lines is used to indicate that
one or more of the signals within the bus have changed.

Many simulators support mixtures of schematic diagrams, hardware de-

scription language models, and other modeling methods. In these cases, the
stimulation and monitoring of signal lines is still done as described above.
However, different design debugging tools may be provided for each type of
model.

D 4.11 Summary
This chapter has treated the subject of modular combinational logic circuits. An
attempt has been made to cover the important aspects involved in the analysis
and synthesis of these circuits. In addition, a number of special circuits that
find extensive use in all facets of digital computer organization and design have
been presented and discussed.

REFERENCES THE TTL DATA BOOK, Volume 2. Dallas, Texas, Texas Instruments, Inc., 1988.1.

PROBLEMS Derive switching expressions for outputs 5 and 11 of the 74154 decoder module.
Using these expressions, describe the operation of the decoder and the function
of the enable inputs.
Design a 4-to-16 decoder using logic gates. The encoded inputs are [ D, C , B , A }
and the outputs are active low: {0Q , 0, , . . . , 0] 5 ). The decoder should have one
active-high enable line, E.
Design a 5-to-32 decoder using only 3-to-8 decoder modules. Assume that each
3-to-8 decoder has one active-low enable input, Ev and one active-high enable
input, Er

4.1

4.2

4.3

Realize each of the following sets of functions using only a single 74154 decoder
module and output logic gates (choose NAND or AND gates to minimize the

4.4

fan-in of the output gates).
/, («, *. c, d ) = Ĵ m( 2, 4, 10, 11, 12, 13)

f2 (a , b , c , d ) = M(0 to3, 6 to 9, 12, 14, 15)

/3 (a, b, c, d ) = be + abd
f ^ {a , b, c, d ) = m(0, 1, 7, 13)

f2(a , b , c , d ) = abc + acd
f3 (a , b, c,d ) =Y\ M(°- L 2’ 5’ 6> 7, 8, 9, 11, 12, 15)

(c) Repeat part (a) for the complements of the three functions.
(d) Repeat part (b) for the complements of the three functions.

(a)

(b)

Given the circuit of Fig. P4.5, with the decoder having active-low outputs as
shown, find the minimum switching expression for f ( W , X , Y , Z ) in SOP form.

4.5
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G1

13
G2 14 0

15

Figure P4.5

4.6 Design a binary-to-decimal decoder whose inputs are active-high, 4-bit, BCD-
encoded numbers (JC3JC2JCJ JCQ) and whose outputs are the active-low lines ( dg , d8,
. . . , d{ , dQ ).The circuit should be minimized as much as possible.

Design a code converter whose input is a 4-bit code (c3c2CjC0) representing
the hexadecimal digits {0 to 9,A.b,C,d,E,F}, with the outputs driving a seven-
segment display digit to display the corresponding character. (The letters B and
D are normally displayed in lowercase to distinguish them from the numerals 8
and 0, respectively.)

Design a logic circuit that converts a 4-bit number from sign magnitude format
to two’s complement format. Use a two-level AND-OR circuit for each of the
four outputs.
Design a code converter that converts a 4-bit number from Gray code to binary
code.

4.10 Design a 4-to-2 bit priority encoder circuit using only NOR gates. The inputs
are a3a2a{ a0 , with a3 having the highest priority and a0 the lowest. The outputs
are y^ , indicating the highest-priority active input, and G, which indicates that
at least one input is active.

4.11 The74147 ten-line priority encoder has active-low inputs and outputs. Determine
the output, DC BA, of the module for the following input combinations.
(a) (0, 1 , . . . , 9) = ( 1 , 0, 0, 0, 0, 0, 1 , 1, 1, 1 )
(b) (0, 1 , . . . , 9) = ( 1 , 0, 0, 0, 1 , 0, 0, 0, 1, 0)

4.12 Derive switching expressions for the outputs of the AND gates driven by inputs
D3 and De of the 74151A multiplexer module. Using these expressions, describe
the operation of the multiplexer and the function of the strobe (enable) input.

4.13 Design a 5-to-l multiplexer circuit, minimizing the circuit as much as possible.

4.7

4.8

4.9
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4.14 Design a three-input/3-bit multiplexer. Use only NAND gates.

4.15 Design an 8-to-l multiplexer using only 4-to- l multiplexer modules without
enable lines. (Do not use any additional gates.)

4.16 Design a 32-to-l multiplexer using: ^
(a) Only 74151A modules. (Do not use any additional gates.)
(b) Two 74150 modules and one 4-to- l multiplexer.
(c) Two 74150 modules, one inverter, and one NAND gate.

4.17 Design a dual (2-bit) 16-input multiplexer using only 74151A modules, OR
gates, and inverters.

4.18 Realize the following functions with a 4-to-1 multiplexer module.
(a) /j («, b , c ) = m (2’ 7)
(b) /2(fl , *, c) = nA#(0, 6, 7)
(c) f3 (a , b, c ) = {a + b)(b + c )

4.19 Realize the following functions with a 74151A multiplexer module.
(a) / ( b, c ,d ) = m(0, 2, 3, 5, 7)
(b) f (b, c , d ) = c + b
(c) f (a , b, c , d ) = n M (0, 1, 2, 3, 6, 7, 8, 9, 12, 14, 15)

4.20 Find the minterm list of the function f ( A , B, C, D ) realized by the circuit of
Fig. P4.20.

4-to-lno DO

A D1

A D2no 2-to- lD3
B A

DO

Y /04, B, C, D)B C
D1no 5DO

D1 D

0 D2no D3
B A

B C

Figure P4.20
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4.21 For the circuit of Fig. P4.21, which contains only 2-to- l multiplexers (with
all inputs and outputs active high), find the minterms of the output function
/ (A, B , C , D ).

2-to-l
0 DO

D1 2-to-l
DO

B
D12-to-l

5
A DO

C
D1 2-to-l

5
DO

B f ( A , B, C, D)Y
D12-to-l

5
A DO

D
A D1 2-to-l

5
DO

B
D12-to-l

DO

0 D1

5

B

Figure P4.21

4.22 Find the minterms of the function realized by the circuit in Fig. P4.22.

4.23 Given the function f ( Q , R, S , T ) = m(4, 5, 6, 7, 8, 13, 14, 15). Using the
circuits given in Fig. P4.23, implement the function by appropriately connecting
the inputs Q , R, S , T to the NAND gates and to the 4-to- l multiplexer and by
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2-to-4 mO
Decoder m\

DO •

D1
D2 840-1

MUX
m2A (LSB)/7

B m3 D3a
/(fl, /?, c)yD4

D5
2-to-4 mO

Decoder

A (LSB) m2

D6
MSBD7

b
C B AB m3c

a b c

Figure P4.22

1

DO 4-to-l
m MUX

f ( Q, R, .9, T )YD2
D3

B A

Figure P4.23

connecting the NAND gate output to the appropriate input(s) of the multiplexer.
The only inputs available are Q, R, S , T ; no 0 nor 1 nor Q , R, S , T is available
as an input. (Nine connections are required: three for the NAND circuit and six
for the MUX.) Consider B to be the MSB for the multiplexer.
Determine the function realized by the circuit of Fig. P4.24 in minterm list form.
Consider B to be the MSB for the multiplexer.
Given the circuit of Fig. P4.25, give the result /(a, b, c, d ) in minterm list form.
Consider B to be the MSB for both the decoder and the multiplexer. Assume
positive logic (active-high inputs and outputs).

Design a full adder module with data inputs A and B, carry input C , sum output
5, and carry output Cout.
(a) Use a 3-to-8 decoder and NAND gates
(b) Use a four-input, 2-bit multiplexer

4.24

4.25

4.26
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ba

— Cin = 1FA

DO 4-to-l
MUX

5
D1

f ( a, b, c, d )YCout D2

D3
B A

dc

Figure P4.24

DO 4-to-l
MUXD1

f ( ci , b, c, d )YD2

D3
B A

mO ml m2 m3 dc
2-to-4 Decoder

B r

ba

Figure P4.25

4.27 Three temperature sensors, shown in Fig. P4.27, indicate measured temperature
with 8-bit binary values on their output lines, T7 to TQ. Show with a block
diagram how to use multiplexer modules to allow an 8-bit microprocessor to
read any one of these sensors using its data input lines, D7 to DQ , by issuing a
2-bit address, A, AQ.

4.28 Show how correctly encoded results are produced for the operation A + B,
where A and B are encoded in the two’s complement number system (n-bit
values), and where
(a) A > 0 and B > 0
(b) A > 0 and B < 0
(c) A < 0 and B < 0

4.29 Design a 2-bit adder circuit using a two-level NAND gate circuit for each output.
The inputs are the 2-bit binary numbers a{ aQ and b{ b0.The outputs are the 2-bit
binary sum S ^ SQ and the carry output cx .
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Temperature
Microprocessor out SensorT7-0Data 0m

Dj-o «

SensorT7-0 1
^1-0

Address
out SensorT7-0 2

Figure P4.27

Ai ^0 B0

FA HA

I ICi — C0 So Figure P4.30

In the design of Problem 4.29, show that the resulting circuit is effectively a
cascade of a 1-bit half-adder and a 1-bit full-adder, as shown in Fig. P4.30.

Design a 16-bit ripple-carry adder using only 7483 adder modules.
The circuit of Fig. P4.32, which is composed of five half-adders, will add 4
bits together as shown in the truth table. What function appears at the outputs
labeled with question marks?

Using only half-adders, draw a circuit that will add 3 bits, x. , yr zr together,
producing carry and sum bits c. , s. as shown in the following table.

yt zi

4.30

4.31

4.32

4.33

x. c . s.

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0
0 1
0 1
1 0
0 1
1 0
1 0
1 1

4.34 Design a 3-bit full-adder using carry look-ahead, rather than a ripple carry.
4.35 Design a 1-bit full-subtracter module, using only NOR gates, and then construct

a 4-bit subtracter using only these modules.

4.36 Describe the overflow condition as applied to two’s complement addition and
subtraction.
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w x

U
HA

C 5

Y

HA

C 5

Z

!_
HA

C 5
T

HA
C 5

1
HA

C 5n
9 9 9 9 Figure P4.32

4.37 Design an overflow detection circuit for Fig. 4.41, assuming that the unit is to be
used to add and subtract numbers in a 4-bit two’s complement number system.

4.38 The 7483 adder module is faster than the 7482 adder module because the carry
for each stage is calculated from all the inputs, rather than being propagated
through each stage.
(a) Find the equation for the 7483 internal carry C2 in terms of only the A( i ) ,

B( i ), and CO inputs.
(b) Using A2A1, B2 B\, and CO as the numbers being added together to de-

termine the carry (with A2 and B2 as MSBs), find the combinations of
( A2, A\, B2, B1, CO) that result in C2 = 1. (Find the minterms for C2.)

4.39 Design a BCD adder that adds two BCD digits and produces a BCD result and
a carry output.
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4.40 Design a 3-bit magnitude comparator with inputs A = (a2a ] aQ )2 and B =
( b2b ] b0 )2 and with three outputs: EQ( A = B ) y GT ( A > B ), and LT ( A < B ).

4.41 With appropriate gating and one 7485 comparator, design a circuit that compares
two 5-bit binary numbers A = (aA . . . aQ ) and B = ( b4 .. .b0 ) with f3 = 1 when
A > B, f2 = 1 when A = B, and /, = 1 when A < B. { Hint: Use the cascade
inputs and additional gates to compare the two least significant digits.)

4.42 It is necessary tocompare three4-bit numbers X = ( x3 x2x ] x0 )v Y =
and Z = (z3 z2 z ] z0 )2 • Using 7485 magnitude comparators and associated logic
gates, draw a circuit that will implement the following truth table.

Condition
X > Y > Z
X > Z > Y
Y > X > Z
Y > Z > X
Z > X > Y
Z > Y > X
X = Y = Z

Any other case

4.43 Design a logic circuit that multiplies two 2-bit numbers, (a1a0)2 and ( bxbQ )v
using only NAND gates. The product should be a 4-bit number ( p3 p2 P\ P0)2 -

4.44 Design a logic circuit that multiplies two 4-bit numbers, (a3a2a ] aQ )2 and
( b3b2b ] bQ )v using only AND gates and half- and full-adder modules. The
product should be an 8-bit number ( p1 P6 P5 P4 P3 P2 P\ Po )2 -

4.45 For the 1-bit ALU slice of Fig. 4.55, find the minterm list form for
f .( S2 , Sr S0 , arb. , c._ j). Use the Quine-McCluskey tabular minimization
method to find a minimal two-level NAND implementation for f ..

4.46 Repeat problem 4.45 for output C .

fo fi ^2 -A A /5 f 3 fi
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
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Combinational Circuit Design
with Programmable Logic Devices

•5.1 Semicustom Logic Devices
The number of circuit packages (integrated circuit chips, or ICs) is reduced by
increasing the level of integration, that is, the number of gates per chip. Over
the past 20 years, the number of gates on a single chip has increased from a
few gates in standard 7400 series SSI logic devices to over 1 million devices
in current high-performance VLSI chips. Higher levels of integration usually
result in reduced printed circuit board (PCB) space and power requirements.

There are three basic approaches to implementing a digital LSI logic
circuit: with standard SSI, MSI, and LSI components, with full-custom VLSI
devices, or with semicustom devices. Standard SSI, MSI, and LSI functions
are convenient, in that a circuit can be assembled quickly with readily available
off-the-shelf parts. However, the total parts count, and thus the cost per gate, can
become unacceptably large. Consolidating a design into one or more custom
or semicustom devices can reduce the parts count and therefore the total cost
significantly.

In a full-custom design, an IC is designed gate by gate, with the physical
electrical component layouts and their interconnections also developed. By
using computer-aided design (CAD) tools, both the circuit performance and the
use of silicon area can be optimized, although the design process is expensive
and lengthy. Using semicustom circuit devices reduces design time by utilizing
predesigned gate arrays, standard cells, or programmable logic devices. A gate
array is an IC that contains a number of unconnected logic gates. A designer
need only specify how to interconnect the gates on the array. Manufacturing
of the device is divided into two phases. In the initial phase, the unconnected
gates are processed and the chips are stockpiled. The final phase requires only
that the last few interconnection layers of the IC be fabricated, rather than
the entire chip, reducing manufacturing time considerably. Large numbers of
arrays are processed up to the final few interconnection layers and then are
stored awaiting personalization for a particular application.

A standard cell is a circuit that is developed and stored in a design li-
brary with other standard cells. A designer creates an IC by selecting cells
from the library, specifying where they should be placed on the IC, and
then dictating how they should be interconnected. This process is not unlike
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330 Chapter 5 Combinational Circuit Design with Programmable Logic Devices

designing a printed circuit board with SSI/MSI/LSI packages. The complexity
of the functions in a standard cell library can range from discrete logic gates
to entire microprocessors and other complex circuits. A standard cell design is
often less optimal than a full-custom design, but design time is reduced con-
siderably. The resulting IC must still be fabricated from scratch as if it were a
full-custom design; that is, all the processing layers are needed to personalize
the chip for a particular application.

The fabrication steps to personalize a device can be bypassed by using
programmable logic devices (PLDs). PLDs are prefabricated ICs in which
flexible interconnection layers are also included. The interconnection layers
are personalized by electronic means for a specific application. This electronic
personalization can be done by the end user in many cases. PLDs contain the
resources necessary to realize basic two-level switching expressions and often
include other logic elements as well, with the equivalent of as many as several
thousand logic gates on a single PLD. A PLD circuit is developed by designing
logic expressions, translating them into the format of the target PLD, and
then installing them into the PLD using a PLD programmer. Thus, a working
device can be produced from a design in only a few minutes, rather than the
days or weeks that are required to manufacture a gate array or standard cell
IC. If needed, design changes can be quickly and inexpensively implemented
within hours or even minutes, whereas with standard cells or gate arrays design
changes require complete refabrication and thus can take days or weeks.

•5.2 Logic Array Circuits
Programmable logic array circuits are built around homogeneous arrays of
elementary components that can be configured to perform logical AND and
OR operations. In this section we examine the basic structures and operation
of these circuits, including mechanisms to enable them to be programmed by a
designer to realize switching functions.

5.2.1 Diode Operation in Digital Circuits
Programmable logic devices are built with different configurations of semi-
conductor diodes, transistor switches, or similar elements. A PN diode is an
electronic device formed by creating a junction of two types of semiconductor
materials, p type and n type, as illustrated in Figure 5.1. A semiconductor is
a material that conducts current better than an insulator (such as rubber), but
poorer than a conductor (such as copper). The n and p types indicate negative
or positive charge conducting mechanisms. The operation of a diode can be
made to approximate that of an “ideal” switch. When a voltage is applied across
the diode to make the p side (the anode) significantly more positive than the
n side (the cathode), the diode is said to be forward-biased. In this mode,
it behaves as a closed switch or short circuit and maintains this forward bias
at a very small value (that is, the voltage is approximately zero). When the
cathode is significantly more positive than the anode, the diode is said to be

NP

CathodeAnode

Ofo o

Figure 5.1 PN junction diode
and schematic symbol.
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reverse-biased, and effectively behaves as an open circuit (with the full amount
of voltage appearing across the diode).

In digital circuit applications, one terminal of each diode is connected
to either the power supply or ground through a resistor, as shown in Figures
5.2a and d. The other terminal is controlled by a digital logic signal that either
forward or reverse-biases the diode. Let us consider the operation of the circuit
in Figure 5.2a. When signal A is logic 1 (a positive voltage), the diode is
reverse-biased and behaves as an open circuit, as illustrated in Figure 5.2b. In
this case, signal line B is pulled up by the resistor toward the power supply
voltage V, making signal B equal to logic 1. When A is logic 0 (0 volts), the
diode becomes forward-biased and thus begins conducting, behaving as a short
circuit as shown in Figure 5.2c, forcing the voltage at B to logic 0. Figures 5.2d,
e, and f illustrate the equivalent effects when the resistor is connected to ground.

+v

WAO B

(a)

+V+V

o o 0—0A = lO A = OO 5 = 05 = 1

(c)(b)

wAO B

(d)

A = OO A = \0 0—0o o 5 = 0 5 = 1

(f)(e)

Figure 5.2 PN diode operation for digital applications, (a) With pull-up resistor,
(b) Reverse-biased: diode open; 5 pulled up to 1. (c) Forward-biased: diode shorted,
forcing 5 to 0. (d) With pull-down resistor, (e) Reverse biased: diode open; 5 pulled
down to 0. (f) Forward biased: diode shorted, forcing 5 to 1.
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A number of other electronic devices, including transistor switches, are
commonly used instead of diodes in programmable logic applications. While
this chapter will specifically discuss logic circuits constructed from diodes, the
digital logic design concepts are the same for the other devices. The reader
is referred to texts on electronics [1] or programmable logic devices [2,3] for
further information on these devices.

5.2.2 AND and OR Logic Arrays
The behavior described above allows switching functions to be readily imple-
mented with PN diodes. For example, the circuit of Figure 5.3a realizes an AND
function with three inputs, A, B, and C. Let us verify this by deriving the truth
table of this circuit. When ABC = 111, all three diodes are open, and the output
is pulled up to logic 1 as shown in Figure 5.3b. If A is changed to 0, the corre-
sponding diode becomes a short, forcing the output voltage to logic 0 as shown
in Figure 5.3c. Since the other two diodes remain open, they do not affect the
output. By symmetry, the same is true for A BC = 101, and ABC = 110. When
multiple inputs are logic 0, each of the corresponding diodes is shorted, and the
output is likewise forced to logic 0, as shown in Figure 5.3d. Therefore, the cir-
cuit implements a three-input AND function. The reader should verify that this
circuit can readily be extended to K diodes to realize a A'-input AND function.

+v +v

+~ f ( A , B, C ) = A B C f{A,*0 = 1
A = \ OA O

K1B O B = 1 O O O—<

c o C = 1 o—o o—
(b)(a)

+V +V

f ( A,*0 = 0 +~ f ( A ,*0 = 0
A - 0 A = 0

B = 1 O O O— B = 0 O

C = 1 O C = 1 O

(d)(c)

Figure 5.3 AND function realized with a diode array, (a) Basic configuration, (b) All
diodes open; / pulled up to 1. (c) One diode shorted, forcing / to 0. (d) Multiple diodes
shorted, forcing / to 0.
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A O t>f
WB o

co Of
f ( A, B, C ) = A + B + C

(a)

A = 0 O O O— A = I

B = 0 O O O—- B = 0 O O O—<

C= 0 o C= 0 0—0 o— •
f ( A , B, C ) = 0 f (A, B, C ) = \

(b) (c)

Figure 5.4 OR function realized with a diode array, (a) Basic configuration, (b) All
diodes open; / pulled down to 0. (c) One diode shorted, forcing / to 1.

An OR function is realized by the circuit of Figure 5.4a. In this circuit,
when ABC = 000 all three diodes are open and the output is pulled down to
logic 0 as shown in Figure 5.4b. When ABC = 100, as shown in Figure 5.4c,
the diode connected to A conducts (behaves as a short), forcing the output to
logic 1. Since the other two diodes remain open, they do not affect the output.
Likewise, the output will be logic 1 when any other input, or any combination of
inputs, is equal to logic 1. Thus, the circuit realizes a three-input OR function.
Again, note that this circuit may be readily extended to a A'-input function by
using K diodes.

5.2.3 Two-Level AND-OR Arrays
The AND and OR circuits described above can be interconnected in the same
manner as logic gates to realize any arbitrary switching function. For example,
consider the function

f (a, b, c ) = abc + be
which is in two-level sum of products form. A realization of this function
with diode logic arrays is shown in Figure 5.5a. Figure 5.5b illustrates a more
compact format, which is commonly used to draw diode logic array circuits.
The AND functions are represented by vertical lines with AND gate symbols
representing the pull-up resistors, and the OR function is represented by a hor-
izontal line with an OR gate symbol representing the pull-down resistor. The x
symbols represent the diodes.Sometimes we omit the AND symbols for brevity.
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+v

AND

abc «—«—a O

b O’

f ( a, b, c) = abc + be
c

iOR
+V

AND
be

b O

c

(a)

a L-o°-̂
L-c*-1

L-Oo-^
0 w

E> abc + bei r

/?C

(b)

Figure 5.5 Sum of product forms realized with AND-OR arrays,
(a) Connecting AND and OR arrays, (b) Compact form.

Figure 5.6 illustrates how multiple functions can be realized with a single
logic array by adding additional OR circuits. In this example, the following two
functions are realized:

/j(a, b, c ) = ab + c
f2(a , b, c ) = ab + be

www.youseficlass.ir



Section 5.2 Logic Array Circuits 335

V v
£> f\(a , b, c) = ab + c

/2(0, b, c) = ab + be

ab be

Figure 5.6 Multiple functions realized by an AND-OR array.

Note that the product term ab is used in both functions, that is, is “shared”
by both OR operations. Specifying the locations of the diodes in the array
personalizes, or programs, the array for a specific logic function.

The combination of a programmable AND array followed by a pro-
grammable OR array is commonly referred to as a programmable logic array
( PLA), since arbitrary logic functions can be realized by specifying (program-
ming) the configuration of the diodes.

EXAMPLE 5.1 Design a PLA to realize the following three
logic functions and show the internal
connections.

fx (A, B,C,Z),E ) = ABD + BCD + ABCDE
f2( A,B,C,D,E ) = ABE + BCDE
/3(A,fl,C,D,E ) = ABD + BCDE + ABCD

Since there are five variables, there must be five inputs to the PLA, each of
which must be both complemented and uncomplemented. There are a total of
seven unique product terms in the preceding three expressions. Therefore, the
PLA must generate at least seven product terms. Finally, since three functions
are being realized, there must be three sum (OR) terms generated.

The PLA organization is shown in Fig. 5.7. Table 5.1 shows the connec-
tions that must be made in the AND and OR arrays. In the table, the product
term numbers correspond to the AND gate numbers in Fig. 5.7, each connected
to one vertical product line, on which a product term is generated. In the AND
array portion of the table, a 0 indicates that the complement of the variable is
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3:

B \ rL[» i r

-a08

|Q S'ris su <• eaL-0° 3 r
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/iD>3 r.A .

08 o /2«-t- 3 r08 S2 a!*8
u o /3fiu

^1 ^2 P3 PA P5 Pe Pi
ABCDE BCDE ABCDABD

BCD ABE BCDE

Figure 5.7 PLA for Example 5.1.

TABLE 5.1 PLA TABLE FOR EXAMPLE 5.1

AND Array
Inputs
ABCDE
OOxOx
xOlOx
oino
Olxxl
xOlOl
xOOOl
Oil lx

OR Array
Outputs
fyfiBProduct Term

1 ABD
2 BCD
3 ABCDE
4 ABE
5 BCDE
6 BCDE
1 ABCD

101
100
100
0 1 0
0 1 0
0 0 1
0 0 1
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connected to the product line, a 1 indicates that the uncomplemented input is
connected to the product line, and an x indicates that neither is connected to
the product line. For the OR array, a 1 indicates a connection and a 0 indicates
no connection.

EXAMPLE 5.2 The output of a five-input “majority voter”
circuit, shown in Fig. 5.8a, is to be 1
whenever a majority of its inputs is 1. Design
this circuit with a PLA.

The output is 1 for all minterms containing three or more ones. The correspond-
ing function is

f {a , b, c, d ,e ) =Ŷ m{l , 11, 13, 14, 15, 19, 21, 22, 23, 25- 31)

Cl

b

Majority
voter b, c, d, e )c *

d

e
(a)

a

b

*c

1 re

w vyvvvv v
D>je

f (a, b, c, d, e )

(b)\
*

Figure 5.8 Majority voter of Example 5.2. (a) Output = 1 if majority of inputs = 1.
(b) PLA realization.
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Using a AT-map, or other suitable method, the function can be expressed in
minimum sum of products form as

f (a , b, c, d , e ) = abc + abd + abe + acd + ace + ade
+ bed + bee + bde + ede

This function is realized in the PLA shown in Fig. 5.8b.

Designers of custom and standard-cell VLSI circuits often utilize pro-
grammable logic arrays in lieu of discrete logic gates for the combinational
logic portions of their designs. The connections in the AND and OR arrays are
created during the device fabrication process (that is, are “mask programmed”).
The configuration of each PLA, that is, the number of inputs, product terms, and
sum terms, is tailored to the specific circuit being realized. There are a number
of advantages to using PLAs. First, PLAs can be made more compact than
equivalent circuits of discrete logic gates, thus utilizing less chip area. Second,
computer-aided design tools are available that can automatically generate phys-
ical PLA layouts directly from logic equations, reducing overall design time.
Finally, test algorithms have been developed for PLAs that are more efficient
than equivalent testing algorithms for discrete logic gate circuits.

5.2.4 Field-programmable AND and OR Arrays
Field-programmable logic elements are devices that contain uncommitted
AND/OR arrays that are programmed (configured) by the designer, rather
than by their manufacturer. Most standard field-programmable (or simply “pro-
grammable”) AND/OR arrays are capable of realizing arbitrary switching func-
tions by allowing the designer to specify, or program, how to connect the diodes
within the arrays to form product and sum terms.

To make a device programmable, a metal fuse (nickel-chromium, tita-
nium-tungsten, or similar alloy) is placed in series with each diode between
the diode and the output line, as shown in Fig. 5.9a. An intact fuse behaves as
a short circuit, connecting the corresponding diode to the output. A fuse can
be removed (“blown”) by passing a high current through it, making the output
independent of the corresponding input.

A programmable AND array is shown in Fig. 5.9a. Each input variable
and its complement are connected by diodes and fuses to the output. By re-
moving selected fuses, any product of variables A , A, B, B, C, and C can be
realized. For example, consider the switching function

/ (A , B, C) = ABC
As shown in Fig. 5.9b, this product is realized by removing the diodes in series
with inputs A, B, and C and leaving intact the diodes in series with inputs A,
B, and C. Likewise, the function

/(A , C ) = AB
is realized by removing four fuses, as shown in Fig. 5.9c.

Instead of drawing each individual diode and fuse, a shorthand notation is
commonly used to represent programmable logic configurations, as illustrated

www.youseficlass.ir



Section 5.2 Logic Array Circuits 339
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(a)
+V +V

+~ f ( A, B, C ) = A Bf ( A, B, C ) = A B C

Kl—<5~\p—Kl—o o—< A oA a

—[>C»-V<1—o—£>0—V<1—'5\s>—
Kl—d~\s>

—0O-V|<1—,o o—
Kl—oB oB o

—[>0— Kl—cT\S>—1

KJ—o Kl oc ac o

L-(>o-V<F<r ô— —[>°— KJ—o o
(b) (c)

A aA O

B O B O—f -

4>°
c a c o

L-[>>4>

A B C A B
(e)(d)

Figure 5.9 Fuse-programmable AND arrays, (a) Unprogrammed AND array,
(b) /(A, B, C) = A B C. (c) /(A, B , C ) = A B. (d) Compact notation for (b).
(e) Compact notation for (c).
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in Figs. 5.9d and e. An x placed on a junction represents the presence of a fuse,
and the absence of an x represents the absence of a fuse, that is, a blown fuse.
The reader should verify that the circuits of Figs. 5.9d and e represent those of
Figs. 5.9b and c, respectively.

Figure 5.10a illustrates a programmable OR array, which is created in
the same manner as the programmable AND array described previously. The
inputs to the OR array, Pv Pv and Pv are usually product terms created in an
AND array. The function

f ( pv p
2 , p

3 ) = pi + p
3

is produced as shown in Fig. 5.10b, and the corresponding shorthand notation
is given in Fig. 5.10c.

The process of removing selected fuses from a programmable logic device
is referred to as programming the device. This is most often done by using a
computer-aided design (CAD) program to translate a description of a desired
logic function (typically a switching expression) into a map of the fuses to
be blown and then transferring this fuse map to a special instrument called a

OP-cf\j>Pl O

OP-c5A_P—1p2 o

1»—cf\_p—p3 o-

*̂ f ( p u p2 , p3 )Product
terms

(a)

OPp 1 O

OP-op2 o P 1 Pi P3

Ol—<5\S>—P3 O

f (Pu Pi. P3 ) = P1 + P3Product
terms P 1 + P3

(b) (c)

Figure 5.10 Fuse-programmable OR arrays, (a) Unprogrammed OR array,
(b) f ( Pv Pv P3 ) = Pj + Py (c) Compact form.
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device programmer, which selects and then supplies the currents to blow the
fuses specified in the map.

5.2.5 Output Polarity Options
In addition to product and sum terms, a number of other features are often
provided in standard programmable logic devices, including programmable
output polarity, feedback signals, and bidirectional signal pins. Figure 5.11a
illustrates the common output-polarity options available on PLDs: active high,
active low, complementary, and programmable polarity.

h Lo>Inputs <

l 4

w
Active high (H)

Active low (L)

\ Active high l
7 -Q Active low I

Complementary
outputs (C)

Programmable
polarity ( P )

Pi Pm
Product terms

(a)

Si X 5/

oi= siOi = Si t1
(b) (c)

Figure 5.11 Output polarity options for field-programmable logic devices, (a) Output
polarity options, (b) Fuse intact: 0{

is active high, O = S( ® 0= Sr (c) Fuse blown: Oi
is active low, Oi = 5. <g» 1= Sr
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A programmable-polarity output is created with an Exclusive-OR (XOR)
gate with one fused input. This input is forced to logic 0 when the fuse is
left intact or to logic 1 when the fuse is blown. Recalling the operation of
an XOR gate, when the fuse is intact, as illustrated in Fig. 5.11b, output
O- = 5. © 0 = S., and thus the output is active high. When the fuse is blown,
as illustrated in Fig. 5.11c, output O - = S'. 0 1 = 5., and thus the output is
active low. Note that an x indicates an intact fuse, and the absence of an x
indicates a blown fuse, as is the convention for the AND/OR arrays.

In addition to providing the capability to produce active-high and active-
low outputs, programmable output polarity allows both sum of products (SOP)
and product of sums (POS) forms to be realized. For example, Fig. 5.12 illus-
trates the realization of the following two functions:

/ j (A, fl, C ) = AB + AC

/2(A, 5, C) = (A + B )( A + C)
where fx is in SOP form and f2 in POS form. As shown in the figure, the
SOP form is implemented by making the output active high. The POS form is

A

L0o
B \

3 r

V v V

o* /l

D>A
hlAB AC AB AC

Figure 5.12 Implementation of SOP and POS forms using programmable output
polarity.
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realized by performing the following algebraic manipulation.

( A + B ) ( A + C) = ( A + B ) ( A + C)

= ( A + B ) + ( A + C )

= A B + A C
Thus, a POS form can be realized indirectly by inverting an SOP expression.
Thus, product terms and programmable output polarity allow any of the prim-
itive logic gates (AND, OR, NAND, NOR, or NOT) to be realized.

5.2.6 Bidirectional Pins and Feedback Lines
Another feature provided in many field-programmable logical devices is a
bidirectional input/output pin, as illustrated in Fig. 5.13a. A bidirectional pin

P i P n Pn + 1

/ i LDX>

Loo Feedback

• • • w
IOmSm

Three-state
driver

(a)

Feedback - Sm Feedback = IOm
*

Sm o10m +- iom
(input)(output)

(b) (c)

Figure 5.13 Bidirectional pins in programmable logic devices, (a) I 0m is a
bidirectional I/O pin. (b) Three-state driver enabled (P +1 = 1). (c) Three-state
driver disabled ( Pn+ l = 0).
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is driven by a three-state driver (sometimes called a tristate driver), whose
control line is connected to one of the product terms. When the control line is
1, the driver is said to be enabled and functions as a short circuit (or closed
switch), as shown in Fig. 5.13b. In this case the sum term is driven onto the
pin, which therefore functions as an output. In addition, this value is fed back
to the AND array, where it can be used to form product terms. In this manner,
multilevel (greater than 2) circuits can be realized.

When the driver control line is 0, the driver is disabled and functions
as an open circuit (or open switch), as shown in Fig. 5.13c. This disconnects

B ^0 Bo

!• .• i ;•

5C, C- IFA FA
7

9 6 8

Si Co So
(a)

6 8 9 13 14 15 164 1 1 1210Pin
) 'Mo) 1

( Bo ) 2

J / V:< A|) 3

< f< Bi ) 4

’ r

-. (r

oO-ooooyaaaaaaao TO Pin

5 (C_,)

DH!> 6 (C0)- ( V: ) -

D> 7 ( C, )

D> 8 (S0)-. (r

< —-o 9 (S, )

(b)

:Figure 5.14 Two-bit ripple-carry adder, using I/O and feedback lines, (a) Block
diagram with pin numbers, (b) Programmable logic realization.

i

i

i

:
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the sum term from the pin, which, through the feedback line, now becomes an
input to the AND array. The operation of these bidirectional pins and feedback
lines is illustrated by the following example.

EXAMPLE 5.3 Implement a 2-bit ripple-carry adder, as
shown in Fig. 5.14a, using a programmable
logic array having four dedicated input pins,
three dedicated output pins, and two
bidirectional pins.

From Chapter 4, the standard logic equations for one stage, i , of an n-bit
full-adder are the following:

Si = AiBiCi_
l + AiBiCi _

l + AiBiCi _ l + AiBiCi _
l

Ci ~ AiBi + AiCi-1 + Bici-1

where Ai and Bi are the data inputs and Ci _
l the carry input to stage / , S - is its

sum output, and Ct the carry output. For a ripple-carry adder, the carry-out of
one stage is connected to the carry input of the next stage, as shown in Fig. 5.14a.

Figure 5.14b shows the PLA implementation of the block diagram of Fig.
5.14a. Since the adder requires five inputs, and there are only four dedicated
input pins, bidirectional pin 5 is used as another input. Thus, the driver of pin 5
is disabled by product line 16 by leaving all its fuses intact. Note that product
line 16 is forced to 0 since it is the product of all inputs and their complements.
We could have used any variable pair, but leaving them all intact makes the
device more reliable.

Carry term C0 is used to compute terms Sx and Cx through the feedback
line from pin 6, allowing C0 to be combined with A x and Bx by the preceding
equations.

5.2.7 Commercial Devices
Most commercial programmable logic devices are organized as shown in Fig.
5.15, with the inputs applied to an AND array in both complemented and
uncomplemented form, and the AND array outputs applied to an OR array,
enabling multiple sum of products expressions to be realized. The outputs of
the OR array may optionally be manipulated to derive a particular polarity.
To reduce device complexity and cost and increase speed, the fuses can be
omitted from either the AND array or the OR array, leaving that array in a
fixed configuration. When the AND array is fixed, only the provided com-
binations of inputs (the product terms) are available. When the OR array is
fixed, each output is a sum of selected product terms. Devices with fixed-
AND arrays and programmable-OR arrays are referred to as programmable
read-only memories (PROMs), while programmable-AND-array, fixed-OR-
array devices are referred to as programmable array logic (PAL) devices. De-
vices in which both arrays are programmable are termed field-programmable

www.youseficlass.ir



I
346 Chapter 5 Combinational Circuit Design with Programmable Logic Devices

logic arrays (FPLAs). The following sections will examine each of these three
programmable device configurations and will present a number of typical ex-
amples of standard devices. The devices that will be examined are listed in
Table 5.2.

Feedback terms

/ *4*>
i p\ s1

+~ 0» * *p s-,/-) +̂ o2*
OUTPUTAND OR*

optionsarray array
P/v4 rr i

Inputs OutputsProduct
terms

Sum
terms

Figure 5.15 Basic programmable device organization.

TABLE 5.2 TYPICAL COMMERCIALLY AVAILABLE PLDS

Device
PLS100
PLS153
82S123
82S129
82S131
82S135
82S137
82S147
82S181
82S185
82S191
82S321
PAL16L8
PAL14H4
PAL16C1
PAL18P8

Description
PLA
PLA
PROM
PROM
PROM
PROM
PROM
PROM
PROM
PROM
PROM
PROM

Product Terms Outputs Output Polarity
Programmable
Programmable
Active high
Active high
Active high
Active high
Active high
Active high
Active high
Active high
Active high
Active high
Active low
Active high
Complementary
Programmable

Inputs
16 48 8
16 42 10
5 32 8

2568 4
9 512 4
8 256 8

10 1024 4
5129 8

10 1024 8
11 2048 4
11 2048 8
12 4096 8
16 8PAL 8

PAL 14 4 4
16 16PAL 1

8 8PAL 18
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•5.3 Field-programmable Logic Arrays
5.3.1 FPLA Circuit Structures
Field-programmable logic arrays (FPLAs) are packaged PLA components that
contain fuses in series with each diode in both the AND and OR arrays that can
be removed by the user. Standard FPLA devices were introduced in 1975 by
Signetics Corporation (now Philips Semiconductors), including the PLS100[4],
shown in Figure 5.16, and later followed by a variety of other parts, including
the PLS153 [4], shown in Figure 5.17. These parts differ in the number of
inputs, product terms, and outputs available, and also in the availability of
programmable output polarity, feedback, and other features.

The configuration of a FPLA is typically given as i x p x o, where i is the
number of inputs to the AND array, p is the number of product terms generated
in the AND array, and o is the number of outputs from the OR array. The
complement of each input is also supplied to the AND array, making a total of
2i inputs that can be used in product terms. In many FPLA devices, the outputs
are also fed back to the AND array (complemented and uncomplemented),
making a total of i + o variables and their complements available for creating
product terms.

For example, the PLS100 shown in Fig. 5.16 is organized as (16 x 48 x
8), having 16 dedicated inputs, 48 product terms, and 8 outputs with pro-
grammable polarity that are driven by tristate drivers that are enabled with a
separate input. Since each input is supplied to the AND array in both comple-
mented and uncomplemented form, any product of up to 16 variables can be
created.

The PLS153A shown in Fig. 5.17 is organized as 18 x 42 x 10. Only
8 of the 18 input pins are dedicated inputs. The other 10 “input pins” are
bidirectional lines controlled by tristate drivers. When the driver is disabled,
the pin is an input to the AND array. When the driver is enabled, the pin is
an output, which is also fed back to the AND array. Each tristate driver is
controlled by a separate product term. Thus, 10 of the product terms are used
to enable tristate drivers, while the other 32 product terms are inputs to the
OR array. Hence, each output can be a sum of up to 32 product terms. As
with the PLS100, the polarity of each output is programmable through an XOR
gate.

5,3.2 Realizing Logic Functions with FPLAs
It should be noted that an FPLA is simply a combinational logic function
generator that provides sums of partial products for a given set of inputs.
Hence, a single FPLA can reduce the total parts count in a design by realizing
several logic functions in a single package.

When designing logic expressions for implementation in an FPLA, it
should be noted that any or all of the input literals can be used in each product
term and any or all of the product terms can be included in each sum term. The
primary limitation is the total number of available product terms. Thus, when
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(LOGIC TERMS-P)

10 9 H£
11 [T|—
12 7

13 6 -t>
14 5 -t£
15 4 H£
16 3 —
17 2 -t>
18 27

19 26 -|>
110 25 —1>
Ill 24 —1>
112 23

113 f 22]—
114 21 —[£
115 20 —[£

[XTOOPCO CIOTPPPP traOTQQ mnjaTrj (imiign gggggmn
P> [~IF|FO

—tj>—0FI

X2 S3 I

*>i:3D \> 15 F3
X3 S4

X4 IS5
O 12 F5X5 S6

X6 S7
10 F7

X747 # ••••»40 39 » ••••*32 31 24 23 16 15 8 7 0
19 CENOTES:

1. All AND gate inputs with a blown link float to a logic “1”.
2. All OR gate inputs with a blown fuse float to logic “0”.
3. # Programmable connection.

Figure 5.16 Philips PLS100/101 FPLA [4]. Source: Philips, "Programmable
Logic Devices (PLD) Data Handbook," Philips Semiconductor, Sunnyvale, CA,
1994.
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(LOGIC TERMS-P) (CONTROL TERMS)

10 1 H£
I I 2 H£
12 3 -{£
13 4 -|£
14 5 H£
15 6 H£
16 7 H£
17 8 -{£

BO 3J
B1

B2 £
B3 3J
B4 3J
B5 3J
B6 £
B7

B8

B9

6 6 6 6 6 6 6 6 6
x9

cnxixnjuixnjjQ QJJTOQX) oxnxipy
D7 D3 D,D9 D8 D6 D5 D4 D2 D(,

19 B9
S«

i> 18 B8
X8 S7

17 B7
X7 S6

X6 s,
Xs s4

X4 Q

I>z£>

16 B6

15 B5

14 B4

13 B3

12 B2
X2

11 B1
X ,

So
10 BOo x° ±3 1 2 4 2 3 1 6 1 5' 8 7

NOTES:
1. All programmed ‘AND’ gate locations are pulled to logic “1”.
2. All programmed ‘OR’ gate locations are pulled to logic “0”.
3. • Programmable connection.

Figure 5.17 Philips PLS153A FPLA [4]. Source: Philips, “Programmable Logic
Devices (PLD) Data Handbook," Philips Semiconductor, Sunnyvale, CA, 1994.
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minimizing logic expressions for realization in an FPLA, minimization of the
total number of product terms should be the primary objective. Unless it leads
to a smaller number of products, reducing the number of literals in any single
product term provides no cost savings, since all literals are already available for
each product. In fact, extra time to blow the fuses actually makes programming
the device take longer. For this reason, special minimization algorithms have
been developed specifically for PLA devices that concentrate on reducing
the number of products. In addition, since product terms can be shared by
multiple sum terms in FPLAs, multiple-output minimization algorithms, such
as the Quine-McCluskey procedure or the ESPRESSO algorithm mentioned in
Chapter 3, are frequently used. The ESPRESSO algorithm, in particular, was
developed specifically for use in minimizing PLA circuits.

The following examples illustrate the use of the FPLA devices described.

EXAMPLE 5.4 Realize the three functions of Example 5.1 in
a PLS100 FPLA device.
The functions are realized as shown in Fig. 5.18. This figure shows the con-
nections corresponding to Table 5.1 derived in Example 5.1. Note that all the
other inputs to the PLS100 are don’t-cares.

EXAMPLE 5.5 Use an FPLA to realize the standard TTL dual
4-to-1-line data selector/multiplexer (circuit
type SN74153) shown in Fig. 5.19.
The PLA diagram that is organized to match the circuit layout is shown in Fig.
5.20. Since this PLA requires twelve inputs, two outputs, and eight product
terms, it will easily fit into one PLS100 FPLA. A PLS153 FPLA, with four of
its bidirectional lines used as inputs, can also be used.

•5.4 Programmable Read-only Memory

5.4.1 PROM Circuit Structures
Programmable read-only memory (PROM) is the oldest of the programmable
logic devices, dating back to 1970, because of its use in computer memory appli-
cations. A PROM comprises a fixed AND array and a programmable OR array,
as illustrated in Fig. 5.21. The AND array generates all 2n possible minterm
products of its n inputs and is therefore often referred to as an n-to-2ndecoder
(decoders were described in Chapter 4). The OR array allows any combination
of product terms to be included in each sum term. Hence, the canonical sum
of products form of any function can be realized directly from its truth table or
minterm list. The number of sum terms varies between devices, according to
chip size, number of pins on the package, and other cost considerations. PROM
devices do not typically include output polarity or feedback options.
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(LOGIC TERMS-P)

A 10 9 E? 1

1 -J5
B ll 8 -{£

1 1
C 12 7
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D I 3 6 —1>
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E 14 5 —C?
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X6 S70^3 10 F7
X78 724 23 16 1532 3140 3947

19 CENOTES:
1. All AND gate inputs with a blown link float to a logic “l ”.
2. All OR gate inputs with a blown fuse float to logic “0”.
3. & Programmable connection.

Figure 5.18 Realization of Table 5.1 with a Philips PLS100 FPLA [4].
Source: Philips, “Programmable Logic Devices (PLD) Data Handbook,” Philips
Semiconductor, Sunnyvale, CA, 1994.
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Figure 5.19 SN74153 dual 4-to-1 multiplexer.

Figure 5.22 illustrates the typical configuration of most typical commer-
cially-available PROM devices. This particular configuration includes tristate
output drivers that are controlled by a Chip-Enable control signal. Table 5.2
gives the configurations of a number of Signetics bipolar PROMs, illustrating
the differences in number of inputs and outputs.

5.4.2 Realizing Logic Functions with PROMs
Recall that a given switching function can be represented by a unique canonical
sum of products form. Hence, each output of a PROM is capable of realizing any
arbitrary switching function by simply connecting that output to the minterms
of the function. Therefore, to realize a given switching function with a PROM,
one must first express the function in canonical sum of products form or else
derive the truth table of the function. Then, each of the minterms of the function
is connected to the desired OR term to produce the canonical SOP form. Note
that there is no advantage to minimizing the function when using a PROM,
since its canonical form must be used to generate the PROM fuse map. It should
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Figure 5.20 PLA realization of the SN74153 dual 4-to-1 multiplexer.

also be noted that the use of a commercially-available PROM would be very
inefficient when only a small number of minterms is needed, unless minimizing
chip count is the primary goal.
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Figure 5.21 Programmable read-only memory (PROM) can realize K functions
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Figure 5.22 General configuration of a commercial
PROM.
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EXAMPLE 5.6 Realize the following three switching
functions with a three-input, three-output
PROM.

f 1 (A,B,Q = A B + B C
f2 (A, B,C ) = (A + B + C )( A + B)

f3(A, B,C ) = A + B C

First, we convert each function to canonical SOP form.
f t ( A , B , C ) — A B + B C

= A B C + A B C + A B C + A B C
- £»*(1, 5 - 6, 7)

f2 ( A , B , C ) = ( A + B + C )( A + B )

= ( A + B + C)(A + B + C)(A + B + C)

= Y i A/(2,4, 5)

=£»»(0,1, 3,6, 7)

/3(A, B , C ) = A + B C
= A B C + A B C + A B C + A B C + A B C

= £ »I (3, 4, 5, 6, 7)

Therefore, output 1 is connected to product terms (1, 5, 6, 7), output 2 is
connected to product terms (0, 1, 3, 6, 7), and output 3 is connected to product
terms (3, 4, 5, 6, 7). The final circuit is shown in Fig. 5.23.

EXAMPLE 5.7 Use a PROM to realize a 1-bit full-adder
module.
The truth table of a full adder is given in Table 5.3. From this table, the PROM
is programmed by removing the fuses corresponding to each zero in the two
functions, as shown in Fig. 5.24. Note that a three-input, two-output PROM is
needed for this circuit.

PROMs are especially efficient solutions to problems that require that
most of the minterms of a function be utilized. Examples include code convert-
ers, decoders, and lookup tables.

EXAMPLE 5.8 Design a binary to Gray code converter using
a four-input, four-output PROM.
The truth table of the code converter is given in Table 5.4. Note that 15 of the 16
possible minterms are present in the output (only minterm 0 is not contained in
any of the four outputs.) The truth table is mapped onto a PROM as illustrated
in Fig. 5.25.
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Figure 5.23 PROM solution for Example 5.6.
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Figure 5.24 PROM realization of a full adder.
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TABLE 5.3 FULL-ADDER TRUTH TABLE

(C i i sX y
i i ii

0 0 0 0 0
0 00 1 1

0 1 0 0 1
0 1 01 1
1 0 0 0 1

01 1 1 0
1 1 0 1 0
1 1 1 1 1

Minterm number
Binary
code

0 4 5 6 8 9 10 11 12 13 14 15

- fr i- * * 3 - *4*> 3 S- 36-

B2 3 - *
H>o

B 1]

r

Bo

Gray
codevv vyv vy vy vy vy vy vy vy vy vy vy vy vy

£>G3lbl

E>G2-3 r -3 r

oGi(r * 3 6-e

E>Go1 31-

Figure 5.25 PROM realization of the binary-to-gray code converter.
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TABLE 5.4 BINARY-TO-GRAY CODE TRUTH
TABLE

Decimal
Number

Gray Code
G3G2G1G0

Binary

00000 0000
0001 00011
00102 0011

3 0011 0010
01104 0100

5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101

10 1010 m i
1 1 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 m i 1000

5.4.3 Lookup Tables
A common application of PROMs is the lookup table, in which a function is
stored in tabular form with its arguments used as an index into the table to
retrieve the value of the function for those arguments. Since truth tables can
be readily realized by PROMs, lookup tables are implemented by writing them
in truth table format and then realizing the truth table with a PROM. Tables
of trigonometric functions, logarithms, exponentials, and other functions can
thus be easily implemented. In addition, numerical calculations that can be
tabularized, such as addition, subtraction, and multiplication, can also be readily
implemented with PROMs, as illustrated in the following example.

EXAMPLE 5.9 Implement an 8-bit by 8-bit high-speed binary
multiplier to compute

1̂5—0 = ^7—0 X B
using PROMs as lookup tables to perform all
arithmetic operations.
Rather than using a single large PROM with 16 inputs and 16 outputs to
implement a multiplication table with 216 rows, let us partition the two operands

7-0
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into 4-bit quantities as follows,

x B
x 24) + A3

_
0) x ( ( B

) x 28 + ((A

1̂5-0 — ^7-0 7-0

X 24) + s3_0)

x ^3_Q) "I" ( A
= ( ( A7-4 7-4

)) x 24= (A x B x £7-4 7-4 3-07-4 7-4

+ A
This operation can be done with four 4-bit by 4-bit multipliers to compute partial
products and three binary adders to add the partial products. The multiplications
by 24 and 28 can be done by simply shifting the corresponding terms 4 and 8
bits, respectively, to the left. Note that the multiplication table for a 4-bit by
4-bit multiplication has only 16 rows.

The block diagram of Fig. 5.26 is a system of PROMs used to implement
the multiplier. PROMs 1 to 4 are programmed as multiplication lookup tables

x B3-0 3-0

^7-0 #7-0
MSB LSB MSB LSB

6 5 4 3 6 5 4 37 2 1 0 7 2 I 0

~ ~ 4 4 - A3_O #7-4 4 -" #3-0

- - 4 -- 4 - “ 4 -- 4 - - 4 “ - 4 -- 4 -" 4
' - ’’ r

PROM 3 PROM 4PROM 1 PROM 2

Z?7_4 X 8r \ #3-0 x A3_o
#3-0 x ^7-4 “ ” 8 8 ” Z?7^ X /43_0

8-Bit
adder

PROM

--9

- - 1 2 - - 9

12-Bit
adder

PROM
4- - 12#15-1

PROM 1 to PROM 4:
4-bit by 4-bit multipliers

#3-0
’ 1

15 14 13 12 11 10 9 6 5 4 3 2 1 08 7

16-Bit product #15-0

Figure 5.26 Implementation of a high-speed binary multiplier with PROMs.
(PROMs 1 to 4 are 4 x 4 multipliers).
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to form 4-bit by 4-bit partial products. The partial products are summed by
adders, also implemented in PROMs, to form the final product.

5.4.4 General Read-only Memory Applications
One of the most common uses of PROM devices in computers and other digital
systems is as read-only memories (ROMs) for permanent, nonvolatile storage
of such information as computer programs, tables of constant data values, and
code translation tables. Referring to Fig. 5.22, information can be read from
a ROM by specifying its row number in the table, called its address, on the
inputs A
after a short time delay, called the access time of the device.

An n-input, m-output PROM can store a table of up to 2n m-bit data
words. Consider the PROM diagram illustrated in Fig. 5.27. The AND array
is effectively an n-to-2,J decoder, each decoder output corresponding to one
minterm of the inputs A
storage cells, each storing one ra-bit data word. A supplied address is decoded,
with the activated decoder output selecting its corresponding storage cell to
drive the outputs Om .. . Ov

. . A0. The selected data word appears on the outputs Om ... Ojn-1 ‘

. . A(). The OR array can be viewed as 2n m-bitn-1 *

OR array

AND array
Word 0

*0 Vo
Word 1A X\ yii

iAddress
inputs

n-to-2"
Address
decoder

An-1 -Vn-l

U IcsDevice access
control signal
(chip select)

yin-\
Word 2"-l

_
i

’ '
Product terms

(minterms) Ox 02 Om
V

Data outputs
(sum terms)

Figure 5.27 PROM device as a 2n x m read-only memory.

Information is arranged for storage in a PROM by determining the ad-
dresses at which each data word will be located. In most cases, information is
simply placed at contiguous locations, beginning at the first address within the
PROM. In some situations, however, information is arranged in lookup table
form, with each address being a specific data code that is in some manner
related to the information stored in the PROM.
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5.4.5 Read-only Memory Technologies
In addition to the fusible link PROMs described previously, read-only memory
and other programmable devices are available in a number of other technolo-
gies, providing trade-offs in cost, speed, flexibility, and reusability.

The complexity of a PROM device is determined by the number of diodes
and fuses it contains. An n. -input PROM has 2n diodes connecting the inputs to
each product term (n uncomplemented and n complemented variables). Since
there are 2n possible product terms of n variables, the AND array includes
2n x 2n diodes. If there are k outputs, there are k x 2n diodes and fuses in the
OR array, since each of the 2n product terms can be connected to each output.
Therefore, the total cost is (2n -f k ) x 2n diodes plus k x 2" fuses.

For high-volume applications, mask-programmed read-only memories,
or simply ROMs, are typically used. In ROM devices, there are no user-
programmable fuses. Instead, during the final steps of the chip fabrication
process at the factory, the OR array is permanently configured by placing or
omitting simple wires in series with the diodes to represent unblown and blown
fuses, respectively. A custom mask designates where the wires are to be placed
during this fabrication step and therefore determines which cells are to be ones
and which zeros. Each ROM mask is custom designed from a table supplied by
the customer and therefore has a relatively high development cost, usually sev-
eral thousand dollars. While the absence of programmable fuses in the OR array
makes the cost of a mask-programmed ROM chip less than that of a comparable
PROM device, this cost savings is partially offset by the mask charge. There-
fore, ROMs are cost effective only when ordering many devices containing the
same information, whereas for small numbers of parts, it is more cost effective
to use PROM devices that can be programmed individually by the customer.

During the development of a logic circuit, the information to be stored in
each PROM undergoes frequent changes until the design has been completely
debugged. Unfortunately, ROMs and PROMs cannot be altered once they are
programmed. They must be discarded and new devices programmed to replace
them. Erasable programmable read-only memories (EPROMs) are often used
in these situations. The OR array of an EPROM is programmed by using a
special programming voltage to trap electrical charge in selected storage cells.
The presence or absence of charge in a cell indicates a logic 0 or 1. Although not
as permanent as a blown fuse, this charge will remain trapped for up to 10 years.
However, it can be quickly dissipated by irradiating the chip with an ultraviolet
light through a quartz window on the chip, restoring the OR array to its initial
unprogrammed condition. The EPROM may then be reprogrammed with new
information. This cycle of erasing and reprogramming may be repeated until the
design is correct, allowing a single EPROM to be used throughout development.

An EEPROM (electrically erasable , programmable read-only memory )
is similar to an EPROM in that it also represents ones and zeros in its memory
cells by the presence or absence of trapped electrical charge. Like the EPROM,
this charge can be dissipated and the chip reprogrammed. However, in an
EEPROM the erasure is done electrically by applying a special voltage to
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the chip. This allows erasure and reprogramming of a chip without removing
it from the product. Therefore, EEPROMs are attractive for applications in
which the information needs to be changed without physically handling the
chip. Many EEPROM devices support selective erasure of the chip; that is,
they allow specified locations to be erased without disturbing others. Lower-
cost EEPROM devices, called flash memories, are also available that support
erasure only of the entire chip, thus trading flexibility for cost.

EPROM and EEPROM devices are more complex than PROM devices
and are therefore more expensive per bit than comparable PROMs. In addition,
most EPROMs and EEPROMs have longer propagation delays than comparably
sized PROMs and ROMs, primarily since the former are fabricated using NMOS
or CMOS transistor technologies, whereas PROMs and ROMs typically use
bipolarTTL. However, higher cost and lower performance are often outweighed
by the convenience of being able to erase and reprogram a chip. In some
cases, the EPROMs or EEPROMs used during prototyping are kept for the
final product. In situations where a product is to be manufactured in volume,
however, product cost is often reduced by replacing the EPROMs or EEPROMs
with equivalent PROMs or ROMs after the design has been finalized.

•5.5 Programmable Array Logic

5.5.1 PAL Circuit Structures
PAL devices (or simply PALs) were introduced in the late 1970s by Monolithic
Memories, Inc., as a lower-cost replacement for discrete logic gates, PROMs,
and PLAs [5]. A PAL, as illustrated in Fig. 5.28, comprises a programmable
AND array and a fixed OR array. In the fixed OR array, each output line is
permanently connected to a specific set of product terms. In the PAL of Fig.
5.28, for example, each output line is connected to three product lines and
therefore represents a sum of three product terms. Because of the fixed OR
array, the PAL representation shown in Fig. 5.29 is more commonly used than
that of Fig. 5.28.

Unlike a PROM, in which all 2n possible products of n variables are
generated, a PAL generates only a limited number of product terms, leaving it
to the designer to select those products to be generated for each sum. Therefore,
the overall cost of a PAL isconsiderably lower than those of comparable PROMs
and FPLAs.

As is the case with read-only memories, PALs are available in a variety
of circuit technologies, in addition to fuse-programmable bipolar TTL. In par-
ticular, the EPROM and EEPROM technologies described earlier, which utilize
NMOS and CMOS transistor technologies, are often used for the programmable
AND arrays of various PAL devices to provide the capability to erase and repro-
gram them. These chips are referred to as erasable programmable logic devices
or EPLDs. As with read-only memories, CMOS and NMOS technology EPLDs
are typically more costly and have longer propagation delays than comparable
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Figure 5.28 Programmable array logic (PAL) device.

bipolar TTL fuse-programmable PALs. However, the benefits of being able to
erase and reprogram chips make EPLDs attractive for many applications.

5.5.2 Realizing Logic Functions with PALs
Because each output is restricted to being the sum of a fixed set of product
terms, PALs are more limited than PROMs and FPLAs in the number of switch-
ing functions that can be realized. Therefore, the selection of a PAL device for
a particular application must ensure that the number of product terms per out-
put is sufficient for the worst-case number of products in that application. A
further limitation is that a single product term cannot be shared between two
sum terms. If two sums contain a common product term, that product must
be generated twice. Fortunately, many switching functions can be represented
by sums of limited numbers of product terms. Consequently, PALs are more
cost effective than PROMs or FPLAs for functions that contain many input
variables, but only a small number of product terms.
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Figure 5.29 Standard PAL representation.

To realize a set of switching functions in a PAL, their minimum sum
of products representations should be derived. Since the set of product terms
available for each function is limited, the primary design objective should be to
minimize the number of product terms in each SOP expression, rather than the
total number of literals. Each input and its complement are available for every
product term. Therefore, there is no real cost advantage to reducing the number
of literals in any single product term. In addition, since product terms cannot be
shared between outputs, as they can in PROMs and FPLAs, there is no need to
use a multiple-output minimization algorithm, such as that presented in Chapter
3, to minimize the multiple functions collectively. For a PAL realization, each
sum should be minimized independently.

EXAMPLE 5.10 Example 3.24 illustrated the simultaneous minimization of three functions:

/„ 04 , B, C , D ) = J2 m {0, 2, 7, 10) + </ (12, 15)

/„ (/1, B, C, D ) = J2 m(2. 4, 5) + d (6 , 7, 8, 10)

f y (A, B, C, D ) = J2 m( 2, 7, 8) + d {0, 5, 13)

The result was the following three expressions:

f a( A , B , C , D ) = A B D + B C D + A B C D

/^ (A , B, C , D ) = A B + B C D

f y ( A , B, C, D ) = A B D + B C D + A B C D
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These three expressions require a total of eight product terms, although there
are only five unique terms, with three terms shared between multiple outputs.
A PAL realization of these expressions is shown in Fig. 5.30.

A CB D

)Pi

) fa{A, B, C D )P2 se

)P.3

)/>4

) /P04, B, C, D )Ps

)P6 S!—: rs —

)Pi Se

) fy( A, S, C, £>)Ps <r

)P9 Sr S r

Figure 5.30 PAL realization of fa { A , B , C, D ), ffi ( A , B, C, Z)) f and /y (A, C, D ).

Independently minimizing each function would produce the following
expressions.

/a (A, 5, C, D) = ABD + BCD + BCD

f p ( A , B, C, D) = AB + BCD

/ (A, B, C, D) = ABD + BCD + ABD
These also contain a total of eight products, six of them unique, with two fewer
literals than the previous set of expressions.
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PAL realizations of these functions require a total of four inputs and
eight product terms in each case, with no cost savings due to reduced literals
or shared products. The cost of an FPLA realization, however, can be reduced
by utilizing the first set of expressions since only five product terms need to be
generated, rather than six as required for the second set of expressions. Thus,
FPLA design benefits from the use of algorithms that simultaneously minimize
multiple functions, whereas PAL design does not.

In the PAL of Fig. 5.30, note that function /̂ (A , B, C, D ) contains
only two product terms. Therefore, one of the three products connected to the
corresponding OR gate must be forced to 0. As shown in Fig. 5.31, a variable,
A, is removed from a product term ( P3 ) by removing both fuses (A and A ). A
product term ( P4 ) is forced to 0 by leaving both fuses intact, since A • A — 0.
Typically, all the fuses are left intact for each product line that is to be forced
to 0, as is shown for product P6 in Fig. 5.30.

A

B 3 rLD>°
vy v vy

Pi Pi Pi p4

Figure 5.31 Product terms involving variable A and
its complement.

5.5.3 PAL Output and Feedback Options
Standard TTL and CMOS PALs are classified by their number of inputs, out-
puts, product terms per output, and output options. Many PAL devices include
output polarity options and internal feedback from the outputs back to the AND
array. Other characteristics that vary between PAL devices include switching
speed and power consumption.

The configuration of a PAL device is typically specified by its part number
as follows:

PAL 7 A O
where / is the number of inputs, O is the number of outputs, and A specifies the
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architecture (output polarity) of the outputs, as follows:

A output architecture
L active low

active high
programmable polarity
complementary outputs

H
P
C

For example, the PAL16L8 device shown in Fig. 5.32 is a PAL with 16
inputs and 8 active-low outputs [5J. Each output is the sum of seven product
terms and is driven by a tristate buffer controlled by an additional product term.
Six of the outputs are fed back to the AND array, while the other two are not.
The PAL18P8 device, shown in Fig. 5.33, has 8 bidirectional pins, which in-
clude programmable-polarity outputs, and 10 dedicated inputs [5]. The tristate
drivers on the bidirectional lines are not shown explicitly in this diagram, but
instead are included in the XNOR gate. Other PAL device configurations can
be found in [5].

EXAMPLE 5.11 Design a PAL circuit that compares two 4-bit
unsigned binary numbers, A = (a3a2«1«0)2 and
B = (b3b2bxb0)2, and produces three outputs:
X = 1 if A = B, Y = 1 if A > B, and Z = 1 if
A < B.
From Chapter 4, the following equations can be derived for the three outputs.

X = (a3 O b3 )(a2 O b2 )(a { O bx )(a0 O b0 )

Y = a3b3 + ( 1a3 O b3 )a2b2 + (a3 O b3 )( a2 O b2 )axbx
+ (a3 O b3 )( a2 O b2 )(a ] O bx )a0bQ

Z = a3b3 + (a3 O b3 )a2b2 + (a3 O b3 )( a2 O b2 )axbx
+ ( a3 O b3 ) (a2 O b2 )( ax O b{ )a0b0

where at O b. = aibi + a -b- .
Expanding these equations to SOP form would produce 16 product terms

for X and 15 products each for Y and Z. Since the number of product terms
available for the sums of typical PAL devices is typically much less than this,
let us instead generate the four terms

£. = a. O br
and feed these terms back to the AND array. The set of equations then becomes

X = E3 E2 EX EQ
Y = a3b3 -I- E3a2b2 + E3 E2axbx 4- E3 E2 Exa0bQ
Z = a3b3 + E3a2b2 + E3 E2axbx + E3 E2 Exa0bQ

The worst case is now four product terms per output. This will conve-
niently fit into a PAL18P8 device, as shown in Fig. 5.34, using eight of the ten
dedicated inputs for A and B, four of the eight outputs for the £\ feedback
terms, and three of the outputs for X, Y , and Z. Note that eight product terms are
available per output, which is more than sufficient for the comparator function.

for i = 0, 3
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Figure 5.32 PAL16L8: active low outputs [5]. Copyright © Advanced Micro
Devices, Inc., 1993. Reprinted with permission of copyright owner. All rights
reserved.
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Figure 5.33 PAL18P8: programmable-polarity outputs [5]. Copyright ©
Advanced Micro Devices, Inc., 1993. Reprinted with permission of copyright
owner. All rights reserved.
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Figure 5.34 4-bit comparator mapped onto a PAL18P8 device [5]. Copyright
© Advanced Micro Devices, Inc., 1993 (adapted). Reprinted with permission of
copyright owner. All rights reserved.
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Other PAL output options include memory elements, called flip-flops
and latches, to support sequential circuit designs. Flip-flops and latches will be
introduced in Chapter 6, and PAL devices that include these elements will be
discussed in Chapter 11.

•5.6 Computer-aided Design Tools for
PLD Design

There are two general classes of commercially available PLD computer-aided
design (CAD) tools, vendor specific and universal. Many vendors provide CAD
tools to develop designs exclusively for their own PLDs. Examples include
MAX + PLUS 11 from Altera and AMAZE from Signetics. A number of CAD
systems, however, support development of PLD-based designs in a device
independent manner and then map designs onto devices selected from various
libraries. Typical examples of universal design packages include PALASM
from Advanced Micro Devices, CUPL from Logical Devices, Inc., ABLE from
DATA I/O Corporation, and PLDesigner from Mine, Inc.

Most PLD CAD packages allow designs to be created and entered in
several formats, including schematic diagrams, logic equations, truth tables, and
sequential circuit state diagrams and state tables. As shown in Fig. 5.35, each
design is translated, or compiled, into logic equation form and then minimized,
using methods similar to those described in Chapter 3. Often the designer has
a choice of minimization algorithms, which provide trade-offs of computation
time for optimality of results. The compiled design may then be simulated to
verify its correctness and to evaluate timing and other parameters.

When the design is correct, the logic equations are mapped onto a se-
lected PLD device. If the design cannot be made to fit the selected PLD, the
designer must either modify the design, choose another device, or partition the
design into modules that can be realized in separate PLDs. Some CAD systems
automatically search through libraries of devices and identify those PLDs that
provide the best fit while meeting specified criteria. Some of these systems
are capable of automatically partitioning a design for mapping into multiple
PLDs or combining smaller designs to fit into a single PLD. The output of
the device-fitting step is a fuse map, which is a map of the fuses in the PLD,
indicating which are to be blown and which are to be left intact to realize the
design. In most cases, a standard, such as the JEDEC standard [5], is used for
the fuse map. The fuse map is then downloaded into a special PLD programmer
to program the fuse pattern into the chip.

Most PLD design packages utilize a high-level language to express de-
signs in logic equation, truth table, or sequential circuit state machine format.
Many of them also accept designs created with schematic capture programs. In
these cases, the schematic is translated into logic equation form in the language
used by that package.
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Figure 5.35 PLD design process.

For example, Fig. 5.36 shows a schematic diagram for a 1-bit full adder.
This diagram was created with the Mentor Graphics Design Architect schematic
editor and then translated by the Mine PLDesigner program into the PDL
language. The resulting PDL listing is given in Fig. 5.37, and the reduced logic
equations produced by the PDL compiler are given in Fig. 5.38.

The next section presents an overview of the PDL language. Other PLD
design languages are similar to PDL. The reader is referred to [6,7,8] for more
details.
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Figure 5.36 1-bit full adder schematic diagram.

5.6.1 Design Representation with PDL
PDL (PLDesigner Design Language) is typical of the high-level languages
used by most PLD design tools. Designs can be entered in equation, truth table,
state diagram, state table, and other behavioral forms. As illustrated by the
example in Fig. 5.37, a PDL file includes a header section, which provides a
verbal description of the design, an optional macro definition section, which
allows symbolic representations of functions and expressions, and a function
definition section containing input and output signal declarations and the logic
equations, truth tables, and/or state machine descriptions that describe the func-
tion to be realized. Note that comments may be used throughout the design file,
each beginning with double quotes.

Input and Output Signal Declarations
Every design has some number of external inputs and outputs and, in some
cases, bidirectional input/output lines. In a PDL file these signals are defined,
or declared, prior to listing the functional description of the design. In pro-
grammable logic devices, external inputs can either be dedicated input pins
or else I/O lines whose output drivers are disabled. The following examples
illustrate a number of input and output signal declaration formats.

INPUT x,y,[13..10];
OUTPUT x,[c3..cd];
OUTPUT xty ENABLED.BY oe;

"dedicated inputs:
"combinational outputs
"combinational outputs with
tristate drivers
"I/O lineBIPUT xl,x2 ENABLED.BY oe;

In these examples, note that sequentially numbered signals may be defined
using range notation. For example, [c3..c0] represents the four signals c3, c2,
cl , and cO. The ENABLED_BY keyword indicates a tristate driver associated
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Mssssszxxssm essBsssrs:

" Header Section
=========

TITLE
ENGINEER Joe E. Student;
COMPANY
PROJECT
REVISION 1.0 ;
COMMENT

schematic.vpt ;

State Universit
EE401 Homework Project ;

One-bit full adder circuit ;

====
" Macro Definition Section

"Macros for AMD, OR, and XOR gates

MACRO AND2(iO,il)(iO * il) ;
MACRO 0R3(i0,il,i2)(iO + il + 12) ;
MACRO X0R(i0,il)(iO(+)il) ;

====E
" Function Definition Section

FUNCTION schematic ;

" Declare external input and output signals
INPUT A,B,CIN ;
OUTPUT COUT.S ;

" Instantiate three AND gates
MACRO N$ll AND2(A,B) ;
MACRO N$12 AND2(A,CIN) ;
MACRO N$13 AND2(B,CIN) ;

" Instantiate one OR gate
MACRO COUT 0R3(N$11,N$12,N$13) ;

" Instantiate two XOR gates
MACRO N$14 X0R(A,B) ;

X0R(N$14fCIN) ;MACRO S

END schematic ;

Figure 5.37 1-bit full adder PDL description generated from the schematic.

with an output and defines the control signal for the driver. The keyword
ENABLED_BY may be used or omitted as needed to match the actual outputs
of a particular logic device.
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S.EQN = CIN*/B*/A
+ /CIN*B*/A
+ /CIN*/B*A
+ CIN*B*A ; "(4 terms)

COUT.EQN = A*CIN
+ B*CIN
4- B*A ; "(3 terms)

Figurt 5.38 PDL equations for
the 1-bit full adder generated by
the PDL compiler.

TABLE 5.5 PLD LANGUAGE LOGICAL OPERATORS

Symbol Logical Operation Example
/ NOT / a
r a r b

a /+ b
NAND
NOR
AND

/+
* b* a

OR a /+ b
a (+) b
a / M b
a [+] b

+
(+) XOR

XNOR/(+)
l+l Hardware XOR

Logic Equations
Logic equations are expressed in PDL exactly as they would be written on paper.
The available PDL logic operators are listed in Table 5.5 in order of descending
precedence. Parentheses may also be used as needed. Figure 5.39a shows the
logic equations of 1-bit full-adder circuit, as they would be entered in PDL.

Equations in PDL can be expressed in any format, ranging from simple
SOP or POS expressions to complex multi-level expressions. When a design is
compiled, all equations are converted to the two-level SOP form needed to fit

= CIN’/BVA
+ /CIN*BVA
+ /CJN7B* A
+ CIN’B’A ;
= A'CIN
+ B*CIN
+ B'A ;

S.EQN

= (a(+)b)(+)cin;
cout = (a*b) + (a'cin) + (b*cin);
s

COUT.EQN

(a) (b)

Figure 5.39 Full adder represented in PDL with logic equations, (a) PDL logic
equations, (b) Equations produced by the PDL compiler.
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376 Chapter 5 Combinational Circuit Design with Programmable Logic Devices

the AND/OR arrays of PAL and PLA devices. For example, Fig. 5.39b shows
the output of the PDL compiler for the full adder equations of Fig. 5.39a.

To aid in developing logic equations and mapping them onto a particular
device, any input, output, or biput (bidirectional input/output) line may be
defined as active low. For logic device outputs with inverting drivers, it is often

OUTPUT x;
x = /(a"b + c*d);

(a)

-t>Ha

a —£>0—
d ~D>°—
b —D>°—
*-£*>-
rf —[^>D—

(b)

LOW.TRUE OUTPUT x;
x = a*b + c'd;

(c)

a

•x

d

(d)

OUTPUT x;
/x = a'b + c'd;

(c)

Figure 5.40 Use of active-high and active-low device outputs, (a) PDL description
of JC = ab + cd . (b) Schematic diagram (active-high output), (c) PDL description of x =
ab + cd . (d) Schematic digram (inverted output), (e) Alternate PDL form of x = ab 4- cd.
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Section 5.6 Computer-aided Design Tools for PLD Design 377

convenient to define the output as active low. For example, Fig. 5.40 illustrates
multiple representations of the same switching expression.

x = ab + cd = (a + b ){c T- d )
The form of Fig. 5.40a would direct the compiler to transform the ex-

pression to simple SOP form by DeMorgan’s theorem, producing the AND/OR
circuit of Fig. 5.40b. If the target logic device has an inverting driver on the
output, the form of Fig. 5.40c would direct the compiler to use the AND/OR
array to form the SOP expression ab + cd and assume that an output driver
will invert it, as shown in Fig. 5.40d. A signal may also be designated as active
low within a signal assignment statement, as illustrated by Fig. 5.40e, which
produces the same result as the listing in Fig. 5.40c.

Macros
A macro is a mechanism for symbolically representing functions that are to
be used repeatedly, such as the switching expressions realized by various logic
gates, and for assigning symbols to replace various patterns to improve the
readability of a PDL description. Each instance of a macro is replaced by its
definition during compilation of a design, with any formal parameters replaced
by actual values. The format of a macro definition is the following:

MACRO macro-name [(parameters)] text;
The listing of Fig. 5.37 contains three macro definitions, each describing one
of the circuit elements in the schematic diagram of Fig. 5.36. For example, the
two-input AND gate is defined by

MACRO AND2(iO,il)(10 * il ) ;

defining function AND2 to be the AND of two parameters /0 and il . Three
copies of the AND2 macro are instantiated in the functional description of the
full adder.

MACRO N$ll AND2(AfB) ;
MACRO N$12 AND2(APCIN) ;
MACRO N$13 AND2(B,CIN) ;

These define three 2-input AND gates whose equivalent logic expressions
expand to

N$ll A * B ;
N$12 - A * CIN ;
N$13 B * CIN ;
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The OR and XOR gates used in Fig. 5.36 are likewise described by macro
definitions, which are then instantiated and expanded in the function definition
section, creating logic gates COUT , N $\4, and S , whose inputs are driven by
the circuit inputs and by the outputs of AND gates N $11, A$12, and A$13.
This is illustrated in Fig. 5.38, which shows the expanded equations generated
from the PDL listing of Fig. 5.37.

Truth Tables
As described in Chapter 2, a truth table lists all combinations of the input
variables of a logic function and the value of the function for each combination.
To save time, multiple functions are often listed in the same truth table. For
example, the truth table of the full adder of Fig. 5.39a is listed in Fig. 5.41a.

i

TRUTH.TABLE
b.a. cm*' 5

0, 0
0. 1
0. 1
1, 0
o, 1
1. 0
b o
1. 1

C,n
0, 0. 0
0. 0. 1
0, 1. 0
0, 1 , 1
1, 0. 0
1 , 0. 1
I, l, 0
b b 1

a b c. c soutin

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0
0 1
0 1
1 0
0 1
1 0
1 0
1 1

)

END;

;

(b)(a)

Figure 5.41 Full adder truth table, (a) Truth table, (b) PDL truth
table format.

l
The PDL description of the full-adder truth table is shown in Fig. 5.41b.

The first line defines the input and output variables, separated by a double colon
On each subsequent line, one input variable combination is listed, followed

by a double colon and then the corresponding output values.
If needed, a don’t-care condition is designated in the truth table by an x

and a high impedance value by a Z. Output values can also be replaced by logic
expressions of the input variables.

5.6.2 Processing a PDL Design File
After a PDL description of a design has been prepared, the PDL compiler is
invoked to translate and reduce the design. This involves several steps. For a
behavioral description, such as a truth table, a state table, or other state machine
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Section 5.6 Computer-aided Design Tools for PLD Design 379

description, the compiler first synthesizes the machine by converting the state
machine description to logic equations for all outputs and flip-flop excitation
inputs. Once the design is in logic equation form, the equations are simplified
to two-level SOP form, which can be mapped onto the AND/OR array of a
selected PAL or PLA device.

In the process of simplifying equations, the equations are minimized by
one of four options that can be specified by the user. The first is to do no reduc-
tion at all, but to simply leave the equations in SOP format. The second option
is to apply the ESPRESSO algorithm, which reduces the equations quickly
and with little memory usage, but without necessarily producing an optimum
solution. The third option is to use the ESPRESSO algorithm with some of the
Quine-McCluskey techniques applied to derive a better cover.The fourth option
is to use the full Quine-McCluskey method, which produces an optimum solu-
tion, but at the expense of longer computation time and more memory usage.

For example, from the truth table of Fig. 5.41, the PDL compiler gen-
erated the logic equations given in Fig. 5.42 using the espresso algorithm for
minimization.

COUT.EQN = A’CDM
+ B’CIN
+ B“ A ; “(3 terms)

S.EQN = CIN"/B*/A
+ /CIN‘B7A
+ /CLN*/B# A
+ CIN'B’A ; ”(4 terms)

Figure 5.42 Reduced
excitation and output equations
for a full adder.

After a design has been compiled, the next step is to verify its correct-
ness using functional simulation. The PDL language allows test vectors and
simulation controls to be specified within the design file, so compilation can be
followed immediately by simulation with the PLDsim tool of the PLDsynthesis
system. When PLDsynthesis is integrated into another design environment,
such as the Mentor Graphics Falcon Framework, other simulators may also
be used, such as the Mentor Graphics QuickSim II logic simulator. The reader
is referred to [7] for further details on simulation within the PLDesigner and
Falcon Framework environments.

The next step in the process is mapping the reduced equations onto a
selected device. The PLDesigner system includes a library of devices from
which those devices can be selected that best fit a design while meeting any
user-specified criteria.

www.youseficlass.ir



I
380 Chapter 5 Combinational Circuit Design with Programmable Logic Devices

In PLDsynthesis, these user-specified criteria, or constraint values, in-
clude package type, logic family, manufacturer, temperature rating, maximum
current, maximum frequency, maximum delay, and component price. Each
constraint is assigned a weighting factor so that the selection of a device can be
made by placing more importance on those constraint values considered most
critical by the designer.

The output of the device-fitting operation is a fuse map, which can then
be downloaded to a device programmer to program the chip. In some cases,
simulation information can be supplied to the device programmer to allow it to
exercise the device and compare actual operations to simulated results.•5.7 Summary
In this chapter we have examined the use of programmable logic devices
in implementing combinational logic circuits. The basic circuit structures of
the three types of PLDs were presented, and the process of mapping logic
functions onto each was described, along with a number of examples. Finally,
computer-aided design tools used to develop PLD circuits were described. In
Chapter 11, we will discuss other programmable logic devices that support both
combinational and sequential circuit design.

REFERENCES PAUL M. CHIRLIAN, Analysis and Design of Integrated Electronic Circuits, 2nd
ed. New York: Harper & Row, 1987.
ROGER C. ALFORD, Programmable Logic Designer’s Guide. Indianapolis, IN:
Howard W. Sams, 1989.
PARAG K. LALA, Digital System Design Using Programmable Logic Devices.
Englewood Cliffs, NJ: Prentice Hall, 1990.
PHILIPS, Programmable Logic Devices ( PLD) Data Handbook.Sunnyville, CA:
Philips Semiconductor, 1994.
MONOLITHIC MEMORIES, PAL Programmable Array Logic Handbook , 2nd ed.
Monolithic Memories, Inc., 1981.
MlNC, INC., PLDesigner Student Version Manual. New York: McGraw-Hill
Publishing Co., 1990.
PLDsynthesis User's Manual, Wilsonville, OR: Mentor Graphics Corp.
PDL Language Reference Manual, Wilsonville, OR: Mentor Graphics Corp.

1.
i

2.

y3.
4.
5.
6.

7.
8.

PROBLEMS 5.1 Design a BCD to excess-3 code converter using:
(a) Logic network (two-level NAND gates)
(b) PLA (as in Fig. 5.7)
(c) ROM (as in Fig. 5.25)
(d) PAL (as in Fig. 5.30)
Remember to specify the input and output dimensions of your PLA, ROM, and
PAL.
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Implement the following functions using:
(a) 4-to-16 decoder and logic gates
(b) PLA (as in Fig. 5.7)
(c) ROM (as in Fig. 5.25)

5.2

(d) PAL (as in Fig. 5.30)

/,04 , B , C, Z>) = £ m( 0, 1 , 2, 3, 6, 9, 11)

f2( A, B, C, £>) = £ /«(0, 1 , 6, 8, 9)

/3(A , B, C, D) = £ /»(2, 3, 8, 9, 11)

Use a 32 x 6 ROM to convert a 6-bit binary number to its corresponding 2-digit
BCD representation.

5.3

(a5a4a3a2a\a0^ 2 ~ [("*3*2*1*O)BCD^3^2^I}
;
O)BCD]IO

Show the ROM’s contents in a truth table format. ( Hint: x3 = 0, and y0 = aQ.)

Show the implementation of the functions in Problem 5.2 using:
(a) PLS100 FPLA
(b) PAL16L8

Show how a binary subtracter could be implemented using:
(a) PLS100 FPLA
(b) PAL16L8

5.4

5.5
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The basic concept of a sequential device

is an important one that is fundamental
in the design of digital systems. Recall that

in combinational logic networks the output is a
function of only the present input. In sharp contrast,

the output of a sequential device depends not only on
the present input but on previous inputs as well. This
history of a sequential circuit's input is retained through
the use of storage devices, that is, memory. It is the use
of memory which adds a new dimension to logic design
by providing the capability to solve numerous problems
that cannot be handled by combinational logic alone.

In this chapter we introduce the basic sequential
circuit model, and then describe the design and opera-
tion of a number of common memory elements, includ-
ing latches and flip-flops.
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Introduction to Sequential Devices

•6.1 Models for Sequential Circuits
The sequential concept is not restricted to digital systems. For example, consider
the operation of an elevator in a four-story building. The elevator acts as a
sequential device because its actions are determined by input signals from its
control panels (both on board and on each floor) and its present position at floor
1, 2, 3, or 4. The elevator must in some way “remember” its present position
in order to determine its next floor transition. Therefore we define the present
state of the elevator as a description of its present floor position, including a
history of its past floor transitions. For example, the elevator may be “at floor
3 and going up.” This present state must be differentiated from “at floor 3 and
going down.” The next state (and hence the next floor position) of the elevator
is determined by its present state and its input, which consists of the condition
of the control buttons on the control panels located in the elevator and stationed
on each floor. If the elevator is “at floor 3 and going down,” it will respond to
a floor 2 request to go down, but ignore a floor 2 request to go up! Once the
next state is determined, a state transition is ordered by sending a command
to the pulley motor, which drives the elevator to a new floor. The concepts of
present state, next state, input, and state transition are fundamental in the study
of sequential logic circuits.

Another simple example of a sequential device, and one that finds wide
application in digital systems, is a counter. This device can be employed to
perform such functions as totaling the number of cars entering a parking lot
or keeping track of certain functions being performed within a large computer
system. Counters are covered in detail in the next chapter.

6.1.1 Block Diagram Representation
In our study of combinational logic networks we found that we could repre-
sent these circuits as shown in Fig. 6.1a. The mathematical relationship that
describes this network is

Zg = f g ( xv x (6.1)i — 1, . . . , m2’ ‘
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X \ Z\Combinational •

logic*n * Zm

(a)

x\ T-*~ 21>

Xn Zm> Combinational
logic*

*

^1>1 yr

4-
Memory

*

(b)

Figure 6.1 The sequential circuit model.
(a) Combinational logic circuit, (b) Sequential logic
circuit.

This equation simply states that the output is a function of only the present
input. All the signals in Eq. 6.1 are assumed to be either of the two values, 0
or 1.

The model for a sequential circuit is shown in Fig. 6.1b. The n-tuples
(jcp . .. , x n ) will be referred to as the input, the m-tuples (z p . . . , zm ) will be
called the output, and the r-tuples (y, , . . . , yr ) a n d ( T, , . . . , Yr ) represent the
present state and next state, respectively. The relationships that exist among
these variables may be expressed mathematically as

z, = g i ( x v ... , x n , y v ... , y r ),
•V • • • ’ >V)’

where g( and ht are Boolean functions. Equations 6.2 and 6.3 may be written
in vector notation as

(6.2)i = l , . . . ,m
i = 1, • •, r (6.3)Y j = h t ( x , , . . • 5

(6.4)z = g(x, y)

Y = h(x, y) (6.5)
where

2i *i

2̂^2 x2 >2 (6.6)Y =i -- y =X —
Yi X n J

Note that zr xp yr and Yt are all binary variables (their values are logic 0 or
logic 1).

L>YJL^mJ r
_
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Section 6.1 Models for Sequential Circuits 385

All the vectors in Eq. 6.6 are time dependent; we shall adopt the conven-
tion that vector y has the value y(^) at time tk .Occasionally, we shall examine
a signal y(r) at evenly spaced points in time. If tk = kAt ( k an integer), then

y( tk ) = y(*Ar) = y*
where At is some fixed increment of time.

The memory devices in the block diagram of Fig. 6.1b may be of several
types: semiconductor flip-flops, magnetic devices, delay lines, mechanical re-
lays, rotation switches, and many others. Many of the semiconductor memory
devices will be examined later.

The input signals x - and output signals Zj for Fig. 6.1 may also assume a
variety of forms. Several of these forms will be explored later.

(6.7)

6.1.2 State Tables and Diagrams
The logic equations 6.2 and 6.3 and vector equations 6.4 and 6.5 completely
define the behavior of the sequential circuit modeled in Fig. 6.1b for a given
memory device. However, the description, although complete, does not present
a very lucid picture of the relationships that exist among the pertinent variables.
The functional relationship that exists among the input, output, present state,
and next state is very vividly illustrated by either the state table or the state
diagram. The state diagram is a graphical representation of a sequential circuit
in which the states of the circuit are represented by circles and the state tran-
sitions (the transfer from the present state y to the next state Y) are shown by
arrows. Each arrow is labeled with the input x and the resulting circuit output
z, as shown in Fig. 6.2a.

Figure 6.2b illustrates the state table representation. All circuit input
vectors x are listed across the top, while all state vectors y are listed down the
left side. Entries in the table are the next state Y and the output z. The table is
read as follows: For an input x with the sequential circuit in state y, the circuit
will proceed to the next state Y with an output z.

Input
Present state

/ Next state
Y

x/z
Input/output Y/zy

Present state l >’

Next
state/output

(b)(a)

Figure 6.2 State tables and diagrams, (a) State diagram, (b) State table.
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In practice, the state diagrams and tables are usually labeled using sym-
bols rather than vectors. For example, consider a sequential circuit with two
present-state variables yx and y2. Then

y = _^2 j
Therefore, the vector y can have any of the four possible values:

°1- Aoj ’

?l - a.

1
0 = cy = y =

(6.8)
1 = Dy =

Thus, the sequential circuit has only four possible states, which may be labeled
A , B, C , and D. In general, if r represents the number of memory devices in a
circuit with Ns states, these two quantities are related by the expression

2r~ l < Ns < 2r

This expression will be used in later chapters.

y =I l

(6.9)

EXAMPLE 6.1 Consider a sequential circuit having one input variable x, two state variables
yj and y2 , and one output variable z.

Inputs: x = 0
x = 1

States: [ y r y2 ] = [00] = A
[ yvy2 ] = [01 ] = B
i y v y2\ = [io] = c
l y v y2 ] = [ii] = D

Outputs: z — 0
z = 1

The state diagram for this sequential circuit is defined by Fig. 6.3. Let
us now assume that the circuit is initially in state A; if an input of x = 0 is
now applied, the next state is D and the output is z = 0. This information
may be read from either the state diagram or the state table. Now consider the
application of the following input sequence to the circuit:

x = 0110101100
The circuit will behave as follows when the initial state is A:

Time: . 0
Present state:

Input: 0
Next state:

Output: 0

1 2 3 4 5 6 7 8 9 1 0
A D B A D B B A C C C

1 1 0 1 0 1 1 0 0
D B A D B B A C C C

1 0 0 1 1 0 1 1 1

Hence, this input sequence applied to the machine in state A causes the output
sequence

z = 0100110111
and leaves the circuit in final state C.
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Input x
0 1

D/0 C/1A
B/1 A/0Present B
C/1 D/0
A/0 B/\

(a)

(b)

Figure 6.3 Example sequential circuit, (a) State
table, (b) State diagram.

6.2 Memory Devices
As indicated earlier, an integral part of a sequential machine is the memory unit.
Our discussion will be concerned primarily with the external characteristics of
the memory devices and not their detailed internal functions. In other words,
our analysis will be confined to the use of these elements in the design of digital
systems.

In switching circuit applications, most memory elements are bistable
electronic circuits; that is, they exist indefinitely in one of two possible stable
states, 0 and 1. Binary data are stored in a memory element by placing the
element into the 0 state to store a 0 and into the 1 state to store a 1. The output
Q of the circuit indicates the present state of the memory. Each memory circuit
has one or more excitation inputs, so called because they are used to “excite” or
drive the circuit into a desired state. The different memory devices are typically
named in accordance with their particular excitation inputs, which differ from
device to device.

The two memory element types most commonly used in switching cir-
cuits are latches and flip-flops. A latch is a memory element whose excitation
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input signals control the state of the device. If a latch has an excitation input
signal that forces the output of the device to 1, it is called a set latch. If it
has an excitation input signal that forces the device output to 0, it is called a
reset latch. If the device has both set and reset excitation signals, it is called a
set-reset latch. Latch operation is illustrated in Fig. 6.4a.

A flip-flop differs from a latch in that it has a control signal called a clock.
The clock signal issues a command to the flip-flop, allowing it to change states
in accordance with its excitation input signals. In both latches and flip-flops, the
next state is determined by the excitation inputs. However, as illustrated in Fig.
6.4, a latch changes state immediately in accordance with its input excitation
signals, while a flip-flop waits for its clock signal before changing states. The
final state of a flip-flop is determined by its excitation values at the time the clock
signal occurs. In this manner, multiple flip-flops in a sequential circuit can be
synchronized to a common clock signal so that they all change states together.

Formal procedures for designing flip-flop and latch circuits will be pre-
sented in Chapter 10. In this chapter, generic flip-flop and latch circuits will be
described and several TTL modules that contain flip-flops and latches will be
discussed. Table 6.1 gives a listing of the devices to be covered. Many other
devices are commercially available. We have selected these to give the reader
an introduction to the various features available. You must understand these
features so that you can choose a proper device for each situation as you design
sequential circuits.

nSet

I IReset

Q

(a)

n nSet

mReset

h nClock

Q

(b)

Figure 6.4 Latch and flip-flop timing, (a) Latch
responds immediately to excitation, (b) Flip-flop
responds only on a clock signal.
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TABLE 6.1 TTL MEMORY ELEMENTS [1]

Number of
ElementsDevice

74LS73A
Element Description

Negative-edge triggered JK flip-flop with clear
Positive-edge-triggered D flip-flop with preset and clear
D latch with enable
Pulse-triggered JK flip-flop with preset and clear
Master-slave JK flip-flop with preset, clear, and data lockout
4-Bit hazard-free D latch with clear and dual enable
Positive-edge triggered D flip-flop with clear
Positive-edge triggered D flip-flop with clear
Negative-edge triggered JK flip-flop with preset and clear
SR latch with active-low inputs

2
27474

74LS75 4
7476 2
74111
74116
74175
74273
74276
74279

2
2
4
8
4
4

•6.3 Latches
6.3.1 Set-Reset Latch
Using Feedback to Create Simple Latches
Consider the OR gate of Fig. 6.5a. Assume both inputs are at logic 0. If
the output is connected back to one of the inputs as shown in Fig. 6.5b, the
gate remains stable with an output of 0. Suppose a logic 1 is applied to the
unconnected input S, as shown in Fig. 6.5c. What happens to the output of
the OR gate? It changes to logic 1. Thus the device output Q has been set to
logic 1. Changing the input 5 back to logic 0 leaves the output Q at logic 1
because of the feedback to the other OR gate input, as shown in Fig. 6.5d. So
this device is permanently set to logic 1 and is therefore called a set latch.

Figure 6.5 Set latch, (a) OR gate, (b) Feedback added, (c) Output set to 1.
(d) Feedback holds Q = 1.

Let us replace the OR gate of Fig. 6.5 by a NOR and NOT gate cascade,
as shown in Fig. 6.6a.This is an equivalent set latch circuit. If we use the output
of the NOR gate as the output Q of the latch, we generate the circuit of Fig.
6.6b. Examine the operation of these cascaded gates. The output of the NOR
gate is initially at logic 1 if logic 0 is present on both its inputs. The NOT
gate feedback signal is logic 0, yielding a stable condition. Placing a logic 1
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390 Chapter 6 Introduction to Sequential Devices

on the unconnected input R of the NOR gate forces its output to logic 0, as
shown in Fig. 6.6c and forces the feedback signal to logic 1. Thus the latch
output Q is reset to logic 0. If R returns to logic 0, as shown in Fig. 6.6d, no
change occurs at the output because of the feedback signal. Therefore, the Q
output will remain at logic 0 permanently, ignoring further changes in input R.
Hence this circuit is called a reset latch. Figure 6.6e presents another view of
the circuit.

0
l

s —
(a)

l

Q
Q Q

l

(b) (c)

cLt»g£vL0
Q

(d) (e)

Figure 6.6 Reset latch, (a) Set latch redrawn, (b) Reset latch
stable with Q — 1. (c) R = 1 resets latch to <2 = 0. (d) Further
changes inhibited, (e) Alternative view of reset latch.

Set-Reset Latch: NOR Structure
Devices that stay permanently in one logic state are not very useful except
in very unusual design situations. If we combine the features of both latches
described previously into one circuit, we can set or reset the latch circuit as
needed. Let us replace the NOT gate in the circuit of Fig. 6.6a with a two-input
NOR gate, N 2,connected to operate as a NOT gate as shown in Fig. 6.7a. The
device still operates as a set latch. Now, if we disconnect the lower input of NOR
gate N 2 as shown in Fig. 6.7b, this input will function as a reset excitation for
the device (the same function as in Fig. 6.6e). Thus we have created a set-reset
latch ( SR latch ) with two 2-input NOR gates. The more traditional view of the
circuit is the cross-coupled form of Fig. 6.7c. Let us adopt the logic symbol of
Fig. 6.7d to represent the SR latch. We will use it as a building block for other
circuits in this section.
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N2Q Q

(b)(a)

5 N1 Q S Q

QR
N2 Q

R
(c) (d)

Figure 6.7 Set-reset latch (SR latch), (a) S latch redrawn, (b) SR latch,

(c) Traditional view of SR latch, (d) Logic symbol of SR latch.

SR Latch: NAND Structure
Can we produce the same functional devices that we derived with NOR gates
by using NAND gates? Consider the cross-coupled NAND gates of Fig. 6.8a. If
both the S and R inputs are held at logic 0, the NOT gates apply logic 1 signals
to the cross-coupled NAND gates. But if one input of a two-input NAND gate
is held at logic 1, it acts like a NOT gate; that is,

Gate N l (5 = 0) : 5 - 2 = 1 2 = 2 = 2
Gate N 2 ( R = 0 ) : R Q =V ~

Q = Q
So the cross-coupled gates of Fig. 6.8a assume the function of a pair of

NOT gates when the inputs are 5 = R = 0, as shown in Fig. 6.8b. (The NOT
gates are drawn with dotted lines within the NAND gates to illustrate that the
NAND gates are effectively acting as inverters.) This NOT gate loop of Fig. 6.8b
forms the bistable storage cell for the latch. Output Q feeds through one NOT
gate to generate Q, and Q feeds through the second NOT gate to regenerate Q.

If either of the inputs 5 or R is activated, that is, set to logic 1, while the
other is held at 0, one portion of the symmetric cross-coupled configuration is
altered by a logic 0 being applied to the input of one of the NAND gates; that is,

Gate A1 (5 = 1) : 5 • Q = 0 • Q = 0 = 1
or

Gate N2 ( R =\) : R - Q = 0 - Q = 0 =\
Thus, a logic 0 input to the NAND gate drives its output to logic 1. The logic
1 on the output of the active NAND gate then forces the output of the other
NAND in the pair to logic 0, since

Gate N 2 ( S =\, R = 0 ) : Q = R Q = 0^~

l = 1^1 =\= 0
or

2 = 5 2 = 0 1 = 1 1 = 1 = 0Gate A1 (5 = 0, R = 1) :
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5— S = 0 5 = 1C*>Q Q

Q QR = 0 = l 'i

R —o>
(a) (b)

5
Q

Q
R

(c)

5 Q s Q

Q QR R

(d) (e)

Figure 6.8 NAND SR latch, (a) Logic diagram, (b) Storage mode, (c) Reduced
logic, (d) Logic symbol 1. (e) Logic symbol 2.

So a logic 1 on S will set Q to logic 1, which forces Q to logic 0. In other words,
a logic 1 on S sets the latch. In the same manner, a logic 1 on input R will set Q
to logic 1, which will subsequently drive output Q to logic 0, resetting the latch.

Suppose we drop the two NOT gates from the circuit inputs as shown in
Fig. 6.8c. The inputs to the device become S and R. In other words, the inputs
to the latch are active low (normally high in the active state and transition to
low to activate the device). Let us adopt the logic symbols illustrated in Figs.
6.8d and e to represent an SR latch with active-low inputs.

SR Latch Timing Diagrams
and Delay Parameters
The operation of any latch circuit may be described using a timing diagram.
Figure 6.9a illustrates the action induced in the cross-coupled NOR latch of
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Figure 6.9 Set-reset latch timing diagram, (a) Ideal (zero-gate-delay) case,

(b) Actual timing with non-zero gate delays.

Fig. 6.7c by applying sequences of pulses to the set and reset inputs, S and R.
The waveforms for S and R have been selected to illustrate the various features
of the latch. The initial state of the latch is assumed to be logic 0 (2 = 0). The
device responds to the first of a series of pulses on one of its inputs, but ignores
subsequent ones until a pulse on the other input has intervened.

Note that placing logic 1 signals on both the R and S inputs forces both
outputs, Q and Q, to logic 0. When the two inputs are returned to logic 0, a
race condition is created, and therefore we cannot be certain which state the
device will assume. In the real world, it is virtually impossible for two events
to occur at exactly the same time, even if we want them to! If the R signal is
returned to logic 0 before 5, the final state of Q will be a logic 1. If S is returned
to logic 0 first, the device will be reset to logic 0. If R and S are returned to
logic 0 at exactly or very nearly the same time, the two NOR gates will race
to gain control of the output Q. If both are exactly equivalent electrically, the
output will oscillate! In practical circuits, one of the gates will win the race, but
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we can’t predict which one. Consequently, we restrict the use of the SR latch
to exclude the input combination S = R = 1.

The timing diagram of Fig. 6.9a represents an ideal situation in which
all gate propagation delays are considered to be 0. In reality, every circuit
output requires a nonzero amount of time to respond to changes on its inputs,
as specified by delay parameters tpLH and rpHL, which we defined in Chapter
2. Recall that the mnemonic tpLH designates the delay time between an input
change and a corresponding low-to-high transition of an output. Likewise, t
is the delay between an input change and a corresponding high-to-low output
transition. For a latch circuit, tpLH and tpHL parameters represent the sum of the
propagation delays through the gates between a given latch input and output,
with separate delay parameters usually specified for each input/output pair.

For example, Fig. 6.10 illustrates the timing behavior of the SR latch of
Fig. 6.7c. Following a change in S from 0 -> 1, note that output Q changes
from 1 —^ 0 after propagation delay tpHL through NOR gate N l , and then the
feedback signal causes the Q output to change from 0 -> 1 after propagation
time rpLH through gate N 2. Thus, output Q always changes before output Q
when setting an SR latch built from cross-coupled NOR gates. Therefore, t
from input S to output Q of the latch involves a single gate delay, whereas
£RLH from input S to output Q includes two gate delays. A similar relationship
exists between input R and the two outputs. When resetting the latch with a
pulse on input R, output Q changes before output Q, as illustrated in Fig. 6.10.
As a result of these non-zero propagation delays through the gates of the latch
circuit, Fig. 6.9b presents a more realistic picture of the operation of the latch
than the ideal timing diagram presented in Fig. 6.9a.

PHL

PHL

5
rPLH

(5 to Q )

LR
j rPHL I

!(/? to Q)IrPLH
W )Q \-+ ?PHL

W ) ?PLH
W )

Q
fPHL
W )

Figure 6.10 SR latch propagation delays.

SR Latch Excitation Table
and Characteristic Equation
The logical operation of the SR latch is summarized in the excitation table of
Fig. 6.11a. The excitation table is simply the state table of the latch, showing
the state transitions for each combination of excitation inputs. Columns S and
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Excitation
inputs
5 R

Present
state

Next
state

Q Q*

00 0
0 0

0 No change
1 1
00 1

0 1
0 Reset

1 0
01 0

1 0
1 Set

1 1
01 1

1 1
Not allowedx

1 x

(a)
R

(c)

Figure 6.11 SR latch characteristics, (a) Excitation table, (b) State diagram,

(c) K-map of latch output Q*.

R are the inputs applied to an SR latch while it is in state Q. The column
labeled Q is the state of the SR latch before an input combination is applied to
S and R. The column labeled Q* is the state of the SR latch after the SR inputs
have been applied and a steady-state result has been achieved. We call column
Q the present state of the SR latch and column Q* the next state.

The information of Fig. 6.1la can be represented as a state diagram, as
shown in Fig. 6.1lb, and plotted in K-map form, as shown in Fig. 6.1lc, where
the value of the next state Q* is plotted as a function of the inputs, S and R,
and the present state Q. From this K-map can be derived the following logic
expression for Q*, called the characteristic equation of the SR latch:

Q* = S + RQ
The characteristic equation is so called because it characterizes the operation
of the latch. For example, we can classify the operation of the latch into three
cases.

(6.10)

Case 1: S = R = 0. Equation 6.10 reduces to Q* = Q , which indi-
cates that the state does not change.
Case 2: S = 1, R = 0. Equation 6.10 reduces to Q* = 1, represent-
ing the set operation.
Case 3: S = 0, R = 1. Equation 6.10 reduces to Q* = 0, represent-
ing the reset operation.

74279 Quad SR Latch Module
SR latches are commercially available as the SN74279 [1] module, as listed in
Table 6.1. The 74279 module has four latch units, two as illustrated in Fig. 6.8
and two as shown in Fig. 6.12a. The latter pair of latches each include an extra
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S input, with both active-low inputs S{ and S2 connected to the same NAND
gate, as shown in Fig. 6.12b, so activating either of them will set the latch. To
minimize the overall size of the module, only the true outputs, Q, are brought
out to external pins on the package.

51
Q52—C 51

Q

R Q
R

(a) (b)

Figure 6.12 74279 latch with two set inputs.
(a) Logic symbol, (b) Logic diagram. Source: The
TTL Data Book Volume 2, Texas Instruments Inc., 1985.

Typical propagation delays for the 74279 are 12 ns for /pLH from any input
S to output Q and 15 ns from input R to output Q [1]. Note that the change in
R must propagate through two gates to affect the output and therefore exhibits
a longer propagation delay than changes due to S.

6.3.2 Gated SR Latch
It is often desirable to use a special control signal to inhibit state changes in an
SR latch while S and R are changing. When S and R are ready, this control
signal is activated to enable the latch to respond to the new S and R values. This
device is commonly referred to as a gated SR latch, since the control signal can
be thought of as opening a gate through which signals on the S and R inputs
propagate to the output.

Circuit Structure
In Fig. 6.13a, a control signal, C, is added to an SR latch to apply the inputs
S and R. The two AND gates apply the control signals S and R during time
intervals when the enable signal C is high (logic 1). When C is logic 0, the
inputs of the SR latch are held in the S = R = 0 (no change) state. So the
operation of the latch is as follows: when C = 0, no change occurs and thus
the device is stable; when C = 1, the SR latch excitation table of Fig. 6.1 la
and the SR latch characteristic equation, Eq. 6.10, describe its function.

If we change the AND gates to NAND gates and use cross-coupled
NAND gates for the SR latch, the circuit of Fig. 6.13b results. Substitution of
the circuit of Fig. 6.8c for the latch symbol in Fig. 6.13b produces the NAND
gate implementation of the gated SR latch shown in Fig. 6.13c. The generic
logic symbol for the gated SR latch is presented in Fig. 6.13d.

www.youseficlass.ir



Section 6.3 Latches 397

) >5 s s
Qs Q s

Qc* s
c —< c —

> Jp—C R > QQR Q RR R C • R
(a)

(c)

C

QR

(d)

Figure 6.13 Gated SR latch, (a) With NOR SR latch, (b) With NAND SR
latch, (c) NAND logic diagram, (d) Logic symbol.

Enable
inputs

Excitation
inputs

Next
state

Present
state

C S R Q Q*
0 0 0 Holdx x
0 1 1X X

01 0 0
0 0

0 No change
1 1 1
1 0 1 0 0 Reset
1 0 1 0 Odd, 10d CSR Odd, \d0
1 01 0

1 0
1 Set

1101 1 1
1 1 1

1 1
0 Not allowedx 0 1

1 1 x 101
(a) (b)

Figure 6.14 Gated SR latch characteristics, (a) Excitation table, (b) State diagram.

Characteristic Equation
The complete excitation table and state diagram of the gated SR latch are given
in Figs. 6.14a and b, respectively. From the excitation table we can derive the
following characteristic equation for the gated SR latch:

Q* = SC + RQ + CQ
Note that when C = 0, Eq. 6.11 reduces to Q* = Qy which means that the
present state is held.Substituting C = 1 in Eq.6.11 converts it to Q* = S + R Qy
the characteristic equation of the simple SR latch, and thus the latch is enabled.

(6.11)
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6.3.3 Delay Latch
One of the most frequent operations used in digital systems is storing data.
Bits are moved from place to place and stored for varying periods of time. In
these applications, the memory element excitation input is simply the data to
be stored. In other words, we need a device that transfers a logic value on its
excitation input D into the cross-coupled storage cell of a latch.

Circuit Structure
and Characteristic Equation
The logic symbol of the delay latch, or simply D latch, is shown in Fig. 6.15a.
We can make such a device from a gated SR latch. Examine Fig. 6.14a, the
excitation table of the gated SR latch. If we assign S = D and R = D, then
when enabled we restrict the operation of the latch to the four rows in Fig. 6.14a
in which S = 1 and R = 0, the set condition, or S = 0 and R = 1, the reset
condition. The gated SR latch excitation table can therefore be reduced to the
D latch excitation table given in Fig. 6.16a. The corresponding state diagram
is shown in Fig. 6.16b.

A NAND implementation of the D latch is shown in Fig. 6.16b. Note
that this circuit is simply a gated SR latch with inputs S = D and R = D. An

tos
D

Q
QD

i>°—
Q

SR latchSR latchQc
(a) (b) (c)

Figure 6.15 Delay latch (D latch), (a) Logic symbol, (b) NAND
implementation, (c) NOR implementation

Enable
input

Excitation
input

Present
state

Next
state

C D Q Q*

0 0 0 Holdx
0 1 1 Od. 10

0 0 0 Store 01
1 0 1 0

01 1 1 Store 1
1 1 1 1

(a)

Figure 6.16 D latch characteristics, (a) Excitation table, (b) State diagram.
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equivalent D latch implementation using NOR gates is given in Fig. 6.15c.
In this circuit, an S R latch is used, with inverters on the D and C inputs to
make both inputs active high. Therefore, the functional operation of this NOR
implementation is identical to that of the NAND implementation of Fig. 6.15b.

The characteristic equation of the D latch can be derived from that of the
gated SR latch by substituting D for S and D for R in Eq. 6.11, as follows:

Q* = S C + R Q + C Q

= DC + (D)0 + C{2
= D C + D Q + C Q

= D C + C Q
Characteristic equation 6.12 describes the operation of the D latch. When the
enable signal is low, (C = 0), Eq. 6.12 reduces to Q* = Q. In this case, the
latch is placed in the hold, that is, no change, operating mode, and it holds
the last value of D that was entered. In other words, when C = 0, data are held,
or stored, in the latch. Substituting C = 1 in Eq. 6.12 gives Q* = D. Thus, the
next state Q* is forced to be the value of the input excitation D whenever the
enable signal C is high; that is, the excitation input D is gated directly to output
Q. In this case, the D latch is said to be in the gated or enabled mode.

The operation of the D latch is illustrated in the timing diagram of Fig.
6.17. Note that, when C is high, any and all changes on D will pass through to
the latch’s output. So the latch stores the last value of D that is present on its
input when the enable signal transitions from high to low, that is, for a 1
transition on signal C.

(6.12)

0

*n n i
i
i

D
i

ii
ii

C
i i ii ii ii i tnji i

i

*Q
i <-
iEnabled Enabledi
iiEnabled i

* *-i i HoldHold

Figure 6.17 D Latch Timing Diagram

Setup Time, Hold Time,
and Pulse-width Constraints
To ensure that a specific value on excitation input D will determine the final
state of the latch, D must not be allowed to change too near the time at which
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D may not
change Setup time

violation
Hold time
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in \D
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(setup)

1 1Q

Unknown stateMinimum enable
pulse width

Figure 6.18 D Latch Timing Constraints

the enable signal makes its transition from high to low. Two time constraint
parameters are defined for every latch device to identify when the excitation
input must be held constant to guarantee correct operation.

The latch setup time, denoted tsu , is defined as the period of time imme-
diately preceding the enable signal transition during which the excitation input
must be stable; that is, the excitation input must be “set up” at least tsu prior to
the enable signal transition and should not change until well after the transition.

The latch hold time, denoted th , is defined as the period of time immedi-
ately following the enable signal transition during which D should not change.
Therefore, the excitation input must be held constant for at least th following
the enable signal transition to ensure that the correct value has been latched.

Setup and hold times are illustrated in the diagram of Fig. 6.18. Here we
have shown rpLH = rpHL = 0 to make the diagram easier to understand. Note the
two constraint violations on the timing diagram. The change in D from 0 -* 1
too close to the clock edge represents a setup time violation, and therefore
the latch output may or may not change from 0 —> 1 as desired. Likewise,
the change in D from 1 —> 0 too soon after the clock edge may result in an
unpredictable state.

In addition to setup and hold time constraints, most gated latches require
a minimum pulse width on the enable input to guarantee a correct state change.
This minimum pulse width is denoted by tw , as shown on Fig. 6.18. Any pulse
whose width is shorter than the specified minimum tw may not be sufficient to
initiate a desired state change.

Consequently, for a given gated latch circuit, it is the responsibility of the
designer to ensure that all enable pulses are of sufficient width to cause state
changes and that, for any enable input transition at time T, no excitation input
changes occur within the time period [ T — tsu , T + th\.

74LS75 Quad D Latch Module
A number of standard TTL modules contain D latches. Four bistable D latches
with enable inputs are available in the SN74LS75. The logic circuit for the D
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latch circuit used in this device, displayed in Fig. 6.19a, is a direct implemen-
tation of the D latch characteristic equation, Eq. 6.12.

The operating modes for this circuit are controlled by the enable signal
C. When C is held at logic 0 as illustrated in Fig. 6.19b, the upper AND gate is
disabled, so its output sends a logic 0 to the NOR gate. A NOR gate with one of
its inputs held at logic 0 acts like a NOT gate for its other input line, as shown
in Fig. 6.19b. Note also that holding C at logic 0 places a logic 1 on the lower
AND gate, making it behave as a transparent gate for the latch feedback signal
Q. In this mode of operation, the device resembles two NOT gates configured
as a bistable storage element. We call this the hold or storage mode.

Now suppose we change the enable input C to logic 1 as shown in Fig.
6.19c. This mode of operation enables a path from input D through the upper
AND gate and the NOR gate to the latch’s output Q ( Q = D ). In this mode
the input is gated directly to the output, as shown in Fig. 6.19c. We call this
the gated operating mode. Note that the SN74LS75 gives the same operating
modes as the previous D latch design in Fig. 6.15.

Correct operation of the latch requires that there be a delay between
changes in D or C and any corresponding changes in the feedback signal Q, so
that next state, Q* , will indeed be determined by the present state, Q, and the
inputs. This delay is provided by the propagation delays through the gates of the
two-level latch circuit. We often show this delay as illustrated in the sequential
circuit model for the latch shown in Fig. 6.19d, in which the the delays of the

yD CD D 0
Q Q

<t> oIV
JQ Q

CQ

(b)(a)

)D D1
Q

<D> OQo

)
Q Q*

At

(d)(c)

Figure 6.19 A second D latch configuration, the 74LS75. (a) Logic diagram,

(b) Hold, or storage, mode, (c) Gated mode, (d) Sequential circuit model.
Source: The TTL Data Book Volume 2, Texas Instruments Inc., 1985.
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logic gates are modeled as a single lumped parameter, At . Typical delay times
and timing constraint values for the 74LS75 are listed in Table 6.2.

TABLE 6.2 PROPAGATION DELAYS AND TIME
CONSTRAINTS FOR THE SN74LS75 [1]

Typical Value (ns)Timing Parameter
Q ) 15( DtPLH

9( D ^ Q )tPHL
12Q )( DtPLH

Q )( D 7tPHL
15(C Q )tPLH
14(C Q )tPHL

Q ) 16(CtPLH
(C Q ) 7tPHL

t su (minimum setup time for D )

th (minimum hold time for D )

tw (minimum pulse width on C)

20
5
20

74116 Dual 4-Bit Hazard-free
D Latch Module
The D latch circuit of Fig. 6.19a uses a minimum number of logic gates.
However, it contains a static 1 hazard, making it subject to output glitches;
that is, its output may momentarily change to 0 when it should be a constant 1
level during certain input changes. A hazard-free design for this D latch may
be needed in some applications to eliminate these glitches at the output. We
can design a hazard-free version of this circuit by examining a K-map of its
characteristic equation, presented in Fig. 6.20a. The static 1 hazard occurs in
traversing from the product term DC to product term QC on this map.

We can eliminate the static 1 hazard by adding a third product term D Q
as shown in the K-map of Fig. 6.20b, making the logic equation

0* = DC + CQ + DC
The resulting logic diagram for the hazard-free design thus requires three AND
gates, as shown in Fig. 6.20c.

This design gives the principal features of the SN74116, a dual 4-bit D
latch TTL module. The SN74116 also adds a clear feature and uses an active-
low enable. Its operation is described by the functional diagram of Fig. 6.20d.
Note that the device has two active-low enable signals Cl and C2, and thus
the hold mode for the chip requires either or both of these enable signals to be
high. For the gated mode, both enable signals must be low.

Note also that a reset signal, labeled CLR, has been provided by changing
the output NOT gate to a NOR gate. A logic 0 on the CL R line forces the output
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Figure 6.20 Hazard-free D latch, the SN74116. (a) K-map for Q* of a D
latch, (b) K-map for hazard-free D latch, (c) Hazard-free D latch logic diagram,

(d) SN74116 functional diagram.

Q to logic 0. In addition, a set control input PRE, for preset, capable of forcing
the output Q to logic 1, could have been added as shown by the dashed line if
an extra pin were available. The CLR and PRE control inputs in Fig. 6.20d are
referred to as asynchronous control lines, since they affect the state of the latch
directly, without being synchronized with the enable signal. Groups of latches
are commonly forced to a desired initial state by sending a pulse to their CLR
or PRE control inputs by a single RESET signal line.

•6.4 Flip-flops
The latch circuits presented thus far are not appropriate for use in synchronous
sequential logic circuits. When the enable signal C is active, the excitation
inputs are gated directly to the output Q. Thus, any change in the excitation
input immediately causes a change in the latch output. Recall our model for
the synchronous sequential circuit, presented in Fig. 6.1. The output signals
from the memory elements are the input signals to the combinational logic,
and vice versa. When its enable is active, a latch acts like a combinational
circuit, too!Thus we have the possibility of twocascaded combinational circuits
feeding each other, generating oscillations and unstable transient behavior. This
problem is solved by using a special timing control signal called a clock to
restrict the times at which the states of the memory elements may change.
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6.4.1 Master-Slave SR Flip-Flops
iwwmm- —
Circuit Structure and Operation
One method to prevent the unstable behavior just described is to employ two
latches in a master-slave configuration, as shown in Fig. 6.21a. The enable
signals of the two latches are driven by complementary versions of a clock
signal. When the clock signal C is low, the master latch is in the gated mode
and the slave, in the hold mode. Changes on the excitation input signals S and
R are gated into the master latch while the slave latch ignores any changes on
its inputs. When the clock changes to logic 1, the two latches exchange roles.
The slave latch enters the gated mode, sending the output of the master latch to
the flip-flop output Q, while the master latch enters the hold mode and ignores
any further changes on its inputs.

Master Slave
QM

S Q 0ss Q

AQ
R QR Q R Q

AQ D—0° O
(b)(a)(clock)

C
i S and R may

not change
i

Master gated holdhold gated gated hold I gated hold
i

i i
i ISlave hold gated hold gatedhold gated hold gated 1R I I

I1 I I 1I5 I I II 5 i i

I hu
i(setup)

i
i

R II I

Ki Icl l l
i 1 I iIlQM (hold)i

i i i i
<-i

Q 1 i 1 t\V t\VI
I C low pulse width \C high pulse width

(master enabled) ! (slave enabled)
ii
i

(d)
Flip-flop output can change

(c)

Figure 6.21 Master-slave SR flip-flop, (a) Logic diagram, (b) Pulse-triggered
device logic symbol, (c) Timing behavior, (d) Timing constraints

www.youseficlass.ir



Section 6.4 Flip-flops 405

Master-slave flip-flops like the one in Fig. 6.21a are sometimes called
0 transitionspulse triggered because they require both logic 0

on the clock input in order to operate properly. On one transition the master
operates, that is, enters the enabled mode; on the other transition, the slave
operates. The logic symbol of Fig. 6.21b indicates the pulse-triggered nature
of the device by showing the clock edge transition that enables the slave at the
flip-flop output terminals Q and Q. In Fig. 6.21b, the rising transition indicates
that the flip-flop outputs Q and Q change on the positive edge of a pulse on the
clock signal.

1 and 1

Timing Characteristics
If the SR flip-flop is used in a synchronous sequential circuit, an unstable
oscillation cannot occur because, at all times, either the master latch or the
slave latch is in the hold mode, effectively blocking all unstable transient
behavior. This timing behavior is illustrated in Fig. 6.21c.

Note that the S and R inputs to the master latch should be stable before
the clock transition that puts the master into the hold mode. Therefore, the flip-
flop inputs are subject to the same setup and hold time constraints described
earlier for gated latches. Figure 6.2Id illustrates the setup and hold times for
the SR flip-flop of Fig. 6.21a. Since the excitation inputs affect only the master
latch, the setup and hold times are defined relative to the rising edge of the clock
signal, which is the clock transition that changes the master latch from the gated
mode to the hold mode. The excitation inputs of the slave latch are connected
to the outputs of the master latch and are therefore not directly affected by the
external excitation inputs.

Figure 6.21d also illustrates minimum clock pulse-width constraints for
the master-slave flip-flop.The low pulse-width parameter is the minimum pulse
width required for proper operation of the master latch, while the high pulse-
width parameter is the minimum pulse width required for the slave latch. The
sum of these two pulse widths determines the minimum period of any clock
signal to be used for the flip-flop.

Excitation Table
and Characteristic Equation
The excitation table and state diagram for the SR master-slave flip-flop are
presented in Figs. 6.22a and b, respectively. Note that the columns S , /?, and
Q of the excitation table denote the conditions on the flip-flop signals before
the clock pulse is applied. The column Q* denotes the flip-flop output after the
clock pulse has been applied. Comparing this table to Fig. 6.1la, we see that
the operation of the master-slave SR flip-flop is similar to that of the simple
SR latch. Likewise, the state diagrams are identical, although the latch changes
states immediately when S or R changes, whereas all flip-flop state changes
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are triggered by clock pulses. Consequently, the same characteristic equation
describes the operation of both devices:

Q* = S + R Q
The difference is that the latch output reacts immediately to any input changes,
while the flip-flop output changes are controlled by the clock pulse C. Note
that both negative and positive edges are required for C.

(6.13)

S R Q C Q*
o o o JT
0 0 1 J"L

0 No change
1

0 1 0 J1
o i i n

0 Reset
0

1 0 0 JT
1 0 1 JT

1 Set
1

l l o J1
l i l JT

x Not allowed
x

(a)

Figure 6.22 SR master-slave flip-flop characteristics,

(a) Excitation table, (b) State diagram.

6.4.2 Master-Slave D Flip-flops
We can build a master-slave D flip-flop from two D latches as shown in Fig.
6.23a. Note that this flip-flop operates in the same manner as the SR version of
Fig. 6.22. The master latch is gated when the clock is low and the slave, when
the clock is high. The logic symbol for this pulse-triggered device is shown in
Fig. 6.23b. Note that the logic symbol indicates that the outputs change on the
positive edge of a pulse on the clock signal.

The excitation table of the master-slave D flip-flop is given in Fig. 6.24a
and the state diagram in Fig. 6.24b. The behavior of this device is illustrated
on the timing diagram of Fig. 6.24c. At the top of the diagram, the gated latch
is indicated by the symbols M and S for master and slave. When C = 0, the
master is gated so that its input is passed to the slave. On the 0
of C, the master “latches” the input value on D (designated by the x symbol)
and holds this value. Since the slave is gated while C = 1, the latched value in
the master is passed to the flip-flop output Q.On the falling edge of the clock
C, the slave “latches” the data from the master, as shown by the symbols x on
signal Q M in the diagram. Note that delays t?LH and t?HL have been included
in the timing diagram.

The overall behavior of the D flip-flop output Q can be summarized by
noting that Q will assume the value of D on the rising edge of the clock C.
Therefore, the characteristic equation for a master-slave D flip-flop is simply

Q* = D

1 transition

(6.14)
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Master Slave
QM

D Q D QD — Q

D _jQ
D Q >” QC Q C

C _]Q

-D*>c
(clock) (a) (b)

Figure 6.23 Master-slave D flip-flop, (a) Logic diagram, (b) Logic symbol.

D Q C Q*

0 on
0 1 Jl

0 Store 0
0

1 0 Jl
1 1 Jl

1 Store 1
1

(a)

1 11 1 1 1 1 1
1 1 1 11S 1 M S 1 S S i MEnabled: M M M1 1 1 1

C
1 1
1 1D

1 h' r

QM ' •

Q = Qs

(c)

Figure 6.24 Master-slave D flip-flop characteristics, (a) Excitation table, (b) State
diagram, (c) Timing diagram.

6.4.3 Master-Slave JK Flip-flops
Circuit Structure and Operation
The JK flip-flop may be considered an extension of the SR design examined
earlier. The JK operates as an SR flip-flop whose inputs are assigned J = S and
K = R. However, whereas the S = R = 1 input combination is not allowed,
the JK uses this special case to incorporate a very useful mode of operation.
The additional feature of the JK device is that its state toggles, that is, changes
from 0 -> 1 or from 1 -> 0 when J — K = 1. The four modes of operation
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(hold, set, reset, and toggle) are summarized in the excitation table presented
in Fig. 6.25a and the corresponding state diagram in Fig. 6.25b.

By plotting the next state Q* on a K-map, as shown in Fig. 6.25c, the
characteristic equation of the JK flip-flop can be derived:

£* = KQ + JQ
From this equation, the logic diagram for the flip-flop can be derived, as pre-
sented in Fig. 6.26a. The logic symbol for this device is shown in Fig. 6.26b.
Note that the clock input signal is inverted within the device itself so that the
slave will change on the falling edge of the clock.

Examine the state diagram of Fig. 6.25b. The JK flip-flop will change
from the 0 state to the 1 state with an input of J = 1 and K = 0 (set) or J = 1
and K = 1 (toggle). That is, a logic 1 on J will force the device into the 1
state no matter what value is placed on input K . Therefore, K is a don’t-care
condition, denoted on the state diagram by a value of d. The remainder of the
diagram may be derived from the excitation table.

(6.15)

Q*J K Q C

0 0 0 _TL
0 0 1 J“L

0 Hold
1

o l 0 _TL
o l i J1

0 Reset
0

1 0 0 J"L
1 0 1 n 1 Set

1
1 1 0 /1
l 1 l J~L

1 Toggle
0

(a)

K

(c)

Figure 6.25 Pulse-triggered JK flip-flop characteristics,

(a) Excitation table, (b) State diagram, (c) K-map for Q* .

KQ

Q* D _JQ Q J ~]Q

c
D—JQ QC JQ K n<2

<o
(b)

(a)

Figure 6.26 Pulse-triggered JK flip-flop, (a) Logic diagram, (b) Logic symbol.
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7476 Dual Pulse-triggered
JK Flip-flop Module
Several pulse-triggered JK flip-flops are available as standard TTL modules [1].
Figure 6.27 shows the logic symbol of the SN7476. This device packages two
flip-flops that operate in the manner displayed in Fig. 6.26. Included in the con-
figuration are asynchronous set signals P R E and reset signals C L R.The P R E
and C L R signals override the operation of the pulse-triggered inputs J , K , and
CLK\ that is, if CLR = 0, then the state Q* goes to 0, or if PRE = 0, the state
Q* sets to 1, independent of the values of the clock and the excitation inputs.

’76

(2)
^1PRE 5

(15)(4) n) j l <2lJ
(1)

1CLK ClA (14)(16) 1IA: 1 (2I KPRE
(3)

^J 1CLR R— Q
c
K 10 O- Q (7)

^2PRECLR (ID(9)
2J-̂ 1 2(2T (6)

2CLK(a)
(10)(12) 12K 2(2

(8)
^2CLR

(b)

Figure 6.27 Dual pulse-triggered JK flip-flops, the 7476.
(a) Generic logic symbol, (b) IEEE standard logic symbol. Source:
The TTL Data Book Volume 2, Texas Instruments Inc., 1985.

6.4.4 Edge-triggered D Flip-flops
All the pulse-triggered flip-flops described in Section 6.4.3 require both a
rising and falling edge on the clock for proper operation. The master-slave
arrangement introduced a buffering mechanism to eliminate unstable transient
conditions in sequential circuits with feedback elements. Another approach to
solving the problem of unstable transients is to design the flip-flop circuitry so
that it is sensitive to its excitation inputs only during rising or falling transitions
of the clock. A circuit with this design feature is called positive edge triggered if
it responds to a 0 -> 1 clock transition or negative edge triggered if it responds
to a 1 0 clock transition. The edge-sensitive feature eliminates unstable
transients by drastically reducing the period during which the input excitation
signals are applied to the internal latches.
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Commercially available D flip-flop modules normally have a positive-
edge-triggered clock control signal. Several of these devices, as listed in Table
6.1, are described next.

7474 Dual Positive-edge-triggered
D Flip-flop Module
Consider the logic diagram of the SN7474 dual positive-edge-triggered D flip-
flop shown in Fig. 6.28a. This circuit examines the excitation input signal D
during the rising edge of the clock input CLK.The generic and IEEE standard
symbols for the SN7474 are shown in Figs. 6.28b and c, respectively. It is
important to note that the small triangle at the Cl input to the device is the
standard notation to indicate that it is positive edge triggered.

The modes of operation of the SN7474 are shown in the excitation table
of Fig. 6.29. Note that the asynchronous preset and clear signals, CLR and

’74

(4)
^PRE 1 PRE A

(5)(3)
1CLK 1 (2> Cl

A w> PRE (6)QCLR 1CLR \QRe °r ~

> Q Q y- (9)(101 2Q2PRE> Q CLR ( IDCLK 2CLKY (8)(12) 2(22D(b)
(13)

2CLR
D

(a) (c)

Figure 6.28 SN7474 dual positive-edge-triggered D flip-flop, (a) Logic
diagram, (b) Generic logic symbol, (c) IEEE standard logic symbol. Source: The
TTL Data Book Volume 2, Texas Instruments Inc., 1985.

Inputs
PRE CLR D CLK

Outputs
Q Q Mode

H H SetL Lx x
H Clear

Not allowed
Clocked operation
Clocked operation

Hold

L L Hx x
H HL L x x

TH H H H L
TH HH L L

H H (2o QoLx

Figure 6.29 SN7474 excitation table. Source: The TTL Data
Book Volume 2, Texas Instruments Inc., 1985.
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PRE ,override the clocked operation of the circuit. When both CLR and P RE
are inactive (high), the clock CLK takes control of the device. While CLK is
low, the flip-flop is in the hold mode. However, on a 0 -* 1 transition of the
clock, denoted by f , the data input D is transferred to the flip-flop output Q.

Edge-triggered Flip-flop
Timing Characteristics
To insure proper operation of any edge-triggered flip-flop, the excitation inputs
should not change immediately before or after the clock transition. The precise
limitations on these time periods for each flip-flop type are specified in the
TTL manual [1]. As defined earlier for latches and pulse-triggered flip-flops,
the period before the clock transition for an edge-triggered flip-flop is defined
to be the setup time ( tsu ); the period after the transition is the hold time (th ).
In general, if we violate these specified constraints for an edge-triggered TTL
device, the device’s behavior is not guaranteed.The relationships of these timing
specifications to the clock transition and flip-flop propagation delay times for
a generic positive-edge-triggered D flip-flop are illustrated in Fig. 6.30. Notice
that the propagation delays from the time the clock crosses its rising-edge
threshold until the output Q changes are called tpHL and tpLH ,as defined earlier.

Let us examine the specific case of the SN7474. For this device, the values
for both rpHL and fpLH, from the TTL manual [1], are listed in Fig. 6.30b as 0 ns.

To Output Q
from: Delay Parameter Value (ns)

Clock 25?PLH
?PHLD should be stable 40

1f 1 25PRE *PLH
frHL 40r*- th I I

L^i CLR 25\ rPLH
t p H L

D i
ii 40tsu tiu -H II I

i \ //1 * ' 111 *\

(b)C
ii

i i i Minimum
Value (ns)

Inputi/ i i ConstraintPinQ i
i
ii i 20Dr*- 0>LH Cu!"*“ ?PHL i

D 5lh
30Clock

Clock
f^ low
tw high
tw low
tw low

(a)
37
30CLR
30PRE

(c)

Figure 6.30 SN7474 flip-flop timing specifications [1]. (a) Timing diagram.
(b) Propagation delays, (c) Timing constraints. Source: The TTL Data Book Volume 2
Texas Instruments Inc., 1985.
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In other words, for the SN7474, the value of D is sampled and transferred to
the flip-flop output Q at the exact instant the clock reaches its threshold value.
You should always make sure that the input is either logic 1 or 0 at this instant
in time so that the flip-flop’s output Q will be the value you have planned in
your system design. Timing constraints for the SN7474 are listed in Fig. 6.30c.

74175 and 74273 Positive-edge-triggered
D Flip-flop Modules
Two other members of the TTL family of positive-edge-triggered D flip-flops
are illustrated in Fig. 6.31. The SN74175 quad D flip-flop, shown in Fig. 6.31a,

(4)
I D —^ (2)

D Q — \Q
CK - 0) -Q IQ

C L E A Ry
(5) (7)

D Q 2Q
> CK _ (6) _

Q 2(2
2D

CLEARy
(12) (10)— D Q 30

Q> CK

CLEAR

2D
( ID 3QQ

y
(13) (15)

D Q -—- 4Q_ (14) -Q 4Q

4D
C > CK(9) t>oCLOCK - CLEARyto <£x>CLEAR-

(a)

2D 6D 8DID 3D 4D 5D ID
(3) (4) (7) (8) (13) (14) (17) (18)

(11)c*>CLOCK

ID ID ID ID ID ID IDID
»-< > Cl L-C > C1 L-OC1 L—C > Cl -C > ci L-C > ci ^> 01 L-G > ci

R R R R R R R R

2 2 2 y2 2 2 2(H>oCLEAR
(2) (5) (6) (9) (12) (16) 09)05)

2(2 6(2 IQ 8(2Q 3(2 4(2 5(2

(b)

Figure 6.31 Positive-edge-triggered D flip-flop packages, (a) SN74175.
(b) SN74273. Source:The TTL DataBook Volume 2, Texas Instruments Inc.,1985.
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has common clock and clear controls, as well as both true (Q) and comple-
mented ( Q ) outputs. The SN74273 octal D flip-flop, shown in Fig. 6.31b, has
the same common clock and clear lines, but brings only the true outputs (Q)
to the outside world through the package pins. In the logic diagrams for these
two devices, note the logic symbols used for the D flip-flops. The clock input
CK displays the small triangle that signifies that the flip-flop is edge triggered.
The inversion bubble in front of the triangle indicates a negative-edge-triggered
device. But since the input signal CLOCK is inverted by the NOT gate at the
bottom of the logic diagram, from the standpoint of the external package pins,
the flip-flops appear to be positive edge triggered.

The SN74273 has setup and hold time requirements of 20 and 5 ns, re-
spectively. These values are well within the tolerances needed to avoid unstable
transients in most synchronous sequential logic circuit designs.

6.4.5 Edge-triggered JK Flip-flops
Edge-triggered JK flip-flops are common in the TTL family. The majority of
them are negative edge triggered. Consider the following examples.

74LS73A Dual Negative-edge-triggered
JK Flip-flop
Let us examine the logic diagram of a SN74LS73A shown in Fig. 6.32a. This
dual negative-edge-triggered device requires setup and hold times of 20 and 0
ns, respectively. Its generic and IEEE standard logic symbols are given in Figs.
6.32b and c. Note that this 14-pin device features individual asynchronous
clear lines 1CLR and 2CLR. The inversion bubble in front of the triangle
on the generic logic symbol of Fig. 6.32b indicates a negative-edge-triggered
device. Likewise, the small triangle at each clock input in Fig. 6.32c is the IEEE
standard notation for a negative-edge-triggered flip-flop.

74276 Quad Negative-edge-triggered
JK Flip-flop
Suppose your design requires four JK flip-flops. Consider using the SN74276
shown in Fig. 6.32d. It features common preset and clear control signals. Each
flip-flop brings its true output signal Q to a device package pin. Each flip-flop
features individual excitation inputs J and K , as well as its own negative-edge-
triggered clock.

74111 Dual JK Flip-flop with
Data Lockout
The SN74111 shown in Fig. 6.32e is a special implementation of the JK flip-
flop. It contains a data-lockout feature that combines a positive-edge-triggered
master latch followed by a negative pulse-triggered slave. That is, the master
latch operates on the leading edge of the clock. While the clock remains high,
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0

>K

CLK

'LS73A(a)

(14)
17

(1)
\CLK

(3)
\ K

(2)
1CLR

(7)
27

(5)
2CLK

(10)
2K

(6)
^2CLR

' 276
PRESHL. -Ss (2)

^CLK. S1PRE
(4)

1717 n(5) 10(2) (5)
1717 0)

^

- (4)
^

\CLKic>
>JTci (i)\CLK (6)1K1 K n\K1K (6) 10(9) (3)

^ R27 2C? 1CLR(8)
^ (14)2CLK (7)
^

(9)2P/?£2* (12)
37 (13L
~l (14)
3/r (19)
47 (18)

^07L

(15) 20(12)
2730

(ID3CLtf (10) _2CLKCs (16) 20(15)
2A:40

03)4CLK 2CLR4K

(d) (e)

Figure 6.32 Edge-triggered JK flip-flops, (a) Logic diagram (SN74LS73A).
(b) Generic logic symbol (SN74LS73A). (c) IEEE standard symbol (SN74LS73A).
(d) SN74276. (e) SN74111. Source: The TTL Data Book Volume 2, Texas
Instruments Inc., 1985.
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further changes to the excitation inputs of the master are ignored. During this
time, the slave latch is in the hold mode, holding the previous value of the master.
When the clock signal falls, the new value in the master is gated to the slave.
Note that this combination of clock controls is denoted by the presence of both a
small triangle in front of the clock input C1, denoting a positive-edge-triggered
master latch, and a falling edge symbol adjacent to the Q and Q flip-flop outputs,
denoting that the slave is pulse triggered and changes on the falling edge of
the clock. This device finds application in complicated designs where clock
distribution networks introduce time delays called clock skew. The SN74111
can be used to minimize the effect of clock skew in digital system design.

6.4.6 T Flip-flops— — — - • — - —- . -•.-/f

Edge-triggered T Flip-flop
A common building block used in sequential logic circuits that counts pulses
on a signal line is the T ( trigger or toggle), flip-flop. Although this device is not
available as a stand-alone TTL device, it is frequently used in building counting
modules. The T flip-flop has only one excitation input signal, 7\ as shown on the
logic symbol for the device pictured in Fig. 6.33a. The function of this device is
to change (toggle) its state upon each negative-going transition of its excitation
input signal, as shown in the excitation table and state diagram presented in
Figs. 6.34a and b, respectively. Therefore, the characteristic equation of the
edge-triggered T flip-flop is simply

cr = Q (6.16)
One way to visualize the construction of this device is to consider a

negative-edge-triggered JK flip-flop with its J and K inputs set high. The
device in Fig. 6.33a behaves as if it were a JK flip-flop connected as shown
in Fig. 6.33b. This is the most commonly used implementation, since a wide
variety of JK flip-flops are readily available.

vcc

A A
PRE PRE

Q Q
C > CT

Q QK
CLR CLR

T y
(b)(a)

Figure 6.33 Negative-edge-triggered T flip-flop,

(a) Logic symbol, (b) Functional equivalent.
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2*T Q

\ o Toggle
0 Toggle
1

t 1

(a)

Figure 6.34 Edge-triggered T flip-flop characteristics,

(a) Excitation table, (b) State diagram.

A
PRE

T Q
o c

C Q QK
CLRy

(a) (b)

Figure 6.35 Clocked T flip-flop, (a) Logic symbol,
(b) Functional equivalent.

Q*T Q C Clocked T Flip-flops
o o I
0 1 i

0 Hold
Some versions of the T flip-flop operate under clock pulse control, as illustrated
in Fig. 6.35a. In this case, the flip-flop toggles if 7 = 1 when the clock makes
a high-to-low transition and holds its present state if 7 = 0 when the flip-flop
is clocked. The operation of a clocked 7 flip-flop is described by the excitation
table given in Fig. 6.36.

The equivalent circuit of the clocked T flip-flop, shown in Fig. 6.35b,
is simply a JK flip-flop with inputs J = K = 7, and its C input driven by
the clock signal. The characteristic equation of the clocked T flip-flop can be
derived from that of the JK flip-flop by substituting 7 for J and K as follows:

Q* = J Q + K Q

= T Q + T Q
For 7 = 0, the characteristic equation reduces to Q* = Q, which is the hold
condition, while for 7 = 1, the characteristic equation becomes Q* = Q,
which represents the toggle condition.

Another variation of the clocked T flip-flop circuit is illustrated in Fig.
6.37a. In this circuit the control signal 7 allows the clock pulses to be selectively
applied to the input terminal 7, with each clock pulse that arrives at 7 causing
the flip-flop to change state. A detailed timing diagram is offered in Fig. 6.37b.

1
l o i
l l i

1 Toggle
0

Figure 6.36 Excitation
table of clocked T flip-flop.

(6.17)
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JUUUUULJI-Clock

At1
JU1Clock

(b)

Figure 6.37 The clocked T flip-flop, (a) Logic symbol, (b) Timing diagram.

6.4.7 Latch and Flip-flop Summary
In the previous sections we have examined latch and flip-flop memory devices.
Latch circuits are used primarily in situations where data are to be captured
from signal lines and stored. The simple SR latch captures random pulses on its
S and R inputs, since each pulse sets or resets the state of the latch. The gated
SR and D latches change state only during times in which the latch is enabled.
Therefore, gated latches are used to capture data that arrive and stabilize before
the end of an enable pulse.

Flip-flops are used primarily for sequential circuit designs in which all
state changes are to be synchronized to transitions of a clock signal. Most of
these circuits utilize JK or D flip-flops,depending on which requires the smallest
number of gates to derive the excitation inputs for each given design. SR flip-
flops are rarely used, since JK flip-flops provide the same operating modes and
add the additional toggle mode, eliminating the problem of having to avoid the
condition S = R = 1. T flip-flops are used mainly in counter designs.

Table 6.3 summarizes the characteristic equations of the different latch
and flip-flop devices discussed in this chapter. Since pulse-triggered flip-flops

TABLE 6.3 SUMMARY OF LATCH AND FLIP-FLOP
CHARACTERISTICS

Device Characteristic Equation
Q* = S + RQ
Q* = sc+ Q R+ CQ
Q* = DC + CQ
Q* = S + RQ
Q* = D
Q* = KQ + J Q
Q* = Q
Q* = TQ + T Q

SR latch
Gated SR latch
D latch
SR flip-flop
D flip-flop
JK flip-flop
T flip-flop (edge-triggered)
T flip-flop (clocked)
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have the same characteristic equation as corresponding edge-triggered flip-
flops, there is a single entry in the table for the D and JK flip-flops. We will
use these characteristic equations in later chapters as we analyze and design
various sequential circuits. The reader is referred to [2] through [5] for further
information on the design and characteristics of latches and flip-flops.

•6.5 Other Memory Devices
Many other kinds of storage devices may be used for the memory elements
in Fig. 6.1b, several of which are magnetic cores, capacitors, magnetic films,
superconductive cryotron elements, and electromechanical relays. Since these
other types of memories are rarely used in today’s computers, their explanation
is beyond the scope of this text. The reader is referred to [5] and [6] for further
information on various memory technologies and devices.

•6.6 Timing Circuits
Another class of frequently used devices that are closely related to flip-flops are
one-shots and timer modules. These important circuits are briefly summarized
next.

6.6.1 One-shots
One-shots are monostable multivibrators, that is, digital storage circuits with
only one stable state. They are temporarily driven into a transient state by a
0 —> 1 and/or 1 —> 0 transition on their inputs. They remain in this transient
state for an amount of time specified by the timing constant of an RC network at
the device’s package pins. The generic operation of these devices is described
in a number of digital electronics textbooks; for example, see [5]. Specific
characteristics of the TTL family of devices can be found in the TTL Manual
[1]. See, for example, the SN74121, SN74122, and SN74123. The SN74122
and SN74123 are retriggerable. This means that their transient timing cycle
is restarted each time its inputs experience a transition. The SN74121 is not
retriggerable; after it initiates a timing cycle, it ignores further changes on its
inputs until that timing cycle has been completed.

6.6.2 The 555 Timer Module
The 555 timer module is a memory device that is used in a wide variety of
applications since it can be configured for use as a one-shot or as an astable,
or oscillating, multivibrator [7]. The 555 contains an SR latch, as illustrated in
Fig. 6.38. The S and R latch inputs are controlled by the outputs of two analog
comparators Cl and C2. A second reset input, Rl, can be controlled directly.
The output of either comparator is a logic 1 whenever its upper input is at a
higher voltage than its lower input. One input of each comparator is held at a
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Resetvcc O
Control

SE 555Q
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Output1R
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R Comparator r\ O DischargeQ l
6

Ground

Figure 6.38 555 precision timing module.

fixed voltage by a three-resistor voltage divider. The lower input of comparator
Cl is held at 2/3Vcc, while the upper input of comparator C2 is at 1/3Vcc.

The latch is set ( Output — 1) by applying a logic 1 signal to the trigger.
This signal is inverted to logic 0 before entering comparator C2, making the
voltage at the lower input less than the 1/3Vcc at the upper input, causing
comparator C2 to apply a logic 1 to the S input of the latch. The latch is
reset by forcing the threshold input to a voltage higher than 2/ 3Vcc, causing
comparator Cl to apply a logic 1 to the R input of the latch. As with any SR
latch, care must be taken not to allow S = R = 1.

Astable Operation
Astable operation is achieved by making the 555 self-triggering, that is, by
alternately changing the trigger and threshold inputs using an RC circuit, as
shown in Fig. 6.39. The frequency of oscillation is a function of resistors RA
and RB and capacitor C and is computed as follows. The time for the capacitor
to charge up through RA and RB, and thus the time for which Out = 1 is:

tH = 0.693( RA + RB )( C )
Likewise, the time it takes the capacitor to discharge determines the time for
which Out = 0 and is given by

(6.18)

tL = 0.693( RB)(C)
Combining Eqs. 6.18 and 6.19 gives the period of oscillation T as

T = tH + tL
= 0.693( RA + 2RB )( C )

(6.19)

(6.20)
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VCC

0.01pF_£
X 5 8

RA RLCorn Vcc
4

RESET
7

DISCH 3
Out6 Square waveRB THRES

2
TRIG

C1 GND
Figure 6.39 555 timing module
configured for astable operation.

J j
SE 555

The frequency of oscillation / is simply the inverse of the period T as defined
in Eq. 6.20, which is

1.44
/ = (6.21)

( RA + 2 Rb )C
For example, to obtain / = 45 Hz, the following component values would be
selected:

RA = 100 A:ft
RB = ioo A:ft
C = 3.125

For those readers who understand analog circuits, the device works as
follows. When output = 1, Q = 0 and transistor Q\ is cut off , that is, behaves
as an open circuit. This causes capacitor C to charge up through resistors RA
and RB until the voltage at Trigger/Threshold is sufficiently high that the two
comparators produce S = 0 and R = 1. This resets the latch, forcing output =
0 and Q = 1. In this condition, transistor Q1 is turned on, that is, behaves as
a short circuit, causing capacitor C to discharge through RB and Q1 until the
voltage at Trigger/Threshold is sufficiently low that the comparators produce
R = 0 and S = 1, setting the latch. This operation continues indefinitely.

One-shot Operation
For one-shot operation, we want a storage element that can be triggered to a
given state, with the state automatically returning to its default value after a
given time. This can be done with a 555 timer module configured as shown in
Fig. 6.40 for monostable (one-shot) operation. The 555 will be triggered by a
pulse on its Trigger input, generating a pulse on its output.
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Vcc

0.01

X 85
RA RLCorn Vcc

4
C RESET
7

DISCH 3
Out Output6

THRES
2

Trigger TRIG
SE 555

C 3.3-ms pulse if
RA = 3 kQ and C = 1 \iF

GND

-D
Figure 6.40 555 one-shot logic diagram.

The 555 circuit is configured for monostable operation by using one
resistor, RA, and one capacitor, C, as shown in Fig. 6.40. Referring to the 555
diagram in Fig. 6.38, Output is set to 1 whenever a logic 0 pulse is applied
to the trigger input. In the configuration of Fig. 6.40, this causes the capacitor
C to charge through resistor RA until the voltage at the Threshold input is
sufficiently high to reset the latch, returning output to 0. It is assumed that the
Trigger input has returned to logic 1 prior to Threshold resetting the latch.

The values of resistor RA and capacitor C determine the time it takes the
capacitor to charge and thus determine the duration of the output pulse. The
pulse width is given by

(6.22)tw =\A( R A )( C )
Therefore, as an example, the values R A = 3 k Q and C = 1 p F would produce
a pulse of approximately 3.3-ms duration.

•6.7 Rapid Prototyping
of Sequential Circuits

Now that we have examined memory devices, let us conclude this chapter by
looking briefly at their use in realizing sequential circuits. The Implementation
of a sequential logic circuit requires the design of the combinational logic and
memory blocks of the sequential circuit model of Fig. 6.1b, given a state table
describing the circuit. We will examine design methods to minimize the hard-
ware of these blocks in Chapters 8 and 9. However, a simple implementation
of any arbitrary sequential circuit can be done by using a memory register to
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realize the memory block in conjunction with programmable read-only mem-
ory (PROM) devices, described in Chapter 5, to realize the combinational logic
block. A typical PROM implementation is illustrated in Fig. 6.41a. This method
is very useful if a prototype circuit is needed rapidly.

Input
x

PROM 1 PROM 2
>

Next Y
state ' r

hI Output
Register

z
Present state y Clock

(a)
Input

Present
state

x
Contents

PROM Address PROM 1 PROM 2
Yx y z

Y/zy
r

Next state/
output

(b) (c)

Figure 6.41 PROM sequential circuits, (a) PROM sequential circuit structure,

(b) State table format, (c) PROM sequential circuit format.

Given a sequential circuit with n inputs x x , . . . , x n , m outputs z l , . .
and r state variables y x , . . . , y r , recall from Eqs. 6.2 and 6.3 that the combina-
tion logic block must realize the equations

z i = g i ( x v ... , x n , y v ..., y r )

Y t = h.( x v ..., x n , y v ... , y r )
where and h t are switching functions.The r next-state variables, T , represent
the values to be stored in the r memory elements when the state changes.

Referring to Fig. 6.41a, the first PROM implements the next-state com-
binational logic functions, h( , while the second PROM is devoted to the output
logic functions, g r For many applications, both PROMs may be implemented
in a single chip.

The power of this type of design is in the programmability of the PROM
devices. If we want to change the state behavior, then one or both of the PROMs

Zm'• >

(6.23)i = 1 , , m
i r (6.24)
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are simply erased and reprogrammed. If we place the PROMs in sockets,
no rewiring of our circuit has to be done to make these changes. Designers
appreciate this feature when they must prototype the design themselves!

How do we specify the contents of the PROMs? Consider the state table
of Fig. 6.41b, which is in the general format presented earlier in Fig. 6.2b. If
we simply rearrange the information as shown in Fig. 6.41c, the state table may
be used to generate the truth table for the PROMs.

EXAMPLE 6.2 Let us implement with a PROM the sequential
circuit whose state table is shown in
Fig. 6.42a.
The combinational logic has one input line (x ) and two present-state flip-flop
inputs ( y2 and ). The output of the combinational logic will be two next-state
signals (T2 and Yl ) and the output line (z). We can rearrange this state table into
the truth table of Fig. 6.42b. This truth table defines the combinational logic
needed to implement the example sequential circuit.

X

0 1 0 10 1yiyi X

00 10/1 00/1 1 1 01
01 11/0 11/1

2 0 1 110 01/1 00/0
11/011 00/0 3 0 00

YiYiU y2 o4 0 1
(a) >

.Vl 5 1 1 1
>

6 0 00

7 0
TY\/2 ZYl Y i Zx V2 y i

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

1 0 1
1 1 0
0 1 1
0 0 0
0 0 1
1 1 1
0 0 0
1 1 0

D V D V
c c

Q Q

Clock

(c)(b)

Figure 6.42 PROM sequential circuit example, (a) Example state table, (b) PROM
truth table, (c) PROM implementation.

A single PROM containing eight words of 3 bits each may be used to
implement the circuit as shown in Fig. 6.42c. Two D flip-flops complete the
implementation.
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EXAMPLE 6.3 Let us build a circuit that sequences through
the prime numbers that are less than 256.
The PROM implementation for this sequencer is given in Fig. 6.43. Notice that
the sequencer only uses certain rows in the PROM’s structure. If the sequencer
begins in state 2, it is sent to state 3, then 5, then 7, then 11, then 13, then 17,
and so forth, until it reaches state 251. The next prime number above 251 is
greater than 256, so the sequencer sends the unit back to state 2 to repeat the
loop. But how can we start in state 2? One way is to program state 2 into all
the unused locations in the PROM. When power is applied to the device, it will
start in an unknown state. If it is an illegal state, that is, not a prime number,
the first clock pulse will send the unit to state 2 and the sequence begins.

256 x 8 PROM
0
1
2 0 0 0 0 0 0 1 1
3 0 0 0 0 0 1 0 1
4
5 0 0 0 0 0 1 1 1
6
7 0 0 0 0 1 0 1 1
8
9

10
11 0 0 0 0 1 1 0 1
12
13 0 0 0 1 0 0 0 1
14

251 0 0 0 0 0 0 1 0
252
253
254
255

ID 2D 3D 4D 5D 6D ID 8D

IQ 2Q 3Q 4Q 5Q 6Q IQ 8Q
Clock <

SN74273
(8 D flip-flops)

Clock

Figure 6.43 PROM implementation of a prime number
sequencer.
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Note that the eight flip-flops in the feedback loop of this unit can be
implemented using one SN74273 chip. So we have implemented the prime
sequencer unit with only two chips.

The preceding examples illustrated the use of PROM devices in creating
sequential logic circuits. Other programmable logic devices are also utilized in
sequential circuit design. These will be discussed in Chapter 11.

B 6.8 Summary
In this chapter we have introduced models for sequential circuits including
logic diagrams, state tables, and state diagrams. A number of practical mem-
ory elements, including latches and flip-flops, have been described in detail.
In Chapter 7 we shall examine sequential modules constructed from these
elements. In Chapters 8 and 9 we will examine methods for analyzing and
synthesizing synchronous and asynchronous sequential circuits that are built
from these memory elements.
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2.

3.
4.
5.
6.

7.

PROBLEMS Construct a state diagram from the following state table: What is the logic
equation for the output variable z?

6.1

x
0 1

D/1 B/0
D/1 C/0
D/1 A/0
Bl1 C/0

A
B
C
D

Given the following state table, find the output and state sequences for the input
sequence

6.2

JC = 010101
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if the circuit starts in state A:

x
0 1

D/0 B/0
C/0 B/0
B/0 C/0
B/0 C/1

A
B
C
D

6.3 For the following sequential circuit, determine the output sequence for the input
sequence

x = 0010110101
if the starting state is A. Draw a state diagram for the circuit.

0 1
B/0 C/1
C/1 B/0
A/0 A/1

A
B
C

Derive the state diagram and characteristic equation of the latch circuit in
Fig. P6.4.

6.4

A > Q >A
Q

B

>O Q
Q

B

Figure P6.4 Figure P6.5

6.5 Find the excitation table of the latch circuit in Fig. P6.5 and describe its behavior
in words.

Is the circuit of Fig. P6.6a a valid latch design? Explain. If it is a latch, complete
the excitation table of Fig. P6.6b. Can it be used as a gated SR latch? If so, how?

6.6

A > Q Q* ModeA B C Q
0 0 0 0
0 0 0 1

No change
No change

0
1>> Q (b)

B
(a)

Figure P6.6
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6.7 Construct state diagrams for the following:
(a) D flip-flop
(b) SR flip-flop

(c) T flip-flop
(d) JK flip-flop

6.8 Derive the characteristic state equations shown in:
(a) Equation 6.10 for SR latches
(b) Equation 6.12 for clocked D latches
(c) Equation 6.15 for JK flip-flops
(d) Equation 6.17 for clocked T flip-flops

Given the JK flip-flop of Fig. P6.9a, complete the timing diagram of Fig. P6.9b
by determining the waveform of the output Q.

6.9

n—nClock
Jxi

Clock —C >C 1Ix2

QKx2 Q

(a) (b)

Figure P6.9 (a) Flip-flop, (b) Timing diagram.

6.10 Given the SR flip-flop of Fig. P6.10a, complete the timing diagram of Fig.
P6.10b by determining the waveform of the output Q. Note that the flip-flop is
triggered on the positive edge of the clock signal. The condition S = R = 1 is
produced twice by the inputs. Will this lead to unstable operation? Explain.

Clock
Q i i1i i >

i i i
i i
i i
iClock

*2 I I I I
I I [
I I I
I IQ i 1

Q i i i

(a) (b)

Figure P6.10 (a) Flip-flop, (b) Timing diagram.

6.11 The waveforms of Fig. P6.11 are applied to the inputs of an SN7476 JK flip-flop.
Complete the timing diagram by drawing the waveforms of flip-flop outputs Q
and Q.

6.12 The circuit of Fig. P6.12a contains a D latch, a positive-edge-triggered D flip-
flop, and a negative-edge-triggered D flip-flop. Complete the timing diagram of
Fig. P6.12b by drawing the waveforms of signals yv y2, and yy
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n n n n n n n
j

iK

PRE

JCLR

Figure P6.11

>'2 V3

D D Q D Qx

0 DC QQ

Clock
(a)

Clock
i i i i i
i i i i i i Ji i i i iA'

I I I I I I
II I I I

(b)

Figure P6.12 (a) Logic diagram, (b) Timing diagram.

6.13 The circuit of Fig. P6.13a contains a JK flip-flop and a D flip-flop. Complete
the timing diagram of Fig. P6.13b by drawing the waveforms of signals Q x and

assuming that:
(a) The JK flip-flop is negative edge triggered.
(b) The JK flip-flop has data lockout.

6.14 Complete the following table of flip-flop excitation values required to produce
the indicated flip-flop state changes, where y indicates the present state and Y
the desired next state of the flip-flop.

Present State Next State JK flip-flop D flip-flop SR flip-flop T flip-flop
Y J A S R TDy

o o
o I
I 0
1 1
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QX

K Q
R

X?
Clock

CLR

(a)

n—n—n—n n n nClock

CLR

|_!x

(b)

Figure P6.13 (a) Logic diagram, (b) Timing diagram.

Discuss why the condition S = R = 1 leads to an unstable condition for an SR
latch.
Describe how the unstable condition S = R = 1 is avoided in the storage latch
of the following:
(a) D latch
(b) JK flip-flop

The circuit of Fig. P6.17 is intended to operate as a JK latch. Discuss whether
or not this circuit is stable for the condition J = K = C = 1. If the circuit is
unstable, discuss what could be done to the clock signal, C, to make the circuit
operate as expected.
Design a master-slave JK flip-flop with asynchronous present and clear inputs
using only NOR gates.
Describe the operational difference between a clocked D-type latch and a D-type
master-slave flip-flop as observed from the outputs of the devices.
Describe how a master-slave flip-flop appears to operate as an edge-triggered
device when observed from its external outputs.
Using the hazard-free D latch circuit of the SN74116 shown in Fig. 6.20c, design
a master-slave D flip-flop with asynchronous preset and clear inputs, PRE and
CLR, respectively.

Examine the SN7474 D flip-flop circuit of Fig. 6.28a and describe how it
operates as an edge-triggered device.

Examine the SN7476 JK flip-flop circuit of Fig. 6.27. Discuss why the PRE
and CLR inputs are referred to as asynchronous inputs, while J and K are
called synchronous inputs.

6.15

6.16
Q

(c) T flip-flop
C

Q 6.17K

Figure P6.17

6.18

6.19

6.20

6.21

6.22

6.23
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Connect a D flip-flop in such a manner that it will perform like a clocked T
flip-flop.

Construct a D flip-flop using only a JK flip-flop and no additional gates.

The circuit of Fig. P6.26 is similar to that used in commercial programmable
logic sequencer chips. It is designed to operate as either a JK flip-flop or as a
D flip-flop according to the settings of switches S W{ and S W2. Determine the
settings (open or closed) of the two switches required for JK and D flip-flop
operation, and describe how this operation is achieved.

6.24

6.25

6.26

QA

j'svS W X
QB K

(d)

Figure P6.26Clock

Design a synchronous sequential circuit, using EPROMs and edge-triggered D
flip-flops, to implement the following state table:

6.27

*1 *2
00 01 11 10

A = 00 A B D C
B = 01 B C A
C = 10 C D B
D = 11 D A

D
A

C B

Specify the contents of your EPROM in a table of hexadecimal numbers.

6.28 Design a synchronous sequential circuit, using EPROMs and edge-triggered D
flip-flops, to implement the following state table:

X i X1*3
010 011 100000 001 101 110 111

A = 000 A
B = 001 B
C = 010 C
D = 011 D
E = 100 E
F = 101 F
G = 110 G
H = 111 H

CB H B B B D
C CA A A D A
D B E D B D B
E C C F A CA

G F F HF D B
G E A E H G E
H F A H H FB
A G A G E GB

Specify the contents of your EPROM in a table of hexadecimal numbers.

www.youseficlass.ir



Section 6.8 Summary 431

Design a synchronous sequential circuit, using EPROMs and edge-triggered D
flip-flops, to implement the following state table:

6.29

*1 X 2
00 01 11 10

B MAA A
C AAB B

BC C A D
CED AD

F DE E A
EA GEF
FG G

H H
A H

GA I
HA Jl I
IA KJ J

A L JK K
M KL AL
A LAM M

Specify the contents of your EPROM in a table of hexadecimal numbers.
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and flip-flops. In this chapter, we now investi-
gate sequential logic modules, in which combina-

tional logic elements are combined with latches and
flip-flops to realize several commonly-used functions.

These modules are available as standard TTL compo-
nents and as functions in VLSI design libraries. Each
contains flip-flops that are grouped together to form a
register, which is the basic building block of a digital
computer. First we will look at shift registers, which are
used for storing and manipulating binary data. Then
we will combine shift registers with a binary adder to
produce an accumulator. Finally, we will examine coun-
ters, which are configurations of flip-flops that generate
sequences of binary numbers.

All of the modules in this chapter can be de-
signed with straightforward interconnections of gates
and memory elements. In the next chapter we will ex-
amine formal methods for designing sequential circuits.ppi

v*
** - •

*

A'*

»
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Modular Sequential Logic* xm
•n*?j

•7.1 Shift Registers
A shift register is a sequential logic module constructed from flip-flops that
manipulates the bit positions of binary data by shifting the data bits to the left
or right. A typical shift register is illustrated in Fig. 7.1.The n-bit shift register in
Fig. 7.1a holds n bits of binary data and is constructed using master-slave flip-
flops. The design and operation of master-slave flip-flops has been presented
in Chapter 6. Each master-slave flip-flop forms a cell of the shift register. Each
cell has a master latch and a slave latch and holds 1 bit of binary data. The shift
control pulse for the register is normally low and experiences a rapid low-high-
low (0 —^ 1 —^ 0) transition to move, or shift, the binary data one position to
the right. The binary data bits normally reside in the slave latches. On the rising

1) edge of the shift control pulse, data from the slave latch in each cell
are transferred to the master latch in the next cell to the right. Note that the data
in a single cell at this moment consist of their old values (the binary output
values before the shift pulse) residing in the slave latch and their new values
(the binary output values after the completion of the shift pulse) residing in its
master latch. On the falling edge (1 —> 0) of the shift-control pulse, the master
latch in each cell is transferred to its slave, bringing its new value to its output
terminal. Thus, after both rising and falling transitions of the shift control pulse,
the binary bit in cell Xt has been transferred to cell X i _ [ . In other words, the
binary number in the shift register has been transferred one position to the
right. Consequently, we call this register a serial-in, serial-out shift register.
The serial-in and serial-out terminals have been labeled in Fig. 7.1a.

Fig. 7.1b illustrates an implementation of the serial-in, serial-out shift
register using edge-triggered SR flip-flops. Note the logic symbol for the flip-
flop. The clock terminal is labeled CK. The triangle denotes that it is an edge-
triggered input, and the bubble in front indicates that it is sensitive to a falling
(1 — 0) transition. So we call this a negative-edge triggered SR flip-flop. The
shift-control pulse (labeled Shift ) is inverted by the NOT gate and applied to
all the CK inputs simultaneously. These flip-flops change in unison when Shift
changes from low to high (0 —> 1). On this transition, the data in flip-flop X (

are transferred to flip-flop X ( _ v Consequently, this configuration performs the
same serial-in, serial-out function of the register in Fig. 7.1a.

(0
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Xn Xi Xi-1 *1Cell n Cell i Cell i-1 Cell 1
i .

Serial outSerial in
M S M —*M S S M S >

, ,nShift
control
pulse

(a)

Serial outSerial in
S SQ S Q Q*

CK CK

H>° Q R QR R Q*
nShift O0

(b)

Figure 7.1 Serial-in, serial-out shift register, (a) Shift register with
master-slave cells, (b) Shift register with edge-triggered SR flip-flops.

7.1.1 A Generic Shift Register
Now let us consider a generic shift register element. See Fig. 7.2. The labels
on the diagram indicate the following:

Parallel in (Y.,i =i,#i): one input line for each flip-flop with data to be
entered into the register
Parallel out ( Xr i =l,u): one output line coming from each flip-flop Q
terminal
Shift pulse (sometimes labeled CLOCK): a pulse on this control line
makes the binary data in the register move over one cell in unison
Serial in: data line feeding the first cell in the shift register; a bit
enters on each Shift pulse
Serial out data line from the Q terminal of the last flip-flop in the
register; a bit exits on each Shift pulse
Clear control: a pulse on this line drives all the flip-flops in the reg-
ister to logic 0
Preset control: a pulse on this control line presets certain flip-flops
to logic 1, those with a logic 1 on their parallel input line Y.

The shift register of Fig. 7.2a may be operated in four modes: serial in
and serial out, parallel in and serial out, serial in and parallel out, or parallel
in and parallel out. The all-serial mode requires that the data in be in a serial
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Parallel in (F )

Parallel out (X )

A
Serial in Serial out72-Bit shift

register*

1 1_ Preset control

Shift pulse

Clear control
(a)

Parallel out (X)Parallel in ( y )

ti
Serial inSerial out n-Bit shift

register
«-Bit shift

register
>

Preset control

Shift pulse

Clear control
Shift pulse

Clear control
(c)(b)

Figure 7.2 Generic shift register, (a) Logic symbol, (b) Parallel-in, serial-
out. (c) Serial-in, parallel-out.

format synchronized with the Shift pulse. The shift register then serves as an
n-pulse time delay for a stream of serial data.

The parallel-in with serial-out mode is shown in Fig. 7.2b. Proper opera-
tion in this mode requires the following control pulse sequence. First, a Clear
control pulse must be applied to drive all shift register cells to logic 0. Second,
the parallel data must be connected to the input lines Y. , i = 1 , n.Then a Preset
control pulse is applied to drive certain shift register stages to the logic 1 state
as specified by the parallel input data. Last, n Shift pulse signals are furnished
to the unit to generate a serial stream of output data.

Finally, let us consider the serial-in, parallel-out mode of operation, il-
lustrated in Fig. 7.2c. For proper operation in this mode, a Clear control pulse
may be applied to zero all cells of the shift register. Then the Serial-in data
are applied to the register synchronized with n Shift pulse signals. After the
last Shift pulse has returned to zero, the Parallel-out data are available at the
flip-flop outputs X . , i = 1, n.
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7.1.2 Standard TTL Shift Register Modules
The generic shift register module depicted in Fig. 7.2 finds very widespread
usage in digital systems design. Digital designers employ shift registers in
many different applications. How does one decide which shift register to use?
A wide variety of shift register devices are commercially available. Now let
us examine some typical examples from the SN7400 series. The modules
that we will discuss are listed in Table 7.1. These specific models have been
chosen to illustrate how many of the different features are implemented. For
example, do you need a bidirectional device? What is the difference between
synchronous data hold and clock inhibit? Will your design need synchronous
load or asynchronous preset? These features are examined in detail in this
chapter. The user is referred to The TTL Data Book [1] for complete information
on these and similar devices.

TABLE 7.1 SN7400 SERIES SHIFT REGISTERS [1]

Device
7491A

Features
8-Bit, serial in, serial out
5-Bit, serial in, serial out, asynchronous preset,
parallel out, common clear
8-Bit, serial in, serial out or parallel out, common clear
8-Bit, serial in, serial out, asynchronous load, clock inhibit
4-Bit, serial in, serial out, common clear, synchronous load,
parallel out, synchronous data hold
4-Bit, bidirectional, serial in, serial out, synchronous load,
parallel out, clock inhibit, common clear

7496

74164
74165
74179

74194

SN7491A
The SN7491A is an 8-bit, serial-in, serial-out shift register. It is an 8-bit version
of Fig. 7.1b with one additional feature, a gated serial input. Examine the logic
diagram of the device shown in Fig. 7.3a. Inputs A and B are ANDed into the
S terminal of the first SR flip-flop. This allows one input to be used as a serial
data source and the other as a data enable control line. Note that the shift control
line is labeled Clock for this device. We can clear the register by holding the
enable line to zero and pulsing the Clock line eight times. Observe that both
true and complemented data are available at the output of the eighth flip-flop.

Figure 7.3b displays the function table for the device. When both inputs
A and B are held high, logic-1 data bits enter the device. After eight clock
pulses (at time fn+8), the high data reach the output terminals (QH and <2#)• If
either input A or B is held low, the data reaching the output at time t
be logic 0.

willn+8
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Figure 7.3 SN7491A serial-in, serial-out shift register, (a) Logic diagram,

(b) Function table, (c) Package pins. Source: The TTL Data Book Volume 2,
Texas Instruments Inc., 1985.

The pin configuration for the dual-in-line package is shown in Fig. 7.3c.
This figure displays a top view of the device. The notation NC by a pin means
that it is not connected (unused).

SN74164
The SN74164 is an 8-bit, serial-in, serial- or parallel-out shift register with
a common clear control signal. Figure 7.4a presents the logic diagram of the
device. Compare this diagram to the one for the SN7491A in Fig. 7.3a. Note
that a Clear line has been added so that the device can be driven to the all-zero
state by one active-low pulse (1 —> 0 — 1). Another feature of the SN74164 is
its eight parallel output lines, one for each of the eight flip-flops in the device.
In this device, the complement of the last cell of the register is not available as
it was in the SN7491A.

One way of showing the behavior of this device is through an example
timing diagram. See Fig. 7.4b. The sequence begins with a negative-going pulse
on the Clear input line to drive the device to the all-zero state. Next the clock is
supplied with a series of pulses. The device looks at the values on the A and B
serial input lines every time the clock signal makes a 0 — 1 transition. If A and
B are both high on this transition, a logic 1 is shifted into the device. Otherwise,
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Figure 7.4 SN74164 serial-in, serial/parallel-out shift register, (a) Logic
diagram, (b) Timing diagram, (c) Function table, (d) Package pins. Source:
The TTL Data Book Volume 2, Texas Instruments Inc., 1985.

a logic 0 is entered. Note that a 1 or a 0 is entered on every 0
of the clock. Finally, another Clear signal drives all the flip-flop outputs to 0.
An interesting pattern of delayed signals is generated at the flip-flop outputs

1 transition

’
:

.
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of this device. Each pattern is delayed from its predecessor by one clock pulse
interval (the time between 0 — 1 transitions on the clock).

Figure 7.4c displays the function table. Examine the table and interpret
its rows and columns as follows. A low signal on the Clear line holds all eight
outputs at logic 0. The Clear line must be held high for the shift register to
operate. With the Clear line high and the Clock line low, the eight flip-flops
in the device hold their initial values ( Qi0, for i = A, ... , H ). In this state the
device is looking for positive-going transitions (0 — 1) on the clock to shift data
down the chain of flip-flops. If a positive-edge transition (a 0
denoted by an upward arrow in the table) occurs at time t
flip-flops Qb, Qc,. . ., Q H , will assume the values of their neighboring flip-flips
to the left at time tn . For example, Q B at time tn+ ] equals QA at time tn , or
QB = QAn. The value of output QA at time tn+l is determined by the serial
inputs A and B. If both A and B are high, then QA is high. Otherwise, QA is
low.

» 1 transition,
the outputs ofn+1’

Finally, the pin connections for the SN74164 are illustrated in Fig. 7.4d.
Note that all 14 pins have been used in the device. The pin numbers in Fig. 7.4d
have also been inserted into the logic diagram of Fig. 7.4a for the convenience
of the device user.

SN7496
This is a 5-bit, serial-in, serial-out/parallel-out shift register with asynchronous
common clear and asynchronous preset. See the logic diagram of Fig. 7.5a.
The SN7496 has only one Serial input line. It has all the other features of the
SN74164 plus one additional feature—asynchronous preset. Notice that each
SR flip-flop has a gated Preset i input ( i = A, . . . , E ). The common Preset
enable line is ANDed with each external Preset i signal to gate it to each flip-
flop. This feature may be used in conjunction with the Clear line to parallel
load the shift register with data. First an active-low Clear pulse (1 —> 0 —> 1)
is applied to the device to drive all five flip-flops to the logic 0 state. Then the
individual Preset i signals with the data to be transferred into the register are
applied to the flip-flops by an active-high Preset enable pulse (0 — 1 —> 0).
Note that the flip-flop outputs will be held at the values on their preset i lines
if the Preset enable line is held high. Therefore, the preset enable pulse should
be returned to logic 0 before any shift control pulses are applied to the clock
line.

Some typical operations of the SN7496 are illustrated in Fig. 7.5b. First
the serial-in, serial-out feature is illustrated. An active-low Clear pulse is ap-
plied to drive all the flip-flops to logic 0. Then an active-high signal is ap-
plied to the Serial input line, which is entered into flip-flop A on the first
0 — 1 transition of the clock. The serial input signal is then removed so that
each succeeding 0 -* 1 transition of the clock will shift the logic 1 down the
chain of five-flip-flops. After the fifth clock pulse, all five flip-flops have re-
turned to the all-zero state. Next an example of parallel loading the register is
given. An active-high Preset enable pulse loads the register with binary data,
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Figure 7.5 SN7496 5-bit serial-in, serial/parallel-out shift register, (a) Logic
diagram, (b) Timing diagram.

(Q E Q D Q C Q B Q A ) = (01011). Finally, the data entered into the register are
converted from parallel to serial form by applying four additional clock pulses
to drive all five bits out the register’s QE output pin.
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Figure 7.5 (Continued) SN7496 5-bit serial-in parallel-out shift register, (c) Function
table, (d) Package pins (top view). Source: The TTL Data Book Volume 2, Texas
Instruments Inc., 1985.

The function table for the SN7496 is given in Fig. 7.5c. Since the Clear
signal is active low and Preset enable is active high, this combination is not
normally applied to the device. If we apply (Clear, Preset enable ) = (0, 1), the
SR flip-flops will assume the all-zero state as illustrated in row 2 of the table.
Consider row 1 in the table: (Clear, Preset enable ) = (0, 0). This is the clear
function. Rows 3, 4, and 5 demonstrate various presetting examples. In row 3,
all the individual Preset i signals are high, so all the flip-flop outputs Q{ are
driven high. In rows 4 and 5, selected Preset i signals are low, thus leaving
those flip-flops Qi unchanged by the action of the Preset enable signal.The last
three rows of the table demonstrate shifting operations. Row 6 illustrates that
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no shifting occurs while the clock signal is held low. Rows 7 and 8 illustrate
that the Serial input is entered into the register and all data bits are shifted one
position to the right as each 0 — 1 clock transition occurs.

Figure 7.5d displays the pin configuration for this 16-pin dual in-line
package.

SN74165
This device is an 8-bit, serial-in, serial-out shift register with asynchronous
load and clock inhibit features. Inspect the logic diagram of Fig. 7.6a. Note
that this chip has 12 inputs and only 2 outputs. To explain its function, we
have enlarged the first cell of the register in Fig. 7.6b. First note that there is
no clear signal. The logic symbol for each flip-flop indicates that it operates as
a positive-edge-triggered D flip-flop with preset (labeled S ) and clear (labeled
R ) terminals. Both the S and R terminals of the flip-flop are controlled by
the inputs A and Shift / load . Shift represents the operation “shift,” and Load
represents “not-load.” In other words, Shift and Not-load are the same signal,
so Shift and Load are complementary signals. Using Boolean algebra to solve
for the logic equations for S and /?, we find

S — A ( Shift/ Load)

R = S ( Shift/ Load)

(7.1)

= \A ( Shift/ Load) ) ( Shift / Load)

= \A + ( Shift/ Load) ] ( Shift / Load)

= A ( Shift / Load)

When Shift/ Load is high, both S and R flip-flop inputs are low, so the flip-flop
operates in its clocked mode. But when Shift / Load is low, then S = A and
R = A, so the flip-flop output will assume the value of input A; this is the
parallel-load mode of operation for the device.

Next examine the Clock and Clock inhibit signals. When Clock inhibit is
high, the output of the OR gate is held high and blocks (inhibits) any 0
sitions of the clock input, Clock, from reaching the flip-flop clock input terminal,
Cl . So Clock inhibit = / is the hold-data mode of operation for this device.

The operation of the SN74165 is summarized in the function table of
Fig. 7.6c. Row 1 of the table describes the parallel-load mode of operation just
discussed. The last line in the table describes the hold mode in which the Clock
inhibit signal blocks any activity on the clock input. The other three lines (with
Clock inhibit held low) describe the shifting modes of operation. The second
line of the table illustrates the device in its initial state with the clock input low
waiting for a transition. All flip-flops are in a stable condition. On the rising
edge of the clock pulse, the third and fourth rows of the table indicate that the
serial input data are entered into the first cell while the remaining cells shift
their data to the right.

(7.2)

1 tran-

www.youseficlass.ir



Section 7.1 Shift Registers 443
Parallel inputs

G HD EA B
(5) (6)(12) (13) (14) (3) (4)(ID

Shift/Load

( 15)
Clock inhibit

Clock=D O. CL CLCL CL(2)
(9)s ss s s ss s QH> CK> CK > CK > CK > CK > CK(-̂ l>o|c>

0

CK

R

> CK (7) —QH> -C >-C D 'y -c >-qSerial >-c >-C D > -c D DD DD
R RR R RR R

(a)

,4
(IDShift/Load

( 15)
Clock inhibit

Clock=D O.(2)
s

Serial 3
R

(b)

Inputs Internal
outputs OutputParallelClock

inhibit
Shift/

QA QR QHClock Serial A...Hload
hba...hL x x X a

QHOQAO QBO
H QAn

QAn
QAO QRO

L LH x X
T QGnHH L X
T Qc,n

QHO
LH L L x

H H x xX

(c)

Figure 7.6 SN74165 8-bit serial-in, serial-out shift register, (a) Logic diagram,

(b) Cell A. (c) Function table.
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c\oCk _TTJTJTJTJTjnJTJTJTJTJTJ~L
Clock inhibit

LSerial input

Shift/load

HA
L

B

HC
LD

Data <

HE

F

HG

H I| H1
H H L I H i L I H i L I HOutput QH J

L L H i L I H I L [ H i L
Output QH

Serial shift> »

Load
Inhibit

(d)

Figure 7.6 (Continued) SN74165 8-bit serial-in, serial-out shift register,
(d) Timing diagram. Source: The TTL Data Book Volume 2, Texas
Instruments Inc., 1985.

An example timing diagram for this device is shown in Fig. 7.6d.
Here, an active-low pulse on the Shift/ Load input performs an asynchronous
parallel-load operation. It is called asynchronous because it is activated on
the falling edge of the Shift / Load pulse instead of being synchronized with
the rising edge of the Clock signal. The data loaded into the register are
{ Q H Q G Q F Q E Q D Q C Q B Q A ) = (11010101). After the Clock inhibit signal
is returned to zero, the next seven pulses on Clock send the data serially out
of the register ( QH first and QA last ). This demonstrates the parallel to serial
conversion function of this register type.

SN74179
The module is a 4-bit, serial-in, serial-out, parallel-out shift register with asyn-
chronous common clear, synchronous load, and synchronous data hold. Exam-
ine the logic diagram of Fig. 7.7a. The SR flip-flops have a Clear terminal but
no preset function. The asynchronous common Clear control line forces all the
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Figure 7.7 SN74179 4-bit serial-in, serial/parallel-out shift register, (a) Logic
diagram, (b) Function table. Source: The TTL Data Book Volume 2, Texas
Instruments Inc., 1985.
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flip-flops in the register to the logic 0 state when it is held low. When Clear is
high, three other modes of the register are possible. These operating modes are
summarized in the function table of Fig. 7.7b.

Trace the logic inputs to the 5 and R flip-flop terminals. Note that S = R
so that the flip-flop functions as a negative-edge-triggered D flip-flop, with
S = D. Take a close look at flip-flop QB. The logic equation for its 5 input
is

SB = QA( Shift ) + DataB( Shift • Load) + QB( Shift • Load)

From this equation, it is apparent that when Shift is high, the device oper-
ates as a shift register with Serial being the serial-in pin and QD being serial
out. From the second and third terms of the logic equation, we can see that
when Shift is low, the Load signal controls the device operation. Load be-
ing high enables the parallel synchronous load mode of operation: Data i
are entered into each flip-flop Q. on the falling edge (negative edge) of the
clock signal. Since this loading occurs under clock control, it is said to be
synchronous.

The fourth operating mode of this device is established by holding both
the Shift and Load lines low. This condition forces the output of each flip-flop
to be gated back to its input terminals so that the data stored in the register
“recirculates” or is held constant. This is called the synchronous data hold
mode.

(7.3)

SN74194
This module is a 4-bit, bidirectional, serial-in, serial-out, parallel-out shift
register with clock inhibit, asynchronous common clear, and synchronous load.
The interesting new feature of this device is its bidirectional mode of operation.
The logic diagram for the SN74194 is shown in Fig. 7.8a. Note the two mode
control bits, 50 and 51. Examine the logic equations for CK (the clock input
to each flip-flop) and SB (the equivalent D input of flip-flop QB):

CK = Clock + 50 - 51
SB = Qc • 50 + QA • 5l + B • 50 • S\

From Eq. 7.4 for CK, we see that when 50 and 51 are both low the clock is
inhibited because its activity is masked by a constant logic 1 out of the second
term in the equation. So the clocked modes of operation requires that either 50
or 51 (or both) be high.

Let us examine the clocked modes of operation. From Eq. 7.5, if 51 is
high and 50 is low, then SB = Qc; that is, the output of flip-flop Qc is applied
to the input terminals of flip-flop B; this is the shift left operation. Exchanging
the values of the mode control bits (50 high and 51 low) reduces Eq. 7.5 to
SB = Qa , applying the data in QA to flip-flop B\ this is the shift right mode
of operation. The fourth condition of the mode control bits (50 and 51 both
high) gates the module’s external parallel data input bit B to the 5 and R inputs
of flip-flop B\ that is, Eq. 7.5 reduces to SB = B; this is the synchronous,

(7.4)
(7.5)
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Figure 7.8 SN74194 bidirectional serial-in, serial/parallel-out shift register,
(a) Logic Diagram, (b) Function table. Source: The TTL Data Book Volume 2
Texas Instruments Inc., 1985.

parallel-load mode of operation. All four modes of operation are summarized
in the function table of Fig. 7.8b.

The SN74194 is a 16-pin device.
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•7.2 Design Examples Using Registers
7.2.1 Serial Adder Unit
Shift registers may be used in conjunction with combinational circuit modules
to produce some interesting functional units. Consider the full adder (presented
in Chapter 4) and shift registers illustrated in Fig. 7.9. This unit may be used
to add the binary numbers represented by parallel data signals X and Y , with
the result being generated in register Z. This configuration uses two parallel-in,
serial-out shift registers to accept the parallel data words X and Y and apply
them 1 bit at a time to the full adder (FA). A serial-in, parallel-out shift register
is used to convert the serial sum generated by the full adder to the parallel data
word Z. The inputs X and Y are fed to the FA’s least significant bit first. One
D flip-flop is employed to time delay the carry bits so that they are added to
X and Y in the proper position. The operation of the units is controlled by
the clear, Preset, and Shift signals. First, a clear pulse forces a logic-0 into all
the flip-flops of the three registers as well as the carry-delay flip-flop. Then a
preset pulse enters the logic 1 data bits into the proper positions in the X and
Y registers. The full adder will now generate the sum and carry for the least
significant bits of X and Y . A control pulse on the Shift line causes the sum bit
to enter the Z register and the carry to be stored in the carry-delay flip-flop. The

Carry delay

Q D *

CX

1 CLR

n-Bit shift
register

Ci-1 Cir"‘ *
*« FA*

/z-Bit shift
register*>

Siyi

Full
adder Tn-Bit shift

register Z

i .

YPreset
Shift
Clear

Figure 7.9 Serial adder unit.
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full adder again generates the sum and carry output for the next most significant
bits of X and Y . With each shift pulse, the addition of another bit position is
performed. This process is repeated until the rcth shift pulse enters the most
significant bit of the sum of X and Y into the Z register. Now the operation is
complete and the parallel sum is available at the outputs of the Z register.

7.2.2 Serial Accumulators
An accumulator is an adder unit that totals a series of binary data. It functions
like a cash register in that any number of binary data items may be added while
the accumulator keeps the current total sum. Just as with the cash register, we
can exceed the operating range of the accumulator and produce overflow.

A serial accumulator may be designed using the serial adder unit of Fig.
7.9 by eliminating the register Y and allowing register Z to feed back to the
inputs of the full adder. See Fig. 7.10a. For proper operation, the following
control sequence should be employed. First, pulse the Clear control line to
initialize all flip-flops to logic 0. Then apply a Preset pulse, followed by n
Shift pulses. Now the first piece of binary data is in register Z, and register X
will again be in the all-zero state. At this point, new data are supplied to the
parallel input lines of register X and another preset pulse is applied. After n
additional shift pulse signals, the sum of two data items appears in register Z.
Any number of data items may be added as long as the n-bit range of register Z
is not exceeded by the total sum. A serial accumulator is satisfactory for many
low-speed digital system designs.

7.2.3 Parallel Accumulators
For higher-speed operation, the parallel accumulator design of Fig. 7.10b is
more suitable. This design is based on a pseudoparallel adder unit with a
feedback storage register Z. The proper operation of this circuit requires that
the Clear control be pulsed to initialize the circuit. Afterward one Accumulate
pulse is necessary to add each new data item. This unit is faster than the serial
design and is much less complicated to operate. Accumulator modules find
frequent application in digital logic design.

•7.3 Counters
Counters are a class of sequential logic circuits that tally a series of input
pulses; the input pulses may be regular or irregular in nature. The counter is a
fundamental part of most digital logic applications. It is used in timing units,
control circuits, signal generators, and numerous other devices.

Counters may be categorized as binary/nonbinary and asynchronous/syn-
chronous.Severalexample counter designs are described next. Selected SN7400
series counter devices will be used as examples in this chapter to illustrate the
wide variety of choices that are available to the logic designer. Synchronous
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Figure 7.10 Accumulators, (a) Serial unit, (b) Parallel unit.
i
;

?

:and asynchronous designs are covered. Such features as synchronous and asyn-
chronous clear, enable, synchronous and asynchronous load, and ripple carry
output are discussed. Binary and modulo-N counters are illustrated. Table 7.2
summarizes the counters that will be discussed. The features of each device
will be defined as it is presented.

i
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TABLE 7.2 SN7400 SERIES COUNTERS

Device
7492A

Features
-i-2, 46, 4-12, common clear

Type
Asynchronous
mod-12

74160 Synchronous
decade
Synchronous
binary
Asynchronous
decade
Asynchronous
binary
Synchronous
up/down
Asynchronous
binary

4-Bit, synchronous load, asynchronous clear, enable,
ripple carry-out
4-Bit, synchronous load, synchronous clear, enable,
ripple carry-out
-42, 45, 410, common clear, asynchronous load

74163

74176

74177 42, 48, 416, common clear, asynchronous load

74191 4-Bit, asynchronous load, enable, maximum, and
ripple clock outputs
42, 48, 416, common clear74293

7.3.1 Synchronous Binary Counters
A synchronous n-bit binary counter constructed of clocked JK flip-flops is
illustrated in Fig. 7.1la. A binary counter of n flip-flops should begin in the all-
zero state and sequence through the numbers 0, 1 , 2, 3, . . . , 2n — 1, 0, 1, 2, . . .,
and so forth. In other words, the counter will have 2n unique states as shown
in Fig. 7.1lb and will repeat the states as long as clock pulses are applied. The
design of Fig. 7.11a is suggested by the state sequence listed in Fig. 7.11b.
Note that each bit X - should be complemented on the next count pulse if all
bits Xk for k = 1, ..., i — 1 are at logic 1; bit X { is always complemented on
each count pulse. Hence, a two-input AND gate may be used at each counter
flip-flop to generate a toggle control signal for the next more significant bit in
the counter chain. A counter flip-flop and its associated control circuitry are
sometimes call a counter stage.

Under normal operating conditions, the J and K inputs to each flip-flop
should remain stable at either logic 1 or 0 while the count pulse undergoes its

0 transitions. A logic 1 on the clear control line will force all counter
outputs to logic 0 and hold them there until the clear line is returned to logic
0 (its normal logic value). The Inhibit control signal is used to block the count
pulses and leave the counter in some nonzero state, if such data-hold behavior
is required for a particular application.

When the counter reaches the all-one state, the overflow signal will go
high. In some counter designs, this overflow signal is used to drive cascaded
counter modules to produce larger counter word lengths. In these cases, the
overflow signal is commonly called the ripple carry-out (RCO).

0 1
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Figure 7.11 Synchronous binary counter, (a) Logic diagram, (b) State
sequence.

SN74163
This is a 4-bit synchronous counter with synchronous load, synchronous clear,
enable, and ripple carry-out. The logic diagram for the device is presented in
Fig. 7.12a. Notice that all data changes in the JK flip-flops will occur on the
rising edge of the external clock labeled Clock. Therefore, the clear and load
operations are synchronized with the clock in this device.

Let us examine the operation of a typical counter stage, say C. The K
input to the flip-flop may be written

Kc = [ ( Load) + (Clear ) + QB - QA - ENT • ENP]

•[ ( ( Load) 4- (Clear) ) • Clear • Datac ] (7.6)
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QcQJ

C > CK
(5)

Data C K

(11)
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C > C K
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Data D K

(1)
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(7)
ENP ) ) (15)ENT RCO(10)

(a)
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ModeClear Load ENT ENP

L Synchronous clear
Synchronous load

Count
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x X X
H L
H H H H
H H L
H H

xx

X

LX

(b)\

Figure 7.12 SN74163 synchronous binary counter, (a) Logic diagram.
(b) Function table. Source:The TTL Data Book Volume 2, Texas Instruments Inc.,
1985.
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Figure 7.12 (Continued) SN74163 synchronous binary counter, (c) Timing
diagram. Source:The TTL Data Book Volume 2, Texas Instruments Inc., 1985.

where Datac is the data C input in the logic diagram. Using Boolean algebra
to reduce Eq. 7.6 produces

Kc = (Clear) + Load • QB QA • ENT • ENP + ( Load) • Datac
The logic equation for the J input to the flip-flop is

Jc = [ ( Load) -|- (Clear) + QB QA - ENT • ENP ]

(7.7)

(7.8)

{ [ ( ( Load) + ( Clear ) ) • Clear • Datac\( ( Load) + ( Clear ) ) }
or

Jc = Clear [ Load • QB • QA - ENT • ENP + ( Load) • Datac\
From logic equations 7.9 and 7.7, we can determine the function table for the
counter. When Clear is low, Jc = 0 and Kc = 1 so the flip-flop will be reset on
the next rising edge of a pulse on the Clock input signal. This is the synchronous
clear mode of operation. When Clear is high, the other terms in the equations
control the operation of the flip-flop. For example, if Load is low, Jc = Data
and Kc = Datac so that the value of Datac will be entered into the flip-flop
on the next rising edge of the signal Clock. This is the synchronous load mode.

(7.9)

c
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The last case to consider is when both Clear and Load are high. In this
case,

Jc = Kc = QB Qa - ENT - ENP
When the enable signals ENT and ENP are both high, this is the count mode of
operation. In this mode, the counter operates like the one in Fig. 7.11a. Flip-flop
Qc is toggled when all counter bits that are less significant that Qc (in this
case QB and QA ) are high. The output RCO (ripple carry-out) is used in the
count mode. The logic equation for RCO is

(7.10)

(7.11)
Consequently, when enable signal ENT is high, RCO is an all-ones-state de-
coder signal; RCO is high when the counter is in state ( QDQCQBQA )2 —
(1111)2 or (15)10. Sometimes the RCO signal is used to warn that the counter
is about to overflow its dynamic range (exceed its maximum value and return
to the all-zero state).

When either of the enable signals (ENT and ENP) is low, Jc — Kc = 0,
and this is the data-hold (or inhibit ) mode of operation. All the operating modes
are summarized in the function table of Fig. 7.12b.

An example timing diagram for the device is shown in Fig. 7.12c. First a
Clear pulse is applied to force all the flip-flops to the logic 0 state. Then a Load
pulse is applied to enter a binary number into the device. In this case the number
is ( QDQCQBQA )2 = (1100)2. Note that the Clear pulse is not required for
loading a number into this device. The load pulse will accomplish its function
without first applying the Clear pulse. Next, the enable signals ENT and ENP
are activated and a series of count pulses are applied to the Clock input. The
counter cycles through its states (in decimal) as follows: 12, 13, 14, 15, 0, 1,
and 2. At this point, the ENP and later the ENT signals drop to 0 and inhibit
any further changes to the state of the counter. Note that the signal RCO is high
while the counter is in the all-ones state.

RCO = ENT • QD QC QB QA

7.3.2 Asynchronous Binary Counters
An asynchronous binary counter is one whose state changes are not controlled
by a synchronizing clock pulse. By eliminating the requirement for clock syn-
chronization, a reduced amount of circuitry can be used to implement a binary
counter. Consider the synchronous design of Fig. 7.1 la. One may eliminate the
AND gates in the synchronous design by observing the counter state transitions
from another viewpoint; see Fig. 7.13a. Counter stage Xi is complemented each
time state X ._ x makes a 1 — 0 transition; stage X x is always complemented.
A counter based on these observations is demonstrated in Fig. 7.13b. An asyn-
chronous common Clear command may be used to initialize the counter to the
0 state, and the Count control command is held at logic 1 for counting; logic 0
on Count inhibits all counting and leaves the counter in a constant state; this is
the data-hold mode.

Let us examine the behavior of the asynchronous binary counter as over-
flow occurs. Just before overflow, all counter stages are at logic 1 as shown in
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Figure 7.13 Asynchronous binary counter, (a) State sequence, (b) Logic diagram,

(c) Timing diagram.
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Fig. 7.13c. After the clock pulse falls, the flip-flop of counter stage X { responds
seconds. Each stage then follows in a similar manner until the entire

counter has reached the logic 0 state. It is important that the reader note the
transient condition produced by this count sequence. Instead of the desired state
change ( 2n — 1)10 to (0)10, the counter has passed through the following state
sequence:

in tPHL

l ),o (2" - 2)10 (2" - 4)10 (2" - 8)10 . . . (2"
_1)10 (0) ,0

Although these transitions are rapid, they can generate unwanted transient
conditions if the counter outputs are used to drive a combinational logic circuit.
See the discussions of hazards in Chapter 3. Because of the transient behavior
described here, an asynchronous counter is sometimes call a ripple counter.

( 2n

SN74293
This module is a SN7400 series implementation of the asynchronous binary
counter of Fig. 7.13. Its logic diagram is shown in Fig. 7.14a. Note the two
common clear lines R
is forced to the all-zero state. The counter is divided into two segments, a 1-bit
counter and a 3-bit counter. They may be cascaded (connect QA to input B) to
make a 4-bit counter. The J and K inputs to each flip-flip are connected high
within the device to make the flip-flops act like toggle (T) flip-flops.

Figure 7.14b displays the state diagram for the SN74293. The larger
circles represent stable states for the device. The smaller circles represent
rapid, transient behavior. Notice that the transition from state 15 to state 0
exhibits the behavior described in Fig. 7.13c.

Several comments about this transient behavior are in order. First, if
the count pulses are much slower than the time delay of the clocked JK flip-
flops, the counter will pass through the transient states rapidly and reside in
the desired stable states most of the time. A second observation is that all the
transient states have even numbers; therefore, the odd-numbered states exhibit
stable behavior even in ripple-type counters.

When both these lines are high, the deviceand R0(1 ) 0 ( 2 )'

SN74177
This module is an expanded function version of the SN74293. See Fig. 7.15a.
In this device input A has been renamed Clock 1 and input B has been called
Clock 2. The added feature is the asynchronous load mode of operation. Exam-
ine the logic equations for the Preset and Clear terminals of a typical flip-flop,
say B:

PresetB = DataB • [ ( Count/Load) + ( Clear ) ] • Clear (7.12)

or

PresetB = DataB • ( Count / Load) • Clear (7.13)
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QAJ QA

(10)
Input A C > CK
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*0(2) >(13)
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Figure 7.14 SN74293 asynchronous binary counter, (a) Logic diagram.
(b) State diagram. Source: The TTL Data Book Volume 2, Texas Instruments Inc.,
1985.

Do not confuse the external clear input line and the clear signals for each flip-

flip. The flip-flop clear signals are given subscripts in the following equations.
For the clear terminal of flip-flop B,

ClearB = [ (Count/Load ) + ( Clear ) ]

• [ DataB • ( Count/ Load) • Clear] (7.14)
or

ClearB = (Clear ) + (Count / Load ) • ( DataB )
Examining equations 7.13 and 7.15, we find that when external input line
Clear is low, inside the flip-flop, PresetB is low and ClearB is high. This is
the asynchronous common clear mode of operation. Setting the external Clear
line high (inactive) allows the Count / Load external line to control the device.

(7.15)
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(4)

Data 4
(1)

Count/
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Figure 7.15 SN74177 asynchronous binary counter, (a) Logic diagram,

(b) Function table. Source: The TTL Data Book Volume 2, Texas Instruments
Inc., 1985.
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If the Clear line is high and Count / Load is low, then PresetB = DataB and
ClearB = (DataB). This is the asynchronous load mode of operation because
the value of DataB will be forced into the flip-flop. If the external Clear and
Count / Load lines are both high, then PresetB = ClearB — 0; this is the count
mode for the device. The operating modes for the SN74177 are summarized in
the function table of Fig. 7.15b.

7.3.3 Down Counters
A down, or backward, counter is one whose state transitions are reversed from
those of the standard counter, which is also known as an up, or forward,
counter. Examine the state tables of Fig. 7.16a. The down counter behaves as
a complemented up counter; hence, an asynchronous down counter may be
constructed using clocked JK flip-flops, as indicated in Fig. 7.16b. The Clear
control signal drives the counter to the 0state, and the Count control signal must
be logic 1 in order for the clock pulses to cause counter state changes. Again
this asynchronous design produces the rippling effect, which can be dangerous
in some applications.

... x3 *2 *1 Xn ... X3 X2 X i
1 1 1 1 0 0 00

00 0 0 1 1 1
0 0 0 1 1 01 1

0 00 1 0 1 1 1
00 0 1 1 1 01

0 1 0 0 10 1 1
Up count mode Down count mode

(a)

X n *2 X \

I l

Count

Q Q Q J< *
CKOCKO CKO

Q K K Q K ** +
CLR CLR CLR — Clock

T X l O-Clear
(b)

Figure 7.16 Asynchronous down counter, (a) State sequences, (b) Logic diagram.
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7.3.4 Up/Down Counters
Many digital systems require a counter design that can function in both the up
and down modes of operation. A combination up/down synchronous counter
appears in Fig. 7.17. This counter is either in the up or down mode since the
down control signal is the complement of the up control signal. Therefore, we
labeled the up/down control line Up/ down. In the up mode, the Q outputs of
the flip-flops control the J and K terminals of flip-flops higher in the chain. In
the down mode, the Q outputs of the flip-flops fill this role.

x„ *2 *1

O: Up/down

(<
Q lQ J J Q <

Up <xCK < 3— CK < 3—overflow
Q K Q Q KK

CLR CLR CLR
TJ TJ Q< ( C— • • •

<3-Down
overflow

Clock

<]-Clear

Figure 7.17 Synchronous up/down counter.

SN74191
This is the most complex chip that we have discussed so far in this chapter.
It is a 4-bit, up/down, synchronous counter with asynchronous load, enable,
ripple clock, and maximum state outputs. The logic diagram is displayed in Fig.
7.18a. Inspect the S and R terminals of the four flip-flops. These correspond
to the Preset and Clear terminals in previous example chips. The logic driving
the S and R terminals resembles the logic for Preset and Clear in the SN74177
of Fig. 7.15a. For flip-flop C in Fig. 7.18a,

Sc — Datac • (Load) (7.16)

Rc = [ Datac • ( Load) ] • ( Load) ]

— Datac • ( Load) (7.17)
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Figure 7.18 SN74191 up/down counter, (a) Logic diagram.

www.youseficlass.ir



Section 7.3 Counters 463
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Figure 7.18 (Continued) SN74191 up/down counter, (b) Function table,

(c) Timing diagram. Source: The TTL Data Book Volume 2, Texas Instruments
Inc., 1985.

When Load is low, then Sc = Datac and Rc = ( Datac), so the value of Datac
is loaded into the flip-flop asynchronously. When Load is high, Sc = Rc = 0,
so the counter is controlled by its other inputs, CTEN, D/ U , and Clock.

Next examine the J and K inputs of flip-flop C:
(7.18)

When the count enable input signal CTEN is high, both Jc and Kc are logic
0, so no changes will occur in the flip-flop outputs. When CTEN is low, the
counter enters the up or down counting mode depending on the value of D/ U .
If D/ U is low, then Q B and Q A determine the toggling of Q c so that the

JC = KC = (CTEN ) [ Qg QA ( D/ U ) + Q B - Q A - ( D/ U ) ]
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counter is in the up mode. When D/ U is. high, QB and QA determine the
toggling of Qc, and so the counter sequences backward, or down, through its
states. The function table for the device is given in Fig. 7.18b.

An additional feature of this counter is its Max/min output signal. In the
up mode, this signal goes high on state 15. In the down mode it goes high on
state 0. The Max/min output signal also feeds the RCO output:

RCO = [Clock • 0Max/min) • ( CTEN ) ] (7.19)
RCO goes low when the device is counting (CTEN is low) and the Max/min
output goes high.

An example timing diagram for the device is depicted in Fig. 7.18c.
An asynchronous load operation drives the counter to the ( QD Q C Q B QA )2 =
(1101)2 = (13)10 state. Then since D/ U and CTEN are low, the device se-
quences up through states 14, 15, 0, 1, and 2. Then the CTEN signal goes high,
inhibiting any further upward changes. Changing D/ U to high and then bring-
ing CTEN low puts the device in the down counting mode, so the state sequence
reverses: 2, 1, 0, 15, 14, 13, and so forth. Note the behavior of Max/min and
RCO on the timing diagram.

•7.4 Modulo-N Counters
Many occasions arise in the design of digital systems in which a counter
is needed that can count from state 0 through state N — 1 and then cycle
back to state 0; such counters are said to be modulo-N counters. The most
common modulo-A counters are the binary ones previously discussed. For
binary counters, N is equal to 2M , where n is the number of counter stages.
Counters with other values for N are also very useful. For example, N — 10
(decade) counters are frequently encountered in digital systems design.

7.4.1 Synchronous BCD Counters
A synchronous BCD (binary coded decimal) counter is a modulo-10, or decade,
counter. The BCD counter must behave like a binary counter until state 9 is
reached. At this point the control circuitry must prepare the flip-flop inputs so
that the next clock pulse will force the counter back to state (0000) instead of
allowing the next binary-counter state (1010) to be reached. A synchronous
BCD counter design is available in the SN74160 module.

SN74160
This is a synchronous decade counter with synchronous load, asynchronous
clear, enable, and ripple carry-out. See Fig. 7.19.

The asynchronous clear control signal Clear is active low. The load
control signal Load is also active low. How does this counter operate? We can
analyze its operating characteristics by examining a typical flip-flop and then
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Figure 7.19 SN74160 synchronous decade counter, (a) Package pins, (b) Logic
symbol.

generalizing the results to the 4-bit counter. Suppose we choose counter stage
QB and examine its J and K inputs. The logic equations for these inputs are

JB = (Load) • DataB + Load • QA • QD • ENT • ENP

KB = (Load) • DataB + Load • QA • QD • ENT • ENP
Note that when the load control signal Load is low, the true and complemented
values of the data input signal ( DataB ) for the counter stage are placed on
JB and Kb, respectively. Consequently, the flip-flop will act like a clocked-D
flip-flop and, on the next clock pulse, the value on input line DataB will be
synchronously loaded into the counter and will appear at the flip-flop output Q B .
When Load is high, the second product term in each logic equation controls J
and Kb. This is the synchronous counting mode of operation. Both the enable
signals ENP and ENT must be high before the counter will cycle through is
states. All four flip-flops change states on the rising edge of the clock input
Clock. Now examine the logic equation for the ripple carry-out RCO signal

RCO = QD QA • ENT
Since the counter cycles through states 0, 1, 2,. . ., 9, the states 10, 11,. .
15 will never occur. Hence, the maximum state of the counter (1001) can be
detected by an AND gate with inputs QD and QA. The input signal ENT must
be high to enable RCO.

A timing diagram for a typical sequence of operations for the SN74160
is illustrated in Fig. 7.19d. First an asynchronous clear signal has been applied
to drive the counter to the all-zero state. Next a synchronous load operation
forces the counter to state 7 (0111). Then both enable signals, ENT and ENP,
are applied to start the synchronous counting mode of operation. On the rising

B

•»
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Figure 7.19 (Continued) SN74160 decade counter, (c) Logic diagram.
Source: The TTL Data Book Volume 2, Texas Instruments Inc., 1985.

edge of each clock pulse Clock, the counter progresses to state 8, then 9, then
recycles to state 0, and continues with states 1, 2, and 3. At this point in the
sequence, the enable signal ENP is brought low and inhibits further sequencing
of the counter. Notice that either signal ENP or ENT may be used to inhibit the
counter (place it in the data-hold mode). Also note that the signal RCO is high
during the period of time in which the counter is in state 9, its maximum state.
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Figure 7.19 (Continued) SN74160 decade counter, (d) Timing diagram.
Source: The TTL Data Book Volume 2, Texas Instruments Inc., 1985.

7.4.2 Asynchronous BCD Counters
The synchronous decade counter of Fig. 7.19 can be replaced by an asyn-
chronous counter in many applications. An asynchronous, or ripple, decade
counter can be designed by modifying the binary counter of Fig. 7.13b. Sup-
pose we add a logic circuit to detect state 10 and use this signal to drive the
counter immediately to state 0 via the common reset line. State 10 has the bi-
nary value ( X 3 X 2 X ] X 0 ) = (1010). We can decode state 10 using a two-input
AND gate with inputs X 3 and X v The condition X 3 = X } = 1 is unique since
the counter will cycle through states 0, 1 , 2,. . ., 9 before reaching state 10.
No other state in the sequence satisfies the condition X 3 = X x = 1. The logic
diagram for the asynchronous decade counter is shown in Fig. 7.20a. Let us
now examine the transient behavior of this ripple counter design.

In Fig. 7.20b, a state diagram is used to describe the behavior of this
circuit. The transient behavior of the counter from states 0 through 9 has been
described earlier in this chapter. (See Fig. 7.14b.) In this figure the smaller cir-
cles represent transient states. The worst-case transient condition occurs on the
transition from state 7 to state 8. Due to the rippling effect, three intermediate
states are observed. Now consider the transition from state 9 to state 0. The

www.youseficlass.ir



I
468 Chapter 7 Modular Sequential Logic

*3 *2 *1 *0

- L

Count

S s s s
Q J Q J Q J -* Q *

CK CKO* Clock

Q QQ K K K Q K* < **
R RR R

Clear

V-0
(b)

Figure 7.20 Asynchronous BCD counter, (a) Logic diagram, (b) State diagram.
i

ripple effect will cause the counter to enter state 8 and then state 10. However,
the feedback circuit will detect state 10 and generate a common clear signal to
reset all the counter stages to logic 0.

'
i

i

;
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SN74176
The SN74176 is an asynchronous counter module that can perform the oper-
ations 4-2, -4-5, or 4-10. Its logic diagram is shown in Fig. 7.21. The module
features common asynchronous load and clear controls. The load and clear
operations for the counter may be explained by examining the logic equations
for the set and reset inputs for a typical stage, say Qc:

Sc — Clear • (Load) • Datac
Rc — (Clear) + ( Load) • Data

When the clear control signal Clear is low, ( Sc , Rc ) = (0, 1) and the counter
stage is reset to the logic 0 state. When Clear is high (inactive), a low signal
on control line Load creates the condition (Sc, Rc ) = ( .Datac, Datac ) which
forces the binary value of Datac into the counter stage, thus loading the flip-
flop. When both Clear and Load are high (inactive), the device acts as an
asynchronous counter.

In the count mode of operation, stage QA acts as a -4-2 counter stage. The
other three flip-flops ( Q D , Qc, Q B ) form a -4-5 counter stage, with Q D being the
most significant bit. The logic symbol for the counter is illustrated in Fig. 7.21b.
Look at the inputs to flip-flops Q D and Q B. These two JK flip-flops operate
synchronously! Flip-flop Qc toggles when Q B changes from high to low. So
the proper operation of the three counter stages may be described as follows:

1. Clear the flip-flops to the all-zero state with a low signal on input Clear.
2. Begin a sequence of clock pulses on input Clock 2.
3. QD is driven high by the clear pulse, so the J and K inputs to flip-flop

QB will be high, making QB act like a toggle flip-flop.
4. On the first few clock pulses, QD remains low while the flip-flop pair

( Gc, Qti ) acts like a binary counter sequencing through states 0, 1, 2, and
3. On the next clock pulse, both flip-flops Qc and QB are high, so the J
input to QD is also high due to the action of the AND gate. Now let us
examine the K input for QD at this point in the state sequence. Since the
K input of QD is tied to QD, the flip-flop output, it has a low value, so
( J D , K d ) — (1, 0), the set condition. When the next clock pulse occurs,
Q D goes high while Q B and Qc toggle low in their normal binary count
sequence. To this point in the sequence, the 3-bit counter began in state
0, and then changed to states 1, 2, and 3 and now rests in state 4.

5. Since Q D is now high, Q D is low so the J and K inputs to Q B are low
and inhibit any change on the next clock pulse on Clock 2. Since Qc and
QB are low, the J input to QD is low, while the K input that is tied to QD
is high, ( JD , Kd ) = (0, 1). This is the reset condition, so QD will change
to 0 on the next clock pulse. Hence the next state after state 4 for the 3-bit
counter will be the all-zero state.

6. The state sequence for the 3-bit counter is ( QD, Qc, QB ) = 0, 1, 2, 3,
4, 0, 1, . . ..

c
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« C > CKClock 25 10QA

K3Q B6 9Clock 2 Ry>GND C 7 8 Clock 1 (3)
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(a)

S (2)
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176
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(13) y>Clear CT = 0

(11)(8) DIV 2 Data D(5)Clock 1
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S (12)DIV 5(6)
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f o QB(10)
B — C > CK(2)O ') (2)

CT < Qc(3) K Q(12)> 1CT R1 2 QD(11) y>D 2 J

(b) (c)

Figure 7.21 SN74176 asynchronous decade counter, (a) Package pins,
(b) Logic symbol, (c) Logic diagram. Source: The TTL Data Book Volume 2,
Texas Instruments Inc., 1985.

Suppose we connect the output QA to input Clock 2 and supply a sequence
of count pulses to input Clock 1. Flip-flop QD will be the most significant bit,
while flip-flop QA will be least significant. The following count sequence will
be generated: (QD, Qc , QB , QA ) = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1,. . .. In this
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mode of operation the module is said to be a decade counter. But if we, instead,
connect output QD to input Clock 1 and supply a sequence of count pulses to
input Clock 2, QA will become the most significant bit and the following count
sequence will be generated: ( QA , QD, Qc, QB ) = 0, 1, 2, 3, 4, 8, 9, 10, 11,
12, 0, 1, This counting sequence is called the biquinary mode of operation.
The counter still has 10 states, but the sequence is no longer the decimal digits.

7.4.3 Modulo-6 and Modulo-12 Counters
Two other modulo-N counters find frequent application in digital design. They
are the modulo-6 and modulo-12 counters. Have you ever wondered how a
digital timer operates? A high-frequency oscillator (or the 60-hertz power line)
furnishes a periodic clock signal that is fed into a sequence of counters. A
modulo-10 counter can be used to get tens of seconds (or minutes) from a 1-
second (or 1-minute) count pulse. A modulo-6 counter can be used to generate
a sequence of 1-minute pulses from the “tens of seconds” signal. Figure 7.22
illustrates the block diagram for a simple digital timer that uses the power line
for a clock signal generator. The Clear control signal is used to initialize the
timer. The Start / Stop signal may then be used to apply or inhibit the count
pulses coming from the pulse generator connected to the power line. The pulses

Minutes Seconds

- 1

1 Pulse/hour 1 Pulse/minute

1 i+ 6 - 10 + 10+ 6*

Clear

>Start/Stop + 12+ 5 > tPulse
generator 1 Pulse/second

t
Power line

Figure 7.22 Block diagram for a digital timer.
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from the pulse generator are being produced at a rate of 60 per second. So a
modulo-60 counter is used to reduce the frequency of the pulses to 1 per second.
The modulo-60 counter is implemented by a modulo-5 counter cascaded with a
modulo-12. We could have used a -J-6 and -MO combination just as effectively.
Two additional modulo-60 counters are used to produce seconds and minutes
displays. If you need hours in your design, simply add another -MO and -=-6
stage. The modulo-5 and modulo-10 counters can be implemented using the
SN74176. The modulo-6 and modulo-12 counters can be implemented using
the SN7492A counter described next.

SN7492A
The SN7492A is an asynchronous modulo-6 or modulo-12 counter with a
common asynchronous clear. The device is described in Fig. 7.23. Its operation
may be determined from the logic diagram of Fig. 7.23c.

First examine counter stage Q A. This is a simple -=-2 flip-flop. Next
examine the operation of flip-flops ( Qc, Q B ). This 2-bit counter is the key to
the SN7492A. These 2 bits form a synchronous modulo-3 counter. Note the J
and K input logic equations for the two flip-flops:

J c = Q

K c = 1

J B = Q
K n = 1

= R

B

C

B
Suppose we apply a clear pulse [ R
flip-flops, as shown in Fig. 7.23d. This action sets ( Qc, Q B ) = (0, 0). The J
and K inputs to the flip-flops become (7C , K c ) = (0, l ) and ( /fl , K B ) = (1, 1).
On the next clock pulse applied to input Clock B, Q c will be reset to logic 0
and Q B will toggle to logic 1, or ( Qc, Q B ) = (0, 1). After the clock pulse, the
J and K inputs to the two flip-flops will change to the following conditions:
(7C, K c ) = (1, 1) and ( J B , K B ) = (1, 1). These input conditions direct Q
to toggle to logic 1 and Q B to toggle to logic 0 during the next clock pulse; so
the next state of the 2-bit counter will be ( Q c , Q B ) = (1, 0). This state change
will again change the J and K inputs on the two flip-flops: (7C, K c ) = (0, 1)
and ( J B , K b ) = (0, 1). These input conditions direct the two flip-flops to reset
on the next clock pulse, driving the counter to ( Qc, Q B ) — (0, 0), the original
starting state. So the entire state sequence in base 2 is ( Qc, Q B ) => (0, 0), (0,
1), (1, 0), (0, 0), In base 10 the sequence is 0, 1, 2, 0,

The most significant stage of the counter Q D is another simple +2 flip-
flop. The logic symbol for the module is illustrated in Fig. 7.23b. The following
are several different counter sequences that may be produced by the module:

1. Connect Q A to input Clock B and supply a sequence of count pulses
to input Clock A. Flip-flop Q p will be the most significant bit, while
flip-flop Q A will be the least significant. The following count sequence
will be generated: ( Q p , Qc, Q B , Q A ) = 0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12,
13, 0, See the state diagram of Fig. 7.23e.

= 11 to initialize the two counter0(2)0(0

c
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Figure 7.23 SN7492A asynchronous counter, (a) Package pins, (b) Logic symbol,
(c) Logic diagram, (d) Timing diagram. Source: The TTL Data Book Volume 2, Texas
Instruments Inc., 1985.
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(0

Figure 7.23 (Continued) SN7492A asynchronous counter, (e) State
diagram (CKB = QA ). (f) State diagram (CKA = QD ). Source: The
TTL Data Book Volume 2, Texas Instruments Inc., 1985.
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2. Connect output QD to input Clock A and supply a sequence of count
pulses to input Clock B. QA becomes the most significant bit, and the
following count sequence will be generated: ( QA , QD , Qc, QB ) = 0, 1,
2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 0, See the state diagram of Fig. 7.23f.

3. If we use the first connection scheme (connect QA to input Clock B and
supply a sequence of count pulses to input Clock A) and ignore counter
stage Qd , the following count sequence will be generated: ( Qc, QB , QA )
= 0, 1, 2, 3, 4, 5, 0,. . .. Note that this is exactly the sequence we need for
the timer design of Fig. 7.22.

7.4.4 Asynchronously Resetting
Modulo-A/ Counters

The design technique used in the asynchronous BCD counter of Fig. 7.20 may
be generalized for exploitation in any general modulo-N counter, as shown in
Fig. 7.24. The state-detection logic consists of an AND gate with appropriate
inputs to detect the state N , the modulus of the counter. The number n of
counter stages needed is determined by the relation

2n~\

This relation assumes that N is not a power of 2 because the feedback network
is not needed in those cases. The generalized counter of Fig. 7.24 requires an
asynchronous common clear control signal. The stable states of the counter

< N < 2n

Xn- 1 *1 *0

Count
control

5 5 S
J JQ Q Q *

Count
pulse

C K < >C K O C K O
Q Q K QK K*

RR R

' r

State detection
logic

Clear
control

Figure 7.24 General modulo-N asynchronous counter.

www.youseficlass.ir



I
476 Chapter 7 Modular Sequential Logic

will be 0, 1, 2, . . . , N — 1. The state detection logic will sense state N and im-
mediately force the counter past state N to state 0. Thus, these asynchronously
resetting counters will always have a transient state N .

EXAMPLE 7.1 Design a modulo-13 counter using SN7400
series modules. Since

23 < N = 13 < 24
the number of counter stages must be n = 4.
Let us choose the SN74293 4-bit asynchronous binary counter and design a
decoder for state N = 13. State 13 represents the counter value

( Q d , Q C G*. QA ) = (1, 1, 0, 1)

In normal operation, the counter will sequence through states 0, 1, . . . , 12 be-
fore reaching state 13. Therefore, we can use the fact that state 13 will be the
first occurrence of the logic condition Q D = Qc = Q A = 1. Therefore, we
can use a 3-input AND gate to decode state 13 as shown in Fig. 7.25a. When
state 13 occurs, the AND gate generates a clear control signal and applies it to
the reset terminals /?0( I ) and R0{ 2 ) through the OR gate. When the counter has
stabilized in state 0, the reset control signal is returned to its inactive condition,
logic 0.

The state diagram of Fig. 7.25b illustrates the transition states for this
counter. Compare Fig. 7.25b with Fig. 7.14b. Note that the state detection logic
has changed stable state 13 of Fig. 7.14b into a transient state and bypassed the
remaining states, jumping directly to state 0.

7.4.5 Synchronously Resetting
Modulo-NCounters

In many applications, the transient states in Fig. 7.25b cause spikes (or glitches )
in a digital system. This worrisome behavior can be eliminated by using a
synchronous counter in the circuit of Fig. 7.24. The counter should also have
the synchronous clear feature. One important difference for the synchronous
case is that the state detection logic must be designed to sense state N — 1,
because the counter must reset on the next clock pulse after the detection logic
has activated the clear control signal.

EXAMPLE 7.2 Design a synchronous modulo-13 counter.
We may use the SN74163 4-bit synchronous counter in the circuit of Fig. 7.26.
Notice that the detection logic will activate the Clear input to the counter
during state 12, so the next state after state 12 will be state 0. This synchronous
circuit transitions through the stable states of Fig. 7.25b while eliminating all
the transient state activity.
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74293
Clock QAInput A

Input B QB

Qc
QD

R o(i )

R()(2)

7411/3
V

7432/4

Clear

Figure 7.25 Asynchronously-resetting modulo-13 counter,
(a) Logic diagram, (b) State diagram.

•7.5 Shift Registers as Counters
Now let us examine another class of counters. The shift registers that we
covered earlier in this chapter may be used as counters in special circumstances.
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Vcc

74163
Load QA

Data A QB

Data B Qc

Data C QD

Data D RCO

ClockClock

Clear

ENP

ENT

Figure 7.26 Synchronously
resetting modulo-13 counter.Clear

Counters constructed using shift registers with feedback are commonly called
ring counters and twisted-ring counters. We will now investigate the behavior
of these devices.

7.5.1 Ring Counters
A ring counter is a sequential device that has one shift-register flip-flop per
counter state. The output of the shift register’s serial output is fed back to the
register’s serial input pin. The resulting circuit circulates a bit pattern around
the register. If we initialize the register so that it has a single logic 1 in its first
flip-flop and logic 0 in all the others, the device will circulate the single logic 1
around its loop of flip-flops as illustrated in Fig.7.27. Letn be the number of flip-
flops and hence the number of states in the counter. The shift-register flip-flops
are labeled Xv X 2, . . . , Xn. The operation of the counter begins with a pulse
in control line Initialize. This drives flip-flop X, high and X2, X3,..., X
and Xn low. At this point a single logic 1 is residing in flip-flop Xv On the
next falling edge of the input signal Clock, the logic 1 is transferred from
flip-flop X ] to flip-flop Xv The process continues until the logic 1 reaches the
end of the shift register, flip-flop Xn. On the falling edge of the next clock
pulse, the logic 1 is transferred by the feedback line to the first flip-flop in the
shift register, Xy And then the process is repeated. In other words, the logic
1 circles through the shift register every n clock pulses. So the ring counter
has one unique state for each flip-flop. The state sequence may be described

n — 1’
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Figure 7.27 Ring counter.
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= 1 I0. 2|0, 410, 810, . . . , (2"
_ ,

)10.in decimal values as ( X n , X n
For example, a 5-bit ring counter will sequence through states 1, 2, 4, 8,

. . , X , )2-i ’ •

and 16.

EXAMPLE 7.3 Design a 5-bit ring counter using the SN7496
shift register of Fig. 7.5 and illustrate its
operation using a timing diagram.
The SN7496 is a 5-bit parallel-input, parallel-output shift register with common
clear and common preset. To load a logic 1 into its least significant bit Q
we must first clear all the flip-flops and then preset a logic 1 into Q A using
the Preset A data input and the Preset enable control signal. Examine the
logic diagram of Fig. 7.28a. The serial output Qf has been connected to the
serial input data line. The Preset A line is tied high to the power supply, while
the other preset inputs are tied low to ground. The operation of the device is
illustrated in the timing diagram of Fig. 7.28b. First the device is cleared to the
all-zero state. Then Preset enable forces a logic 1 into the first flip-flop QA.
Each clock pulse then transfers the logic 1 to the next flip-flop until it reaches
Qe.Since QE is connected to Serial input, the logic 1 is transferred back to QA
and the process is repeated. Two full cycles of the ring counter state sequence
are shown. Note that the counter state sequence is ( Q E , QD, Q c, Q B , Q A ) —
1, 2, 4, 8, 16, 1, and so on.

A’

Now let us contrast the ring counter to a k-bit binary counter connected
to a k -io-2k decoder as diagrammed in Fig. 7.29. This circuit is equivalent
to the ring counter of Fig. 7.27 when the number of flip-flops in the ring is
a power of 2, that is, n = 2k . The Initialize signal clears the binary counter
to state 0. Since a decoder is a minterm generator, one and only one of its
outputs will be active high at any given moment in time. So when the counter
is in state 0, the decoder’s output line 0 will be high (signal X { on the tim-
ing diagram). The next clock pulse will drive the counter to state 1, causing
the decoder’s output line 1 to go high. As each new clock pulse arrives, the
binary counter changes state and moves the logic 1 down to the next de-
coder output. When the counter reaches its maximum state, the last decoder
output line will go high, placing the logic 1 on signal Xn . The next clock
pulse will then cycle the counter to state 0 and hence send the logic 1 back
to the first output line Xy So the binary counter and decoder act like a ring
counter.

What if a designer needs a ring counter for n =/ 2k? The counter-
decoder equivalent configuration of Fig. 7.29 can still be used by replacing
the binary counter with a modulo-rc counter. The decoder must satisfy the
relationship

2* > n > 2k~ x
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Figure 7.28 Ring counter example, (a) Logic diagram, (b) Timing diagram.

n — 2, n — 1 will be used as the
, Xn. The decoder output lines

The decoder outputs labeled 0, 1, 2,. .
ring counter output lines , X2, X3, . . . , X
labeled n , n + 1, . . . , 2* — 1 will not be used.

•*

n —1
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Figure 7.29 Ring counter equivalent.
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EXAMPLE 7.4 Design a 13-state ring counter with active low
outputs using a counter and a decoder. Since

24 > 13 > 23
the desired ring counter can be constructed
from a modulo-13 counter and a 4-to-16
decoder.
Let us use the modulo-13 counter from Fig. 7.25 and a 74154 decoder. The
logic diagram for the design is illustrated in Fig. 7.30.

Decoder
74154

LSB

*-*1

*-*2

*-*5

+-*6-*7

*-*8

^*.0
*~*n

Modulo-13
counter

74293

Clock Input A

Input B

QA

QB

Qc

QD

Roo)

R0(2)

*127432/4
*-*13

MBS

Clear

Figure 7.30 Thirteen-state ring counter equivalent.

7.5.2 Twisted-ring Counters
A ring counter with a NOT gate in the feedback loop is called a twisted-ring
counter.Sometimes this circuit is also called a Johnson counter. Take a look at
the logic diagram in Fig. 7.31. Here we have inserted a NOT gate between the
most significant counter bit Xn and the shift register’s Serial input line. Also
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Figure 7.31 Twisted-ring counter.
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notice that the Initialize signal connections have been altered to force the shift
register to the all-zero state.

Let us examine the operation of the shift register in this configuration.
First the Initialize signal clears the register. The NOT gate will therefore initially
be supplying a logic 1 into the Serial input of the shift register (to the D input
of the first shift-register flip-flop). As a matter of fact, this logic 1 feedback will
continue until Xn goes high later in the counting sequence. So, as each pulse
is applied to the Clock input of the shift register, the logic 1 moves down the
register one position (like a wave front) until it reaches the last shift-register
flip-flop Xn . When the logic 1 arrives at Xn , it changes the feedback signal on
Serial input to logic 0 so that a logic 0 wavefront now moves down the register
as additional clock pulses are applied. The timing diagram of Fig. 7.31 shows
a complete cycle of the twisted-ring counter. Each output signal X . ( i = 1 , n )
is a square wave, each delayed from its neighbors by one time period of the
clock signal.

How many unique states does this counter possess? Since it takes n clock
pulses to propagate the logic 1 down the register and then another n clock
pulses to return the register to the all-zero state, the twisted-ring counter has
2n unique states, where n is the number of flip-flops in the shift register.

EXAMPLE 7.5 Design a twisted-ring counter that has 10
unique states using SN7400 series logic
modules.
The number of flip-flops needed will be

10 = 5
Let us choose the SN7496 and place a NOT gate in the feedback loop as shown
in Fig. 7.32a. Although the Preset i ( i = A , B, E ) signals are not used,
they are tied to ground to increase the noise immunity of the implementation.

The timing diagram illustrates the proper use of the circuit. An active-low
Clear signal initializes the register to state 0, forcing a logic 1 on the Serial
input signal. On the rising edge of each clock pulse, the logic 1 moves from
left to right through the register until QE goes high. The NOT gate then forces
logic 0 into the register on the next five clock pulses to return the register to
state 0. Applying 10 clock pulses drives the twisted-ring counter through all 10
of its unique states.

n = 2

The states of the twisted-ring counter may be decoded using AND gates
as shown in Fig. 7.33. The twisted-ring counter output signals are listed in
tabular form. A unique logic condition for each state is shown in the column
labeled State Decoder Logic Equations. For example, look at the third line in
the table. When X 3 = 0 and X 2 = 1, this twisted-ring counter state is uniquely
indicated. Scan the X 3 and X 2 columns to satisfy yourself that no other row (or
counter state) has this bit pattern for X 3 and Xv All the other rows may also
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Figure 7.32 Ten-state twisted ring counter, (a) Logic diagram, (b) Timing
diagram.
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Figure 7.33 Twisted-ring counter state decoding.

be uniquely identified by using only two appropriate logic signals, as indicated
in the last column of the table. If the twisted-ring counter has both true and
complemented output signals, a 2-input AND gate may be used to decode each
output state. If both are not available, NOT gates will be required.

EXAMPLE 7.6 Design a timing signal generator using a
twisted-ring counter and state-decoding
logic that meets the following specifications:

1. The timing signals will be active high during one period of the clock
signal (go high on the rising edge of one clock pulse and then go low on
the rising edge of the next clock pulse).

2. An initialization signal will be used to synchronize the timing generator
with the other system components. The signal Initialize will be active
high.

3. The first timing control signal ( j\ ) will generate a pulse that will go high
on the leading edge of the second clock pulse applied after the initialize
command.

4. The second timing control signal (/2) will generate a pulse that will
go high on the leading edge of the eighth clock pulse applied after the
initialize command.

5. The third timing control signal (/3) will generate a pulse that will go high
on the leading edge of the eleventh clock pulse applied after the initialize
command.

6. The timing waveforms ( fx , /2, f3 ) will be repeated every 16 clock pulses.
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First let us generate the state sequence for a 16-state twisted-ring counter
since the sequence of signals is to be repeated every 16 clock pulses. Since a
twisted-ring counter has 2n states, where n is the number of flip-flops, let us
select the SN74164 serial-in, parallel-out shift register of Fig. 7.4 for our imple-
mentation. The outputs of the shift register are (QH , Q0, QF , QE , QD , Q
Qb , Qa ). If we use a NOT gate to feed back the complement of QH to the
serial inputs, the state behavior of the twisted-ring counter may be described in
the table of Fig. 7.34a.

When the shift register is initialized to the all-zero state, it assumes the
values in the first row of the table (labeled clock pulse 0). The first clock pulse
will drive the register to the second row (labeled clock pulse 1). The second
clock pulse forces the register into the third row (labeled clock pulse 2). This
twisted-ring counter state is to be decoded as timing signal f \ , as shown in the
last column of the table. We may continue this same procedure to identify the
counter states to be decoded for timing signals and fy The decoding logic
for the three timing signals is

C’

f\ = Qc ‘ QB
fi = QH ' QA
/3 = Q D ' Qc

These signals will be repeated every 16 clock pulses. The logic timing diagrams
for the design are illustrated in Fig. 7.34b and c.

Clock
pulse State
No. (decimal)

State
(decoder)QH QG QF QE QD QC QB QA

0 0 raj
0 0 foj LE

0 0 ran QJ
0 0 i1

0 0 rai ttl
0 0 m IB
0 raj S3

[oj 0 0 0 0
0 0 0 0
0 0 0
0 0

QH * QA
Q QA

f\= Qc* QH

0 0
1 1

3
3 7 1 QD* QC

QE •QD
QF' QE
QG' QF

4 15 0 1 1
1 1 1

1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1 1
1 1 1 1
1 1 1 1
1 1 I
1 1

5 31
6 63 0

11277
ED \h* QH " QA
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1h= QDQC\
QE •QD
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QG * QF
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~

Qc* QB
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ffl !
[T j [ 0] 0 0

E m 0 0 0
W 0 0 0 0
0 0 0 0 0

9 254
25210

0 248
12 240

113 224
E 0
[ol 0 0 0 0 0 0

® 0 0 0 0 0 0 \m
0 0 0 0 0 0 m |]J
0 0 0 0 0 H \T\

119214
115 128

00
1 1

[ 2 3
(a)

Figure 7.34 Sixteen-state twisted-ring counter example, (a) State
sequence.
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Figure 7.34 (Continued) Sixteen-state twisted-ring counter example, (b) Logic
diagram, (c) Timing diagram.

•7.6 Multiple-sequence Counters
Earlier in this chapter we presented one type of multiple-sequence counter,
the up/down counter. Occasionally, a digital system requires a counter that
possesses the ability to count in several other ways under the command of some
input control signals. Methods for synthesizing synchronous and asynchronous
sequential circuits that can count in any arbitrary sequence will be presented in
Chapters 8 and 10, respectively. Some of the examples in those chapters will
demonstrate these concepts.
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B 7.7 Digital Fractional Rate Multipliers
A digital fractional rate multiplier is a device that transforms a stream of
input clock pulses (call the input Clock) into a controlled stream of output
pulses (call the output line Y ). Let N. be the number of input pulses for a
particular time period, and let No be the number of output pulses. A binary
fractional rate multiplier produces output pulses according to the following
relation:

B
N' = — N .o 2n 1

where
B — ( Bn _ p Bn 2, . . . , B2 , BV Bq )2

is the rate constant input to the device and n is the number of binary counter
stages controlling the module. See Fig. 7.35. The Clock input drives an A -bit
binary counter whose outputs are labeled (Xn , X v . . . , Xv X 2 , X { ). The
counter outputs are ANDed with the incoming Clock signal to form interme-
diate pulse trains P. (/ = 1, n):

Pn = Xr Clock

Pn l = xrx2 - Clock

Pn_2 = Xx • X 2 • X 3 • Clock

P2 = Xx • X 2 • X 3 . . . . X
P, = X

• Clock• Xn — 2 n-1

2 •*n-l * • Clock' x2 • x3 • . . . • Xn
The logic output Y uses the rate constant M and the pulse train signals P to
implement the output equation as follows:

Y = EBi
This output configuration will deliver the proper number of output pulses ( No )
as specified by the rate constant B.

From the timing diagram of Fig. 7.35b, note that each of the pulse trains
P generates 2' _ l pulses during one counter sequence period (2n clock pulses).
That is, P{ generates 1 pulse, P2 generates 2 pulses, P3 generates 4 pulses,
P4 generates 8 pulses, and so on. It is also important to note that these pulse
trains do not overlap in time. Consequently, we may use the bits of the rate
constant B. to gate these pulse trains into the OR gate as shown in the logic
diagram.

l l

• P-l i

Another important characteristic of these devices is the irregularity of the
output pulse stream. The pulse-to-pulse separation on the output Y can vary
widely. The output pulses are synchronized with the incoming clock.

EXAMPLE 7.7 Consider the application of a 3-bit binary rate
multiplier. Let the rate constant B = (7)10. In
other words, the rate multiplier will output
seven pulses for every eight input clock
pulses. One of the input pulses will be
eliminated. Which one?
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n-Bit binary counterClock
Input
pulses

( MSB)X ] Xi xn

AND gates

/v /vr ... /V '
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B Bn-2 yMSB

(a)

Clock
_

X ]

lLSB x2

*3

n n n nPn
n nPn-1

nPn-2

(b)

Figure 7.35 Binary fractional rate multiplier, (a) Logic diagram,

(b) Timing diagram.

If we examine the output equation for this device,
Y = B2 - + B\ • P2 + BQ P\

where
P3 = Xx • Clock
P2 = Xx X 2 - Clock

Px = Xx • X 2 • X3 • Clock
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and
5 = (52, 5p 50)2 = (1, 1, 1)2

Substituting into the output equation yields
Y = (Xj + Xj • X2 + X { • X 2 • X3) • Ctocifc

In terms of the counter output variables (X3, X2, Xj),

product term X x =>• ^ m (l, 3, 5, 7)

product term X 2 - X x =>• ^ m (2, 6)

product term X3 • X2 • Xj => ^ m (4)

so that
T(X3, X2, Xj) = m{1, 2, 3, 4, 5, 6, 7)) • Clock

which indicates that the first clock pulse of each sequence of eight will be
eliminated since minterm 0 is missing from the list.

7.7.1 TTL Modules
Several of these digital fractional rate multipliers are commercially available.
We will discuss the 6-bit binary rate multiplier (SN7497) and the decade rate
multiplier (SN74167).

SN7497
The SN7497 is a 6-bit binary fractional rate multiplier with enable, common
asynchronous clear, output strobe, and cascade inputs and outputs. The device
is presented in Fig. 7.36. The rate input is

5= (£5, 54, 53, 52, 51, 50)2

and the number of output pulses is
5

N = -7 N .
0 26 1

The Clear control signal is active high and operates asynchronously to drive
the counter flip-flops to the all-zero state. The rising edge of the Clock pulses
causes the counter to toggle. The Strobe is an active-low enable signal for the
pulse rate outputs Y and Z.

The Enable input and Enable output allow the modules to be cascaded. A
12-bit rate multiplier may be constructed by feeding the Enable output from the
least significant module into the Enable input and strobe of the most significant
module in the cascade. Both the Enable input and Enable output are active
low.

The Unity/cascade input may be used to combine the outputs of cascaded
units. The Z output from the least significant module is connected to the
Unity/cascade input of the most significant one, effectively ORing the pulse

www.youseficlass.ir



Section 7.7 Digital Fractional Rate Multipliers 493

97n (9) PfClock > 2 (f)B X [I 1

BA\2 2

- B0c
zC 5

Z C 6

Enable out

GND Q 8

H] x'cc

^3

382

] Clear

Unity/cascade

Enable in

~^] Strobe

2]Clock

16 64
& G1(10)

^15Rate
inputs

Rate
inputs

Strobe
( I D ^Enable G214 (12)

^Unity/cascade

Clear

(5)V3
Z(13)13 CT = 0 (6)

(4) 3 Y
o lBO12 (7)(1) Enable2CT = 63B1

(14)11 B2 , IP
(rate)

(15)
B310 (2)
BA

(3)9 B5 5

(a) (b)
Enable (11)

input c*> N (7) Enable
JH output

lit:G QA G QR G Qc G QD G QE G QF

rC T rC rC TrC T r-C T rCT T
QA QB Qc QD QE QF

Clear ClearClear Clear Clear Clear

I X X X X(13)Clear.
(9) DoClock

33Strobe
Rate

input B5 I
Rate (~ )

input BA
Rate ( I -* )

input B3
Rate H)

input BO 1
Rate HI)

input B2 I
Rate (1 )

input B1 I
(10)

Y
.zD*Unity/cascade (12)

input
Y output

(5)

Z output
(c)

Figure 7.36 Six-bit binary rate multiplier, the SN7497. (a) Package pins,
(b) Logic symbol, (c) Logic diagram. Source: The TTL Data Book Volume 2
Texas Instruments Inc., 1985.

trains from the two modules. Tie the Unity!cascade input high if a single module
is being used (making Z = Y ).
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EXAMPLE 7.8 Examine the output equation for the SN7497
and contrast its operation with the design of
Fig. 7.35.
If we establish the control conditions

UnityIcascade input — 1
Enable input = 0
Clear = 0
Strobe = 0

the output equation for the SN7497 has the following form:
Y = Clock• (£5 • £4

+#4 - QB • QA
+B3 • Qc • QB • QA
+B2 • QD • Qc • QB • QA
+B\ • ££ • QD • £c * • QA
+#0 • QF QE • QD " QC • QB • £a)

This equation differs from our previous design in that it exchanges the roles
of the flip-flop outputs Q and Q. This change will move the positions of the
pulses but leave the overall pulse counts unchanged. Also note that the Clock
signal has been inverted so that the output pulses will be synchronized with
Clock instead of Clock.

SN74167
The SN74167 of Fig. 7.37 is a decade fractional rate multiplier with enable,
common asynchronous clear, preset to 9, output enable, and cascade inputs and
outputs. It operates in a similar manner to the SN7497 just discussed. From
the logic diagram, we can determine that the Enable input, Enable output,
Clear, Clock, Strobe, and Unity/cascade input are identical in operation to the
SN7497. The module differs in its counter operation. The decade counter has
an active high Set to 9 input that loads asynchronously the maximum count
into the counter.

The rate equation for this device is
B

N — — N .
0 10 '

where the rate constant B = ( Z?3, B2, Bv BQ )2 is restricted to the values
0 > B > 9.

EXAMPLE 7.9 Determine the logic equation for the Y output
of the SN74167 using the same control
conditions of Example 7.8.
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Figure 7.37 Decade rate multiplier, the SN74167. (a) Package pins, (b) Logic
symbol, (c) Logic diagram.
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From the logic diagram (with S e t t o 9 tied low) we can trace the logic and write
y = ( By Qc

B2 Q A
+ B{ ' Q_B QA

V Q D ' 2c)

This equation is much simpler than the one for the binary rate multipliers
because we have the don’t-care conditions for minterms 10, 11, 12, 13, 14, and
15. These are illegal states for the decade counter.

+

+

7.7.2 Cascading the Digital Fractional
Rate Multipliers

The SN7497 and SN74167 are designed to be cascaded to achieve larger
fractions. First, the modules may be used in parallel by using the enable control
lines and logic gates on the module outputs.

EXAMPLE 7.10 Show the parallel connections for the
SN74167 to produce a 0.297 fractional rate
multiplier.
The fraction 0.297 can be implemented using three decade rate multiplier mod-
ules. The least significant module will be set to rate B = (7)10. The second
module in the cascade will have rate B = (9)10. The first module will be con-
nected for rate B = (2)10. The three cascaded modules are shown in Fig. 7.38.

Finally, digital fractional rate multipliers may be used in a serial cascade
in which the output of the first module drives the clock input of the second.

EXAMPLE 7.11 Design a rate multiplier to implement the rate
equation

63»
O = Ni320

We may accomplish this goal using one 7497 and one 74163 as illustrated in
Fig. 7.39. Note that the desired rate equation may be expressed as

»
0 =

So B = (0111)2 for the 74167 and B = (010010)2 for the 7497.

7 18
N.

10 7 \ 64

•7.8 Summary
In this chapter we examined the design and operation of a number of standard
sequential logic modules, including shift registers and counters. Many of these
modules are available as standard TTL functions [1], as well as being available
in design libraries used to create VLSI circuits, programmable gate arrays, and

www.youseficlass.ir



Section 7.8 Summary 497

Most
significant

module

Least
significant

moduleRate input (M)

0 1 1 10 0 1 0 1 0 0 1

V V VB3 B2 B1 BOB3 B2 B1 BO B3 B2 B1 BOClock ClockClockSet-to
nine

Set-to
nine

Set-to
nineEnable

input
Enable
input

Enable
inputrCrC

’167 ’167 '167
Enable
output

Unity/
cascade

Enable
output

Unity/
cascade

Enable
output

Unity/
cascade

L —C Strobe Strobe Strobe NC

Clear Clear ClearL-f-
Z z z
TJ v I—— H

<J

OutputOutput

Figure 7.38 Cascaded decade rate multipliers.
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Figure 7.39 Serially cascaded rate multipliers.

printed circuit boards. A number of examples were presented to illustrate the
use of these modules as building blocks to create larger circuits. It is often
advantageous to utilize these modules in a design rather than creating custom
circuits. In Chapter 8 we will present formal design methods for the design and
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analysis of synchronous sequential circuits. The reader is referred to [2], [3],
and 14] for further examples of sequential logic modules and their applications.

REFERENCES TEXAS INSTRUMENTS, The TTL Data Book, Volume 2. Dallas, Texas: Texas
Instruments, Inc., 1988.
J. F. WAKERLY, Digital Design Principles and Practices. Englewood Cliffs, NJ:
Prentice-Hall, 1990, pp. 349-369.
R. H. KATZ, Contemporary Logic Design.Menlo Park,CA: Benjamin/Cummings
Publishing Co., 1994, pp. 282-321.
J.P HAYES, Introduction to Digital Logic Design.Reading, MA: Addison-Wesley
Publishing Co., 1993, pp. 405 1̂47.

1.

2.

3.
4.

PROBLEMS 7.1 Use SN7400 series chips to design a shift register implementation for the
MUX/DEMUX configuration of Fig. 4.29.

Develop a function table for the SN74198 8-bit bidirectional shift register pre-
sented in Fig. PI .2.
Use a 2-to-4 decoder, NAND gates, and edge-triggered D flip-flops to design a
4-bit shift register module that has the following function table:

7.2

7.3

S1 SO Mode
Shift right (all 4 bits)
Shift left (all 4 bits)
Synchronous common clear
Synchronous parallel load

0 0
0 1
1 0
1 1

Draw a logic diagram for your module.

Use a 3-to-8 decoder, NAND gates, and edge-triggered D flip-flops to design a
4-bit shift register module that has the following function table:

7.4

Mode
Shift right (all 4 bits)
Shift left (all 4 bits)
Synchronous common clear
Synchronous parallel load
Synchronous preset MSB to 1 and
clear other bits
Synchronous data hold
Ring counter ( Q output of LSB is fed
back as serial input to the MSB)
Twisted-ring counter ( Q output of
LSB is fed back as serial input to the
MSB)

S2 S I SO
0 0 0

00 1
0 1 0
0 1 1

• 0 01

1 0 1
1 1 0

1 1 1

Draw a logic diagram for your module.
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Figure P7.2 The SN74198 8-bit bidirectional shift register.
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7.5 Use SN7400 series modules to design a synchronous modulo-15 counter.
Use SN7400 series modules to design an asynchronous modulo-15 counter.
Use SN7400 series modules to design an asynchronous modulo-65 counter.

Use SN7400 series modules to design a synchronous modulo-80 counter.
Use SN7400 series modules to design an eight-state ring counter. Provide an
asynchronous initialize control signal.

Use SN7400 series modules to design a 14-state ring counter. Provide an asyn-
chronous initialize control signal.

Use SN7400 series modules to design an eight-state twisted-ring counter. Pro-
vide an asynchronous initialize control signal.
Use SN7400 series modules to design a 14-state twisted-ring counter. Provide
an asynchronous initialize control signal.

Use SN7400 series counter and decoder modules to design an eight-state ring-
counter equivalent similar to Fig. 7.30. Provide an asynchronous initialize con-
trol signal.
Use SN7400 series counter and decoder modules to design a 14-state ring-
counter equivalent similar to Fig. 7.30. Provide an asynchronous initialize con-
trol signal.
Design three equivalent timing signal generators using the counters of Problems
7.8, 7.10, and 7.12. The outputs of the three circuits should generate a pulse on
the first and fifth clock pulses after the initialize signal. The sequence should
repeat every eight clock pulses.
Design three equivalent timing signal generators using the counters of Problems
7.9, 7.11, and 7.13. The outputs of the nine circuits (three for each problem)
should match the example of Fig. 7.34b, except that the timing waveforms will be
repeated every 14 clock pulses instead of every 16 pulses as shown in Fig. 7.34.
Use SN7400 modules to implement a digital fractional rate multiplier with an
output to input ratio of 5/10.

Use SN7400 modules to implement a digital fractional rate multiplier with an
output to input ratio of 11/80.
Design a timing generator using the structure of Fig. P7.19a. The unit should
generate four signals as shown in Fig. P7.19b to meet the following specification:

/, goes low on clock pulses 2, 9, 17, 38, and 60
f2 goes high on clock pulses 2, 8, 15, 35, and 56

/3 goes low on clock pulses 1, 8, 16, 37, and 63

/4 goes high on clock pulses 3, 27, 39, 41, and 63

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19
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Figure P7.19 (a) Block diagram, (b) Timing diagram.
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As we have seen in the last two chap-
ters, memory devices can be employed with

combinational logic to build many interesting
digital functions. As we progressed from simple

to more complicated functions, we used a combina-
tion of ingenuity and experience to combine smaller

modules into larger ones. For example, we used latches
to build flip-flops, flip-flops to build shift registers, and
shift registers to build twisted-ring counters. In another
example, we built a binary counter out of JK flip-flops
by exploiting our knowledge of the operation of the JK
flip-flop in its toggle mode.

Suppose that a digital designer is given an arbi-
trary state table and asked to find a schematic diagram
for a hardware implementation. Ingenuity and knowl-
edge of the JK flip-flop will not easily solve this problem.
We call this the general synchronous sequential circuit
synthesis problem. In this chapter we examine methods
and tools to solve such problems.
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Analysis and Synthesis of
Sychronous Sequential Circuits

•8.1 Synchronous Sequential Circuit Models
Before proceeding with the analysis and design of sequential circuits, it is
appropriate to review the basic sequential circuit model and some related ter-
minology. The operation of a synchronous sequential circuit, as modeled in
Fig. 8.1, is controlled by a synchronizing pulse signal called a clock, which is
applied to the memory portion of the circuit. A circuit that is controlled by a
clock is termed a synchronous sequential circuit. One devoid of a clock signal is
called an asynchronous sequential circuit.All sequential circuits can be placed
in one of these two categories. In this chapter we consider only synchronous
circuits; asynchronous circuits will be discussed in Chapter 10.

The memory in the block diagram of Fig.8.1 is usually realized with edge-
triggered and/or pulse-triggered flip-flops. In synchronous sequential circuit
applications, the behavior of these two devices is almost identical; their outputs
change only on a rising or falling clock signal transition.Therefore , the state of
a synchronous sequential circuit may only change on a designated clock signal
transition. For the examples of this chapter, all flip-flops will be assumed to be
edge triggered.

Z\*1

Combinational
logic

Zm*n

*
Yr Y 1.Vry1 • • •• • •

Memory

Clock

Figure 8.1 The sequential circuit model.
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Recall from Chapter 6 that the n-tuple ( x{ , . . . , xn ) in Fig. 8.1 is referred
to as the circuit input, the m-tuple (z p . . . , zm ) is called the circuit output,
and the r-tuples (yp . . . , yr ) a n d (F p . . . , F ) represent the present state and
next state of the circuit, respectively. The relationships that exist among these
variables may be expressed mathematically as

zi = ft (*p • • • > x n 9 y l , ... 9 y r ) i i = l , . .. , r

Y t = h i ( x v ..., x n , y v ... , y r ) , i = 1, . . . , r
where the g. and h . are switching functions. Equations 8.1 and 8.2 may be
written in vector notation as

(8.1)

(8.2)

A )
(8.3)z = g(x, y)

Y = h(x, y)
l / i 1/0

(8.4)0/10/0, 1/00/1 whereB C
Yx\z i y ix/z 1

2̂Z2 x2 y2(a) Y = (8.5)z = , X = . y =
YPresent

state
Input x XLZmJ

These relationships may also be expressed in the form of state tables and state
diagrams. These have two basic formats, depending on the relationship between
the output signals Zj and the input signals x..

L3VJ _
r __

n _
0 1

5/1 C/0A
5/05 A/1
A/0 C/0C

Next state/output
(b)

8.1.1 Mealy Model
Figure 8.2 Synchronous
sequential circuit: Mealy
model, (a) State diagram,

(b) State table.

In a Mealy model sequential circuit [1], the outputs are functions of both the
inputs and the present state. The state diagram and state table of a Mealy model
sequential circuit are shown in Figs. 8.2a and b, respectively. The Mealy model
is called a transition-assigned circuit because the circuit output is associated
with the state transitions, that is, the arcs in the state diagram. In other words,
the circuit outputs are functions of the present state and inputs, as given by Eqs.
8.1 and 8.3. This relationship is illustrated by the following example.

EXAMPLE 8.1 Let us determine the output response of the
sequential circuit defined in Fig. 8.2 to the
input sequence x = 011010.
Let us assume that the circuit is initially in state A. At time 0 an input of x = 0
is applied. From either the state diagram or the state table, we can read that
the output is z = 1 and the next state will be B. Continuing for the remaining
values in the input sequence, the circuit will behave as follows:

Time:
Present state:

Input: 0
Output:

Next state:

0 1 2 3 4 5
A B A C A C A

1 1 0 1 0
1 1 0 0 0 0
B A C A C A
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Section 8.1 Synchronous Sequential Circuit Models 505

Hence, this input sequence applied to the machine in state A causes the output
sequence

z = 110000
and leaves the circuit in final state A.

TiTo T2 TI TA T5
I ii i i i

Clock
State A

Inputs o.
Output z

A A AB C Ci i ii

iJ l i I 0 nori
i i

<L
_J-Jo IM 1 M1

i i i

Figure 8.3 Mealy model timing diagram.

Figure 8.3 illustrates the actual circuit timing for the given input sequence.
In this diagram it is assumed that the state changes on the high-to-low transition
of the clock. Note that the output z can change any time either the input or the
state changes, since z is a function of both. This gives rise to two unexpected
output changes shown in the timing diagram. At time 70, z drops to 0 when
the state changes to B, and then goes back to 1 when input JC changes to 1. A
similar event occurs at time Ty Hence, we must be careful to sample the output
of a Mealy model circuit only when the circuit has stabilized after an input
change.

8.1.2 Moore Model
A second arrangement for a state diagram is shown in Fig. 8.4. This format is
called the Moore model for a sequential circuit [2], and it is distinguished from
the Mealy model by identifying the outputs solely with the present state of the
device. The output is then included inside the circles representing the states of
the circuit.

(a)

The state table is also in a new format. The output may be removed
from the next state entries in the state table since each next state will always
have the same output entry; a new column of outputs is shown. It is important
to remember that these outputs belong to the present state and not to the
next one.

Present Input x
state 0 1 Outputs

Y X 0w
1X X Y
0Y X W

The output functional relationship given in Eqs. 8.1 and 8.3 can be
modified, respectively, as follows for Moore-type circuits:

i — 1, . . . , m

(b)

Figure 8.4 Synchronous
sequential circuit - Moore
model, (a) State diagram,

(b) State table.

(8.6)Z j = 8i ( y r - - - , y r ),
z = g(y)

This follows since the outputs are determined by the present state only.
(8.7)
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EXAMPLE 8.2 Consider the following input sequence to the
Moore model of Fig. 8.4 with the starting
state W :

Time: 0
Present state:

Input: 0
Output: 0

Next State: Y
The output is always identified by the present state from either the state diagram
or the state table.

Figure 8.5 illustrates the actual circuit timing for the given input sequence.
As in the previous example, all state changes occur on the high-to-low transition
of the clock.

1 2 3 4 5
W Y W X X Y X

1 1 0 1 0
0 0 1 1 0
W X X Y X

Clock
State

Input x

Output z 10 0 0 1 0
I» I I

Figure 8.5 Moore model timing diagram.

In Fig. 8.5, note that all output changes in a Moore model circuit are
synchronized to the clock, since output z is a function of the state only and
can therefore change only when the state changes. Consequently, the output
remains stable during any input changes, unlike the outputs of the Mealy
model circuit illustrated previously in Fig. 8.3. Therefore, the outputs of a
Moore model circuit typically exhibit better behavior that those of a Mealy
model circuit; that is, input changes do not result in unwanted glitches in the
outputs.

The primary advantage of using a Mealy versus a Moore model for
a sequential circuit design is that, since the outputs of a Mealy model are
functions of both the inputs and the state, the designer has more flexibility
in designing output and state transition functions, and thus fewer states will
be needed than in an equivalent Moore model circuit, where the outputs are
functions of only the state variables.

In the sections that follow, examples of both Mealy and Moore model
circuits will be presented.
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•8.2 Sequential Circuit Analysis
Before we dive into the synthesis problem, let us first reverse the process. That
is, suppose we are given a schematic diagram of a synchronous sequential
circuit and asked to describe its operation.

Analysis is the process of determining the output response of a given
circuit or circuit model to a given input sequence. To do so, it is most convenient
to first determine the model, for example, the state table or state diagram, of
the given circuit. This process will first be illustrated by a series of examples
and then summarized in the form of a step-by-step procedure.

8.2.1 Analysis of Sequential Circuit
State Diagrams

Let us begin by examining the operation of a synchronous sequential circuit as
described by a state diagram.

EXAMPLE 8.3 Consider the state diagram given in Fig. 8.6.
Assume the diagram models a synchronous
sequential circuit that has
negative-edge-triggered flip-flops for
memory elements.
Let us now construct a timing diagram that illustrates the circuit’s behavior in re-
sponse to the input sequence 001110110, assuming that the circuit starts in state
00. The desired timing diagram is shown in Fig. 8.7 and will now be explained.

First, a clock signal is needed to synchronize input signals and state
changes.Since the memory elements are assumed to be negative-edge-triggered
flip-flops, the state variables yx and y2 change value only on a 1 —> 0 transition
of the clock signal. The values of the state variables following a clock transition
are determined by the value of x and the values of the state variables y{ and
y2 at the instant the clock transition occurs. The output z, however, is not
synchronized with the clock. Output z is simply a combinational function of
the input x and the state variables y } and y2\ therefore, it may change when any
of these three signals change.

x/z
0/0 1/0 1/ 1

1 /0 0/0
0100 11

0/0

Figure 8.6 State diagram model
of a synchronous sequential circuit.

Clock

i I a0 0X 0 1 1 1 0 1

Hi n 00 0 0 00 1 1y\

71ill 000 1 1 1 1 1J2

0 I 1 7 I o0 0 0 10 0z

Figure 8.7 Timing diagram for a synchronous sequential circuit.
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The previous example illustrates the following important point. A timing
diagram can be constructed that represents the behavior of the circuit modeled
by a state diagram (or state table) given the type of circuit, the type of memory
element, an input sequence, and a starting state. The timing of the input signal
transitions are not precisely known unless the input sequence is itself given in
the form of a timing diagram.

8.2.2 Analysis of Sequential Circuit
Logic Diagrams

Combinational logic
Let us now consider the problem of analyzing a synchronous sequential circuit
defined by a logic diagram. For such a sequential circuit we need to determine
the state table or state diagram that defines its operation. From this state table
or diagram we can then determine the response of the circuit to any given input

2

-t>°- sequence.
As an example, consider the sequential circuit shown in Fig. 8.8a. This

sequential circuit is built of AND, OR, and NOT gates and a D flip-flop. For
illustrative purposes the circuit is drawn in the form of the model presented in
Fig. 8.1b. It is assumed that the circuit operates in a synchronous manner under
the control of an external clock. In this case, since the memory element is a
positive-edge-triggered D flip-flop, the memory changes state only on a 0
transition of a clock pulse.

Perhaps a more vivid understanding can be obtained if we first examine
a timing diagram for the D flip-flop as shown in Fig. 8.8b. Note that the output
signal Q is just the value of the flip-flop input data D at the instant the clock
makes a 0 — 1 transition. The clock period, A t , is selected to allow the circuit
sufficient time for state changes and for new inputs to be applied before the
next state transition is triggered.

Yy
Q D

1y
Q C < Clock

Memory
(a)

At

D

lUUUldt Circuit Behavior Expressed as a
Timing Diagram

Q
Let us now examine the behavior of the circuit in Fig. 8.8a. The operation of
the D flip-flop was described in Chapter 6, and the characteristics of the AND,
OR, and NOT gates were demonstrated in Chapter 2. Using this information,
a timing diagram for the example sequential circuit can be constructed for a
given input sequence and a fixed starting state.

This sequential circuit has only one flip-flop and hence only two states,
0 and 1. The input, output, and state conditions for this network can be sum-
marized as follows:

Q

0 1 2 3 4 t / At
(b)

Figure 8.8 Introductory example,

(a) Logic diagram, (b) Timing
diagram.

Inputs: x = 0
x = 1

States: y = 0
y = i

Outputs: z = 0
z = 1
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The logic equations for the example, derived from the logic diagram of Fig.
8.8a, are the following:

z = *y
Y = x y + x y = x y

Using Eqs. (8.8), we can build the timing diagram shown in Fig. 8.9. The input
sequence is

(8.8)

x = 01101000
and the starting state is y = 0. During the interval t = 0 to t = 1, the input is
x = 0 and the present state is y = 0. Hence,

z = x y — 0 * 0 = 0
Y = x ® y = 0 © 0 = 0

Therefore, the clock pulse at t = 1 clocks the next state Y = 0 into the D flip-
flop. During the period t = 1 to t = 2, the present state is y = 0 and the input
changes to x = 1:

z = x y = 1 • 0 = 0
Y = Jt © y = 1 © 0 = 1

As the clock pulse at t = 2 occurs, the state of the sequential device will change
to 1, and so on. In a similar manner, the remainder of the timing diagram is
determined.

From the timing diagram we observe that the output sequence is
z = 00100000

Note from the timing diagram that changes in Y occurred at t = 3 and at t = 5
that did not affect the state of the circuit. In each of these cases the value of Y
changed again prior to the next clock transition. Only the value of Y at the clock
transition determines the next state of y . Therefore, the momentary changes at
t — 3 and t = 5 are ignored.

1UUUUUUUU1Clock

Ii i0 1 0 1 0 01x i i
i i

ii

0 0 0 0 1 11 1.v

Y = D 0 0 0 1 1 1 11

°m °o o o ol 0z
1 3 4 6 8 t/ At2 5 7

Glitch

Figure 8.9 Timing diagram for the circuit of Fig. 8.4(a).
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510 Chapter 8 Analysis and Synthesis of Synchronous Sequential Circuits

The timing diagram also shows a momentary change, or glitch, in the
output at time t = 5. Since z = xy, the change in state variable y at time t = 5
results in z = 1 at that time, and then the subsequent change in input x causes z
to return to its desired value of 0. Note that the width of this pulse on z depends
on when input x changes.

Deriving the State Diagram and
State Table
The operation of the sequential circuit of Fig. 8.8a may be completely defined
by a state table that lists all possible operating conditions. Let us adopt the
shorthand notation

yk to represent y( k At ) = yk
where k is an integer and At is the period between clock pulses. The blank state
table is shown in Fig.8.10a. To fill in the upper left-hand comer, we must assume
a present state yk = 0 and the input xk = 0. Following these signals through
the circuit of Fig. 8.8a we find that the next state is Yk
output is zk = 0. Hence, the entry in the upper-left block is y*+1 / zk = 0/0.

The initial conditions for the upper-right block are yk = 0 and xk — 1.
Applying these signals in Fig. 8.8a yields zk = 0 and Yk = yk+ ] = 1. The entry
in this block is therefore yk+ ] / zk = 1/0. The two lower block entries are deter-
mined in a similar manner. The results of the analysis are shown in Fig. 8.10b.

We sometimes replace the present state vectors y by symbols to simplify
notation; for example, in Fig. 8.10b, we may represent the states as follows:

y = [ y ] = [0] s A

*+ l = 0 and that the= y
?

y = [y] = [1] = B

Input Input Inputxk xk xk
Present

state
Present

state
Present

state
1 0 10 0 1

0 0 0/0 1/0 A A/0 B/0
yk yk

l 1/0I 0/1 B B/0 A/l

Next state/output Next state/output
(a) (b) (c)

x/z
0/0 0/01 /0

A B
1/1
(d)

Figure 8.10 State table and diagram for the circuit of Fig. 8.4(a). (a) Blank table,
(b) State transition table, (c) State table, (d) State diagram.
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We call this mapping from a symbolic state to a binary value the state assign-
ment. The state diagram and table drawn from the information contained in
Fig. 8.10b are demonstrated in Figs. 8.10c and d.

Deriving the State Table from
Karnaugh Maps
It is both interesting and informative to derive the state table shown in Fig.
8.10b directly from the circuit equations via K-maps. In Fig. 8.8a we have
noted that

z = xy
Y = x ® y

Evaluated at time t = k At
z k = x k - yk

Y k = JC* © / = yk+i

K-maps for these equations are shown in Figs. 8.1la and b. The state table is
constructed by merely combining the two K-maps as shown in Fig. 8.1lc. This
table is identical to the one in Fig. 8.10b.

Input xk
Present

state
0 1 10 1 0

0 0 1 0 0 0 /1 A/0 B/0
/ yk

l l o l 0 1 B B/0 All

yk +\ / zk
(a) (b) (c)

Figure 8.11 K-maps for the circuit of Fig. 8.4(a). (a) Map for Yk = yk+1

(b) Map for z . (c) State table.

This completes our introductory synchronous sequential circuit example.
The following analysis procedure summarizes the processes illustrated in the
preceding examples.

Synchronous Sequential Circuit
Analysis Procedure

Step 1. If a state table or state diagram is given, proceed to steps
6 or 7, respectively. Otherwise, continue. Use combinational logic
analysis techniques to determine the flip-flop input equations and
the circuit output equations. Go to step 7 if only a timing diagram
is needed.
Step 2. Construct K-maps for all the logic equations from step 1.
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Step 3. Combine the K-maps for all flip-flop input equations into a
single map.
Step 4. Using the characteristic equations of the flip-flops, construct
a next-state map.
Step 5. Combine the next-state map and the output maps into a
single map. This step results in a binary state table.
Step 6. Construct a binary state diagram from the binary state table
if desired. Otherwise, go to step 7.
Step 7. Draw a timing diagram showing the clock, the given input
sequence, and the starting state.
Step 8. On the timing diagram, derive the waveforms for the flip-
flop input(s) and flip-flop state(s) for all the remaining circuit input
values.
Step 9. On the timing diagram, derive the waveforms of the circuit
output(s).

The following examples will illustrate this procedure. We begin by con-
sidering the problem of analyzing a clocked sequential circuit containing a T
flip-flop.

EXAMPLE 8.4 Let us explore the behavior of the circuit in
Fig. 8.12 by developing a timing diagram,
state table, and state diagram. The timing
diagram should show the circuit response to
the input sequence x = 01101000, with the
circuit beginning in state y = 0.
Timing Diagram
We begin by deriving excitation and output equations from the logic diagram of
Fig. 8.12, using step 1 of the analysis procedure, from which we can generate
a timing diagram using steps 7 to 9 of the procedure.

The operation of the T flip-flop and the characteristics of the AND, OR,
and NOT gates have all been demonstrated earlier. This sequential circuit has

)
L-[> )

y
Q

1 Q C O Clock

Figure 8.12 Synchronous sequential circuit with a T flip-flop.
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only one flip-flop and hence only two states, 0 and 1. The input, output, and
state conditions for this network are summarized as follows:

Inputs: x = 0
x = 1
y = 0
y = i
z = 0
z = 1

States:

Outputs:

The logic equations for the example are:
z = x y

T = x y + x y = x O y
Using these equations, we can construct the timing diagram shown in Fig. 8.13.
The clocked T flip-flop characteristics described in Chapter 6 are also employed
in the timing diagram’s construction.

A specific timing diagram for the example sequential circuit is valid for
only one given input sequence and a fixed starting state. The input sequence is

x = 01101000
and the starting state is y = 0. During the time t / A t = 0 to t / A t = 1, the
input is x = 0 and the present state is y = 0. Hence, if we examine the logic
equations during the clock pulse at the end of the period,

z = x y = 0 • 0 = 0
T = x Q y = 0 0 0 = 1

The variable T is the control for the T flip-flop. On the 1
clock pulse, the signal T will allow the clock pulse to trigger the flip-flop to the
1 state as shown for y in the interval t / A t = 1 to f / A t = 2. In a similar manner,
the entire timing diagram is determined. Notice that all the input transitions are
n o t synchronized with the clock pulse. The operation of the T flip-flop guaran-
tees that the logic value on the input line x will be examined only at the falling
edge of the clock pulse. Suppose an asynchronous input pulse occurs after time
t / A t = 7 (see dotted pulse in Fig.8.13);although this asynchronous input pulse
causes a change in the T input to the flip-flop, the pulse is ignored because it
occurs while the clock is in logic state 0, so the flip-flop output is unchanged.

0 transition of the

n n n n n n~ I o I i I o
Clock

o I T o0x

£J il of ofo iIy

1 U U 1LI IT

0 I l j 0 0 0 0z

2 4 5 7 80 1 3 6

Figure 8.13 Timing diagram for the T flip-flop synchronous sequential circuit.
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State Diagram and State Table Derivation
From the excitation and output equations generated in step 1 of the analysis,
we can derive the state table and state diagram of the circuit using step 6 of the
analysis procedure.

The operation of the sequential circuit of Fig. 8.12 is completely defined
by its state table, which tabulates all possible operating conditions. The blank
state table is shown in Fig. 8.14a. To fill in the upper -left comer of the state table,
we assume that the present state is zero; that is, yk = 0 and the input xk = 0.
Signals are examined only during the period e while the clock pulse is high
(1). Following these signals through the circuit of Fig. 8.12, we find that zk = 0
and Tk = 1, and thus during the clock pulse the flip-flop will experience a state
change, and hence the entry in the block under examination is yk+1 / zk = 1/0. In
other words, when the sequential circuit is in state yk = 0 and the input is xk =
0, the circuit changes state so that y*+1 = 1 and the output produced is zk = 0.

JC*
Present^v 0

state
0 1 0 1 1

A/01 0 1/0 0/0 B/0A

0/10 1 1/0 B/0 A/ 1B

yk+\/zk Next state/output

(a) (b) (c)

x/z
1 /0 0/0

BA
1 /1 0/0
(d)

Figure 8.14 State table and diagram for the T flip-flop sequential circuit
example, (a) Blank state table, (b) Transition table, (c) State table, (d) State
diagram.

The initial conditions for the upper-right block are yk = 0 and xk = 1.
These conditions yield zk = 0 and Tk = 0, and therefore the flip-flop does not
change state and hence the block entry is yk+l / zk = 0/0. The two lower-block
entries are derived in a similar manner and are shown in Fig. 8.14b. The state
table may also be taken from a judiciously chosen timing diagram. The reader
is encouraged to try this procedure.

As shown in Example 8.3, sometimes the switching variable codes are
replaced by symbols to simplify notation; if we code the sequential circuit’s
states as

0 = A
1 = B
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the state table in Fig. 8.14c and the state diagram of Fig. 8.14d are obtained. At
this point we may use the state diagram to determine the response of the circuit
to an input sequence:

1 0 1 0 0 00 1
A B A A B A B B B
0 1 0 0 1 0 0 0

x
y
z

The starting state is A ( y = 0) and the final state is B ( y = 1). Note that
this behavior is identical to the timing diagram of Fig. 8.14, which was to be
expected.

State Table Derivation from K-maps
K-maps may also be used to determine the state table using steps 2 to 6 of the
analysis procedure. The logic equations are

zk k . k= x y
T k = x k O /

where y k is the present state and T k determines the next state. K-maps for
these equations are shown in Figs. 8.15a and b. The map for T k defines the
signal to the T input of the flip-flop when a clock pulse is present for various
conditions of * and y. T = 1 causes the flip-flop to change state when a clock
pulse occurs; for T = 0, there is no change in state.

xk xk xk
10 1 0 1 0

0 0 00 0 0 01 1*
yk y k y k

1 1 10 1 0 1 1 0*

z k *+ 1V

(a) (b) (c)

Figure 8.15 Derivation of the state table from K-maps. (a) Output K-map.
(b) Excitation K-map. (c) Next state map. (d) Binary state table.
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Using the map for Tk in Fig. 8.15b, we must now find the map for the
k+\. This map is derived in Fig. 8.15c. The K-map variables are thenext state y

input ** and the present state yk . The next-state entry is made by examining
the corresponding entries in the map for Tk . The asterisks indicate the state
changes caused by T — 1 minterms.

Finally, combining the next-state and output K-maps of Figs. 8.15a and
c yields the state table in Fig. 8.15d, which is identical to the one shown in Fig.
8.14b. This completes the example.

EXAMPLE 8.5 Analyze the circuit shown in Fig. 8.16.
The circuit contains two clocked negative-edge-triggered JK flip-flops and
hence has four states. An analysis similar to that presented previously yields
the timing diagram and state table of Fig. 8.17. The input sequence and starting
state are

x = 0011110
ybi = io

The equations that describe the circuit’s operation are

Jx = xyv
Kx = x,

J2 = JC,
K2 = x 4- y

The K-maps for these equations are given in Fig. 8.18. The K-maps for J and
K are combined into a single table shown in Fig. 8.19a. Using the J and K
signals to determine the state changes yields the table of Fig. 8.19b. Finally,

z = x y x y2
p

A Q yi

rC > C

K i Q

h Q y2

-c > c
K2 Q -V2

Clock

Figure 8.16 Synchronous sequential circuit with JK flip-
flops.
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n_rL_n_n_n_n__n_c
oj 71o I I I 0 0x

01 0 0 1 1yi

ojo|0 0 1 1yi

l fJ\ = xyi

K\ = X

J2 = x

K2 = x + y\

of0 0 0 0 1 0 0z = x y l y2

Figure 8.17 Timing diagram and state table for the example circuit, (a) Timing
diagram, (b) State table.

combining the transition table with the table for the output z yields the binary
state table shown in Fig. 8.19c.

8.2.3 Summary
In this section we have examined methods for analyzing various types of
synchronous sequential circuits. The reader should now be able to take the
logic diagram for any given sequential network, provided it is not extremely
complicated, apply the analysis techniques of this chapter, and derive a state
table and/or timing diagram description of the circuit. In the next section we
shall reverse this procedure and find logic circuit diagrams to realize a specified
state table or diagram.
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X

0 1

0 000

01 0 1

11 10

10 0 0

J 1

Xx
100 1

0000 10

0 001 0 1

0 111 0 1

0 010 0 1

h z

Figure 8.18 K-maps for logic equations that describe the example circuit.

X

0 1>’i yi

oo 00 1101 01
Xx

0 10 1 >’l >’2y i >’201 01 01 10 11
01/000 00/000 00 01

10/010 10 10 01 00/011 0001 01 01

00/0 11/111 1111 00
10 01 01 00 10 10 00/0 11/010 00 11

Y\ Yl/zY i y2Ji K\ J2 ^1 ^2 K2

(C)(b)(a)

Figure 8.19 Combining the K-maps into the state table.
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•8.3 Synchronous Sequential
Circuit Synthesis

In the previous section, the analysis of sequential circuits was introduced using
several examples. In each case a logic diagram was given and the resulting
analysis produced a state table, state diagram, and/or timing diagram. In this
section the reverse procedure, the synthesis process, will be addressed [3-9].
For a given state table or diagram, well-defined tools will be used to generate
an equivalent logic diagram for the sequential circuit in question. All sequential
circuits in this chapter have clocked memory elements and are thus synchronous
sequential circuits.

In our previous work, each time we analyzed a sequential circuit, we
found that the resulting state table was completely determined, or specified.
However, occasionally a circuit is connected in such a manner that the state
table cannot be completely defined (for example, a circuit that causes a 1 input
to both the S and R terminals of an SR flip-flop).

The synthesis of synchronous sequential circuits begins with the speci-
fication of the desired state table (or diagram). Circuits for which every next
state/output pair is completely defined are termed completely specified cir-
cuits. Those for which several next states or outputs are arbitrary are termed
incompletely specified circuits. An example of each type of circuit is shown

X
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D/0 B!0A

D/0 C/0B

D/0 B/0C
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Figure 8.20 Types of sequential circuits, (a) Completely
specified circuit, (b) Incompletely specified circuit.
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in Fig. 8.20. The following sections deal with completely specified circuits.
Incompletely specified circuits will be considered later in the chapter.

8.3.1 Synthesis Procedure
The procedure for designing synchronous sequential circuits will be introduced
by a simple example.

EXAMPLE 8.6 Let us find a clocked D flip-flop realization for
the sequential circuit defined in the state
table of Fig. 8.21a.
First we must adopt some coding scheme for the symbolic states. This process
is called state assignment. We arbitrarily choose the code in Fig. 8.21b. If
we replace the symbolic states with their code equivalents, a binary state
table is obtained or, in other words, the transition table shown in Fig. 8.21c.
The transition table contains all the necessary information for generating the
switching functions for the combinational logic portion of the circuit. Then we
separate the transition table into an output K-map and D flip-flop input K-maps

> zy1'X X

0 01 1State y\ y iy i >2

A!0 Bl0 0 0 00 00/0 01/0A A

c/iA/0 01 00/0 11/1B 0 1B >DIO 01/0 10/0c BIO C 1 1 1 1

C/1 D/0 10/010 11/1D 1 0D
yi

(a) (b) (c) >ix
0 1 0 0 11

00 000 0 0 0 0 }’l
Q D,

y i
Q c01 0 01 010 T 0 w1

1 1 11 00 >’2
Q D2 -
Q c < >y2(I D10 10 UJ o Clock

D\ (= Y { ) D2 (= Y2 )
(0(c)

Figure 8.21 An introductory example, (a) State table, (b) State assignment,
(c) Transition table, (d) Output K-map. (e) Excitation K-maps. (f) Logic
diagram.
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as shown in Figs. 8.2Id and e. The flip-flop input maps are called excitation
maps. From the excitation and output maps,

D\ =^2 +^2

D2 = xy } + xyj = X © >’,
Z = x y l y2 + x y l y2

The logic diagram for the completed design is presented in Fig. 8.2If. The
combinational logic is realized using two levels of NAND gates.

In the foregoing example, several questions remain unanswered. How do
we choose the state assignment? What happens if the design requires another
type of flip-flop? How do we know the given state table is the best one to use?
Many state tables have extra states that may be eliminated.

Before we attempt to answer these questions, let us outline the complete
synthesis procedure for synchronous sequential logic circuits.

Synchronous Sequential Circuit
Synthesis Procedure

Step 1. From a word description of the problem,derive a state table.
Step 2. Use state reduction techniques to find the state table of a
minimum-state equivalent circuit.
Step 3. Choose a state assignment and generate the state and
output transition tables.
Step 4. Determine the memory device or flip-flop to be used and
find the flip-flop excitation maps.
Step 5. From the excitation maps, produce the switching logic equa-
tions. Also, form output maps and determine the output logic equa-
tions.
Step 6. Draw the logic diagram of the sequential circuit using logic
equations and the chosen memory devices.

The first step requires intuition on the part of the logic designer and
must be learned through trial and error experience. Step 2 is used to minimize
the number of memory elements required to build a circuit by eliminating
unnecessary states from the state table. In step 3, we may either choose an
arbitrary state assignment or else apply one of several algorithms that select
state assignments to optimize the amount of combinational logic needed to
realize a circuit. We shall see that the successful designer employs standard
algorithms and rules of thumb in completing steps 2 and 3. We shall examine
these algorithms and rules in Chapter 9, after we have gained some experience
in the fundamentals of synchronous sequential circuit design.

Step 4 requires analysis of the characteristics of the selected flip-flop
types, as presented in Chapter 6, to derive the flip-flop excitation maps. The
skills required in step 5 are found in Chapter 3, and hence it is assumed that the
reader is familiar with them. Step 6 is the obvious conclusion of the synthesis
procedure and is included for completion.
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Now that the problem has been defined, we shall first examine techniques
for designing logic circuits to realize a given state table or state diagram. Then
we will address the problem of creating state tables and diagrams from verbal
problem descriptions. We will address the minimization methods used in steps
2 and 3 in Chapter 9.

8.3.2 Flip-flop Input Tables
In the introductory synthesis example of Fig. 8.21, an edge-triggered D flip-flop
was employed for circuit realization. In particular, the characteristics of the D
flip-flop were used to generate the excitation maps from the transition table.
The transition table defines the necessary state transitions for each memory flip-
flop. A flip-flop input table may be used to determine the required excitation
inputs for each type of flip-flop memory element. Consider the input tables of
Fig. 8.22, which represent the characteristics of the four primary flip-flop types
discussed in Chapter 6. The notation in this table is as follows: t is the time
at which the clock signal is activated; Q(t) is the state of the flip-flop at the
instant the clock signal is activated; Q(t + e) is the next state of the flip-flop
after the clock signal has been activated.

The D flip-flop is convenient to employ because its next state is simply its
present input; hence the excitation maps are taken directly from the transition
table. Any other flip-flop requires the application of the corresponding input

State
transitions

Required
inputs

D(t )

State
transitions

Required
inputs

S{ t ) R( r )<2(0 Q( t + e)<2(0 Q( t + £)

0 0 00 0 0 d

0 1 1 0 1 01

1 0 0 01 0 1

1 d 01 1 1 1

(a) (b)

State
transitions

Required
inputs

State
transitions

Required
inputs

AO m<2(0 Q( t + £) <2(0 (20 + e)7X0
0 0 0 0 0 0 d

0 1 1 0 1 1 d

0 01 1 1 d 1

1 0 1 d 01 1

(c) (d )

Figure 8.22 Flip-flop input tables, (a) D flip-flop, (b) Clocked SR
flip-flop, (c) Clocked T flip-flop, (d) Clocked JK flip-flop.
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table of Fig. 8.22 in the production of the excitation K-maps. The flip-flop in-
put tables are derived from the flip-flop characteristic equations and excitation
tables presented in Chapter 6.

EXAMPLE 8.7 Let us implement the sequential circuit of
Fig. 8.21 using clocked JK flip-flops.
Assume the same state assignment. The transition table remains unchanged and
is reproduced in Fig. 8.23a for convenience.

The flip-flop input table of Fig. 8.22d is used to obtain the excitation
tables of Fig. 8.23b. One state transition is emphasized both in the transition
table and in the corresponding entry of the excitation table; that is, the transition
of y2 shown in Fig. 8.23a from 1 to 0 requires J2 = d and K2 — 1, as illustrated
in Fig. 8.23b. Next the excitation tables are transformed into excitation K-maps
and the required Boolean logic equations are minimized as follows:

Kx = xy2
K2 — x © yj — J2

J\ — * y2
J2 = x 0 y l

X X X

0 1 0 1 0 1VlV2 y\yi ym

oo 00/0 01/0 00 0d 0d 00 0d Id

00/001 11/1 01 0d Id 01 d\ dO

7®00 ©01/0 11 dl do 11 dO

10 11/1 10/0 10 dO dO 10 Id 0d

Yx Y2/Z J\KX J2K2

(a) (b)

x
0 1 0 1 0 1 0 1y\ y2

(T\oo 00 00 00d d 0 d d0 0

n 0101 0 01 d d 01 d d 1 0

i i ii i 0 11 11 0d 'd d

1010 d d 10 0 0 10 1 0 d d

K i K2JI h
(c)

Figure 8.23 Generating the excitation maps, (a) Transition table,

(b) Excitation tables, (c) Excitation maps.
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The logic diagram is shown in Fig. 8.24. The output logic is unchanged from
Fig. 8.2If.

y~u >
'30

)
)

V i
Q h

c
Vl Q

>’2 Q h
c

V2 Q K2

Clock

Figure 8.24 Clocked JK flip-flop implementation.

8.3.3 Application Equation Method for
JK Flip-flops

In Chapter 6, we derived the next-state characteristic equation for a JK flip-flop:
Q* = J Q + K Q

We may use this equation to our advantage in designing synchronous sequential
circuits employing JK flip-flops. The technique is as follows:

1. Proceed in the synthesis process through the steps generating the binary
state table, or transition table.

2. Instead of generating JK flip-flop excitation tables and K-maps, produce
the excitation K-maps for a D flip-flop implementation.

3. For each next state variable K, divide its K-map into two halves, one
associated with y. and one associated with y..
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4. Minimize the function Y. on the K-map, but do not cross the boundaries
dividing the map into halves. This generates a function in the form:

y. = + ( K . ) y i
5. We may now write the J. and K . expressions directly from the function

in step 4.

EXAMPLE 8.8 Let us derive the excitation equations for the
previous example using the application
equation method.
The steps of the application equation method are performed as follows:

1. The transition table is given in Fig. 8.23a.
2. The excitation K-maps are derived from the transition table as shown in

Fig. 8.25.

0 1

©0

©0
> y2

©1111 0
r y i

©10 10 0

Yi Y2

Figure 8.25 Excitation K-maps.

3. The Yx excitation map of Fig. 8.25 is divided by a thick line into two
halves, corresponding to y, and yx . Likewise, the Y2 excitation map is
partitioned into halves corresponding to y2 and yr

4. Terms are circled on the excitation maps without crossing the boundaries
that divide the maps. This produces the logic expressions:

i', = i.xy2 ) yx + (* + y2 ) yx
Y2 = C^i +* y\ ) y2 + Oi5

! + x y x ) y2

= ^ ® y{ ) y2 + ( x ® yx )y2
5. Since the expressions derived in step 4 are of the form

K = { J,) y t + ( Ki ) y t
we may write the J. and K . expressions directly from them:

Ji = xy2
J2 = x ® y x

K\ = x + y2 = x y2
K2 = x (& y, = x Q y x
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8.3.4 Design Examples
The synthesis procedure for synchronous sequential circuits was presented
earlier in this chapter as a six-step process. The reader should now be able to
complete all the steps except steps 2 and 3, state reduction and state assignment.
Let us postpone the development of the theory of these topics and, instead,
dwell on some practical applications of the other four steps for the moment.
This change of pace has two purposes: first, to allow the reader to practice
her or his skills of state table/state diagram formulation and excitation map
generation and, second, to provide a basis from which to present the state table
reduction and state assignment problems.

The design procedure will be demonstrated by several examples. In each
example it is assumed that the circuit is under the control of a periodic clock
pulse and that transitions in the circuits occur only as initiated by this clock.

Sequence Recogizers
Sequence recognizers are synchronous sequential circuits that produce a des-
ignated response on their outputs when specific sequences of input values are
detected. Each set of values in an input sequence is assumed to arrive prior to
the active transition of the clock, with successive values in a sequence arriving
during consecutive clock periods.

EXAMPLE 8.9 Design a synchronous sequential circuit with
one input x and one output z that recognizes
the input sequence 01.
This circuit can be used to recognize a 0 to 1 transition on the input x . In other
words, the circuit should produce an output sequence z = 01 whenever the
input sequence x = 01 occurs. For example, if the input sequence is

x = 010100000111101
then the output sequence will be

z = 010100000100001
The first step in the design procedure is the construction of a state dia-

gram that represents the input/output behavior just described. The diagram is
constructed as shown in Fig. 8.26. First it is assumed that the circuit is in some
starting state A and that the first input is a 1. Since a 1 is not the first element
in the input string to be recognized, the circuit remains in state A and yields
an output z = 0, as shown in Fig. 8.26a. However, if the circuit is in the initial
state A and the input is a 0, then, because this input is the first symbol in the
string to be recognized, the circuit moves to a new state B and produces an
output of 0, as shown in Fig. 8.26b. Now suppose that the circuit is in state B
and that the input symbol is a 0. Because this is not the second symbol in the
sequence 01, the circuit merely remains in state B and yields an output z = 0.
Finally, if the circuit is in state B and the next input symbol is a 1, the circuit
moves to state A and produces an output z = 1. Note that this final diagram,
shown in Fig. 8.26d, satisfies the input/output sequence given previously and
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thus recognizes the input sequence JC = 01. The state table that corresponds to
the final state diagram is shown in Fig. 8.27a. We shall assume that this state
table contains the minimum number of states possible for this circuit.

(a) (b)

(c)

Figure 8.26 Sequence 01 recognizer state diagram.

The next step in the synthesis procedure is to determine the number
of flip-flops required and the state assignment. The relationship between the
number of states ( N s ) and the number of flip-flops ( N F F ) is given by the
expression

2N F F ~ 1 < N s < 2N F F
For example, a four-state circuit would require two flip-flops, a ten-state circuit
would require four flip-flops, and so on. For the circuit described by the state
table shown in Fig. 8.27a, only a single flip-flop is needed.The state assignment
is arbitrarily chosen as A = 0 and B = 1; it could, however, just as easily have
been selected in the opposite manner (A = 1, £ = 0). We shall defer a more
detailed explanation of state assignment until Chapter 9.

Once the state assignment has been chosen, the state table in Fig. 8.27a
can be redrawn as the transition table of Fig. 8.27b. Here y k denotes the present
state of the circuit, which is the current output of the flip-flop. The symbol y
denotes the next state of the circuit, that is, the output of the flip-flop after a
transition has occurred. The K-map for the output is drawn separately merely
for simplicity. Suppose that we want to realize the circuit with clocked set-reset
flip-flops. The problem then becomes one of determining the proper signals on
the set and reset input lines to effect the transitions shown in Fig. 8.27b. Using
the clocked SR flip-flop input table of Fig. 8.22b, we may derive the excitation
maps shown in Fig. 8.27c. For example, consider the transition in the upper-left
corner of the transition table shown in Fig. 8.27b: y k = 0, x = 0, andy*+1 = 1.
To effect a state change from y k = 0 to y*+1 = 1, the signals that must appear
on the set and reset lines are S = 1 and R = 0. Hence, these signals appear in the
corresponding positions in the excitation maps of Fig. 8.27c. Next consider the
state transition in the upper-right comer of the transition table: y k = 0, x — 1,
and yk+l = 0. Since no change in state must occur, the signal on the set line

(8.9)

*+ i
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must be S = 0, while the signal on the reset. line does not matter; that is, R is a
don’t-care. The reader should recall that an SR flip-flop will not change to the
set state with 5 = 0 and R = 0 or S — 0 and R = 1. The remaining blocks in
the excitation maps are determined in a similar manner.

yk

0

1
Clock

v
(d) z

Clock
i i i
0 ' 01 1 ' 0 1I I I II Ix

ii t i i i

oI o I 0 1 00 1 0 0S = x
I I I I

oR = x 0 01 1 1 1 0 1 1 1
I I I

I I I I I
I I II

I
I II I I I I I Iz

(e)

Figure 8.27 Synthesis of a sequence 01 recognizer, (a) State table, (b) Transition
table and output map. (c) Excitation maps, (d) Logic diagram, (e) Timing diagram.

The excitation maps can now be used to derive the switching logic circuit
equations:

S = x
R = x
z = xyk

The actual circuit obtained from these logic equations is shown in Fig.
8.27d. The reader may now check the circuit to see if it does indeed recognize
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the input sequence 01. A timing diagram with x shown as a level input signal
that is not synchronized with the clock is drawn in Fig. 8.27e. Note that the
circuit operates as follows:

1. A logic 0 on * causes the SR flip-flop to set on the next falling edge of
the clock.

2. The flip-flop then remains at logic 1 waiting for the input to change from
0 to 1.

3. Then x goes high, and the output z also goes high.
4. Finally, the flip-flop resets on the next falling edge of the clock.

So the three 0 to 1 transitions on JC have been detected as shown by the three
pulses on z.

EXAMPLE 8.10 For completeness, let us realize the circuit of
Example 8.9 with clocked T flip-flops and
then with JK flip-flops.
If a clocked T flip-flop is used to implement the sequence recognizer, the
excitation map for the flip-flop is as shown in Fig. 8.28a. This table is derived
using the transition table in Fig. 8.27b. Recall that T = 1 if a state transition is
to take place and T = 0 otherwise. See the input table for a clocked T flip-flop

Q

Q >i

Clock

(b)

x x
yk yko l i0

0 0 d1 0 d

11 d d 0 1

J K

(c)

Figure 8.28 Clocked T and JK flip-flop realizations, (a) Clocked T flip-flop
excitation map. (b) Clocked T flip-flop implementation, (c) Clocked JK excitation
maps.
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in Fig. 8.22c. From the excitation map in Fig. 8.28a, the logic equation for T
is given by the expression

T = xy + xy = x O y
The output equation is identical to that obtained earlier. The implementation of
the logic equation with a clocked T flip-flop is shown in Fig. 8.28b.

Fig. 8.28c shows the excitation maps for a realization using clocked J K
flip-flops. The corresponding logic equations are:

J = x , K = x
Note that the logic equations for J and K are identical to those for S and R in the
set-reset realization, and hence the clocked JK flip-flop realization is identical
to that shown in Fig. 8.27d, with the SR flip-flop replaced by a JK flip-flop.

EXAMPLE 8.11 Let us design a synchronous sequential
circuit with one input line and one output line
that recognizes the input string x = 1111. The
circuit is also required to recognize
overlapping sequences, as can be seen in the
output string z that results from the following
input string x:

x = 1101111111010
z = 0000001111000

The state diagram and the corresponding reduced state table for the sequential
circuit that will recognize the input string x = 1111 are shown in Figs. 8.29a
and b. Note that if state A is assumed to be the initial state the circuit changes
state every time an input x = 1 occurs, with the exception of the fourth and
succeeding ones. Every time an x = 0 occurs, the circuit resets by returning to
state A. The loop with x = 1 at state D satisfies the overlapping input sequence
criterion by producing a 1 at the output when the fourth, fifth, sixth, and so on,
logic 1 occurs at the input.

The state assignment for the example is arbitrarily chosen as follows:
A = 00
B = 01
C = 10
D = 11

The resulting transition table is shown in Fig. 8.29c. The output map is shown
in Fig. 8.29d.

The excitation maps for a clocked SR flip-flop realization of the circuit
are shown in Fig. 8.30. The logic equations obtained from Fig. 8.29d and Fig.
8.30 are s1 = y2*>

R{ = x,
S2 - y2x ,
r2 = * + y\ y2

z =* y ] y2
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A , , k0 01 1>> l ^2

01 0000 0 0
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CDn 00 11 1 1 0

10 10 000 11 0

k+1 k+ 1yi y2 z

(c) (d)

Figure 8.29 A sequence 1111 recognizer, (a) State diagram, (b) State table,

(c) Transition table, (d) Output map.

The excitation maps for a clocked T flip-flop realization of the circuit are given
in Fig. 8.31a, and the corresponding logic circuit equations are

z =*y\ y2T\ = y\x_ + y_\ y2 x' _
T2 = y2x + y2x + yxy2

Excitation maps for a clocked JK flip-flop realization of the circuit are given
in Fig. 8.31b. The logic equations obtained from these K-maps are given next,
and the hardware used to realize the equations is shown in Fig. 8.32:

J\ y^ x ,
K ] = x ,

«/2 X )

K2 = y { + x
Z = x y x y2

We can also derive the JK flip-flop excitation equations using the ap-
plication equation method. The excitation K-maps are first derived from the
transition table as shown in Fig. 8.31c. From these, we derive the following
next-state equations.

1̂ = ( xy2 ) y\ + ix ) y\
Y2 = + ( xy0yi
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XX
\ k k0 0 11 y\ yi

(3\oo0 0 d

010 T d 0

11 0 11 1 0[d)

10 0 d 10 I 0

*1 Ri

X X
k 00 1 1ym

(?)oo 0 l

D01 010 0 1

1111 0 d 1 0

10 0 101 d 0

R2s2

Figure 8.30 K-maps for a clocked SR realization.

Recalling that the excitation equations are of the form
y,= (w + (*,)>-,

we can write the J and K excitation equations directly from the next-state equa-
tions, producing the same expressions derived earlier from the JK excitation
maps.

EXAMPLE 8.12 Here we want to design a clocked sequential
circuit that recognizes the input sequence
consisting of exactly two zeros followed by a
10. In other words, the following output
sequence should result from the given input
sequence.

x = 001001000010010
z = 000100100001001
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oo io o o
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11 T 0 11 1 0
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11 11 d d11 d 0 l o
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0 0 11y\ yi y\ yi

oo00 00 0 0
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> y i

0 0li n oo
> y i

010 100 0 0

y2
(C)

Figure 8.31 Clocked T and JK realizations, (a) Clocked T excitation maps,
(b) Clocked JK excitation maps, (c) Excitation K-maps.

One way to approach the design of a sequence recognizer is to establish a
string of state transitions corresponding to the “correct” input sequence. Ex-
amine the partial state diagram of Fig. 8.33a. If the circuit begins in state
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Clock

) yi
Q

{> K Q

Y
Figure 8.32 Clocked JK logic diagram.

A, an input sequence of 0010 will produce an output z = 1 coincident with
the last x = 0 in the sequence. Note that we have added two extra states
to be used for error conditions; that is, we will send the circuit to these
states when the input sequence does not match the correct pattern. Figure
8.33b illustrates some obvious transitions to the error states. To complete
the state diagram, we must have two arcs exiting each state, one for each
input condition. Notice that the x = 0 arc exiting state E has not been de-
fined. This arc should loop back to state C to allow for overlapping se-
quences, so it does not get routed to state G. The correct transition is recorded
in Fig. 8.33c. Next we must complete the transitions exiting error states
F and G. For state F, if an input x = 0 occurs, then a 10 sequence pat-
tern exists, which can be the beginning of a valid input sequence , so we
send the circuit to state B in the horizontal row of states in the state di-
agram. All other JC inputs to the circuit in states F and G cause transi-
tions within these error states, as shown in Fig. 8.33d. This completes the
state diagram. We should now look for equivalent states in our design. Ex-
amining the state table for the circuit in Fig. 8.33e, we note that A = F
and B = F, since they have identical rows, and therefore we may elimi-
nate rows E and F. Therefore, the reduced circuit is shown in Figs. 8.33f
and g. More will be said about equivalent states and state table reduction in
Chapter 9.
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o/o 0/0 1/0 0/1

Gr~Gr~©-~er'® G
Come here for an
incorrect input * = 0

Come here for an
incorrect input* = 1

*
0 1

A B/0 F/0 x 0/0
0 1B CIO /70

1/0 GA/0C G/0 D/0 A B/0
1/0D E/\ F/0 C/0 A/0B 0/01 /0 o/o /O\ i /o CTC/0 G/0E F/0 C D/0 A B

0/0B/0 F/0F D B/\ A/0 0/1
G G/0 F/0 G G/0 A/0 1/0

(e) (0 (g)

Figure 8.33 A sequence 0010 recognizer, (a) Partial state diagram, (b) State
transitions to the error states, (c) Feedback for overlapping sequences, (d) Complete
state diagram, (e) State table, (f) Reduced state table, (g) State diagram.

Realization of this circuit in hardware will require three flip-flops. To
complete the solution, we need only follow the procedure as shown in the
previous examples.

A number of problems may be approached in the same manner as for
sequence recognizers. This is illustrated by the following example, in which
we design an arithmetic circuit to operate on sequences of binary digits.
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EXAMPLE 8.13 Let us design a serial binary adder that
computes the sum of two w-bit binary
numbers, a
a time, beginning with the least significant

. . a^ and bn l . . . bYb{v 1 bit at

bit.
The serial adder is to be used as illustrated in the block diagram of Fig. 8.34a.
The addend and augend are stored in shift registers A and B , respectively. The
sum replaces the addend in register A. Bits are presented to the serial adder
from the shift registers. In clock cycle / , the adder inputs are addend bit ai
and augend bit b( , and the output is the sum bit s - , which is computed as the
sum of the two inputs and the carry bit, c - _v produced while generating sum
bit s - _v The circuit must remember the carry from the previous clock cycle.
Therefore, the state of the adder in clock cycle i should reflect the value of
ci _ y Consequently, two states are needed for the circuit. State 0 represents the
condition c._ j = 0 and state 1 represents ci _ l = 1. At the end of each clock
cycle, the sum bit s - is shifted into register A to replace addend bit ar while b.
is returned to register B.

ajbj/Sjdj
Shift register A — 00/0 01/0

Serial
adder

11/001/1 10/0Si
10/1 1 1 /110bi

Shift register B * Cf_i = 0 00/1 C;_i = 1
(b)

(a)

a,
bi Si

cij bj Ci-l C j S i >i0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0
0 1
0 1
1 0
0 1
1 0
1 0
1 1

) —— D

> c

Clock

(d)(c)

Figure 8.34 Serial binary adder design, (a) Block diagram, (b) State diagram,

(c) State table, (d) Logic diagram.
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The serial adder state diagram is given in Fig. 8.34b and thecorresponding
state table in Fig. 8.34c. Using a D flip-flop as the memory element, it can
be shown that the excitation and output equations are simply the full-adder
equations, Eqs. 4.19, derived in Chapter 4.

s . = ai 0 bt 0 c._ ,
D = c, = aibi + aiCi_ x + be.

i-i

where c
The completed logic diagram is given in Fig. 8.34d.

represents the present state and c. the next state of the controller./- I

Counter Circuits
The design and operation of several different counter modules were presented in
Chapter 7. However, we used ad hoc procedures in the design of those modules.
In the examples that follow, we consider the design of counter circuits using
the methods presented in this chapter. In these examples, Moore models are
assumed, with the state and output reflecting the current value of the counter.

EXAMPLE 8.14 Design an up/down counter with four states
(0, 1, 2, 3) using clocked JK flip-flops. A
control signal x is to be used as follows:
When x = 0 the circuit counts forward (up);
when x = 1, backward (down).
A state diagram depicting this counter is illustrated in Fig. 8.35a. From this
diagram the state table shown in Fig. 8.35b is derived. Notice that the output
of the counter is just its present state. If we choose a state assignment

0 -* 00
1 -» 01
2 -> 10
3-> 11

which is standard for counters, the transition table may be produced as illus-
trated in Fig. 8.35c. Using the input table for the clocked JK flip-flop (see Fig.
8.22), the excitation maps for the two flip-flops y, and y2 are obtained in Fig.
8.35d. Using these K-maps, the following relations are found:

J { = Kj = xy2 + xy2 = x 0 y2

J2 = K2 = 1
Hence, the logic diagram for the four-state up/down counter is drawn in Fig.
8.36. If the signal x is controlled by a toggle switch and the clock period is very
slow (say 1 second), the action of this device may be observed by attaching
light-emitting diodes (LEDs) to the flip-flop outputs.

Now let us tackle a more formidable counter design.
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X X
it,, k0 1 0 1y i yi

3/0o 1/0 0100 11

1 2/1 0/1 10 0001

2 3/2 1/2 00 1011

3 0/3 2/3 0110 11
k + 1 k + 1y\ y2

(b) (c)

x X

0 1 0 1y\ yi

oo o 00d 1 d 1 d

ra01 1 0 d 01 d 1 d 1

11 11^ Li d 0 d 1 d 1

ra10 0 10d i l l d

J i '/2 /L 2 */2 ASI

(d)

Figure 8.35 Up/down counter synthesis, (a) State diagram, (b) State table,

(c) Transition table (d) Excitation maps.

EXAMPLE 8.15 Use clocked JK flip-flops to design a circuit
that counts in the BCD code. The counter has
one control signal, x. When x = 1, the counter
counts; otherwise, it holds the current state.
The output showing the value of the count is
to be in the form of four lights. For example,
if the count is 3, then the lights would read
OFF, OFF, ON, ON.

Because of its simplicity, the state table can be constructed immediately. Ig-
noring the output for the moment, the state table for this example is shown in
Fig. 8.37a.

To satisfy the output readout, the states will be assigned so that they are a
direct indication of the count; that is, each is assigned its BCD representation,
and hence the output can be obtained by merely monitoring the outputs of the
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Clock

y i
J i QX —c > c
Ki fi

7i G
)72—c > c1

*1 Q

Figure 8.36 Implementation of an up/down counter.

flip-flops and using these signals to turn the lights on and off. Therefore, the
state assignment is

0 -> 0000 5 -> 0101
1 -> 0001 6 -> 0110
2 -> 0010 7 —> 0111
3 -> 0011 8 -> 1000
4 -> 0100 9 -> 1001

The transition table for this assignment is given in Fig. 8.37b. Next we
derive the excitation maps for the four flip-flops using Fig. 8.22d. The resulting
tables are presented in Fig. 8.37c. The ds in the tables represent don’t-cares.
These tables may be reorganized into K-map form as shown for input J2 in Fig.
8.37d. All the resulting Boolean logic equations are listed next:

J2 = )W’
1 = >W’

J0 = x ,

Note from the logic equations that the input x acts as a gating signal to disable
or enable all flip-flop inputs simultaneously.

The actual implementation of the circuit using clocked JK flip-flops is
shown in Fig. 8.37e.

= y0x
K1 = >w
*i =

= X

J

*0
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Xk., k ~ , k,, ky3 yi y\ yo o l

0000 0000 0001

00010001 0010
X 00100010 00110 1

0011 010000110 0 1
01000100 01011 21
0101 011001012 2 3
01100110 01113 3 4
0111 1000011154 4
1000 100110005 5 6

1001 1001 00006 6 7
dddd dddd10107 7 8
dddd dddd10118 8 9
dddd dddd11009 9 0

1101 dddd dddd
(a)

dddd dddd1110

dddd11 11 dddd

.. £ + 1.. & + 1.. & + lA, k +\^3 yi y i yo

(b)

Figure 8.37 Design of the BCD counter, (a) State
table, (b) Transition table.

EXAMPLE 8.16 Let us use the application equation method
to derive the excitation equations for flip-flop
yv of the BCD counter in Example 8.15.

1. The transition table is given in Fig. 8.37b.
2. The excitation K-map for D flip-flop y} is given in Fig. 8.38.
3. The dark line across the K-map divides Y ] into halves associated with

and y
4. The next state equation is

r

= two)^ + (* + 3^1
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XXXXX XXXk., k k ky? ^2 yi yo o 1o 1o 1 o 1o i o 1o 1o 1

l d dd 00 dd d 0d d 0 00000 0 0

d d 0 11 d d0d dd d 0 00001 0 0

1 d d0 0 0d d0 d dd d 00010 0 0

101 d dd d d 00 1 dd d0011 0 0

1 d d0d dd d 0 0 0d d 00100 0 0

d 0 1d d d0 10 0d d d d0101 0 0

d0 1 dd 0 00 0 dd d d0110 0 0 d

1d d 0d d 0 10 1d d d0 1 d0111

d0 1 dd dd 0 00 0 0 0 dd d1000

d dd dd 0 00 0 d1001 d d 0 1

d d ddd d dd d dd dd d d d1010

d d d dd d dd d dd dd d1011 d d

d dd dd d d dd d dd d d1100 d d

dd dd d dd dd d dd d d d d1101

d d d dd dd dd dd d d d1110 d d

d d d ddd d dd dd d d dd d1111

KoJoK\K2*3 j2J3

(C)

Figure 8.37 (Continued) design of the BCD counter, (c) Excitation tables for
the BCD counter.

Notice that the product term groupings do not cross the dark line dividing
the K-map.

5. The equations for 7, and Kx are

4 = Wo
K ] = x + y0

= x y0
Notice that these are the same equations obtained by the excitation table
method in Example 8.15.

Finite-state Controllers
Many applications require control circuits that perform designated sequences
of actions in response to externally applied signals or as a result of conditions
produced within the circuit, such as a carry generated in an addition operation
or a counter reaching a terminal value. Such control circuits are characterized
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01 00 01 11 10

d 0 d d 0

d 0 d d 0

dZ_! Di i 0 d d d d

10 0 d 0 dd d d d

JC = 0 JC = 1
(d)

xK
hVO-K J1Vl

h C <>V2
V3

*0
K\K2K3

Clock

Lights

(e)

Figure 8.37 (Continued) design of the BCD counter, (d) K-map for J r
(e) Realization of the BCD counter.

by having a finite number of states; hence they are referred to as finite-state
controllers.

One of the most common applications of finite-state controllers is as con-
trol units for computers and other digital systems. Such systems comprise two
parts: a data path and a control unit. The data path performs various operations
on data elements, such as arithmetic operations and other transformations. Data
paths typically comprise combinational logic modules, such as arithmetic logic
units and multiplexers, and often include registers for data storage.
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y

y-i y?>

r >0 r yo

y i < y i

y2 y2

Figure 8,38 K-map for Y X (rf+I).

The control unit supplies commands to the data path to enable selected
operations. These commands must be sequenced properly to ensure that the
proper operations are carried out in response to various inputs and conditions.
We design a control unit for a digital system by identifying its inputs and outputs
and then developing the control algorithm in the form of a state diagram.

Finite-state controllers are designed using the general synchronous se-
quential circuit synthesis procedure defined earlier. We begin by defining the
inputs and outputs of the controller and then the algorithm to be implemented.
The algorithm is often specified in state diagram format. Then the remain-
ing steps of the synthesis procedure are performed. This is illustrated by the
following examples.

EXAMPLE 8.17 We wish to design a finite-state controller for
the robot of Fig. 8.39 so that it can find its
way out of the maze shown in the figure.
The robot is to maneuver by turning whenever it comes in contact with an
obstacle. On the nose of the robot is a sensor whose output x = 1 whenever
it is in contact with an obstacle; x = 0 otherwise. The robot has two control
lines: zx = 1, which turns the robot to the left, and z2 = 1 which turns the robot
to the right. When it encounters an obstacle, the robot should turn right until
no obstacle is detected. The next time an obstacle is detected, the robot should
turn left until the obstacle is cleared, and so on.

The robot controller requires four states as follows:

State A = no obstacle detected, last turn was left
State B = obstacle detected, turning right
State c = no obstacle detected, last turn was right
State D = obstacle detected, turning left
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Bottom view
of robotMovable

blocks Sensor
( X )

Robot —
Wheels

Figure 8.39 Robot and maze.

The control unit state diagram is given in Fig. 8.40a. Note that the con-
troller stays in state A with no turns until an obstacle is encountered. Then
it enters state B and turns right until it no longer detects the obstacle, at
which time it enters state C and stops turning. The controller then remains
in state C until another obstacle is detected, at which time it enters state
D and turns left until the obstacle is no longer detected; it then returns to
state A.

The state table is given in Fig 8.40b. Let us select the state assigment
A = 00, 5 = 01, C = 11, and D = 10. The binary transition table is given
in Fig. 8.40c. From the transition table, we can form the output tables for zj
and zv shown in Fig. 8.40d, from which we can derive the following output
equations.

*i =
z2 = xyx

For the state variables, let us use JK flip-flops and the application equation
method. The excitation tables for T, and Y2 are given in Fig. 8.40e. From these
tables, we derive the excitation equations as follows.

Y\ = ( xy2 ) yl + (x + y2 ) yl
J\ - xy2

K\ = x + y2 =* y2

Yi = (xy^+ (x + y, )y2

J2 = xyx
K2 = x + yx — xyx

The completed logic circuit diagram for the robot controller is given in
Fig. 8.40f.
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Figure 8.40 Robot controller design, (a) State diagram, (b) State table,

(c) Transition table, (d) Output maps, (e) Excitation maps, (f) Logic circuit
diagram.
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EXAMPLE 8.18 Let us design a control unit for a simple
coin-operated candy machine. Candy costs
20 cents, and the machine accepts nickels
and dimes. Change should be returned if
more than 20 cents is deposited. No more
than 25 cents can be deposited on a single
purchase; therefore, the maximum change is
one nickel.
A block diagram of the candy machine is given in Fig. 8.4 la. The control unit
has two inputs, N and D, which are outputs of the coin detector. The coin detec-
tor generates a 1 on signal N if a nickel is deposited and a 1 on signal D output if
a dime is deposited. The N and D lines automatically reset to 0 on the next clock
pulse. We shall assume that it is physically impossible to insert two coins at the
same time, and therefore we cannot have N = D = 1 in the same clock period.

^ ^
Release
candyN

C°'n Ddetector *
Control

unit
Release
change

(a)

ND/ RC

00/0000/00 10/00
0

01/00 5
10/10,

01/11
01/00

10/00
01/100()/00 JT5

10
10/00 Figure 8.41 Coin-operated

candy machine design, (a) Block
diagram, (b) Control unit state
diagram.

00/00

(b)

The control unit has two outputs, R and C. The candy is released by a 1
on signal R y and a nickel in change is released by a 1 on signal C.

The states of the control unit represent the total amount of money de-
posited for the current purchase. The set of states is thus {0, 5, 10, 15}. When a
deposited coin increases the amount to 20or 25 cents, the control unit will return
to state 0 while releasing the candy, along with releasing change, if necessary.
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The state diagram of Fig. 8.41b describes the operation of the candy
machine control unit. For a given state, the R and C outputs depend on which
coin is inserted; therefore, a Mealy model has been used. Note that the input
combination N D = 11 is not specified since two coins cannot be deposited
simultaneously.

The completion of a synchronous sequential logic circuit design from the
state diagram of Fig. 8.41b is left as an exercise for the reader.

8.3.5 Algorithmic State Machine Diagrams
A variation of the state diagram that is useful when designing control units and
other finite-state machines is the algorithmic state machine (ASM) diagram. An
algorithm is a well-defined sequence of steps that produces a desired sequence
of actions in response to a given sequence of inputs. The ASM diagram is a
convenient tool for expressing algorithms to be realized by sequential logic cir-
cuits, much as a flow chart might be used to describe a software algorithm to be
programmed on a computer. ASM diagrams are constructed of three elements:

State box: Represents one state of the circuit, and is therefore
equivalent to one node of a state diagram. The state name is listed
in the box and, for Moore circuits, the outputs to be produced, that
is, the actions to be performed while in that state. A state box al-
ways has a single entry point and a single exit point, as illustrated
in Fig. 8.42a.
Decision box: Represents a state transition decision based on a test
of one circuit input. A decision box, as illustrated in Fig. 8.42b, lists
the input to be tested and has a single entry point and two exit
points, one for the input equal to 0 and one for the input equal to 1.
A separate decision box is used for each input test.
Conditional output box: Specifies outputs associated with state tran-
sitions for a given input in a Mealy circuit. A conditional output box
is placed in the path between a decision box and a state box and
has a single entry and exit point, as shown in Fig. 8.42c.

Slate Name
f Mealy
V outputs JMoore outputs

(a) (b) (c)

Figure 8.42 Elements of an ASM diagram, (a) State box. (b) Decision box.
(c) Conditional output box.
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C

a )1

1 /0
A

0/0 0/ 1 B

x/z 0/0
1/01/ 1

c

(b)

Figure 8.43 ASM Representation of a Mealy model sequential circuit, (a) ASM
diagram, (b) Equivalent state diagram.

www.youseficlass.ir



Section 8.3 Synchronous Sequential Circuit Synthesis 549

ASM diagrams can be used to develop both Mealy and Moore model
circuits. The ASM diagram and corresponding state diagram for a Mealy circuit
are presented in Figs. 8.43a and b, respectively. In the ASM diagram, note that
output z is specified in conditional output boxes, one for each state and input
combination. This corresponds to associating the output with the arcs of the
state diagram.

The ASM diagram and corresponding state diagram for a Moore cir-
cuit are presented in Figs. 8.44a and b, respectively. Note that there are
no conditional output boxes in the ASM diagram. The outputs of a Moore
circuit are functions of only the state variables and are therefore specified
within the state boxes in the ASM diagram and within the nodes of the state
diagram.

Figure 8.44 ASM representation of a Moore model sequential circuit, (a) ASM
diagram, (b) Equivalent state diagram.

The use of ASM diagrams in sequential circuit design is demonstrated
by the following two examples.
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EXAMPLE 8.19 Let us design an ASM diagram for an 8-bit
serial two’s complementer that will implement
Algorithm 1.4 presented in Chapter 1.
Algorithm 1.4 requires that we examine the bits of the number from right to left,
copying the bits until the first 1 bit has been copied and then complementing the
remaining bits. The ASM diagram of the serial two’s complement algorithm
is given in Fig. 8.45. Data bits are supplied to the circuit sequentially on input
x, beginning with the least significant bit. The circuit output z is the corrected
data bit. In state A, we are looking for the first 1 bit, and therefore z = ;c. In
state B, the first 1 bit has been detected, and therefore z = x . Note that a Mealy
model has been used, since z is a function of x and the state. Therefore, all
outputs are specified in conditional output boxes.

A
Look for
first 1 bitCEO

0

c Z = 1

B) GEDG= 1 Complement
remaining bits

0 1

Figure 8.45 ASM representation of a serial two’s
complementer.

Now let us tackle a more formidable design problem involving a data
path and a control unit.
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EXAMPLE 8.20 We wish to design the control unit for a
binary multiplier that will compute the 8-bit
product of two 4-bit unsigned binary
numbers using a series of add and shift
operations. The multiplier begins when
pulsed by a Reset signal and halts with the
product on its outputs. A Halt signal
indicates the end of the operation.
We develop the multiplication algorithm by first examining the “pencil and
paper” algorithm, as described in Chapter 1. Consider the product of (0111)2
and (1010)2.

0 111 Multiplicand
10 10 Multiplier
0 0 0 0 Partial product 1

0 1 1 1
0 0 0 0

0 1 1 1

x

Partial product 2
Partial product 3
Partial product 4

1 0 0 0 1 1 0 Product

Multiplier bits are examined sequentially from right to left. If the multi-
plier bit is 1, the partial product is the multiplicand, and if the multiplier bit is
0, the partial product is simply 0000. Each new partial product is shifted one
bit position to the left before adding it to the total. Alternatively, we can leave
the position of the partial product fixed and shift the total to the right after each
addition. We shall use the latter approach for our control unit.

The data path of the binary multiplier requires three registers and a binary
adder, as illustrated in Fig. 8.46a. The registers serve the following functions.

A: A 5-bit shift register that holds the four most significant bits of
the product and the carry from the adder.
Q: A 4-bit shift register. Q initially contains the multiplier. In each
iteration, Q will be shifted one position to the right, with its leftmost
bit replaced by 1 bit of the product, so that at the end of the operation
Q will contain the lower 4 bits of the product.
M: A 4-bit parallel register that holds the multiplicand.

In addition to these components, a 2-bit binary counter, CNT, is used to count
the number of iterations. It will be initialized to 00 and incremented after each
shift operation, returning to 00 after the fourth iteration. A logic gate will be
used to indicate the 00 condition.

The product will be computed by adding the multiplicand to the current
total in register A when the tested multiplier bit is 1. Instead of adding a partial
product of 0000 to the total when the multiplier bit is 0, we shall simply omit
the addition step.

www.youseficlass.ir



I
552 Chapter 8 Analysis and Synthesis of Synchronous Sequential Circuits

Start

A f" 0
M 4— Multiplier
Q 4- Multiplicand

CNT 4— 0

Register A Register Q 4
7^ MuliplicrSSYv /777

0 * *
2-bit

counter' 4 Add.' 4 '4 n iout * 00 A <— A + M>
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" 4 «Product Co CbAdder
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Halt Shift right A: Q
CNT CNT + 1Control

unit *VAV
7^ Muliplicand m ' ’ HaltRegister M

0Start Add Shift Q Halt 4- 1
Register control signals

(a) (b)

Figure 8.46 Binary multiplier, (a) Block diagram, (b) ASM diagram.

The controller has two inputs: Q0 is the multiplier bit being tested and
C0 is 1 when the counter contains 00, indicating the end of the fourth add and
shift cycle. The ASM diagram of the controller is given in Fig. 8.46b. A Moore
model is used with the following four states:

Start: Load the operands into the M and Q registers, and clear the
A register and counter CNT.
Add: Add the multiplicand (M) to the current partial product (A ) by
loading the sum and carry outputs of the binary adder into the A
register.
Shift: Shift the partial product and multiplier 1 bit to the right by
enabling the shift control lines of the A and Q registers. Also,
increment the counter by enabling its increment control line.
Halt: Halt, leaving the final product in the A and Q registers.

One multiplier bit is tested in each iteration of the algorithm to determine
whether to enter the Add state or to omit the Add state and go directly to the
Shift state. The counter output is tested after the Shift state to determine whether
to halt or perform another iteration.

The controller has four outputs, one corresponding to each state. The
Start output activates the load control lines of the M and Q registers and the
clear lines of the A register and counter. The Add output activates the load line
of the A register. The Shift output activates the shift control lines of the A and Q

I
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registers and the increment control line of the counter. The Halt output signals
the end of the operation.

8.3.6 One-hot Finite-State Machine
Design Method

In the design of sequential circuits described by ASM diagrams, a simplified
design approach using the one-hot state assigment method is often used to
reduce design time. A one-hot state assigment uses one state variable, and con-
sequently one flip-flop, per state, as shown in Table 8.1. All the state variables
except one are equal to 0 at any given time. The single state variable that is
equal to 1 is called the hot state. Therefore, an rc-state sequential circuit requires
n state variables rather than |"log2 n \ . The resulting circuit contains more flip-
flops, but can be designed more easily and often requires fewer combinational
logic gates.

One-hot designs can be derived directly from ASM diagrams. Figure 8.47
illustrates logic circuit implementations of the various ASM constructs. D flip-
flops are used for all memory elements, with one flip-flop per state box. Simple
state sequencing is implemented by cascading the flip-flops, as illustrated in
Fig. 8.47a. When in state A, flip-flop output QA = 1. Since DB = QA,flip-flop
output QB will be set to 1 on the next clock pulse, while QA resets to 0. In this
manner, the hot state passes from one flip-flop to the next. For Moore circuits,
the circuit outputs are simply the flip-flop outputs, as shown in Fig. 8.47a, since
they are functions of only the state.

Control paths that merge on the ASM diagram are merged with an OR
gate in the control circuit, as illustrated in Fig. 8.47b. In this circuit, flip-flop
output QB will be set to 1 on the next clock pulse if either QA = 1 or Qc = 1.

ASM decision boxes are implemented as illustrated in Fig. 8.47c. In this
case, when flip-flop output QA = 1 and input x = 0, the AND gates set flip-flop
inputs DB = 1 and Dc = 0, causing flip-flop output QB to be set to 1 on the
next clock pulse. If x = 1, then DB = 0 and Dc = 1.

Conditional output boxes in an ASM diagram are realized by connecting
the circuit outputs to the outputs of the AND gates that implement the decision
boxes, as shown in Fig. 8.47c, since these signals are functions of both the state
and the input.

TABLE 8.1 STATE ASSIGMENTS FOR A FOUR-STATE
SEQUENTIAL CIRCUIT

Sequential Assignment One-hot Assigment
State V2V0Vo

0001A 00
01 0010B

C 10 0100
1000D 1 1
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Figure 8.47 Controllers designed with the one-hot method, (a) Simple state
sequencing, (b) Merging control paths, (c) Control decision.
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The following example illustrates the one-hot design method for deriving
Moore and Mealy model circuits from ASM diagrams.

EXAMPLE 8.21 Let us use the one-hot design method to
implement the multiplier control unit ASM
diagram of Fig. 8.46b and the serial two’s
complementer ASM diagram of Fig. 8.45.
Figure 8.48a shows the logic diagram of the multiplier control unit. Note that
the circuit structure is derived directly from the ASM diagram. Since this is
a Moore model, the outputs are simply driven by the four flip-flop outputs.
The algorithm is initiated by providing a pulse on the Begin control line to set
the first flip-flop to 1 in one clock cycle and then to 0 on the next clock cycle.

Figure 8.48b shows the serial two’s complementer circuit. Again, the
circuit structure is derived directly from the ASM diagram. In this case a Mealy
model is used. Therefore, the output z is a function of the state variables and
the input x. In this case, z = 1 if the circuit is in state 0 and x = 1 or, if the
circuit is in state 1, JC = 0.

E> 8.4 Incompletely Specified Circuits
A sequential circuit is said to be incompletely specified if its state table contains
don’t-cares. These don’t-cares arise normally in some circuits due to the fact
that only a certain set of inputs can ever be applied. Hence, states and outputs
that may occur because of forbidden inputs are never attained and we may
assign them as don’t-cares. The following example will illustrate this idea.

EXAMPLE 8.22 Let us design a detonator circuit as shown in
Fig. 8.49a that exhibits the behavior of the
state diagram in Fig. 8.49b.
When the device is active and x = 0, the device rests in an idle state A. The
detonation sequence is initiated by setting x = 1. The device will move from
state A to B, then C, and finally D, where it issues a pulse ( z — 1) to detonate
an explosive. The circuitry prior to the detonator circuit is designed so that once
the first x — \ occurs the device cannot be reset; that is, no x = 0 input will
occur once JC = 1 is received.

The partial state diagram and complete state table for the detonator are
shown in Figs. 8.49b and c, respectively. Here again note that once the detonator
sequence has begun it will continue without interruption until the detonate pulse
is generated. The final state is a don’t-care because the explosive has ignited.
In the following analysis the detonator circuit will be realized using clocked T
flip-flops. If we choose the state assignment (y2yj) as

C = 10
D = 11

A = 0 0
B = 01
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Figure 8.48 Controllers designed with the one-hot method, (a) Multiplier
control unit, (b) Serial two’s complementer control unit.

all the necessary tables for the circuit realization are shown in Fig. 8.50. The
following equations follow directly from the tables:

T{ = x
t2 = y\

z = y l y2
The actual circuit for the detonator is shown in Fig. 8.51. Since our analysis is
valid only during the clock pulse, we use the clock pulse to gate the output.
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Detonatorx

AIO B/0A

-/- C/0B

C -/- D/0

-/- -/1D

(c)

Figure 8.49
(c) State table.

Detonator circuit, (a) Block diagram, (b) Partial state diagram.
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Figure 8.50 Detonator transition, output, and excitation maps.
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Figure 8.51 Detonator implementation.

It is important for the reader to realize that incompletely specified circuits
have an advantage over completely specified circuits from a hardware realiza-
tion standpoint. The advantage stems from the presence of don’t-cares in the
state table. In other words, these don’t-cares may be able to be grouped with
the ones in the excitation maps to produce a simpler circuit than would have
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been possible if all terms were completely specified. Figure 8.50 illustrates this
case.

8.4.1 State Assignment and Circuit Realization
Once a reduced state table has been determined, the state assignment and circuit
logic equations may be produced using exactly the same rules employed in the
completely specified case. However, since certain entries in the state table are
unspecified, there is usually a larger number of don’t-cares in the generated
K-maps, resulting in better logic minimization.

EXAMPLE 8.23 For the binary state table of Fig. 8.52a, let us
complete the realization using D, clocked T,
and clocked JK flip-flops.
From the binary state table, the K-maps for each realization are derived in Figs.
8.52b through e, and the corresponding logic equations are listed as follows:

D2 = xyx + y2 yx
Di = y2 yi

Ti =* yi + y2 y\
Ti = y2 +*
J2 - xyx

K2 = 5h
J\ = y2

K , - 11

z = xy2 + xyx
Notice that the D and clocked T realization require eight inputs to the gates,
and the clocked JK, two. In general, the clocked JK flip-flop gives better logic
reduction because it has more control logic internal to the device itself.

•8.5 Computer-aided Design of
Sequential Circuits

The process of designing, verifying, constructing, and testing a sequential logic
circuit is considerably more complex than for combinational logic circuits.
This complexity increases significantly with the number of states in the circuit.
Consequently, computer-aided design (CAD) methods are a virtual necessity
in the development of any sequential circuit having more than a few states. In
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Figure 8.52 Logic realizations, (a) Binary state table, (b) K-map for z. (c) D
flip-flops, (d) Clocked T flip-flops, (e) Clocked JK flip-flops.

this section we examine some CAD tools used in the synthesis and analysis of
synchronous sequential circuits.

8.5.1 Design Capture and Synthesis
The design of a sequential circuit begins by expressing the desired behavior
of the circuit in the form of a state diagram, ASM diagram, state table, or
some other formal description. This description is then processed to synthesize
a logic circuit that will realize the desired behavior. Many CAD tools are
available that can process various sequential circuit representations. Some of
these tools automatically perform one or more steps of the synthesis process. At
different stages of the design process, logic simulation tools may be utilized to
simulate the operation of the circuit to facilitate verification of the logic design
and/or analysis of its timing behavior.
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Many CAD systems support the development and capture of sequential
circuit descriptions in several formats, which may include the following:

1. Schematic diagrams
2. Excitation and output logic equations
3. State tables
4. State or ASM diagrams
5. Finite-state machine descriptions in a hardware description language

(HDL)

Where designs are captured in schematic diagram or logic equation form,
the designer will already have performed the design synthesis process. In these
cases, designs are entered primarily so that they can be evaluated using logic
simulation. In some cases, however, schematics and logic equations can be
analyzed by the CAD system to identify areas in which the design can be
optimized.

State diagrams, ASM diagrams, state tables, and HDL descriptions ex-
press only the desired behavior of a finite-state machine, from which a circuit
must be synthesized. Behavioral descriptions are often processed by automatic
synthesis tools, which perform some or all of the steps in the design synthe-
sis process, thus reducing design time. In addition, simulation of a behavioral
model is often performed prior to synthesizing a circuit to verify that the model
realizes the desired behavior.

Schematic Entry
Schematic capture for combinational logic circuits and modular digital designs
was described in Chapters 2 and 4, respectively. The development of logic
circuit diagrams for sequential circuits is similar, except that flip-flops and
other sequential modules must be utilized, in addition to the basic logic gates,
and are therefore included in one or more component libraries. In addition,
clock signals to control state transitions must be defined, and asynchronous
preset and clear signals to initialize flip-flop states may also be specified.

A number of device parameters must also be specified in sequential
circuits that are not applicable to combinational circuits. Typical parameters
include setup and hold times for latches, flip-flops, and other sequential module
inputs; clock specifications; and propagation delays from both synchronous and
asynchronous inputs to the outputs. These parameters are often specified for
each component in a design library to reflect the actual characteristics of that
component’s technology. In addition to physical characteristics, some design
systems allow default initial states to be assigned to memory elements for use
during logic simulation.

Finite-state Machine Descriptions
State diagrams, state tables, and other finite-state machine descriptions all con-
tain basically the same information, describing the desired circuit behavior in
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terms of state transitions and output changes in response to all possible input and
state combinations. For example, Figs. 8.53a and b present a state diagram and
the corresponding state table, respectively, of a finite state machine. State tables
are often entered intoa CAD system in truth table format,as shown in Fig. 8.53c.

Many CAD systems allow sequential circuit behavior to be expressed in
a standard hardware description language, such as VHDL or Verilog; others
may provide a vendor-specific HDL for this purpose. We earlier discussed the
use of VHDL to describe combinational logic circuits in Chapter 2. Sequential
behavior can also be readily expressed in VHDL. For example, Fig. 8.54
presents a VHDL description of the state diagram of Fig. 8.53a.

As described in Chapter 2, a VHDL description of a circuit module
comprises an entity, which defines the module inputs and outputs, and an
architecture, which defines the behavior and/or structural implementation of
the module. The entity declaration in Fig. 8.54 defines circuit seqckt as having
a clock input, elk, one signal input, JC, and one output, z .

In a VHDL architecture description, sequential circuit behavior is usually
described using one or more process structures. In the example of Fig. 8.54,
process clock describes the memory element behavior and process stateJrans
defines the state transitions and outputs for each state and input combination.
The latter contains the same information that would appear in a state diagram

Current Inputs
state

Next Outputs
statex z

0 0A A

01 BA

0B 0 c
0B 1 B

0 0c B

1 1C A

(c)

Figure 8.53 Sequential circuit description, (a) State
diagram, (b) State table, (c) Truth table format.
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ENTITY seqckt IS
PORT(elk: in bit;

in bit;
out bit);

— clock signal— circuit input

— circuit output
x:
z:

END seqckt;

ARCHITECTURE mealy OF seqckt IS
TYPE states IS(a,b,c);
SIGNAL state:

— three states
states : = a; — current state(initially a)

SIGNAL next
_
state: states : a; — next state(initial value a)

BEGIN
clock: PROCESS(elk)

BEGIN
IF elk*EVENT and elk = » 1 » THEN
state < next

_
state;

END IF;
END PROCESS clock;

PROCESS(state,x) — react to changes in state or input x
BEGIN

— react to transition on signal elk

— rising edge of elk— state change

state
_
trans:

— update next
_
state

— state transitions and outputs
0’ THEN
»0 > ;

next.state < state;
CASE state IS

WHEN a -> IF x -z <=
ELSE

next.state < b;
z <- »0» ;

END IF;
WHEN b -> IF x - '0' THEN

next
_
state < c;

z <= »0 » ;
ELSE

>0';z <-END IF;
WHEN c > IF x B *0' THEN

next
_
state < b;

z <* »0 » ;
ELSE

next
_
state <* a;

z <= ’l1;
END IF;

END CASE;
END PROCESS state

_
trans;

END mealy;

Figure 8.54 VHDL description of a sequential circuit.
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or state table. Note that a special data type, states, is defined, having values
(a , b, c ). This allows the state and next state of the circuit to be specified
symbolically until a state assignment is determined.

The clock PROCESS statement is executed on each transition of signal
elk. Within the process, the IF statement allows the circuit state to change only
when elk makes a transition and elk = 1. Therefore, state changes occur on the
rising transition of elk.

The stateJrans PROCESS reacts to changes in state or input x and
therefore models the combinational logic portion of the sequential circuit. The
CASE statement specifies a next state value and output for each state and input
value and therefore describes a Mealy model.

The interested reader is referred to [10, 11] for additional information on
using VHDL to model sequential circuits.

Computer-automated Logic Synthesis
Computer-automated synthesis tools are often used to perform some or all of
the steps of the sequential circuit design process, beginning from a behavioral
description of the circuit, in the form of a state diagram, state table, or HDL
description, and ultimately generating a logic circuit diagram or net list.

In most cases, the designer has a number of options to direct the synthesis
of a design. These options are specified before the synthesizer begins and may
include the following.

1. Select a state assigment method. Some tools require the designer to
provide a specific state assigment to be used during synthesis or else to
designate one of several standard state assignment patterns. For example,
Table 8.2 lists three of the state assignment options provided by Mentor
Graphics AutoLogic synthesis tool [11]. Other assigment options may
also be provided.

Some of the more advanced logic synthesis tools include algorithms
for deriving an optimal state assignment from a given state table. Several
such algorithms will be described in Chapter 9.

2. Select flip-flop types. Some synthesis programs require specific flip-flop
types to be designated. Others either select a default type or, in more

TABLE 8.2 STATE ASSIGNMENT OPTIONS FOR
A FOUR-STATE MACHINE.

State Sequential Gray Code One Hot
000100 00A

01 01 0010B
C 10 11 0100

10 1000D 11
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advanced systems, attempt to determine the optimal type for the given cir-
cuit. With computer automation, it is often feasible to synthesize a design
a number of different ways, using different flip-flop options to determine
which will require the smallest number of combinational logic gates.

3. Specify combinational logic minimization algorithms for the excitation
and output equations. These equations are derived from flip-flop excita-
tion and output tables. Most of the methods described in Chapter 3 may
be applied to minimize these equations. Often multiple algorithms are
made available to the designer, offering trade-offs in optimization versus
design time.

Figure 8.55 shows a sequential circuit that was automatically synthesized
from the VHDL description of Fig. 8.54 by Mentor Graphics AutoLogic VHDL
synthesis tool [11]. This circuit was produced in two steps. In the first step,
the VHDL description was converted to logic equations and a logic circuit
generated without optimization. The synthesizer was told to use D flip-flops
and the sequential state assigment of Table 8.2. The resulting circuit contained
17 primitive logic gates and six multiplexers, in addition to the two D flip-flops.
This particular tool used only two-input logic gates and 2-to-l multiplexers in
implementing the combinational logic section. The second step optimized the
design to that of Fig. 8.55, reducing the combinational logic portion to four
gates and one multiplexer.

The reader is referred to [12] for additional information on automatic
logic synthesis algorithms and methods.

) O

MUX21 D(0 )

A
Z D Q

B
> C QN

>
)

D( 1)

D Q

CLK O QN

Figure 8.55 Logic circuit synthesized from a VHDL description.
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8.5.2 Design Analysis and Verification
Analysis and verification of a sequential circuit design are most often done
using logic simulation. Sequential circuit verification may include functional
analysis, to ensure that the circuit realizes the behavior defined in the state
table or other finite-state machine description, and also a timing analysis to
determine performance characteristics.

Functional Analysis
Functional analysis of a sequential circuit design is used to verify that the logic
function realized by the circuit matches the logical behavior described by the
initial behavioral description, that is, to verify that the outputs are correct and
that the proper state transition takes place for each state-input combination, as
defined in the state table or other finite-state machine description.

It is often desirable to simulate the operation of a finite-state machine
from its behavioral description prior to beginning the synthesis process to verify
the correctness of the algorithm. The results of this behavioral simulation can
then be compared to simulation results obtained from the synthesized logic
circuit to ensure that the logic circuit does indeed realize the desired behavior.

Logic simulation of combinational logic circuits was described in Chapter
2. This process is similar for synchronous sequential circuits, although there
are a number of additional considerations.

1. A clock signal must be defined in terms of its period and duty cycle, that
is, the portion of the clock period during which the clock is high.

2. Signal waveforms to be applied to the circuit inputs must be defined.
Note that the timing of each input change must be coordinated with the
clock transition times so that all flip-flop excitation inputs will be stable
prior to each clock transition. For example, if a clock with transitions
every 100 ns is defined, beginning at time 0, then input changes must not
be allowed to occur at any time which is a multiple of 100 ns.

Some logic simulators allow sequences of input values to be
specified in list form. Values are then automatically applied to the inputs
prior to each clock transition.

3. The initial state of the circuit must be specified, that is, all memory element
outputs set to specified initial values. Some simulators allow default states
to be assigned as initial values. Others assign to each flip-flop a special
unknown state value, usually X or U , to indicate that the flip-flop has not
yet been set to a known value during circuit operation. The persistence
of an X value on the output of a flip-flop indicates that the flip-flop has
not been set to a specific 0 or 1 value, which may indicate a design error.

For example, if a T flip-flop is initially set to an unknown state
X , simply toggling the flip-flop will not be sufficient to determine the
next state of the flip-flop, and thus the state of the flip-flop will remain
X throughout simulation. This warns the designer that a reset signal or
some other means must be provided to initialize the state of the flip-flop.

www.youseficlass.ir



I
566 Chapter 8 Analysis and Synthesis of Synchronous Sequential Circuits

State transitions and output sequences are captured by the simulator and
displayed in tabular form, as timing diagram waveforms, or both. Normally
all flip-flop output values can be captured and examined, and therefore all
state transitions can be verified. In an actual circuit, often only the external
outputs are visible, with the state variables inaccessible from the pins on the
circuit module. In these cases, circuit behavior must be deduced from the output
sequences produced for each input test sequence.

In analyzing simulation results, the circuit state is checked for correctness
after each clock transition. In a Mealy model circuit, output changes can be
initiated by state or input changes and may therefore occur at any time within
the clock period. In Moore model circuits, the outputs should change only when
the state variables change and should therefore not be affected by transitions
on the input signals.

Timing Analysis
Timing analysis involves estimation of propagation delays, which determine
circuit performance, and checking for violation of timing constraints during
operation of a circuit.

The performance of a synchronous sequential circuit is most often speci-
fied in terms of the maximum clock frequency at which the circuit may operate,
which is the inverse of the minimum clock period, Tmin. Tmin is limited by the
propagation delays through the flip-flops and combinational logic gates that
comprise the circuit and is also limited by flip-flop setup time requirements.

Referring to the general synchronous sequential circuit model of Fig.
8.56, the various circuit propagation delays can be lumped into two parame-
ters: the propagation delays through the flip-flops, fFF, and those through the

*CL

z xx\

xn Combinational
logic

Yr Yy\ yr

Memory

?FF Clock

Figure 8.56 Propagation delays in a sequential circuit.
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combinational logic, tCL. Following an active transition of the clock, new val-
ues propagate through the flip-flops to the secondary variables, y, . . . yr , and
then these values propagate through the combinational logic to the next state
variables, Yx . . . F . Because of the setup time constraint, all flip-flop excita-
tion inputs must be stable for a period of time of at least ?su prior to the next
clock transition. Consequently, the minimum time between successive clock
transitions is given by

(8.10)T • ^ tr-c “H tf ~y T “1“ t
min — FF CL 1 su

and therefore 7’
min represents the minimum clock period.

Propagation delay /pp is measured from the point of a clock transition to
the time at which all the flip-flop outputs become stable and is therefore a func-
tion of the flip-flop rpHL and ?pLH parameters described in Chapter 6. Since all
flip-flops are synchronized to the same clock, tFF is chosen as the maximum of
the individual flip-flop fpHL and fpLH parameters to reflect the worst-case delay.

Propagation delay time tCL is a function of the rPHL and /pLH parameters
of the individual gates that make up the combinational logic block. The number
of gates between each input and output of the combinational logic block may
be different. Therefore, tCL is computed as the worst-case path delay between
the inputs and the next-state outputs.

The external outputs of a sequential circuit are typically not subject to
constraints, as are the flip-flop excitation inputs. Therefore, the output timing
is often not as critical. In a Mealy machine, the outputs are functions of the
external inputs and the state variables. Therefore, an output change may be
produced by either an input change, which would propagate to the output
in time t or by a state variable change, in which case the change would
propagate to the output after a delay of tFF -b t

In a Moore machine, the outputs are functions of only the state variables.
Therefore, all output changes would occur after a delay of tFF 4- tCL measured
from the time of the clock transition.

CL’
CL -

Constraint checking is often done during logic simulation to ensure that
no timing constraints are violated for the given clock and input sequences. As
defined in Chapter 6, every flip-flop has a minimum setup time, tsu , and hold
time, th, as illustrated in Fig. 8.57. For a clock transition at time tk , changes

rCL

<3
ŝu hu

Clock

Setup ] Hold Setup | Hold
Excitation changes allowed

hh

1 No excitation
changes allowed

Figure 8.57 Sequential circuit timing constraints.
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in the flip-flop excitation input values must not occur within the time period
[ tk - /su , tk + fh], as labeled in Fig. 8.57.

Input changes must be timed to avoid setup and hold time constraint
violations. Referring to Fig. 8.57, for clock transitions at times tl and r2,
changes in the flip-flop excitation inputs are only allowed within the time
interval [/, + th , t2 — rsJ. Since there is a time delay tCL between an input
change and a corresponding change in the next-state variables Yx . . . Yr , the
time tx of any input changes must satisfy the constraints:

+ *h < t x + ^CL < l2 ~ lsu
or

t\ + *h *CL < t x < t2 1

To perform constraint checking during logic simulation, /su and th param-
eters must be specified for each flip-flop. During simulation, any flip-flop exci-
tation input that changes within the time period spanning from tsu prior to the
clock transition until th after the clock transition is flagged by the simulator as an
error in the simulation output. In some cases, the simulator may set the state of a
flip-flop to an indeterminate value, X, to warn the designer of a potential prob-
lem. This use of the indeterminate value indicates that a possible unknown state
exists in the flip-flop due to violations of the setup and hold time constraints.

lCLsu

B 8.6 Summary
In this chapter we have presented procedures to analyze a synchronous sequen-
tial circuit, given its logic diagram, state table, or state diagram, and procedures
to realize both completely and incompletely specified synchronous sequen-
tial logic circuits. Flip-flop input tables and the generation of excitation maps
received attention, as did the development of state diagrams and state tables
from verbal problem descriptions. Many design examples were completed to
illustrate the synthesis techniques. The reader should now have a good grasp
of the synchronous sequential circuit synthesis problem. In Chapter 9 we will
examine methods for optimizing synchronous sequential circuits. For more de-
tailed information on the synthesis problem, the reader is encouraged to pursue
further reading from the selected references presented next.
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PROBLEMS 8.1 For the synchronous sequential circuit of Fig. P8.1, find:
(a) The state table using K-maps and A = 0, B = 1.
(b) The state diagram if the circuit input is in pulse form.
(c) The timing diagram for an input sequence x = 00100110 and the starting

state y° = 1.
Given the synchronous sequential circuit of Fig. P8.2 with level inputs:
(a) Draw a timing diagram for x = 000101011 and y° = 0.
(b) Find the state diagram.
(c) Find the state table.

For the sequential circuit in Fig. P8.3, find:
(a) The state table (A = 0, B = 1 ).
(b) The state diagram.
(c) A timing diagram if the starting state is y° = 0 and x = 001011000.
This circuit is level synchronous.

8.2

8.3

ox) 2Z

o)E>) x
z

yyy Q QQ

- Qy Q cQ c

ClockClock Clock
Figure P8.1 Figure P8.2 Figure P8.3

www.youseficlass.ir



I
570 Chapter 8 Analysis and Synthesis of Synchronous Sequential Circuits

8.4 Draw the logic diagram for a synchronous sequential circuit using clocked T
flip-flops and the switching functions

z = T{ = xy2

T2 = x ® y x
Find a state diagram of the circuit using the assignment

y2

A : 0 0
B : 0 1
C : 1 1
D : 1 0

8.5 Draw the logic diagram for a clocked D flip-flop implementation of a sequential
circuit employing the logic equations

r, = =10 y,
Y2 = x + y x + y2

Z = x y^ y2
Find a binary state table for this circuit.

8.6 Analyze the synchronous sequential circuit of Fig. P8.6. Assume the inputs are
binary levels and that the following state assignment is used:

y yii

A : 0 0
B : 0 1
C : 1 1
D : 1 0

Clock —
y

Q J

Use K-maps to find:
(a) The state table. (b) The state diagram.

Q K
8.7 If the sequential circuit of Fig. P8.7 yields an output sequence

z = 11011111
when we apply the input sequencez

X
x = 01101010

Figure P8.7 what is the starting state?

Find the state table for the sequential circuit in Fig. P8.8.8.8

8.9 Consider a sequential circuit consisting of two cascaded circuits illustrated in
Fig. P8.9. If the starting state is y{ = y2 = 0, what is the output sequence
generated by the input sequence

JC = 0110111010

8.10 Find the state diagram for the sequential circuit of Fig. P8.10 using the state
assignment

y ^21

A : 0 0
B : 0 1
C : 1 1
D : 1 0
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) Z

{>X

O

Q K2

Clock

Figure P8.6

*1

z

x2

Q

Q D3

Q

Figure P8.8Clock
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X

) *2

DQQy\

QQ
yi

Clock

Figure P8.9

z
T QD Q y i ?2X

r-C > C QQ

Clock

Figure P8.10

Find the D flip-flop implementation for the sequential circuit defined by the
following state table. Use the state assigment listed. Draw the logic circuit
diagram.

8.11

x
0 1>3 y2 y i

D/O c/o
E /0 A/1
F/ \ B /0
A /1 F/\
C/0 E /0
B/0 D/1

0 0 0
0 0 1
0 1 1
0 1 0
1 0 0
1 0 1

A
B
C
D
E
F

Obtain a D flip-flop realization for the synchronous sequential circuit specified
by the following state table. Use the indicated state assignment. Write the
combinational logic equations.

8.12
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X

yy3 y2 o Ii

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0

B/0 E/0A
C/1B A / l

B/0 C/1
C/0 E /0
D/1 A /0

C
D
E

8.13 Determine four state diagrams for synchronous sequential circuits as specified
by the following requirements. Each circuit has a single input line x and a single
output line z.
(a) The first circuit must produce an output z = 1 when two consecutive logic

1 inputs x have occurred. The next input after the two logic ones resets the
output to logic 0. For example,

x = 01100111110
z = 00100010100

(b) The second circuit must detect the input sequence 101 by producing z = 1
as the last 1 occurs. The output z is reset to 0 on the next clock pulse. Two
101 sequences may overlap. For example,

x = 010101101
z = 000101001

(c) Repeat Problem 8.13b but do not permit overlapping sequences. For
example,

x = 010101101
z = 000100001

(d) The fourth circuit detects a 01 sequence. The sequence sets z = 1, which is
reset only by a 00 input sequence. For all other cases, z = 0. For example,

x = 010100100
z = 011110110

8.14 Derive the minimum state diagram of a clocked sequential circuit that recognizes
the input sequence 1010. Sequences may overlap. For example,

x = 00101001010101110
z = 00000100001010000

8.15 Find the state table of a synchronous sequential circuit that detects the input
sequence 0101. The sequences may overlap as follows:

x = 010101001101011
z = 000101000000010

8.16 Obtain a minimum state diagram for a clocked sequential circuit that recognizes
the input sequence 1001 including overlap. For example:

x = 0101001000110010010
z = 0000001000000010010

8.17 Derive the logic equations to implement the four-state sequential circuit defined
by the following state table, using the indicated state assignment and:

(c) Clocked SR flip-flops.(a) D flip-flops.
(b) Clocked JK flip-flops.
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X

0 1y\ %
0 0
o 1
I I
1 o

B/0 C/0
D/0 A/1
A/1 D/0
D/1 B /\

A
B
C
D

8.18 For the following circuit with the given state assignment, find a clocked JK flip-
flop implementation. Write the logic equations and sketch the logic diagram.

x
0 1* >2

0 0
0 1
1 0
1 1

B /0 D/0
C/0 A/0
D/0 B / 0
A/1 C/1

A
B
C
D

8.19 Implement the circuit of Problem 8.18 using clocked T flip-flops.

8.20 Implement the circuit of Problem 8.18 using D flip-flops.

8.21 Given the following reduced state table and assignment, find the logic equations
and logic diagram:
(a) Using D flip-flops. (b) Using clocked JK flip-flops.

x
0>i y2 1

0 0
0 1
1 1
1 0

A/0 B /0
C/0 B /0
D/0 B /0
A/1 B /0

A
B
C
D

8.22 Find the logic diagram of an implementation of the following sequential circuit,
given the state assignment and:
(a) D flip-flops.
(b) Clocked JK flip-flops.

(c) Clocked T flip-flops.

x
0 1y y2i

o o
0 1
1 1
1 0

A/0 B /0
C/0 B /0
D/0 B/0
B/1 A/0

A
B
C
D

8.23 Find a clocked JK flip-flop realization for the following reduced state table and
assignment:
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*
0 1>’l >?

2 >3
0 0 0
1 0 1
1 0 0
0 0 1
0 1 0
1 1 0

B /0 D /0
A /0 C/1
D/\ C /0
B / \ E / 1
C /0 A /0
E /0 F /\

A
B
C
D
E
F

Design a 2-bit up/down, modulo-3 counter with the following function table
using JK flip-flops.

8.24

Mode*1 s0

0 0
0 1
1 0
1 1

Up
Down
Modulo 3
Modulo 3

Use D flip-flops to design a 3-bit counter/pseudorandom number generator.
The circuit has one control input x. When * = 0, the circuit should operate as
a binary up-counter. Otherwise, it should operate as a pseudorandom number
generator according to the following function table.

Binary
Up-Counter

* = 0

8.25

Pseudo-Random
No. Gen.

* = 1Present State
0 1 0

41 2
2 3 5
3 4 1
4 5 2

6 65
6 7 7
7 0 3

Next State
Design a serial subtractor that will perform the operation A — B , where A =

..a { a0 and B = b
8.26

. . b{ b0.The operands are applied to the serial sub-a . .n — 1
tractor sequentially, beginning with bits aQ and bQ. Use JK flip-flops.

« — i •

8.27 Design a serial parity generation circuit. The circuit receives a sequence of bits
and determines whether the sequence contains an even or odd number of ones.
The circuit output p should be 0 for even parity, that is, if the sequence contains
an even number of ones, and 1 for odd parity.

8.28 Design a logic circuit to implement the candy machine control unit designed in
Example 8.18. Use JK flip-flops.

8.29 Design a logic circuit for the binary multiplier control unit whose ASM diagram
was designed in Example 8.20 using a minimum number of JK flip-flops.

8.30 Modify the binary multiplier design of Example 8.20 so that it will perform a
binary division operation, dividing an 8-bit dividend by a 4-bit divisor using
a sequence of subtract and shift operations. The dividend should initially be
loaded into the A and Q registers and the divisor placed in the M register. At the
end of the algorithm, the quotient should be in the Q register and the remainder
in the A register.
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J Simplification of Sequential Circuits.A

•9.1 Redundant States
In a general sense we say that two states are equivalent if we cannot distinguish
between them. In other words, we cannot determine in which of two equivalent
states a sequential circuit starts by applying inputs and observing the outputs. If
this condition exists for every input sequence, one of these states is redundant
and can be removed without altering the circuit’s behavior.

Redundant states normally arise in an early design phase when a word
description of the sequential circuit’s function is transformed into a state dia-
gram or state table. The removal of redundant states is important for a number
of reasons:

1. Cost: The number of memory elements is directly related to the number
of states.

2. Complexity: The more states the circuit contains, the more complex the
design and its associated implementation become.

3. Aids failure analysis: Diagnostic routines are often predicated on the
assumption that no redundant states exist.

9.1.1 State Equivalence
Let us introduce the idea of state equivalence through a simple example. Con-
sider the circuit shown in Figs. 9.1a and b. Suppose that the initial state is
unknown. If an input x = 0 is applied to the circuit and the output is z = 1,
all that is known concerning the initial state is that it is either A or B or C.
Likewise, if the output is z = 0 when input x = 0 is applied, the initial state is
either D or E. Note that a similar conclusion is obtained for the input x = 1.
Therefore, we conclude that states A, B, and C are equivalent and that states
D and E are equivalent for an input sequence of length 1, that is, 1-equivalent.
The behavior for input sequences of lengths 2 and 3 is shown in Figs. 9.1c and
d. Note that states B and C and states D and E are 2-equivalent. States B and
C are also 3-equivalent, and in fact it can be shown that these two states are
K -equivalent for all K.

With these facts as basic background we now define precisely what is
meant by equivalent states.
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X

0 1

C/1 B/0A

E/0B C/1
SC* *x z C E/0Bl 1

D D/0 B/\
(a)

E/0E A!1

(b)

Initial
State

Input Sequences
00 01 11 10

11 10 01 00
11 10 00 01
11 10 00 01
00 01 11 10
00 01 11 10

A
B
c
D
E

(c)

Initial
State

Input Sequences
000 001 010 011 100 101 110 111

111 110 100 101 011 010 000 001
111 110 100 101 000 001 011 010
111 110 100 101 000 001 011 010
000 001 011 010 111 110 100 101
000 001 011 010 111 110 101 100

A
B Figure 9.1 Redundant states.

(a) Sequential circuit SC.
(b) State table, (c) Output
Sequences of length 2.
(d) Output sequences of length 3.

C
D
E

(d)

Definition
. . , Sjof a sequential circuit are said to be equivalent if and

only if, for every possible input sequence, the same output sequence will be
produced by the circuit regardless of whether Sv S2 , . . . , S. is the initial state.

This definition can be stated in another manner for pairs of states. Let Sk
and Sl be the next states of sequential circuit SC when input Ip is applied while
the circuit is in states S. and S - , respectively. Then S - and S. are equivalent if

* . J 1 j

and only if, for every possible input Ip ,
1. The output produced by state S. is equal to the output produced by state 5 .
2. The next states Sk and Sj are equivalent.

The second definition can be deduced from the first as follows. If 5. produces
a different output for any input / than 5. produces for lp , then S{ and S.
cannot be equivalent. Hence, the first condition is necessary. If Sk and S( are
not equivalent, there is an input sequence I { I2 . . . Ik that produces a different
output sequence for S. as a starting state than for S . as a starting state. Therefore,
lp /, /2 . . . Ik will produce a different output sequence for S. as a starting state
than for Sj as a starting state. Hence, S . and Sj cannot be equivalent unless the

The states 5p S2, .
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second condition is satisfied. Finally, the conditions are clearly sufficient for
Sand Sj to be equivalent; and therefore, the two definitions are synonymous.
These two conditions form the basis for all state reduction techniques.

9.1.2 Equivalence and Compatibility Relations
Let x and y be elements of a set S . Suppose x and y are related by a property
r, which is denoted x r y. A relation R on the set S is the set of all ordered
pairs (s. , Sj ) such that si and $. are elements of S and such that s. r Sj . R is
reflexive if and only if s - r s. for all s - in S. R is symmetric if and only if s. r Sj
implies that Sj r s .. R is transitive if and only if s. r Sj and Sj r sk imply that s. r
sk . An equivalence relation on S is a relation on S that is symmetric, reflexive,
and transitive. The elements of S can be partitioned into disjoint subsets called
equivalence classes by an equivalence relation.

It can be shown that state equivalence defines an equivalence relation
on the set of states of a completely specified sequential circuit. Hence, the
equivalence classes are used to define the states of the reduced state table.

A relation on S is said to be a compatibility relation if and only if the
relation is reflexive and symmetric. Compatibility relations define subsets of S
referred to as compatibility classes. These subsets are not, in general, disjoint.
The subject of compatibility classes will be important when the reduction of
incompletely specified state tables is discussed later in the chapter. The reader
is referred to references 11-3J for more detailed discussions of equivalence and
compatibility relations.

•9.2 State Reduction in Completely
Specified Circuits

We now present three techniques for determining equivalent states in com-
pletely specified sequential circuits:

1. Inspection
2. Partitioning
3. The implication table

In each case we use the technique to determine the equivalence classes of the
circuit and then eliminate all but one state from each equivalence class to reduce
the state table.

9.2.1 Inspection
The simplest and most obvious technique is that of recognizing equivalent states
by inspection. In this approach, we need only recognize multiple rows in the
state table that perform the same function and then remove the redundant states.
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EXAMPLE 9.1 In this example we show three examples of
equivalent rows. First, examine the
sequential circuit defined by the state table
shown in Fig. 9.2a. It can be reduced by
inspection by noting that states B and D
perform exactly the same function. Hence,
state D can be removed from the table by
simply removing row /) and replacing state /)
in the remainder of the table by its equivalent
state B. This procedure results in the state
table shown in Fig. 9.2b.

X

X0 1
0 1

C/1A BIO
BIO C/1A

B CIO All
B CIO All

C Dll BIO
C Bll BIO

CIOD All
(b)

(a)

x
1 X0

0 1
A BIO C/1

BIOA C/1
B BIO All

B BIO All
C Dll BIO

C Bll BIO
D DIO All

(d)
(c)

X

0 1

BIO C/1A

B DIO All
Figure 9.2 State equivalence
by inspection, (a) Circuit 1.
(b) Reduced circuit 1.
(c) Circuit 2. (d) Reduced
circuit 2. (e) Circuit 3.

Dll BIOC

BIO AllD

(e)

Second, analyze the sequential circuit of Fig. 9.2c. If the circuit is in state #,
under an input of logic 0 it stays in the same state (loops back to itself on a
state diagram) with a 0 output, and under an input of logic 1 it transitions to
state A with a 1 output. On the other hand, if the circuit is in state D, we could

www.youseficlass.ir



Section 9.2 State Reduction in Completely Specified Circuits 581

make the same statement: under an input of logic 0 it stays in the same state
with a 0 output, and under an input of logic 1 it transitions to state A with a 1
output. Hence, states B and D are equivalent by inspection. The reduced state
table is given in Fig. 9.2d.

Our third example is illustrated in Fig. 9.2e. This example closely re-
sembles circuit 2; however, we have exchanged the next states for B and D
in column x = 0. Now, analyzing the behavior of states B and D together, we
note that if the pair of states are combined the behavior under input 0 requires
the sequential circuit to remain in the same state (loops back to itself) with an
output of logic 0, and under input x = 1, the sequential circuit transitions to
state A with an output of logic 1. So the reduced circuit of Fig. 9.2d is also
valid for circuit 3. This is another case of state reduction by inspection.

In summary, two states are equivalent by inspection when the next-state
rows are identical or when the next-state rows are identical except for the
“self-loop-back” entries.

9.2.2 Partitioning
The partitioning approach involves the successive determination of partitions
PK , K = 1, 2, 3, . . . , /, in which each PK is composed of a number of blocks,
each of which consists of a group of one or more states. The states contained
within a given block of PK are AT-equivalent. In other words, given a sequential
circuit with states S{ 9 S2, S3, S4, S5, if PK = ( S { S3)(S2S4)(S5), then PK con-
tains three blocks and S { and S3 are K -equivalent, as are S2 and S4. S5 is not
AT-equivalent to any other state in the sequential circuit. For clarity, the sequen-
tial circuit described by Fig 9.1b will be used as an example in describing the
partitioning procedure.

Partitioning Procedure
Step 1. The first partition P, is formed by placing two or more states
in the same block of P, if and only if their output is identical for each
input. For the example of Fig. 9.1b, P, = (ABC)( DE), and hence
the states within each block are 1-equivalent. This step guarantees
that each block in P, satisfies condition 1 for equivalent states.
Step 2. Successive partitions PK , K = 2, 3, 4, . .. , /, are derived by
placing two or more states in the same block of PK if and only if for
each input value their next states all lie in a single block of P
This iterative procedure is suggested by condition 2 for equivalent
states.
Step 3. When PK+ l = PK , that is, once the partition repeats, the
states in each block of PK that are /^-equivalent are ( K + 1)-
equivalent, { K + 2)-equivalent, and so on, and PK is said to be
an equivalence partition. In our example, a quick check indicates
that P4 = P3 and therefore states B and C are /^-equivalent for any
K \ that is, they are equivalent. Condition 2 for equivalent states is
now satisfied by PK .

K-\ *
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In performing this procedure for our example it is necessary to check the
groups of states in each block of P] . In the first block, the next states for A , B,
and C with JC = 0 all lie in the same block of P,. However, for x = 1, the
next state of A lies in a different block of P, than the next states of B and C.
Therefore, the block ( A B C) contained in P, is split into the blocks ( A )( B C) in P2.
See Fig.9.3.The next states of states D and E lie in the same block of P{ for both
x = 0 and x = 1, and hence D and E will remain in the same block of P2. Thus,

P2 = ( A )( B C )( D E )
and the states within each block are 2-equivalent. Hence, P2 should correspond
exactly to Fig. 9.1c.

Partition P3 is obtained by examining each block of P2. The next states
of B and C lie in the same block of P2 for each input, and hence the block
( B C) remains intact in P y However, the next states for D and E with x = 1 lie
in different blocks of P2, and hence these two states must appear in different
blocks of P y Therefore, P3 = ( A )( B C ) ( D )( E ). This agrees with Fig. 9. Id,
and hence only states B and C are 3-equivalent.

This procedure of obtaining successive partitions is repeated until the
condition stated in step 3 is obtained.

Partition blocks Action
Partition PQ

Output for x = 0
Output for x = 1

Partition P
Next state for * = 0
Next state for* = 1

Partition fS
Next state for .* = 0
Next state for* = 1

Partition P3
Next state for * = 0
Next state for x = 1

Partition P4 = P3

( ABCDE )

11100
00011

Separate ( ABC ) and (DE )

Separate ( ABC) and ( DE )
(ABC) ( DE )1
CCB DE

Separate (A) and ( BC )BEE BA
(A ) ( BO ( DE )

C CB DE
B EE BA Separate ( D ) and ( E)

(A) ( BC ) ( D ) ( E)

C CB ED
B EE B A

(A) ( BC ) ( D) ( E)

States B and C are equivalent.

Figure 9.3 State equivalence by partitioning.

EXAMPLE 9.2 Use the partitioning method to reduce the
state table shown in Fig. 9.4a.
The partitions for the state table are

P, = ( A D )( B E )( C F )( G H )

P2 = ( A D )( B E )( C F )( G )( H )
p — pr3 r2
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The reduced state table using the following symbolic states is shown in
Fig. 9.4b:

A' = ( A D ) , C' = (C F ), E' = ( H ),
B' — { B E ), D' = ( G )

X

0 1
XD/0A E/0

10
A/1 F/0B

A' /OA' B' /O
C CIO All

B' C/0A' / \
B/0 A/0D

A' / \C C/0
C/0E D!1

D' E' / I D' / \
C/0F D/1

E' c/ I 571
G H!1 Gl1

(b)H C/1 5/1 Figure 9.4 Partitioning
example, (a) State table,
(b) Reduced state table.(a)

EXAMPLE 9.3 Reduce the state table shown in Fig. 9.5a by
applying the partitioning method.
The partitions are

P x = (A C G )( B D E H )( F )

P2 = ( A ) ( C G )( B H )( D E )( F ),

= (A)(C)(G) (£ // )(D£) (F),

from column x = 0
from column x = 1

P = Pr3 r2
Using the following symbolic states yields the reduced state table shown in
Fig. 9.5b.

A' = (A), C' = (C), E' = ( B H ) ,

B' = (F), D' = (G), F' = ( D E)

EXAMPLE 9.4 This example illustrates that the techniques
described previously are applicable for
sequential circuits with multiple inputs. The
state table for a sequential circuit with two
input lines is shown in Fig. 9.6a.
The partitions are

P] = ( A D F G )( B C E H )

P2 = (A F G )( D ){ B C E H )

P3 - (A F )( G )( D )( B C H )( E )

=
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X

0 1 X

10A/0 B/0A

A' A' /O £70C/0B H!1

£' B' / ] D'/\B/0C E/0
no £70cC/1 D/0D

D' £70 £70C/1 £/0£

£71 r/o£/l G/ l£

r noaI£/0 £/0G

C/0 (b)H HI 1 Figure 9.5 Partitioning
example, (a) State table,
(b) Reduced state table.(a)

*1 *2
1000 01 1 1

•*1*2A D/0 D/0 F/0 A/0
00 01 11 10

C/1 D/0 F/0B £/1
A' /OC' /0 C/0 A' /OA'

C/1 D/0 A/0C £/1
D7lB' £71 Cl0 A' /O

D/0 B/0 A/0 F/0D
£70 A' /O A' /OC C'/O

C/1 A/0£ £/0 £/1
D' £71 A70 D71 /470

D/0 D/0 /4/0 £/0£
£* £70 /470 /470£70

G G/0 G/0 /4/0 /4/0
(b)

/4/0// £/1 D/0 £/l

(a)

Figure 9.6 Multiple input example, (a) Original circuit,
(b) Reduced circuit.

The reduced state table is shown in Fig. 9.6b, where the following state
substitution has been used:

A' = ( AF),
B' = (BCH ),

C' = (D),
= (£),

= (G)

9.2.3 Implication Table
The implication table is another tool that can be used to determine state equiv-
alence. This technique is more general in that it can also be applied to in-
completely specified sequential circuits; however, it can also be more time
consuming than the partitioning approach.

Consider once again the example of Fig. 9.lb, repeated in Fig. 9.7a. This
example will be used to explain the procedure.
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X

0 1
B

A C/1 B/0

C/1 E/0B C
C Bl1 E/0

DD D/0 B/1

E E/0 A/1
E

(a)

CA B D
(b)

BEB B

BCC C VBE

D

ABE

A C CB D A B D
(d)(c)

B

Ac B (BC)
C
DD

PK = (A)(BQ(D)(E)
AB/ (0E /

A B C D
(e)

Figure 9.7 The implication table for a five-state circuit,
(a) State table, (b) Implication table, (c) Output partitioning,

(d) Implied pairs, (e) Completed table, (f) Equivalence
partition.

Implication Table Procedure
Step 1. Form a table using the structure shown in Fig. 9.7b, which is
derived by listing vertically all states in the table except the last and
horizontally all states except the first. The resulting table displays
all possible combinations of two states, and hence each cell in
the table corresponding to the intersection of a row and column
represents two states being tested for equivalence.
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Step 2. Since only states with identical outputs can possibly be
equivalent (condition 1 for equivalent states), a cross is placed in
the cells corresponding to those pairs of states whose outputs are
not equal for every input. This has been done in Fig. 9.7c for the
example.
step 3. Using condition 2 for equivalent states, the vacant cells in
Fig. 9.7c must now be completed. Into these blocks are placed
the pairs of next states whose equivalence is “implied” by the two
states whose intersection defines the cell. As an illustration of this,
consider the cell defined by states A and B. From the state table it
can be seen that, for A and B to be equivalent states, B and E must
be equivalent. Hence, the pair B E is listed in the cell defined by A
and B as shown in Fig. 9.7d. Note that if the states of the implied
pair, B and E , are not equivalent, then there exists an input string
beginning with x = 0 that will produce different outputs depending
on whether the initial state is A or B , meaning A and B are not
equivalent.

If the implied pairs for any cell contain only the states that
define the cell or if the next states of the two states defining the
cell are the same state for a given input, then a check mark (vO
is placed in the cell indicating that the two states defining the cell
are equivalent by inspection and independent of any implied pairs.
This condition is illustrated in Fig. 9.7d by the cell defined by states
B and C and is similar to the case of equivalence by inspection
seen in the example of Fig. 9.2e.
step 4. Once the table has been completely filled, successive
passes are made through the entire table to determine if any cells
should be crossed off other than those crossed out in step 2. A cell
in the table is crossed out if it contains at least one implied pair
that defines a cell in the table that has previously been crossed
out. This operation has been performed for the example, and the
resulting table is shown in Fig. 9.7e. For example, the cell defined
by A and B was crossed out because it contained the pair B E
which defines a cell that was already crossed out. This procedure
is repeated until no additional cells can be crossed off.
Step 5. Finally, the table shown in Fig. 9.7f is obtained by listing as
a column the states that define the horizontal row of the implication
table. Then the implication table is examined column by column
from left to right to see if any cells are not crossed out. The states
that define any cell that has not been crossed out are equivalent
and are listed as an equivalent pair in the table in Fig. 9.7f. Pairs
are combined using transitivity.

(9.1)(s r s . )( s . , sk ) (s rS j , sk )
In the example, all the cells in columns A , C, and D are crossed
out and hence dashes are placed in these rows in the tabl^dr Fig.
9.7f. In column B of the implication table the cell defined6y states
B and C is not crossed out, and hence the pair ( BCUs placed in
row B of the table. The equivalence partition then/bonsists of all
the equivalent states found in the table, that is, (BC ) together with
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the remaining states of the circuit that are not equivalent to any
other state. Note that this equivalence partition is identical to that
obtained earlier by partitioning.

EXAMPLE 9.5 Use an implication table to determine the
equivalence partition for the sequential
circuit of Fig. 9.4a.
The circuit is repeated as Fig. 9.8a. The analysis for this example is shown in
Figs. 9.8b and c.

X

0 1

A E/0 D/0

F/0A/1

C C/0 A/1

B/0 A/0D

E D/ l C/0

F C/0 D/ l

G H/\ G/\

C/1 B/ \H

(a)

A (AD)
(BE)B

C (CF)
D
E
F
G

PK = (AD)(BE)(CF)(G)(H)

(c)

Figure 9.8 The implication table for an eight-state circuit, (a) State table,

(b) Implication table, (c) Equivalence partition.

EXAMPLE 9.6 The equivalence partition for the sequential
circuit described by the state table of Fig.
9.6a is determined in Fig. 9.9.
This example, although straightforward, does contain one salient feature. In
row B of Fig. 9.9c is listed the set of equivalent states (BC)( BH ), while (CH )
is listed in row C. Equation 9.1 may be used to combine these states into the
larger equivalence class (BCH).
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*1*2
00 01 11 10

A D/0 D/0 F/0 A/0

B C/1 D/0 El\ F/0

C C/1 D/0 Ei1 A/0

D/0 B/0 A/0 F/0D

C/1 F/0 m A/0E

F D/0 D/0 A/0 F/0

G G/0 G/0 A/0 A/0

H B/\ D/0 E/\ A/0

(a)

/1 (AF)
B ( BQ( BH )
C ( CH )
D
E
F
G

Note: (BQ( BH )( CH ) = (BCH )

FK - ( AF)( BCH )( D )( E )(G )

(c)

Figure 9.9 The implication table for a seven-state circuit, (a) State table,

(b) Implication table, (c) Equivalence partition.

Examples 9.5 and 9.6, which illustrate the use of the implication table,
can be compared with the previously used partitioning method. In general, the
implication table approach is more routine, but it is also more tedious than
the partitioning approach.

In this section we have examined three techniques for minimizing the
number of states of synchronous sequential circuits. Any one may be used in
the synthesis process.

9.3 State Reduction in Incompletely
Specified Circuits

The minimization of state tables containing don’t-cares requires special con-
sideration. The following example will quickly illustrate this point.

EXAMPLE 9.7 Consider the problem of minimizing the
following incompletely specified circuit:
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x
0 1

A Bl— E /0
B B/\ El—
C F /0 C /0
D B/\ A/1
E D/0 Cl—
F Dl— C/1

In this state table, four don’t-cares appear. Because they are don’t-cares, they
can, of course, be assigned or specified in any way that we choose. Once these
don’t-cares are specified, the state table is no longer incompletely specified, and
the state reduction techniques described previously can be applied to determine
equivalent states and thus reduce the table. Suppose then that we assign the
don’t-cares in a manner that makes state A equivalent to B and E equivalent to
F. Under this condition the table above will reduce to

x
0 1

A' A' / l D' / O
B' D' /O B' / O
C' A' / l A' / l
D' C' / O B' / l

Note that this was a rather obvious simplification since we could see immedi-
ately from the original state table that states A and B would be equivalent as
well as states E and F if the don’t-cares were assigned in the proper manner.
However, if the don’t-cares in the original table are specified as zeros for present
states A and E and specified as ones for states B and F, then states A, C, and
E are equivalent, as are states B, D, and F. Hence, the state table reduces to

x
0 1

A' B' / O A' / O
B' B'/1 A'/ l

Note that the latter simplification was not obvious and yet it yielded the simplest
table.

The following ideas provide the basis for state table reduction in incom-
pletely specified circuits.

9.3.1 State Compatibility
Because of the problems associated with assigning values to don’t-care condi-
tions, we must develop a different procedure to eliminate redundant states from
the state tables of incompletely specified circuits. We begin by examining the
sequences of inputs that can be applied to an incompletely specified circuit.
Then we define state compatibility and methods for identifying compatible and
incompatible states.
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Applicable Input Sequences
An input sequence is said to be applicable to state S{ of an incompletely
specified machine if and only if the following condition is satisfied: When the
machine is in S( and the input sequence is applied, all next states are specified
except for possibly the last element of the sequence. For example, the input
sequences 0111 and 1111 are applicable to state A of the machine defined in
Fig. 8.49. But the sequence 11111 is not applicable to state A.

Compatible States
Two states 5t- and Sj of an incompletely specified machine are said to be com-
patible ( S j S j ) if and only if for each input sequence applicable to S( and S.
the same output sequence will be produced when the outputs are specified,
whether S( or S. is the starting state. States A and C in the state reduc-
tion example are compatible. Note that the following output sequences pro-
duced by input sequence 1111 for starting states A and C are the same when
specified:

1 1Input: 1 1
State: A

Output:
C CE C

0 0 0
State: C

Output:
C c cc

0 00 0

State compatibility can be shown to define a compatibility relation on the
states of an incompletely specified machine. Hence, a set of compatible states is
called a compatibility class. A maximal compatible is a compatibility class that
will not remain a compatibility class if any state not in the class is added. In the
previous example, ( A C ), (A E), (C E), and ( A C E ) are compatibility classes.
Of these four compatibility classes, only ( A C E ) is a maximal compatible.

States 5. and S. of an incompletely specified machine are compatible if
and only if the following two conditions are satisfied:

1. The outputs produced by S. and S . must be the same, when both are
specified, for each possible input l p.

2. The next states of S. and S . must be compatible, when both are specified,
for each possible input I p .

Incompatible States
Two states of an incompletely specified machine that fail to satisfy the preceding
two conditions are said to be incompatible. A set of incompatible states forms
an incompatibility class. A maximal incompatible is an incompatibility class
to which no other incompatible state may be added without destroying the
class.
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EXAMPLE 9.8 Determine the compatibility classes and
maximal compatibles for the state table of
Fig. 9.10a.
The implication table is employed first to determine all pairs of compatible
states as shown in Fig.9.10b.This table is formed in the same manner as it was in
the completely specified case. Note that the presence of don’t-care output terms
allows state B to be paired with state A in one instance and state C in another.

The reduction of the implication table is also performed as it was in the
completely specified case. The determination of the compatibility classes is
shown in Fig. 9.10c. Note that this procedure is reminiscent of that used to
determine equivalent states in the completely specified case. In the row defined
by state G, the pair (G H ) is a compatibility class. This pair is taken from
the last column of the implication table. Next we add the compatible pairs
from column F of the implication table. Row F of the list in Fig. 9.10c now
contains two compatible pairs, (G H )( F G). As we add additional columns,
moving from right to left in the implication table, the list of compatible pairs
grows. For example, row E contains the pairs ( E G )( E H ) ( G H )( F G ) ; but
( E G )( E H )( G H ) can be combined into a larger compatibility class (E G H ),
so a second row for state E is included in Fig. 9.10c showing this step. We
continue this process of adding compatible pairs and combining them into
larger compatibility classes as we move from right to left in the implication
table. The bottom row in Fig. 9.10c is the set of maximal compatibles.

Examination of the list of maximal compatibles illustrates the funda-
mental difference between compatibility in incompletely specified circuits and
equivalence in completely specified circuits. In a completely specified circuit,
if we found that state A was equivalent to state B and that state B was equiva-
lent to state C, we were guaranteed without even checking that states A and C
were equivalent because state equivalence is an equivalence relation. However,
since the transitive property does not hold in general for incompletely specified
circuits, there is no such guarantee. Consider the maximal compatible ( B C G )
in Fig. 9.10c. To be able to group all three states together we must have the
compatible pairs (B C ), (CG), and ( B G ); that is, (B C) and (CG) do not au-

tomatically imply ( B G ). A moment’s reflection will show that this problem
arises due to don’t-cares in the state table.

EXAMPLE 9.9 Determine the incompatibility classes and
maximal incompatibles for the sequential
machine of Fig. 9.10a.

The implication table of Fig. 9.10b is employed to generate the incompatibility
classes by extracting from it pairs of states that are n o t compatible, as shown in
Fig. 9.lOd.The set of maximal incompatibles is the list at the bottom of the table.
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X

0 1

Ai- c/ iA

Bl- A/-B CG
CEC G/~ E/0

C/1 a-D AG

E A/1 a-
DG

F D/- Al- AE
G/- G/-G

EG
H/- D/-H

AH(a) CDH CD

C D F GA B E
(b)

G (GH)
F (GH )( FG )

( EG )( EH)(GH )( FG )
( FG )( EGH)
( DG )( FG )( EGH )
( CG )(CF)(CE)(CD )( DG )( FG )( EGH )
( CEG )(CDG )(CFG )( EGH )
CBQ(BG )(CEG )(CDG )(CFG )( EGH )
(AE)(AG )(AH)( BC)( BG )(CEG )(CDG )(CFG )( EGH)
(AEG )(AGH)(AEH)( BCG )(CEG )(CDG )(CFG )( EGH)
(AEGH)( BCG )(CDG )(CEG )(CFG)

E
E
D
C
C
B
A
A
A

(c)

G
F ( FH)

( FH)( EF)
( FH)( EF)( DH)( DF)( DE)
( FH)( DH )( DEF)
(CH)( FH)( DH)( DEF)
( BH )( BF)( BE)( BD)( CH)( FH)( DH )( DEF)
( .BH)( BDEF)(CH )( FH)( DH)
( BDEF)( CH )( BDFH)
( AB )(AC)( AD )( AF)(BDEF)(CH)( BDFH)
( ABDF)( AQ( BDEF)(CH )(BDFH)

E
D
D
C
B
B
B
A
A

(d)

Figure 9.10 Generating maximal compatibles and incompatibles, (a) State
table, (b) Implication table, (c) Compatibility classes, (d) Incompatibility classes.

The process of generating the maximal compatibles and incompatibles
as demonstrated in Figs. 9.10c and d can be somewhat tedious, and hence we
now introduce a graphical technique that aids in this process.
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Merger Diagrams
The process of finding the maximal compatible sets of states from the compati-
ble pairs derived from the implication table is aided measureably by a graphical
technique called the merger diagram. First the states of the original machine
can be conveniently represented as dots equally spaced around a circle; then a
line is used to connect each related (compatible) pair of states. This completes
the construction of the merger diagram. The same may be done to find maximal
incompatible sets of states.

The maximal sets of states can be derived from the merger diagram by
visually noting those sets in which every state is connected to every other
state by a line segment. Thus the maximal sets form regular graphical patterns,
as shown in Fig. 9.11. The rules for extracting maximal sets from a merger
diagram are as follows:

Rule 1. Make each maximal set as large as possible.
Rule 2. Each state of the maximal set must be interconnected with
every other state in the set by a line segment.
Rule 3. Each related (compatible or incompatible) pair of states
must appear in at least one maximal set.

The application of these rules is now demonstrated by an example.

Figure 9.11 The merger diagram, (a) Three states,
(b) Four states, (c) Five states, (d) Six states.
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EXAMPLE g.10 The merger diagrams of Fig. 9.12 are constructed from the implication table
of Fig. 9.1Ob. Consider the merger diagram for the maximal compatibles in
Fig. 9.12a. The graphical pattern for the maximal compatible (A E G H ) has
been emphasized. Note that any attempt to add another compatible state to
this graphical grouping ends in failure. All remaining line segments (compat-
ible pairs) may be covered using four triangles ( B C G ), ( C D G ), (C E G ), and
( C F G ). Hence, we have found the set of maximal compatibles. The set of
maximal incompatibles is extracted from Fig. 9.12b in a like manner.

Figure 9.12 Example merger diagrams (a) Merger
diagram for the maximal compatibles, (b) Merger diagram for
the maximal incompatibles.

The reader is now familiar with the concept of incompletely specified se-
quential circuits, compatible states, incompatible states, and merger diagrams.
With these tools we are now prepared to address the problem of state mini-
mization for incompletely specified sequential circuits.

9.3.2 Minimization Procedure
The minimization of an incompletely specified state table for a sequential
machine can be an involved process. In general, we must select a set of com-
patibility classes that meets the following three conditions:

1. Completeness'. The union of all the sets in the chosen set of compatibility
classes must contain all the states in the original machine.

2. Consistency: The chosen set of compatibility classes must be closed; that
is, the implied next states of each compatibility class in the chosen set
must be contained by some compatibility class within the set.

3. Minimality: The smallest number of compatibility classes that meet the
preceding criteria should be chosen.

Once a set of compatibility classes has been found that meets these
conditions, each class in the set corresponds to a state in the reduced state
table. Unfortunately, the process of selecting the set of compatibility classes
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that meets the three conditions must be done by trial and error. Hence, it would
be helpful to at least bound the number of states K required in the realization
of the minimal-state circuit.

The upper bound U on the number of states in the minimal circuit is
given by the expression

U = minimum{NSMC, NSOC)

where
NSMC = number of sets of maximal compatibles
NSOC = number of states in the original circuit

This equation simply states that we should need no more states in the minimal
circuit than the number of states in the original circuit, and that if there exists
some compatibility among states such that NSMC < NSOC, then we should
require fewer states than NSOC.

The lower bound L on the number of states in the minimal circuit is given
by the expression

L = maximum{NSMI , , NSMI2 , . . . , NSMI/ ’ *

where

NSMI. = number of states in the ith group of the set of
maximal incompatibles of the original circuit

The reasonableness of this condition is illustrated by the fact that, if there exist
two states in the original circuit that are incompatible, the minimal circuit will
have to have at least two states in order to distinguish the incompatible ones.

At this point we may specify the algorithm for state reduction for incom-
pletely specified sequential machines.

State Reduction Algorithm
Step 1. Find the maximal compatibles using the implication table
and merger diagram.
Step 2. Find the maximal incompatibles using the implication table
of step 1 and another merger diagram.
Step 3. Find the bounds on the number of required states, U and L.
Step 4. Find, by trial and error, a set of compatibility classes that
satisfy completeness, consistency, and minimality,

steps. Produce the minimum state table. In general, it may still
contain unspecified next states and outputs.

The trial and error selection of compatibility classes may begin by con-
sidering only the maximal compatibles. The set of maximal compatibles is
always complete and consistent. However, the set may not be minimal. We may
begin the search for a minimal set of compatibility classes by considering the
maximal compatibles taken in groups of L, the lower bound.
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EXAMPLE 9.11 Let us find a reduced state table for the
incompletely specified machine of Fig. 9.10a.
First we construct a closure table by treating the maximal compatibles as states
and finding their sets of next states, as shown in Fig. 9.13a. Each entry in the
table is obtained from the original table by recording the next state of each state
within a maximal compatible.

X X

0 0 11

A' AVI C71{AEGH)

( BCG )

(CDG)

( CFG )

(CEG )

AGH CDG

B' B' /~ AV0BG AEG

B' , C\D\£71 Z)70CCG CEG

D' A'/ l D' /ODG AEG

£' A70C7-AG CEG

(b)(a)

Figure 9.13 State reduction, (a) Closure table,

(b) Reduced state table.

Since NSMC = 5 and NSOC = 8, the upper bound on the number of
states is

U = min{5, 8} = 5
The lower bound is determined from the maximal incompatibles. The set of
maximal incompatibles has been derived in Fig. 9.12b and is

( A B D F )( B D E F )( B D F H )( A C )( C H )
Therefore,

L = max{4, 4, 4, 2, 2} = 4
The number of states in the reduced machine is bounded by

4 < K < 5
Since we want a minimal circuit, we begin with the lower bound to see if we can
find four maximal compatibles that satisfy the conditions of completeness and
consistency. By trial and error we find, using the closure table of Fig. 9.13a,
that no set of four maximal compatibles will satisfy both completeness and
consistency. Hence, all five maximal compatibles are required. By definition,
the set of maximal compatibles is complete and consistent. Hence, the reduced
machine will contain the five states

D' = ( C E G )

E' = ( C F G )
A' = ( A E G H ),
B' = ( B C G ) ,
C' = ( C D G )
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The reduced state table that duplicates the performance of Fig. 9.10a is given
by Fig. 9.13b.

The multiple next-state entry in Fig. 9.13b requires an explanation. Note
that if the circuit is in state C' and x = 0 then the next state can be any of B' ,
C' , D' , or E' . This multiple next-state entry exists because the closure table
indicates that, for x = 0, (CDG )
( BCG ), (CDG ), ( CEG ), or ( CFG ).

For the previous example all maximal compatibles had to be used as
states of the reduced machine. In some cases, only a subset of the maximal
compatibles can be chosen for reducing the machine, as is illustrated in the
next example.

CG, and hence the next state could be

EXAMPLE 9.12 We shall determine the reduced state table
corresponding to the one given in Fig. 9.14a.
Steps 1 and 2 of the state reduction algorithm are performed in Figs. 9.14b, c,
and d. From the implication table the compatible pairs are

( AB )( AC )( AD )( AE )( BD )(CD )( CE )

X

0 1

A A/- -/-

C/1 B/0B

D/0 -/1C

-/-D B/~

A/0E C/1

(a)

( ABD ) AC

cACD) AD

( ACE) AD

Figure 9.14 State reduction example, (a) State table, (b) Implication table.
(c) Maximal compatibles, (d) Maximal incompatibles, (e) Closure table, (f) Reduced
state table.
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These compatible pairs are processed on the merger diagram of Fig. 9.14c to
yield the maximal compatibles

( .A B D ){ A C D ){ A C E )
In a similiar manner, the incompatible pairs are found from the implication
table to be

( .B C ) { B E ){ D E )
The merger diagram of Fig. 9.14d demonstrates that these pairs are the maximal
incompatibles.

Step 3 of the state reduction algorithm calculates the bounds on the
number of reduced states. The calculations follow:

NSMC = 3
NSOC = 5
NSMIj = 2
NSMI2 = 2
NSMI3 = 2

Hence,
U = min{3, 5} = 3
L = max{2, 2, 2} = 2

and
2 < K < 3

Step 4 of the algorithm is centered around the closure table of Fig. 9.14e.
We begin our search for two compatibility classes that are complete and con-
sistent by examining the maximal compatibles. Choosing the maximal compat-
ibles ( A B D ) and { A C E ) as trial states, we see that they satisfy completeness
since the union of all the states contained in these two maximal compatibles
contains all the states in the original circuit. They satisfy consistency, as shown
in Fig. 9.14e, and also minimality, as indicated by the lower bound. Therefore,
under the definitions,

A! = { A B D )
B' = { A C E )

the final minimal circuit for step 5 of the algorithm is shown in Fig. 9.14f.

EXAMPLE 9.13 We shall now derive the minimal circuit for
the sequential machine shown in Fig. 9.15a.
The implication table for this state table is shown in Fig. 9.15b. The compatible
pairs obtained from the table are

{ A B ) { A D ) { B C ){ B D )
Figure 9.15c is the corresponding merger diagram, and the maximal compati-
bles obtained from the diagram are

{ A B D ){ B C ){ E ){ F )
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BX

0 1
cBl1 D/0A

B -/- B/0
DE/0C D/~

D B!1 A/0
E

C/1E -/-
F -/0 E!1 F

B C ED
(b)

( ABD )

GBC )

( E)

( E)

x
0 1

A\B' /\ A' /OA'

B' C/0 A' /O

B' /\c -/-
D' ai-/o

(f)

Figure 9.15 State reduction example, (a) State table,

(b) Implication table, (c) Maximal compatibles, (d) Closure
table, (e) Maximal incompatibles, (f) Reduced state table.

These maximal compatibles form the closure table shown in Fig. 9.15d. The
upper and lower bounds on the number of states in the minimal circuit are
obtained as follows:

NSMC = 4
NSOC = 6

U — min{4, 6}
U = 4
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The incompatible pairs are
(.A C )( A E )( A F )( B E )( B F )( C D )( C E )( C F )( D E )( D F )( E F )

A merger diagram for the maximal incompatibles is given in Fig. 9.15e. From
this figure, the maximal incompatibles are derived as

(C D E F )( A C E F ) ( B E F)
Now since NSMIj = 4, NSMI2 = 4, and NSMI3 = 3, then

L = max{4, 4, 3}
L = 4

Now note that the bound conditions specify that
4 < K < 4

Hence, all the maximal compatibles may be chosen as states of the minimal
circuit. Using the symbols

A! = ( A B D )

B' = ( B C)

C = ( E )

D' = ( F )
the resulting minimal state table is shown in Fig. 9.15f.

Note that the resultant state table has considerable flexibility. When the
circuit is in state A' and the input x = 0 is applied, the next state can be either
A! or B' . This property will serve to simplify the hardware realization, as is
shown next.

In the last three examples, step 4 of the state reduction algorithm was
approached as a search through a very restricted set of compatibility classes,
the set of maximal compatibles. While the consideration of only maximal
compatibles is computationally desirable, a minimal reduced state table is not
always obtained. If the compatibility classes are not required to be maximal,
a better reduction is often obtained. An algorithm for making such a selection
for step 4 that always leads to a minimal reduced table will be illustrated here
by example.

EXAMPLE 9.14 Let us reduce the incompletely specified
sequential circuit of Fig. 9.16a.
If we apply the state reduction algorithm, we find the following:

Step 1. Figures 9.16b and c. Maximal compatibles are
(.A B C )( A C D )( A D E)

Step 2. Figure 9.16b and d. Maximal incompatibles are
(B D )( B E )( C E )

NSMC = 3
NSOC = 5
NSMI, = 2
NSMI2 = 2

Step 3.
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X
B DE0 1

A D/~ A/- AB
C AB DEE/0B Al-

ACD/0C B/~ D BCCD
a- c/~D

ABE BCE C/1 BI- CD

(ABC)

(ACD )

(ADE)

DE AB
A' /~(.ABC)

CD ABC
A' /~(DE)

CD ABC

(e)

Figure 9.16 A counterexample, (a) State table, (b) Implication
table, (c) Maximal compatibles, (d) Maximal incompatibles.
(e) Closure table for maximal compatibles, (f) Closure table for
maximal incompatibles, (g) Reduced state table.

NSMI3 = 2
U = min{3, 5) = 3
L = max{2, 2, 2} = 2
2 < K < 3

Step 4. Consider the closure tables of Figs. 9.16e and f. No set
of two maximal compatibles can be found that is complete and
consistent. Hence, if we restrict ourselves to maximal compatibility
classes, we must choose three states in the reduced machine.
However, if we choose compatibility classes ( ABC ) and ( DE ) , we
find that this set is complete, consistent, and minimal.
Steps. A' = ( ABC), B' = ( DE ).

The minimal reduced state table is shown in Fig. 9.16g.
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Thiscompletes ourdiscussion of state reduction of incompletely specified
sequential circuits. In general, a near-minimal reduced machine is produced by
using maximal compatibles as states for the reduced machine. However, to
guarantee a minimal machine, the algorithm developed in this chapter should
be applied to find a minimal, complete, and consistent set of compatibility
classes to act as states for the reduced machine.

9.4 Optimal State Assigment Methods
Up to this point we have always assumed some state assignment with no
discussion of any alternatives. However, it is important for the reader to realize
that two different assignments may yield vast differences in hardware. From a
purely practical standpoint, many engineers might argue that what is needed is
a quick, but not necessarily minimal, solution. However, if the system being
designed is a basic module that will be manufactured in great quantities, a
potential cost saving exists if the module can be built with fewer elements.

The following example will illustrate the need for some guidelines in
choosing a good state assignment.

EXAMPLE 9.15 Consider the sequential circuit described by the minimum state table of Fig.
9.17. If the following state assignment is used

y\ yi %
X A : 0 0 0

B: 0 0 1
C: 0 1 1
D: 0 1 0
E: 10 1
F : 1 1 0
G: 1 1 1

Present
state 0 1

B!0 E/0A

C/0 G/0B

C D/0 F/0

A/\ A/0D

G/0 C/0E
then the logic equations that implement the circuit are

y2x + >>3*’
.y3 + *’

F A/0 A/1
J J3 y2iG F/0 D/0 K K3 y21

Next state/output ^2 y* z
K2 ?3Figure 9.17 A

seven-state machine. Consider also the following assignment:

?1 ^2 %
A : 0 0 0
B: 0 0 1
C: 0 1 0
D : 0 1 1
E : 1 0 0
F : 1 0 1
G: 1 1 0
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Under this second assignment the logic equations that implement the circuit
are

J\ = *-V3 +
K\ = * + >>3’Ji = yih + y\ y3
K2 = y?> + xy\ + x9\

A quick gate count check shows that the first assignment requires three OR
gates, four AND gates, and one NOT gate; the second assignment requires six
OR gates, nine AND gates, and one NOT gate. Hence, the second assignment
requires twice as many gates as the first assignment.

= y2 + *>1

*3 = 1
2 - xyty3 + xy2 y3

9.4.1 Unique State Assignments
The number of possible state assignments for a problem of any significance
is quite large. For example, the number of possible state assignments for a
five-state machine is over 100, and the number for possible assignments for
a ten-state machine exceeds 10 million. It is unfortunate that no simple and
efficient technique for choosing a state assignment exists [4-8]. In place of an
optimal solution we shall offer in the following pages a few guidelines to aid
the reader in choosing a reasonably good state assignment.

With this motivation, let us now examine several useful techniques for
choosing a state assignment. As part of the synthesis procedure, a minimum
state table was obtained in order to reduce the required number of memory
elements needed to implement the synchronous sequential circuit. Once a min-
imum number of memory elements has been found, the proper choice of state
assignment can drastically reduce the required number of logic gates needed to
implement the excitation and output switching functions. Previously, we have
seen that the total number of memory elements N
of states Ns in the circuit by

is related to the numberFF

2N F F ~ 1 < Ns < 2N F F
Therefore, there will be

2N F F \
^S A ~

(2N F F - N s )\
ways of assigning the 2 NFF combinations of binary state assignments to the Ns
states. This expression is evaluated for several cases in Table 9.1.

It should be demonstrated that not all these assignments are unique with
respect to the resulting excitation and output equations. This is done in the
following example.

EXAMPLE 9.16 For the state table of Fig. 9.18a, let us
compare the 0 flip-flop excitation equations
resulting from an arbitrary assignment of
state variables j, and y2 to assigments
derived by complementing and by
swapping andy2.
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TABLE 9.1 NUMBER OF STATE ASSIGNMENTS.

*S4
1 0
2 1 2 1
3 2 24 3
4 24 32
5 6,720

20,160
40,320
40,320

4.15 x 109
2.91 x 1010

1403
6 4203

8407 3
3 8408
4 10,810,800

75,675,600
9
10 4

XPresent
state 0

Assignments
1

31 2B/0A A/0 States V ] >2 Vl >’2 y i >'2
A/0 C/05

10 00A 00
C/0 D/0 01 10c 11

c 11 01 1 1
C/1 A/0D 10 01D 00

(a) (b)

Figure 9.18 Equivalent state assigments for
a sequential circuit, (a) State table, (b) State
assignments.

For assignment 1 of Fig. 9.18b, the following excitation equations can be
derived.

= y: x + y2x

°2 = V + V
We may derive another state assignment by complementing a given bit

position to get a new state assignment. State assignment 2 of Fig. 9.18b is
derived from assignment 1 by complementing the yx values. The resulting
excitation equations are

r>, = yi* + y2x
D2 = y,x + y1x

These equations may be derived from the previous ones by simply comple-
menting y, and D, . The new logic equations are no better than the old ones,
since both true and complemented variables are available from most flip-flop
devices.
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Now suppose we swap columns yj and y2 of assignment 1 to get assign-
ment 3 of Fig. 9.18b. The following excitation equations result:

= y2x + y2x
D2 = y2x + yYx

These can be derived from those of assignment 1 by simply swapping variables
yj and y2 in the equations. The cost of the logic needed to realize these equations
is still essentially unchanged. Therefore, creating a new state assignment by
simply complementing state variables or swapping state variables will not
simplify the circuit.

For sequential circuits with only two states, there is really only one choice
of state assignment. For three or four states the 24 possible assignments reduce
to just 3 unique ones; see Table 9.2. Therefore, it is possible to synthesize the
sequential circuit using all three assignments and to choose the best one. The
number of possible unique state assignments NUA for a sequential circuit with
Ns states is given by

(2N F F - 1)!
NUA = ( 2N F F - Nsy.N

Several cases for this expression are shown in Table 9.1. For more than four
states, complete enumeration is impractical, so techniques for choosing a good
assignment are necessary.

t
F F ‘

9.4.2 State Assignment Guidelines
Our approach to developing a set of state assignment guidelines is to find
several rules that will yield a state assignment that reduces the complexity of
the next-state equations for the implementation of a reduced state table. The
state assignment problem for this case is to select a state coding that forces large
groupings of the logic ones on the binary transition table, or transition K-map.
The larger the groups of ones, the more the excitation and output equations
can be simplified and the less complex the combinational circuitry becomes.
Notice that next-state logic minimization suggests the use of D flip-flops, since
excitation input D is equal to next state for each flip-flop.

TABLE 9.2 UNIQUE STATE ASSIGNMENTS.

Assignments
1 2 3

States V2 •V2 V2

00 00A 00
01 11 10B

C 11 01 01
10 10 11D
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A Simple Example
To gain insight into finding a good assignment, let us examine an example
four-state machine synthesized using all three of its unique state assignments,
as listed in Table 9.2. Consider the state table of Fig. 9.19. First let us realize this
reduced circuit using assignment 1 and D flip-flops. Substituting assignment 1
into Fig. 9.19 yields the transition table of Fig 9.20a, which may be rearranged
into K-maps for z , Dv and Dv as displayed in Figs. 9.20b, c, and d. Hence,
the logic equations for this assignment are as follows:
Assignment 1.

X

0 1
C/0 D/0A

B C/0 A/0

c D/0B/0

D A/1 B!1
D2 = 3'I 5?2 + *3'2 +*)'I >'2
D l = X y2 + X y{ +*9^2Figure 9.19

A four-state
machine. 2 =^2

Figures 9.21 and 9.22 illustrate the same procedures for assignments 2
and 3. The resulting Boolean switching functions are as follows:

Assignment 2. D2 = x9l + }'l 5'2
£>1 = xy2 + xyx + xyxy2

z = y{ y2

X

0 1i

11/0 10/000

01 11/0 00/0

11 01/0 10/0

10 00/1 01/1

Y2 Y\/Z

(a)

x

00

01
y iy i

(Dnn o o0
y2 - yi <

d D10

z

(b) (c) (d)

Figure 9.20 D flip-flop realization for assignment 1. (a) Transition table, (b) K-map
forz. (c) K-map for Dr (d) K-map for Dr

www.youseficlass.ir



Section 9.4 Optimal State Assigment Methods 607
X

0 1ym

oo 01/0 10/0

01 11/0 10/0

11 01/0 00/0

10 00/1 11/1

X X
X

0 1 0y i y i

oo rro 000 0

T01 0 010 0

r y\ > y i y i

n o o n l 0
yi * yi

10 10I) o
D iz

(b) (d)(c)

Figure 9.21 D flip-flop realization for assignment 2. (a) Transition table, (b) K-map
forz. (c) K-map for Dr (d) K-map for Di •

Assignment 3. Di = y^z + xh + x3’i
Dx = xy2 4- xyx

z = y\ yi
Now let us examine the results. If we specify a two-level sum of products

logic implementation and count the number of inputs to gates, assignment 1
requires 20; assignment 2, 18; and assignment 3, 15. Assignment 3 gives the
best results, but why? Aassignment 3 gives a better grouping of ones and zeros
on the K-maps for Dv Dv and z.

State Assignment Rules
There are two ways to rearrange the ones on a K-map: vertically, by making
the ones combine within a given column, and horizontally, by making the ones
combine within a given row. If we assume that each row represents the next-
state entries for a given present state and that the columns represent different
input conditions, then optimal groupings of ones can be obtained by adopting
the following general state assignment rules.
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X

0 1y&i

oi/o 11/000

10/0 11/001

00/1 10/111

01/0 00/010

y2 Y\!z
(a)

x x
X

0 1 0 1y2 y\

oo 0 0 00 0 1

(I01 01 010 0 0 1

r yi yi > yi

Ddi i ii iio 0 0
y2 - y2 < y2 <

10 10 100 0 0 0 I 0

D2 Dlz
(b) (c) (d)

Figure 9.22 D flip-flop realization for assignment 3. (a) Transition table, (b) K-map
for z - (c) K-map for Dv (d) K-map for Dr

Rule 1. States that have the same next states for a given input
should be given logically adjacent assignments.
Rule 2. States that are the next states of a single present state,
under logically adjacent inputs, should be given logically adjacent
assignments.

Rule 1 forces ones to be grouped within a given column, while rule 2 forces
ones to be grouped within a given row. Both of these rules may be applied
by inspection of the reduced state table. This is illustrated by the following
example.

EXAMPLE 9.17 Let us apply the preceding rules to the
example of Fig. 9.19.

Rule 1: States A and B should be adjacent because they both go
to state C under input 0; we denote this by A adj B. Also, A adj C
is indicated.
Rule 2: Yields A adj B, A adj C, B adj D, and C adj D.
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Section 9.4 Optimal State Assigment Methods 609

We may compare the adjacencies of states for the three assignments by
plotting the states on state assignment K-maps, as shown in Fig. 9.23, with
each cell representing the state variable combination assigned to one state of
the circuit. Adjacent states are identified on these maps in the same manner
as adjacent implicants or implicates on standard K-maps. From the K-maps
of Fig. 9.23, it can be seen that assignment 3 fulfills all four adjacencies
indicated by rules 1 and 2 and hence should produce the best results for this
example.

yi yi yio o 01 1 1y\ yi

o o oA D A D A B

1 1 1B C C B C D

(a) (b) (c)

Figure 9.23 State adjacencies for four-state assignments, (a) Assignment
1. (b) Assignment 2. (c) Assignments.

In general, we are not always able to satisfy all the adjacencies suggested
by rules 1 and 2. We do, however, try to satisfy as many as possible. In the event
of conflicts, we resolve them in favor of rule 1 to achieve better groupings of
ones within the columns.

Implication Graph
Another tool that aids the logic designer in selecting good state assignments
is the implication graph. The implication graph for a sequential circuit is a
flow graph whose nodes represent pairs of states. The nodes are connected by
arcs, each of which represents state transitions between two pairs of states for
a given input, as specified by the state table of the sequential circuit.

EXAMPLE 9.18 Let us derive an implication graph for the
sequential circuit of Fig. 9.24a.
The implication graph for this circuit is shown in Fig. 9.24b.

An implication graph greatly resembles the implication table presented
earlier and contains much of the same information; however, here it is displayed
in a graphical form. The implication graph is constructed by first choosing a
pair of states, say BD in the example, and finding its implied next-state pair
under each input; the implied pairs are entered as new nodes on the graph. No
entry is made on the graph if the pair of states has the same next state. For
example, states B and D both go to state D under an input of 0 and to states
A and B under an input of 1. Consequently, a state pair transition is indicated
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X

0 1

BIO C/0A

D/0 A/\B

C A/\ D/0

D/1 B/\D

(a)

BD AB AC CD AD BC

*

(b)

Figure 9.24 A four-state machine, (a) State table,

(b) Implication graph.

from B D to A B for the input x = 1, but no entry is made for JC = 0. Now the
procedure is repeated for each new implied pair until no new implied pairs can
be generated.

An implication graph is said to be complete if it contains all possible
pairs of states of a given sequential circuit. Normally, we deal with a partially
complete implication graph. A subgraph is defined as part of a complete graph.

One particular type of subgraph is important for state assignment, the
closed subgraph. A subgraph is closed if all outgoing arcs for each node within
the subgraph terminate on nodes completely contained within the subgraph and
if every state of the sequential circuit is represented by at least one node within
the subgraph.

EXAMPLE 9.19 Two closed subgraphs for the sequential
circuit of Fig. 9.25a are demonstrated in Fig.
9.25b. Notice that arcs may enter a closed
subgraph from the exterior, but none may
originate within the closed subgraph and exit.

The implication graph may be used in state assignment selection in the
following manner. After we have applied rules 1 and 2 to a reduced state table,
we have several suggested adjacencies. We may choose some of these to be
implemented in a state assignment. Once we have made two states logically
adjacent , it is possible to rearrange the state table so that the two states are
physically adjacent. Considering these two adjacent states as present states
of the sequential circuit, it is desirable to make their next-state pairs adjacent
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X

0 l

BIO E/0A

C/1 D/1B

B/0 A/0C

A/0 D/0D

Bt1 A!1E

(a)

Closed subgraph

Closed subgraph
(b)

Figure 9.25 Closed subgraphs, (a) State table,

(b) Implication graph.

in order to provide larger groupings of ones on the transition table. The next
example illustrates this point.

EXAMPLE 9.20 Let us use the implication graph of Fig. 9.24b
to derive an optimal state assignment for the
sequential circuit of Fig. 9.24a.

The application of rules 1 and 2 to the state table yields

Rule 1. B adj D.
Rule 2. B adj C, D adj A, A adj D, D adj B.

The adjacency B adj D is the most important one. If we make state B adjacent
to state D, it is desirable to make A adj B as indicated by the implication graph.
The adjacency was not suggested by either rule 1 or 2. In fact, the implication
graph also suggests A adj C adj D. These adjacencies correspond to unique
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assignment 3 of Fig. 9.23c. The transition table for this assignment is produced
in Fig. 9.26. The resulting excitation and output switching functions are

D2 = ^2 + -̂ 1 +* y\
D\ = xy2 + xy2

z = xy2 + xy ]

These switching functions are optimal for this sequential circuit. The key
to success in making the proper state assignment was the advent of A adj B
by the implication graph. If we had ignored the graph entirely and made our
assignment based entirely on rules 1 and 2, we would have arrived at assignment
2, and the realization would have been

D i = x y x y2 + +* y2 + y\ y2
D\ = y\ y2 +* y\

z = xy2 -\- y ] y2 ~\- xy ly2
which is not optimal.

X

0 lMi

A ^ 00 10/0 01/0

C —*̂ 01 00/1 11/0

11/1D — 11 10/1

B ^ 10 11/0 00/1

Y\'z
(a)

x x X
X

0 0 1 01 1y2 ^i

oo 0000 0 0 1 0 0

01 01 0 010 1 1 0

r y i y\ r y i

n lil l o
y2 i V2 i y2

1010 L 0 0

D2

(b)

Figure 9.26 Example state assignment, (a) Transition table, (b) K-maps.

Example 9.20 illustrates the concept of establishing a chain of adjacency
pairs. The chain is established by assigning adjacent pairs of states in accor-
dance with the transition arcs of the implication graph.The ideal chains are those
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established by a closed subgraph. If a closed subgraph cannot be established, try
to include a contiguous subgraph that contains a large number of transition arcs.

We shall now incorporate the implication graph into our state assignment
guidelines by the following rule.

Rule 3. Use the adjacencies suggested by rules 1 and 2 to con-
struct a partially complete implication graph for the reduced state
table. Then try to establish a chain of adjacency pairs on a closed
or contiguous subgraph.

In applying rules 1 , 2, and 3, let us emphasize that rules 1 and 3 are more
important than rule 2.

The last state assignment guideline to be discussed is concerned with the
mechanics of making the actual code choices. Generally, we try to minimize
the total number of logic ones on the K-maps and to maximize the number of
don’t-cares. The following rule helps accomplish this goal:

Rule 4. Search the next-state portion of the reduced state table for
the “most transferred to” state.Assign it the all-logic-0 code by plac-
ing it on an assignment K-map in the block for minterm 0. Begin
assigning other states according to the suggested adjacencies of
rules 1, 2, and 3, saving the minterm blocks with the largest num-
bers of logic ones in their binary code for last. Satisfy as many of
the suggested adjacencies as possible.

This completes the presentation of the state assignment guidelines. The
procedure is now illustrated by a complete example.

EXAMPLE 9.21 Find a D flip-flop realization for the sequential
circuit of Fig. 9.27a.

Rule 1. A adj C, B adj D, A adj D.
Rule 2. A adj D, B adj E , A adj B , C adj D.
Rule 3. From rules 1 and 2 we plot the implication graph of Fig.
9.27b and identify two closed subgraphs, one containing A adj
D, A adj E , B adj C, D adj E and the second containing only
B adj D. Note that pair CE has been added to make the graph
complete, that is, to show all pairs of states. For larger examples,
generating a complete graph can make the graph too complex for
hand evaluation. In such cases we would limit the graphs to only
those nodes generated using rules 1 and 2.
Rule 4. The state assignment K-map is given in Fig. 9.27c.

From this state assignment the following switching functions are generated as
shown in Fig. 9.28:

D3 = x y3
D2 = xy3yt + xy2 + xyl
D\ = xy2y,

z = xy2 + y3y2
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BE CD AB
X

0 1

A E/0 B/0 AEAD BC BD
A/\ D/1B

ACC E/0 A/0 DE
A/0 B/\D Closed

subgraphD/0 C/0E
Closed subgraph CE

(a)
(b)

V3

1000 01 1 1
o 6 4

0 /4 D B C

71 3 5
1 Ey\ 1

y2

(C)

Figure 9.27 State assignment procedure, (a) State table, (b) Closed subgraphs,
(c) State assignment.

Output Logic
A word about the output equations is in order. In our state assignment procedure
we have completely ignored any consideration of minimizing the output logic.
If the number of Boolean next-state equations is much larger than the number
of output equations, then apply the rules as stated to the next states and accept
the results of the output equations. However, if the output equations are a sig-
nificant part of the implementation logic, rules 1 and 2 are equally applicable
for output logic minimization. In this text, however, we restrict ourselves to
next-state analysis.

9.4.3 Partitioning
. . ..

Recall that a partition, say D , on the set of states for a sequential machine is a
collection of disjoint subsets, called blocks B. ., that contain all the states of the
machine. The process of making a state assignment for the sequential machine
is equivalent to forcing a series of partitions with two blocks, called two-block
partitions, on the set of states, one partition for each memory flip-flop.
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Xxy3
X 00 01 11 10yiy io ly?> y iy i 0 124 8

00000 001/0 110/0

B 110 000/1 010/1 1 5 913
01 d d

C 100 001/0 000/0
r yi153 7 11

D 010 000/0 110/1 11 (d )d
E 001 010/0 100/0 yi s 2 6 14 10

10 Hi l*3 r2 Yi /z
(a)

>>3
(b)

r yiy \ 3 7 15 I I
11 dd d d

yii 2 6 14 10
10

y-i y ~i^3

(c) (d) (e)

Figure 9.28 D flip-flop realization, (a) Transition table, (b) K-map for z.
(c) K-map for Dv (d) K-map for Dr (e) K-map for Dr

EXAMPLE 9.22 Find the two-block partitions forced on the
sequential machine of Fig. 9.27a by the
assignment of Fig. 9.27c.
The ass igned code i s

>3 ^ >1

A: 0 0 0
B : 1 1 0
C: 1 0 0
D: 0 10
E : 0 0 1
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Each bit column of the assignment separates the states into two blocks, or
subsets, those associated with logic 0 and those associated with logic 1.

*31 *32

(.A D E) ( B C )P3 :y?>

*21 *22

( A C E ) (B D)y2 -+ P2
'

*n *12

P x : ( A B C D ) ( E )y i

Closed Partitions
A partition on the set of states of a sequential machine is closed if and only if,
for any block in the partition, all specified next states under each input fall into
a single block of the partition.

EXAMPLE 9.23 Verify that P3 is a closed partition for the
sequential machine of Fig. 9.27a.
If we examine the next-state behavior of the blocks of partition Pv we can
observe

Input
Present
Block 0 1

Next
Block

*31 *31 *32

*32 *31*31
The next states of the blocks of P3 are also contained in blocks of Py Hence,
partition P3 is closed.

The presence of closed partitions on the states of a sequential machine
can greatly reduce the dependence of next-state equations T (i = 1 . . . /*) on
the present-state variables y. ( i = 1 . . . r). If a closed partition has two blocks,
one of the state variables y. can be used to code the blocks; that is, we can
assign y. = 0 for all the states in one of the blocks and y. = 1 for all the states
in the other block; this variable is called a block bit. The presence of the closed
partition results in next-state variable T. being dependent only on the block bit
yj and the circuit inputs; that is,

Yj = h j ( x i , x2 , . . . , x n , y j )
This is exemplified by deriving the next-state equation for Y3 for the state
assignment of Fig. 9.27c:

Y3 = X ^3
Closed partitions may be generated by using an implication graph. We

begin by assuming that two states S and 5. are in the same partition block. By
the definition of a closed partition, the implied next-state pairs of S - S j must also
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lie together in some block of the closed partition. The implied pairs are then
combined into disjoint blocks using the properties of equivalence relations.

EXAMPLE 9.24 Find a closed partition for the state table of
Fig. 9.29a.
If states A B are chosen as a starting point, the partial implication subgraph of
Fig. 9.29b is generated. The implied pairs are

( A B ) , ( B C ) , ( A C ) ( A B C )
( D E ) , ( E F ) , ( D F ) -> ( D E F )

Hence,

P x = ( A B C )( D E F )
is a closed partition for the sequential machine.

0 1

D/0 C/0

E/0 A/1

/71 B/0

A/1 Ft1

C/0 EIO

B/0 D/1

Figure 9.29 Closed partitions, (a) State table,

(b) Partial implication graph.

The closed partition describes a property that exists in certain machines. If
the closed partition has two blocks and the state assignment codes these blocks
with a block bit, reduced next-state logic equations are obtained. Rule 3 of the
state assignment procedure helps the logic designer find state assignments that
correspond to closed partitions without requiring that the partitions themselves
be generated.
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Partition pairs
A second type of reduced dependency, called cross dependency, is exhibited
by some sequential machines. These machines rely on pairs of partitions that
are not necessarily closed. State transitions of sequential machines with cross
dependency are described by block transitions between pairs of partitions, as
is illustrated by the next example.

EXAMPLE 9.25 The sequential machine of Fig. 9.17 exhibits cross dependency under the min-
imal assignment

y2

A: 0 0 0
B: 0 0 1
C: 0 1 1
D: 0 1 0
E : 10 1
F : 1 1 0
G: 111

The two-block partitions for the assignment are
B12Bu

P. : (A B C D) ( E F G )1

B2\ «22

P2 : ( A B E ) (C D F G )

«31 «32

P3 : ( A D F ) ( B C E G)

Close examination of the block behavior reveals the block transition table and
diagram of Fig. 9.30.

The partitions P9 and P3 are not closed, but as a pair they exhibit reduced
dependency, as shown by the following D flip-flop implementation:

D\ = *3^3 + x y x y3 + x y\ y2
P>2 — ^3
«*3 ~ y2

z = xy\h+ xy\ y2h

cross dependency

The generation of partition pairs is beyond the scope of this text; the
interested reader is referred to the references listed at the end of the chapter.
Rule 3 of the state assignment procedure presented earlier helps the logic
designer find cross-dependent assignments when they exist. Although the state
assignment guidelines are not optimal, they can produce good state assignments
even for machines with reduced dependency.

It is important for the reader to note that cross dependency, which is
based on a pair of partitions, is a generalization of reduced dependency, which
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o. iPresent
block

Input
Si0

#32 #32
#31 #31

P2’. #21 0.1 0, 1
#22

Figure 9.30 Cross
dependency, (a) Block transition
table, (b) Block transition
diagram.

#21 #21
#22 #22

#3 - #31 ill #31
#32 0.1

(a) (b)

is based on a single closed partition. Reduced dependency can be considered to
be a special case of cross dependency in which the pair of partitions is formed
by using one closed partition twice.

9.4.4 Optimal State Assignments
Numerous authors have proposed procedures for obtaining “good” of “near-
optimal” state assignments, and several claim that their procedures yield “op-
timal” assignments under some stated criteria of optimality. Several common
optimality criteria are listed next:

1. Minimal gate and/or inputs-to-gates circuit
2. Minimal cost circuit
3. Circuit with reduced dependency
4. Criteria 1 to 3 for a specified flip-flop type

Several of the better methods for producing near-optimal assignments
for D flip-flops are those developed by Dolotta and McClusky [9], Weiner and
Smith [10], and Torng [11]. These methods search for reduced dependency in
the specified state table for a sequential machine.

To this point we have examined only the case for D flip-flops. What
happens if we want to use another type? In general, a good state assignment for
D flip-flops will also be a good assignment for other flip-flop types. However,
Curtis [12] has shown that an assignment that is optimal or near-optimal for
one flip-flop type may be far from optimal for another. Curtis has extended
the methods of Dolotta and McClusky and Weiner and Smith to provide near-
optimal state assignments for specific flip-flop types or combinations of flip-
flops of different types within one sequential machine realization.

To produce optimal assignments, the computational complexity of the
proposed state assignment algorithms require the use of a general-purpose
digital computer. Story et al. [13] and Haring [14] have developed such optimal
algorithms. Story et al. find an optimal state assignment for clocked JK flip-
flops.

For most applications an optimal or near-optimal solution for the state
assignment problem is not required; a good assignment is adequate for most
cases. However, in cases for which an optimal assignment is essential, the logic

www.youseficlass.ir



I
620 Chapter 9 Simplification of Sequential Circuits

designer is referred to the open literature for state assignment algorithms that
guarantee optimality.

This completes our presentation of the state assignment problem. We have
tried to formulate some general guidelines to aid the designer in choosing a state
assignment for a given sequential machine. Our guidelines do not guarantee
a minimum logic realization. They do, however, generally give much better
results than a completely arbitrary choice, as was made earlier in the text.

•9.5 Summary
In this chapter we have presented synthesis procedures to realize both com-
pletely and incompletely specified synchronous sequential logic circuits. State
reduction by inspection, partitioning, and the implication table was demon-
strated. The concepts of state equivalence for completely specified circuits and
state compatibility for incompletely specified circuits were contrasted. Flip-flop
input tables and the generation of excitation maps received attention, as did the
state assignment problem. Many design examples were completed to illustrate
the synthesis techniques. The reader should now have a good grasp of the syn-
chronous sequential circuit synthesis problem. For more detailed information
on the synthesis problem, the reader is encouraged to pursue further reading
from the selected references presented next. In addition, computer-aided meth-
ods are described in Downs and Schulz [15] and are implemented in a variety
of CAD systems, such as Roth’s Logic Aid [16].

REFERENCES E. J. McCLUSKEY, Introduction to the Theory of Switching Circuits. New York:
McGraw-Hill Book Co., 1965.
Zvi KOHAVI, Switching and Finite Automata Theory. New York: McGraw-Hill
Book Co., 1970.
TAYLOR L. BOOTH, Digital Networks and Computer Systems. New York: Wiley,
1971.
J. HARTMANIS, “On the State Assignment Problem for Sequential Machines I,”
IRE Trans. Electronic Computers, June 1961, pp. 157-165.
R. E. STEARNS AND J. HARTMANIS, “On the State Assignment Problem for
Sequential Machines II,” IRE Trans. Electronic Computers, December 1961, pp.
593-603.
M. C. PAULL AND S. H. UNGER, “Minimizing the Number of States in In-
completely Specified Sequential Switching Functions,” IRE Trans. Electronic
Computers, EC-8, No. 3, September 1959, pp. 356-357.
E. J. MCCLUSKEY AND S. H. UNGER, “A Note on the Number of Internal
Variable Assignments for Sequential Switching Circuits,” IRE Trans. Electronic
Computers, EC-8, No. 4, December 1959, pp. 439-440.
R. M. KARP, “Some Techniques of State Assignment for Synchronous Sequential
Machines,” IEEE Trans. Electronic Computers, EC-13, No. 5, October 1964, pp.
507-518.

1.

2.

3.

4.
5.

6.

7.

8.

www.youseficlass.ir



Section 9.5 Summary 621

9. T. A. DOLOTTA AND E. J. MCCLUSKEY, “The Coding of Internal States of
Sequential Circuits,” IEEE Trans. Electronic Computers, EC-13, No. 5, October
1964, pp. 549-562.
P. WEINER AND E. J. SMITH, “Optimization of Reduced Dependences for Syn-
chronous Sequential Machines,” IEEE Trans. Electronic Computers, EC-16, No.
6, December 1967, pp. 835-847.
H. C. TORNG, “An Algorithm for Finding Secondary Assignments of Syn-
chronous Sequential Circuits,” IEEE Trans. Computers, C-17, No. 5, May 1968,
pp. 461-469.
H. A. CURTIS, “Systematic Procedures for Realizing Synchronous Sequential
Machines Using Flip-flop Memory: Part I,” IEEE Trans. Computers, C-18, No.
12, December 1969, pp. 1121-1127.
J. R. STORY, H. J. HARRISON, AND E. A. REINHARD, “Optimum State Assignment
for Synchronous Sequential Circuits,” IEEE Trans. Computers, C-21, No. 12,
December 1972, pp. 1365-1373.
D. R. HARING, Sequential Circuit Synthesis: State Assignment Aspects, M.I.T.
Research Monograph No. 31. Cambridge, MA: The M.I.T. Press, 1966.
T. DOWNS AND M. F. SCHULZ, Logic Design with Pascal— Computer-aided
Design Techniques. New York: Van Nostrand Reinhold. 1988.
C. H. ROTH JR., User's Guide and Reference Manual for LogicAid. St. Paul, MN:
West Publishing Co., 1992.

10.

11.

12.

13.

14.

15.

16.

PROBLEMS 9.1 Find a minimized state table for the following synchronous sequential circuit by
(a) Inspection.
(b) Partitioning.

(c) Implication table.

I J
B/0 A/ l

B C/0 A/0
C C/0 B/0
D E /0 D/\
E C /0 D/0

Reduce the following state tables by inspection:

A

9.2
(a) / J

B/1 C/0
A/1 C/0
D/ l A/0
C/1 A/1

A
B
C
D

I J(b)
A A/0 E /\

E /\ C /0
A /1 D/ l
F /0 G/ l

B
C
D
E B / l C/0
F F /0 E/\

A/1 D/ lG
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622 Chapter 9 Simplification of Sequential Circuits

JI K(c)
A A/0 D/1 D/1
B B /0 A / \ F / \
C A/1 D /0 E /0
D F /0 C/1 A /0
E A /0 D/1 D/ 1
F B /0 D/1 D/ 1

Reduce the state tables of Problem 9.2 by partitioning.9.3

9.4 Reduce the state tables of Problem 9.2 using implication tables.

Find a reduced state table for the following synchronous sequential circuit:9.5

I J
B /0 C /0
D /0 E /0
F /0 C/0

A
B
C
D A /1
E C /0 D /0
F F /0 C/0
C B /0 F /0

Using an implication table, reduce the following sequential circuit to a minimum
number of states:

B / \

9.6

JI
A /0 C /0
D/1 A /0
F /0 F /0
E /\ B /0
C/1 C/0
C/0 C/0

A
B
C
D
E
F
G B / \ H /0

H /0 C /0H

9.7 Reduce the number of states of the following sequential circuit:
(b) Using an implication table.(a) By partitioning.

I J K
A D/1 C/0 D/1
B D /0 E /0 C/1
C A /0 D/0 B /\
D A /1 B /0 D/1
D A /1 C/0 D/1

Find a clocked D flip-flop realization for the following sequential circuit using
each of the three unique assignments for four-state circuits:

9.8

x
0 1

B /0 D /0
C /0 A/0
D /0 A/0
D/ 1 C/1

A
D
C
D
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9.9 For the following state table, find circuit implementations with each of the three
unique state assignments for four-state circuits and memory elements of:
(a) Clocked T flip-flops.
(b) Clocked JK flip-flops.

(c) Clocked SR flip-flops.

x
0 1

A C/0 D/0
C/0 A/0B

C Bl0 D/0
A/1 Bl1D

9.10 Derive the logic equations to implement the four-state sequential circuit defined
by the following state table, using the given state assignment and:
(a) D flip-flops.
(b) Clocked JK flip-flops.

(c) Clocked SR flip-flops.
(d) Clocked T flip-flops.

x
0 1J7

! J72
0 0
0 1
1 1
1 0

A B /0 C /0
B D/0 A/1
C A/ 1 D/0
D D /\ B/\

Find a state assignment for the following synchronous sequential circuit using
the state assignment procedure presented in this chapter.

9.11

x
0 1

B /0 E /0
D/0 A/1
D/1 A/0

A
B
C

B/\ C/1D
E A/0 A/0

Find a state assignment for the following sequential circuit. Choose the assign-
ment for state A to be y3 = y2 = yl = 0.

9.12

x
10

B /0 E /0A
A/1 C/1B

C B/0 C/1
D C/0 E/0
E D/1 A /0

9.13 Find a state assignment for the following circuit:
x

0 1
B /0 D/1A

C/0B A/1
C D/0 A /0

C/1 B /\D
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Many applications require the use of se-
quential circuits that are not synchronized

in any way with a clock signal. These circuits
are referred to as asynchronous sequential cir-

cuits. Asynchronous circuits require special atten-
tion since there is no clock signal to provide common

timing information to the circuit elements. Hence, asyn-
chronous circuits respond immediately to any change of
input, rather than responding to the inputs present dur-

ing a clock pulse. The absence of a clock signal also
means that memory element transitions must be initi-
ated by some other means. Therefore, precautions must
be taken to avoid timing problems. The various facets
and ramifications of asynchronous sequential circuit
design will be discussed in this chapter

www.youseficlass.ir



A

Asynchronous Sequential Circuits*

P
i

10.1 Types of Asynchronous Circuits
The first class of asynchronous circuits we will examine is pulse-mode circuits.
These circuits have pulse inputs and unclocked memory elements. Flip-flops are
commonly used for the memory in such circuits. Hence, the model shown in Fig.
10.1 will be adopted as the pulse-mode circuit model. Notice the close resem-
blance to the general sequential circuit model given in Chapter 6. However, re-
strictions are placed on pulse-mode circuits that make them significantly differ-
ent from the circuits studied in Chapter 8. The following assumptions are made
in the analysis and synthesis of pulse-mode asynchronous sequential circuits.

1. Pulses will not occur simultaneously on two or more input lines.
2. Memory element transitions are initiated only by input pulses.
3. Input variables are used only in the uncomplemented or the complemented

forms, but not both.
The first assumption is a very practical one in that the probability of two

pulses occurring at exactly the same time is small. This assumption is needed
since a clock is not utilized to synchronize state changes. In a real-world sit-
uation, if we tried to apply two input pulses to a circuit at the same time,

* z1x\

Z-m* Combinational
logic circuit

* J iJry i Kr Jr

4-
Flip-flop
memory

4-
4-

Figure 10.1 Pulse-mode circuit model.
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say on input lines and x2 , one pulse would arrive before the other, and the
performance of the circuit would be different depending on which pulse arrived
first. Hence, the operation of the circuit would depend on parasitic resistance
and capacitance values in the hardware. This is not acceptable for good design
practice, and therefore we do not allow designs that permit coincident input
pulses. In addition, input pulses should be spaced in time by at least the response
time of the slowest memory element. This means that no memory element will
be in the process of changing state when a new input pulse occurs. Hence, the
behavior of the circuit will always be predictable.

Now consider the information provided by the input pulses to the circuit.
It can be argued that since these pulses may occur asynchronously, or, in other
words, at random unknown times, no information is provided to the device
except when a pulse occurs. Hence, only the uncomplemented form of input
pulses is used in the logic realizations of pulse-mode circuits.

The second class of asynchronous sequential circuits we will examine
is fundamental-mode circuits. These circuits have level inputs and unclocked
memory elements. Figure 10.2 shows the model of a fundamental-mode circuit.
The memory elements are shown as delay lines in the model. However, in
practice, the use of a physical delay line is often unnecessary, because sufficient
delay is present in the other logic circuit elements. For this presentation, assume
that all delays in the circuit can be lumped into the delay elements shown in
the feedback paths. Also assume that each delay element has the same amount
of delay At . These last two assumptions cannot always be justified in practice
and will be removed at a later point in the chapter.

For fundamental-mode operation, inputs are restricted so that only one in-
put variable is allowed tochange value at a given instant of time.This restriction,
which is similar to that required in pulse-mode circuits, exists since in practical
situations two or more inputs are not likely to change value at precisely the same
time. Hence, the second and succeeding changes could occur while the circuit is
still responding to the first input change, in which case incorrect behavior of the
circuit would be possible. A similar situation would exist if the time between

•V| Z )

ZmCombinational
logic circuit

Yr Yv 1 >V

Delay, At

Delay, At

Figure 10.2 Fundamental-mode circuit model.

www.youseficlass.ir



Section 10.2 Analysis of Pulse-mode Asynchronous Circuits 627

two input changes is too small. For predictable operation of fundamental-mode
circuits, input changes should be spaced in time by at least At , the time needed
for the circuit to settle into a stable state following an input change.

10.2 Analysis of Pulse-mode
Asynchronous Circuits

In the analysis of pulse-mode asynchronous sequential circuits, it is important
to recall that these circuits respond immediately to pulses on their inputs, rather
than waiting for a clock signal, as in synchronous sequential circuits. The ab-
sence of a clock signal also means that memory element transitions must be
initiated by some other means. Therefore, precautions must be taken to avoid
timing problems by paying close attention to and understanding the signifi-
cance of the three assumptions regarding pulse-mode operation presented in
the previous section.

The first assumption, that pulses do not occur simultaneously on two or
more input lines, means that a circuit with n input lines has only n + 1 input
conditions, rather than 2n , as is the case for synchronous circuits. Assumption
2 implies that a state transition can occur only if an input pulse occurs. Hence,
the memory elements of the circuit respond only when an input pulse arrives.
The third assumption guarantees that all devices trigger on the same edge of
each pulse. It is important to keep these assumptions in mind while studying
the examples that follow.

EXAMPLE 10.1 Let us examine the behavior of the pulsed
asynchronous circuit shown in Fig. 10.3.
The analysis of this circuit proceeds in much the same fashion as the analysis
of a synchronous circuit. The major differences are due to the absence of a
clock signal and the assumptions listed previously.

The circuit has the following states and inputs:

[>’] = 0 = A
[y] = 1 = £

[ x { , x2 ] = 00 = I0
[X|, x2\ — 10 = / j

[-*•1 , x2 ] = 0 1 = I2

Figure 10.4 shows a timing diagram for the circuit for a typical input
sequence. Note that all state transitions correspond to the occurrence of an input
pulse. On the leading edge of the input pulse, the S and R signals are activated.
The flip-flop responds to its S and R inputs in r seconds. The changing flip-flop
output y then deactivates the S and R signals, and the circuit then waits for
another input pulse on x { or JC2.

>
States:>*1

*2 Inputs:Z =*\Y

S = x \ v
R = .viv

Q S

V
Q R

Figure 10.3 A pulsed
asynchronous sequential circuit.
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The state table shown in Fig. 10.5a can be constructed from the timing
diagram in Fig. 10.4. A symbolic state table is shown in Fig. 10.5b, with the
three combinations of x } x2 designated as input conditions /Q, 7p and /2. Note
that there is no column for the condition x } = x2 = 1, since it has been assumed
that simultaneous pulses cannot occur on multiple inputs.

run n*i
i i_n_n n-i

*2

T iy i

' -h- n ii
i
i

S = x iy n ni
i
i

R =*2y nnz = xiy

Figure 10.4 Timing diagram for example circuit.

A simplified state table is given in Fig. 10.5c. This table is obtained from
the symbolic table using the following steps.

1. Eliminate the IQ column, corresponding to input condition xl = x2 = 0.
Since no state change can occur when there is no pulse on either input,
this column provides no significant information.

2. Interchange the /2 and /, columns and replace the symbols /, with x ] and
/2 with x2 , indicating pulses on x, and xv respectively.

The simplified state table completely describes the circuit behavior.

*1*2
00 01 10 h hy Present

state
Present
state

*i *2

0/0 0/0 1/0 B/0 B/0 A/00 A/0 A/0 AA

1/0 0/0 1/1 B/0 A/0 B/ l B/l A/01 B B

Next state/outputY/z Next state/output
(a) (b) (c)

Figure 10.5 State tables for Example 10.1. (a) State table, (b) Symbolic state table,
(c) Simplified state table.

A K-map development of the state table is given in Fig. 10.6. Since it is
assumed that the input condition xxx2 = 11 will never occur, the corresponding
K-map cells are left unspecified. The final step is accomplished by eliminating
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the 00 and 11 columns from the table and relabeling the 10 column as x, and
the 01 column as xv

Figure 10.6 K-map development of state tables, (a) K-maps for the circuit,
(b) Combined SR map and next-state (y) map. (c) State tables.

www.youseficlass.ir



I
630 Chapter 10 Asynchronous Sequential Circuits

Pulsed asynchronous circuits utilizing memory elements that are not edge
triggered, that is, latches, are analyzed as shown in the preceding example. The
analysis of a circuit that employs edge-triggered flip-flops will be considered
next.

EXAMPLE 10.2 Consider the sequential circuit of Fig. 10.7.
The analysis of this circuit will be completed
using a timing diagram. The circuit is
described by the logic equations

D x = y v D2 = y v z = x y x y2

Cj = xy2 , C2

The timing diagram for the circuit has been constructed in Fig. 10.8. The input
x is composed of asynchronous pulses, and the starting state of the circuit is
y{ = y2 = 0. Notice that only three of the states of the circuit are shown on the
diagram.

= x

)
y i Q £> i

y i
Q C\

V2 Q D2

Figure 10.7 Pulsed sequential
circuit with unclocked memory.

Q C2 < D-

If the starting state had been y { = 1 and y2 = 0, the sequential circuit
would have been unable to change state because

£> , = 0, D2 = 0,

Cj = 0, c2
The state variable y2 would always stay at 0 and inhibit any state change in
flip-flop output y2.

= x
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A state table and diagram may be compiled for this circuit if we define
the following:

Inputs: 70 = no pulse on x
I { = pulse on *

States:
A = 0 0
B = 01
C = 10
D = 11

Outputs: z = 0
z = 1

The resulting state table and diagram are illustrated in Fig. 10.9. They are
derived from the timing diagram in Fig. 10.8. Note that the state diagram has

a_n n nx
i i
i i

0 0 1 0 ! 0y\

io I lI 0Iy2 i
i

D j- D2

-Ln—d—,n n n nC,
C2 I I

I n i
i i

iiz

Figure 10.8 Timing diagram for Example 10.2.

Present
state

A/0 B/0A

B B/0 D/0

C C/0 C/0

D/0 A/1D

Next state/output

(a)

Figure 10.9 State table and diagram for Example 10.2.
(a) State table, (b) State diagram.
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two separate parts and, as a result, if state C is the starting state, the sequential
circuit is “hung” there. However, if state A, B, or D is the starting state, the
circuit behaves as a typical sequential machine.

K-maps can be used for construction of the state table corresponding to
the circuit of Fig. 10.7, using the D flip-flop characteristic equation, Eq. 6.12,
and the following observation. The D flip-flop clock inputs will see a 1 to 0
transition only if an input pulse occurs. Hence, at most one such transition can
occur for each input pulse.

The following equations are obtained by using Eq. 6.12 and the logic
equations for the circuit in Fig. 10.7:

Yx = DJCJ + yxCx
= y^y2 + y x { x A- y2 )

= xyxy2 + xyx + y x y2

*2 = D2CI + ^2^2

= yxx + y2x
The K-map development of the state table is shown in Fig. 10.10.

BP 10.3 Synthesis of Pulse-mode Circuits
The synthesis or design of pulse-mode circuits closely parallels the design of
synchronous circuits discussed in Chapter 8. However, when designing pulse-
mode circuits, remember that no clock pulse is present, inputs occur on only
one line at a time, and only uncomplemented forms of input signals may be
used.

The absence of a clock pulse implies that latch or flip-flop triggering must
be accomplished by utilizing the pulses on the input signals, and therefore all
circuit timing information must be obtained from the input pulses. Hence, the
input pulses not only provide input information but also assume the functions
performed by the clock pulse in synchronous circuits.

10.3.1 Design Procedure for
Pulse-mode Circuits

The step-by-step design procedure outlined next is the same as that given
for synchronous circuits. However, the details of some steps are different, as
illustrated by the three examples that follow.

Step 1. Derive a state diagram and/or state table.
Step 2. Minimize the state table.
Step 3. Choose a state assignment and generate the transition/
output table.
Step 4. Select the type of latch or flip-flop to be used and determine
the excitation equations.
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oi/o00/0 01/000

11/001/0 11/001

00/111/0 00/111

10/010/0 10/010

YIY2/Z Y\ Y2/ZY \ Y2/Z

(b)

Figure 10.10 K-map state table development, (a) Flip-flop input
maps, (b) Next-state maps.
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step 5. Determine the output equations.
step 6. Choose the appropriate logic elements and draw the circuit
diagram.

EXAMPLE 10.3 Let us design a pulse-mode circuit having
two input lines, xx and x2 , and one output line,
z, as shown in Fig. 10.11a. The circuit should
produce an output pulse to coincide with the
last input pulse in the sequence x2.
No other input sequence should produce an
output pulse. Hence, this example is
concerned with the design of a sequence
detector for the sequence x { —x2—x2.

Step 1. Define the following three states of the circuit:

A: indicates that the last input was x
B: indicates that the sequence x -x2 occurred.
C: indicates that the sequence x -x -x2 occurred.

The corresponding state diagram is given in Fig. 10.11b. Note that
the format of the state diagram is similar to that used for syn-
chronous circuits. However, the transitions are labeled with the
input variable and the output value rather than with both input and
output values. Also, remember that the state transitions are trig-
gered by the occurrence of the indicated input pulse and not by a
clock pulse.

The state table corresponding to the state diagram of Fig.
10.11b is as follows:

1’

Present state X X21

A /0 B /0
A /0 C/ 1
A /0 C/0

Next state/output

A
B
C

A |/0

Pulse
mode
circuit

.v2/0AT|/0
A -> * z (pulse ) A-,/0

c
(a)

x~>! 1.W0

(b)

Figure 10.11 Pulse-mode example, (a) Pulse-mode
circuit, (b) State diagram.
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Step 2. The state table is minimum as given.
Step 3. A state assignment of A = 00, B = 01, C = 10 produces
the following transition/output table.

y i y2 X X 21

00 00/0 01/0
01 00/0 10/1

00/010 10/0

w*
Step 4. Let us chooseT flip-flops as the memory elements. The next
state maps and corresponding flip-flop excitation maps are given
in Fig. 10.12. These maps can be considered as reduced four-
variable Karnaugh maps. Columns corresponding to JC, = x, = 0

*i x2

oo 0 0

01 0 1

11 d d

10 0 1

Y\

x2x \ x2 X,
0 1 0 0

01 0 0 0 T

11 d d d d.
10 0 0 0 0

y2 z

Figure 10.12 Next state, excitation, and output maps.

and xl = x2 = 1 are omitted since they contain no pertinent in-
formation. The reader should verify that the omitted columns are
not needed. Since the remaining columns are not adjacent on the
complete map, groupings can be made only within a given column.
Hence, the following excitation equations result:
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T i = x ] y ] + -V2

T2 = Xl 3;2 + -r2 >’l
Step 5. The output map is given in Fig. 10.12, from which we derive
the following equation:

z = x2 y2
Step 6. AND/OR logic can be used to realize the equations. Figure
10.13 shows the resulting circuit.

A'l

A'2

Figure 10.13 Logic diagram for the pulse-mode example.

In the previous example, the circuit realization took the form of a Mealy-
type circuit since the output was a function of both an input and a state variable.
A second example will now be presented that describes the realization of a
Moore-type circuit. Recall that Mealy- and Moore-type circuits were defined
in Chapter 8.

EXAMPLE 10.4 Let us design a pulse mode circuit with
inputs and output z. The output must
change from 6 to 1 if and only if the input
sequence xl-x2-x3 occurs while z = 0. The
output must change from 1 to 0 only after an
x2 input occurs.

step 1. Since the output must remain high between input pulses, a
Moore-type circuit is required to realize the network in Fig. 10.14a.
The state diagram and state table in Figs. 10.14b and c, respec-
tively, satisfy the stated requirements,
step 2. The table of Fig. 10.14c is reduced.
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Step 3. Making the state assignment A = 00, 5 = 01, C = 11, D =
10 yields the transition/output table of Fig. 10.14d.

Pulse
mode
circuit*2 * z (level)x3 *

(a)

Present
state

x2x\

A B A

B CB

C B A

D D A

Next state y, y2 zz
(c ) (d )

Figure 10.14 Pulse-mode example, (a) Pulse-mode circuit, (b) State
diagram, (c) State table, (d) Transition/output table.

Step 4. Next-state maps and the corresponding excitation maps for
SR latches are given in Fig. 10.15. Note that to use SR latches
the duration of each input pulse must be sufficiently long to initiate
a state change. Furthermore, remember that when using the re-
duced K-maps that groupings must be restricted to within a given
column. The maps yield the following excitation equations:

R, = x,y2 + x2 y ,
Ri = x2yi + xi

s, = x2y,y2’S2 = X 1>
Step 5. Since a Moore-type circuit is being realized, z will only be
a function of state variables. A 1 output is produced only when the
circuit is in state D. Hence,

Step 6. Figure 10.16 shows the circuit diagram that results when
AND/OR logic is used to realize the equations.
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Figure 10.15 Next-state and SR excitation maps.

>’ i5, Q

) y \Qi

X \
z

x2 "

*2 Q y2

D-*3 R2 Q
y2

Figure 10.16 Circuit diagram for the pulse-mode example.
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EXAMPLE 10.5 Let us design a pulse-mode circuit with
inputs xvx2,x3 and output z . The circuit is to
be used as a digital lock, as shown in
Fig. 10.14a, with the combination
JCJ JC2 JC2—jrj—A:2. Pulses on the inputs are
produced by push buttons. Input x, is a reset
signal to clear the lock. The output must
change from 0 to 1 if and only if the input
sequence xl-x2-x2-xl-x2 occurs while z = 0.
The output is to go high only during the last
x2 input. Once x2 is released, the lock cannot
be opened again unless a pulse on x3 resets
the logic. If any incorrect sequence is
entered, the lock must wait for a reset pulse
before the correct combination can be
entered. In other words, after the lock has
been opened, the sequence x3-xl-x2-x2-x1-x2
is required to open it again.

Stepi. The state diagram and state table of Figs. 10.17b and c,
respectively, satisfy the stated requirements.
Step 2. The table of Fig. 10.17c is reduced.
Step 3. Using the state assignment rules of Chapter 9:

Rule 1: Try to satisfy the following adjacencies:

BC, BE , BF , CE , CF, EF
AD, AE , AF , DE , DF , EF

Rule 3: Establish an implication graph as shown in Fig.
10.17d. From the closed subgraph, circled on the graph,
try to satisfy the following adjacencies:

CD, DF , EF , CE , BC

The state assignment in Fig. 10.17e represents a good choice for
this circuit. Using this state assignment yields the transition table
of Fig. 10.17f.
Step 4. From the transition table, excitation maps for SR latches are
derived and given in Fig. 10.17g. Remember that, when using the
reduced K-maps, groupings must be restricted to within a given col-
umn. The following excitation equations are derived from the maps.

sj = y2x, + x2

R I = *3

52 =Wi
R2 = y2x l + y3x2 +x3
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*3/0
/ j,
L

Push
buttons Open

lock*1 * Pulse
mode
circuit

Ax2
X3/0x3 *

\ X3/0

(SR latches)

(a)

Present
state xi x2 x3

B/0 F!0 A/0A

FI0 C/0 A/0B

C FI0 DIO A/0

E/0 FI0 A/0D

E F/0 /71 A/0

A/0F F/0 F/0

Next state/z
(c)

Vl .V2.V3
A 000 010/0 101/0 000/0

ddd/d001 ddd/d ddd/d
.V1.V2 101/0B 010 110/0 000/0

00 01 11 10
ddd/dOil ddd/d ddd/d

0 C EA B
E 100 101/0 101/1 000/0.V3

1 D F F 101 101/0 101/0 000/0

c 110 101/0 111/0 000/0
(e) 000/0111 100/0 101/0D

Y [ Y2Y3/Z

(f)

Figure 10.17 Digital combination lock example, (a) Digital combination lock,

(b) State diagram, (c) State table, (d) Implication graph, (e) State assignment,
(f) Transition/output table.
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X ] *2 *3 X \ *2 *3 X , x2 x3y\ yiy?> y\ yiy3 ymy3

000 0d 10 0d 000 10 0d 0d 0d 10000 0d

001 dddd dd 001 dd dd dd 001 dd dd dd

010 1010 0d 010 01 dO 01 010

O i l dd dd dd Oil dddd dd O i l

100 dO dO 01 100 0d 0d 0d 100

101 dO dO 01 101 0d 0d 1010d

dO110 dO 01 110 01 dO 01 110

dO 01 01111 dO 111 01 01 1 1 1

Si /?, S2/?2

(g)

Figure 10.17 (Continued) Digital combination lock example, (g) Excitation K-maps.
(h) Output K-map.

53 = ( y2 yj + y\ yJx\ + <y2 + yOxi
R1 = + X 3

Steps. The K-map for the output z is shown in Fig. 10.17h. The
output equation is

z = yly2 y2x2
Step 6. Construction of the detailed circuit diagram is left as an
exercise for the reader.

This example completes our discussion of pulse-mode circuits. The re-
mainder of the chapter will be concerned with fundamental-mode circuits.

10.4 Analysis of Fundamental-mode Circuits
Fundamental-mode circuit analysis requires careful attention because of the
special behavioral characteristics of these types of circuits; that is, these circuits
utilize unclocked memory and level inputs, whether synchronized by a clock
signal or not. For example, consider the circuit defined by Fig. 10.18a. This
network is composed of AND, OR, and NOT gates with one delay line memory

www.youseficlass.ir



I
642 Chapter 10 Asynchronous Sequential Circuits

-t>
-t>

)-J—Oo-i

YV
At

Delay line
(a)

n
At u

uY

Lnrrruuu
(b)

Figure 10.18 A level asynchronous sequential circuit, (a) Logic diagram,

(b) Timing diagram.

element. The delay line memory element may be a physical component placed
in the feedback path to introduce a delay of A t between changes in output Y and
feedback signal y. However, in many circuits, output Y is simply fed directly
back to input y, in which case A t represents the sum of the delays through
the combinational logic gates, which determines the time between changes in
input x or feedback signal y and corresponding changes in output Y .

This type of level asynchronous sequential circuit is perhaps the most
difficult to analyze. A timing diagram for the circuit is shown in Fig. 10.18b.
The logic equations for the network are

Y = x y = x + y
z = x y + x y = x Q y

Examining the equation for T, we find that the complement of the input signal
x serves as a control variable to mask out transitions in the delay line feedback
loop. If ^ = 0 ( x = 1), then Y = 1; that is, the next state Y is independent of
the present state y. When * = 1 ( x = 0), the next state Y is the complement of
the present state y, that is, Y = y, and the sequential circuit cycles back and
forth between the 0 and 1 states.
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This type of circuit is unique from all the other circuit types discussed
previously in that no pulses are present to aid in the analysis. State transitions
in synchronous sequential circuits are triggered by clock pulses and, in pulse-
mode asynchronous circuits, by pulses on the circuit inputs. A state table and
diagram are easily produced for these circuits by examining the circuit state and
inputs at the exact instant of each active transition of the clock signal or input
pulse. However, level asynchronous circuits are more difficult to describe. For
convenience, we shall introduce a special notation for handling this unusual
case.

The generic fundamental mode circuit model in Fig. 10.2 can be described
by the following set of logic equations at time t :

A = gi ( x\ , . . . , x‘n , y\ , . . . , y‘r ) ,
Y‘ = hi ( x [ , . . . , xln , y[ , . . . , ytr ) ,

= Y‘J j ’

(10.1)
(10.2)

(10.3)

i = 1, . . . , m
j = 1, • • r

f + Af
yj

where
x = (j C j , . . . , xn ) = input state
y = (yp .. . , yr ) = secondary state
z = ( z x , . . . , zm ) = output state

Y = (Tp . . . , Yr ) = excitation state
(x, y) = total state

Alternatively, the equations may be written as
z' = g(x' , y')
Y' =h(x', y')

yt+Al _
Y'

(10.4)
(10.5)
(10.6)

10.4.1 Introduction
To introduce the analysis procedure for fundamental-mode circuits, consider
the circuit shown in Fig. 10.19a. This circuit is described by the following set
of equations:

z' = g ( x\ , x‘2 , y‘ ) = x\ x‘2 + x‘2 y‘
Y‘ = z‘

= Y‘r -f-ArJ
where

(X j , x2 ) = input state
(y) = secondary state

( jtp x2 , y ) = total state
(z) = output state
( Y) = excitation state

Figure 10.19b illustrates the timing diagram of the circuit for a typical input
sequence. The construction of timing diagrams was presented in Chapter 8, and
the procedures discussed there remain valid here.
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X \

z{>*2

YV Delay *At

(a)

o J-VI 0 0 0 0 01 1 1 0 0 0 1 1 1
iiAt i i i

o_ j7p|o_x2 i0 0 i i i ; o I l i l ! o1 ! l
i
i i

i ii
i

° i °f * iy i
0 0 O i l 1 ' 0 !0 1 ! 11
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i
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l = r i o I l l
0 |0 |0 o | o |o0 1 1 1 o i l l ! i l

i i i i
i i i i
i i i

h *3 U h 1 6 *1 h *9 t [ 0 tn hi 03 *14 *15h
(b)

Figure 10.19 A fundamental-mode circuit, (a) Circuit diagram, (b) Timing diagram.

A situation of particular interest can be seen at time t3 in Fig. 10.19b.
Observe that Y changes from 0 to 1 in response to the 0 to 1 change in x2.
However, y does not follow with a 0 to 1 change until time f4. This lag in the
response of y is due to the delay element included in the feedback path. Since
a delay of At has been assumed, t4 — t3 = At .

An unstable state is said to exist at time tv since y =/ Y . Other unstable
states exist at times r5, r9, and t ] 3. When y = T, a stable state exists.

It should be noted that unstable states exist for a period of time equal
to At and are thus transient in nature. However, the transient behavior of
fundamental-mode circuits is, in general, more critical for proper functioning
of the device and therefore will be studied in more detail in a later section of
the chapter.

In summary, a fundamental-mode circuit is in a stable state when the
following relationship is satisfied:

y' = Y'
An unstable state is defined by the relationship

y' ¥ ?’

(10.7)

(10.8)
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*1*2
00 01 11 10 10.4.2 Tabular Representations

It is often convenient to represent fundamental-mode circuits in tabular form.
The first form to be considered is the excitation table. An excitation table
presents both the excitation state and the output state as a function of the total
state (j t j, . . . , xn , yv . . . , y r ). Hence, the excitation table is a tabular repre-
sentation of Eqs. 10.1 and 10.2. The excitation table corresponding to Fig.
10.19a is given in Fig. 10.20. This table can be constructed by an appropriate
combination of the K-maps for Y and z.

Note that each column of the table is associated with a unique input state,
and each row of the table corresponds to a unique secondary state. Hence,
each cell in the table represents a unique total state ( x l 9 x2 , y ) of the circuit.
Contained in each cell is the excitation state and output state specified for the
corresponding total state by Eqs. 10.1 and 10.2, respectively. Stable states are
indicated by encircling the corresponding excitation state.

Separation of the excitation and output functions into two separate tables
is often desired. This has been done in Fig. 10.21 for the circuit shown in
Fig. 10.19. Thus the excitation table can be represented in either the one- or
two-table format. Both of these formats can be generalized by adding rows and
columns as needed to accommodate additional states and inputs, as necessary.

®/0 ®/o ®/00 1/1
y

0/i 0/i 0/oo/oI

Y /z

Figure 10.20 Excitation table.

*1*2

00 01 11 10
*1 *2

00 01 1011

© © ©0 0 01 0 1
y

© © © I0 1 0 11

Y z

Figure 10.21 Excitation table (alternative form).
*1 *2

00 01 11 10
A flow table is another useful representation of a fundamental-mode

circuit. Flow tables are similar to excitation tables; however, in a flow table,
excitation states and secondary states are represented by letters or other nonbi-
nary characters. Hence, a flow table specifies the circuit behavior, but does not
specify the circuit realization. Figure 10.22 presents a flow table for the circuit
in Fig. 10.19a.

Both flow tables and excitation tables can be used to determine the output
response of a circuit to a given input sequence. The excitation table, however,
provides both secondary and excitation state behavior as additional information.

The flow table in Fig. 10.23 illustrates the flow that corresponds to the
time interval tx through t7 in the timing diagram in Fig. 10.19b. Note the
occurrence of unstable states in the flow sequence. Also, observe that an input
change causes a horizontal move in the flow table. Vertical moves are produced
by changes in secondary states that result from input changes. In other words,

0/o 0/o 0/obn

0/i 0/i 0/ia!0b

Figure 10.22 Flow table.
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Input changes

©/0 ©/0
State

changesb
®/ i ®/i Figure 10.23 Flow table

showing flow sequence.

an input change causes the circuit to move horizontally into a new column and
then vertically within the column until it finds a stable state.

10.4.3 Analysis Procedure
The previous example suggests the following analysis procedure.

1. Determine the excitation and output equations from the circuit diagram.
2. Plot excitation and output K-maps for Y and z, and from these K-maps

construct the excitation table.
3. Locate and circle all stable states in the excitation table.
4. Assign a unique nonbinary symbol to each row of the excitation table. Let-

ters or the decimal equivalents of the secondary state codes are often used.
5. Construct the flow table by replacing each binary state in the excitation

table with a symbol representing its state assignment.

This procedure will now be illustrated with the following example.

EXAMPLE 10.6 We wish to derive the flow table for the circuit
given in Fig. 10.24a.

step 1. The excitation and output equations for the network are
yi =
y

2 = xy,
z = xy,

Step 2. An excitation table is constructed from K-maps of Yv Yv and
z as shown in Fig. 10.25a. The resulting table is given in Fig. 10.25b.
Step 3. Stable states can be located by the condition yxy2 = YXY2.
These states are encircled as shown in Fig. 10.25b.
step 4. Decimal equivalents of secondary state codes plus 1 are
chosen to represent the corresponding rows in the excitation table,
for example, yxy2 = (01) = 2 in Fig. 10.25b.
Step 5. The resulting flow table is given in Fig. 10.25c. Note that the
last two rows have been swapped to preserve numerical order.
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(a) (b)

Figure 10.24 Fundamental-mode analysis example, (a) Circuit diagram,

(b) Timing diagram.

X

y x y2 0 1

000 1

0 101

0 01 1

10 0 0

y2

(a)

xx
0 1 0 1yiy2

10/0 oi/o 3/0 2/01 = oo l

©/0©/0 22 = 01 00/0 1/0

4 = 1 1 00/1 00/0 3

©/13 = 1 0 00/0 4 Figure 10.25 Excitation and
flow tables derived from K-maps.
(a) K-maps. (b) Excitation table,

(c) Flow table.

YXY2/Z

(b) (c)

It is interesting to observe the state changes that occur in the circuit as it
moves from stable state (2) when the input changes from 1 to0. ( Note: In the dis-
cussions that follow, parentheses will be used to denote stable states.) First, the
circuit proceeds from stable state (2) to unstable state 1 in row 2. Next, thecircuit
moves to unstable state 3 in row 1. Finally, the device is transferred to stable state
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(3) in row 3. Hence, the input change initiates a state sequence of (2) — 1 —>
3 — (3). Figure 10.24b illustrates this sequence in the form of a timing diagram.
Note that two unstable states are entered before the final stable state is reached.

This concludes our study of fundamental-mode circuit analysis. The
synthesis of such circuits will be considered in the next section.

•10.5 Synthesis of
Fundamental-mode Circuits

The synthesis of fundamental-mode circuits may be accomplished by following
a procedure similar to that previously described for pulse-mode circuits. How-
ever, a number of design considerations are unique to the fundamental-mode
case and will be given special consideration later.

Fundamental-mode circuits cannot be conveniently represented by state
diagrams or state tables since the total state is determined by both the input
state and the secondary state. An alternative representation to the state dia-
gram/state table, which is applicable for use with fundamental-mode devices,
is the primitive flow table. A primitive flow table is a flow table that contains
only one stable state per row.

A synthesis procedure for fundamental-mode circuits will now be defined.
The procedure will be illustrated by two examples. A third example will be
given later in the chapter.

10.5.1 Synthesis Procedure

Step 1. Construct a primitive flow table from a word description of
the circuit to be realized.
Step 2. Determine a reduced flow table from the primitive flow table.
Step 3. Make a secondary state assignment.
Step 4. Construct the excitation table and the output table. Special
rules will be given later for the output table construction.
Step 5. Determine the logic equations for each excitation state vari-
able and each output state variable.
Step 6. Realize the logic equations with appropriate logic devices.

EXAMPLE 10.7 A two-input (xrjc2 ) and one-output (z )
asynchronous sequential circuit is to be
designed to meet the following
specifications. Whenever = 0, z = 0. The
first change in input x2 that occurs while
xl = 1 must cause the output to become
z = 1. A z - 1output must not change to z = 0
until xt = 0. A typical input/output response
of the desired circuit is given in Fig. 10.26.

www.youseficlass.ir



Section 10.5 Synthesis of Fundamental-mode Circuits 649

*1

x2

Z

Figure 10.26 Typical input/output response.

Step 1. A primitive flow table that satisfies the requirements of the
circuit is given in Fig. 10.27. Several features of the table should be
noted. First, there is a unique column for each input combination. In
addition, each row contains one stable state with a specified output,
two unstable states with unspecified outputs, and a column with an
unspecified state and an unspecified output. The latter is always
the column in which the values of both inputs differ from those of
the column containing the stable state. Since fundamental-mode
operation allows only one input change to occur at a given time,
transitions corresponding to two or more input changes cannot oc-
cur. Hence, no next state is specified. Outputs of unstable states
are specified as follows:

1. Assign an output of 0 to each unstable state that is a tran-
sient state between two stable states, each of which has
an output of 0 associated with it.

2. Assign an output of 1 to each unstable state that is a tran-
sient state between two stable states, each of which has
an output of 1 associated with it.

3. Assign a don’t-care condition to each unstable state that is
a transient state between two stable states, one of which
has output 0 and the other output 1.

By assigning the outputs in this manner, momentary changes
in the output will be avoided when the circuit passes through un-
stable states.

The need for each of the specified states will now be ex-
plained. Assume that the device is in state (1) and that *2 changes
from 0 to 1. No output change should occur under these condi-
tions. Hence, state (2) is entered by way of unstable state 2. A
change in JC, from 0 to 1, while the device is in state (2), should not
produce an output change either. Therefore, state (3) is entered
through unstable state 3. If the circuit is in state (3) and x2 changes
from 1 to 0, an output change from 0 to 1 must take place. This
change is produced by creating state (4) with output z = 1. Now
assume that the device is in state (4) and that x2 changes from 0
to 1. In this situation, no output change should occur, since JC, ^ 0.
Therefore, a stable state with z = 1 must exist in column 11. State
(5) satisfies this requirement. State (6) is needed, since a stable
state with z = 0 is necessary in column 10 when a 00 to 10 input

*1*2

00 01 11 10

®/0 2/0 -/- 6/01

©/02 1/0 3/0 -/-

®/0-/- 2/0 4/-3

® /i4 1/- -/- 5/1

®/i5 -/- 2/- 4/1

(6)106 5/-1/0 -/-

Figure 10.27 Primitive flow
table.
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change occurs. The remaining transitions can be accommodated
without defining additional states. For example, if the device is in
state (6) and x2 changes from 0 to 1, an output change from 0 to
1 should take place. This can be accomplished by a transition to
state (5).
Step 2. Methods developed for the reduction of incompletely spec-
ified state tables may be applied to a primitive flow table to obtain
a reduced flow table. The absence of present states in a primi-
tive flow table poses no problem in the reduction procedure since
each row is identified with a unique stable state. The concept of
compatible states is thus replaced by the concept of compatible
rows. Two rows are compatible (can be merged) if their states and
outputs are compatible in each column of the primitive flow table.
Compatibility of stable and unstable states is determined as fol-
lows. Stable state (/ ) and unstable state i are compatible. Stable
state (/) and unstable state j are compatible if ( / ) is compatible
with ( j ). Unstable state i is compatible with unstable state j if (/)
is compatible with ( j ).

The implication table corresponding to the primitive flow table
of Fig. 10.27 is given in Fig. 10.28. Compatible pairs of rows are
seen to be (1, 2), (1, 6), (2, 3), and (4, 5). A merger diagram can
be constructed as shown in Fig. 10.29 to illustrate the possible

Figure 10.28 Implication table.

mergers.
Flow table reduction is completed by selecting a minimal

closed cover. For the example, implication requirements are trivial.
Hence, the problem simplifies to the selection of a minimal cover.
An obvious minimal cover is {(1, 6), (2, 3), (4, 5) }, which leads to
the reduced flow table of Fig. 10.30.

The equivalent flow table of Fig. 10.31 can be produced by
relabeling the rows as a , b, and c.

Figure 10.29 Merger
diagram.

•*1*2
00 01 11 10

*1*2
00 01 101 1

©/0©/0 ©/0 ©/0 b/0(1, 6) 2/0 5/- cl-

©/0 ©/o ©/0®/o1/0 4/- a/0(2, 3) b d-

0/ 1 ©/1®/l ©/121- bl-(4, 5) 1/- al-

Figure 10.30 Reduced flow
table.

Figure 10.31 Reduced flow
table with states relabeled.

step 3. Each row in the reduced flow table must be assigned a
unique secondary state code. (The assignment must meet certain
criteria to be discussed in a later section.) For now, an arbitrary
choice will be assumed acceptable. In this example, two secondary
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state variables ( y r y2 ) are needed. The following assignment will
be used:

m.i
00a

b l l
01c

Step 4. The excitation table is constructed from the reduced flow ta-
ble by replacing each letter by the corresponding secondary state
code assigned in the previous step. Stable states are encircled.
For this example, the excitation table is shown in Fig. 10.32a.

*1 *2
00 01 11 10

*,.*2

00 01 11 10y \ y i y \ y2

©01 d00 11 00 0 0 0

© © 01 000 11 0 0 d11

© © d d01 00 11 01 1 1

Y\ Y2 z

(b)(a)

Figure 10.32 Excitation and output tables, (a) Excitation table,

(b) Output table.

The output table of Fig. 10.32b is extracted from the reduced
flow table.
step 5. The logic equations for each excitation state variable and
for each output state variable are obtained by transferring the in-
formation in the excitation and output tables to K-maps and then
deriving the logic equations. Maps for the example are shown in
Fig. 10.33, from which the following excitation and output equations
are derived:

Yl = -^,^2 + X2>7
l

Y2 = X 2 + x { y2

Z = ©V2

Step 6. Figure 10.34 shows a realization of the circuit with AND,
OR, and NOT gates.

EXAMPLE 10.8 Let us design a two-input (xvx2 ), two-output
(z,,z2) fundamental-mode circuit that has the
following specifications. When x { x2 - 00,
z,z2 = 00. The output 10 will be produced
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01 11 1011 10

o00

ff101 000

111 li V1 0 0

10 d d d) ddd

y2y i

X\ X2

00 01 11 10yi>’2
00 d 00 0

Da01 d 1

1 1 d0 0 0

d10 d d d

z

Figure 10.33 K-maps for the excitation and output tables.

CxM ) £

V’2

Delay>’i

Figure 10.34 Realization of the synthesis example.
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following the occurrence of the input
sequence 00-01-11. The output will remain 10
until the input returns to 00, at which time it
becomes 00. An output of 01 will be
produced following the receipt of the input
sequence 00-10-11. And once again, the
output will remain 01 until a 00 input occurs,
which returns the output to 00.

Stepi. When constructing the primitive flow table, it is helpful to
note that at least one stable state must be defined in each column
for each possible output that may be produced by the respective in-
puts. This observation leads to the partially complete primitive flow
table of Fig. 10.35a.The flow table can be completed by establishing
the necessary transitions between stable states. Such transitions
can be accomplished by specifying the unstable states, as shown
in the complete primitive flow table of Fig. 10.35b.

*1*2 *1*2

00 01 11 10 00 01 11 10

©/00 ©/00 -Idd-/- 2/00 7/001 1

©/00 ©/00 5/d02 2-/- 1/00 -Idd

©/10 ©/101 /dO 5/10 -Idd3 -/- 3

©/01 ©/014 1/0d 6/01 -Idd4 -/-

©/10®/10 -Idd5 3/10 8/105 -/-

©/01 ©/016 6-/- -Idd 4/01 9/01

@/00©/007 7 6/0d-I- 1/00 -Idd

®/10 ®/101/J0 -Idd 5/108 -/- 8

@/01 ®/019 9 1/0J -Idd 6/01-/-

(b)(a)

Figure 10.35 Primitive flow table development, (a) Partially
complete primitive flow table, (b) Completed primitive flow table.

Step 2. Flow table reduction is begun by construction of an impli-
cation table as shown in Fig. 10.36. From the implication table, the
compatible pairs of rows are found to be (1, 2), (1, 7), (2, 8), (3, 5),
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Figure 10.36 Implication table

(3, 8), (4, 6), (4, 7), (4, 9), (5, 8), and (6, 9). The merger diagram,
shown in Fig. 10.37, is helpful when selecting a cover.

Selection of a minimal closed cover yields the following set:
{(1, 2), (1, 7), (3, 5, 8), (4, 6, 9)}

The cover is used to produce the reduced flow table of Fig. 10.38,
in which a is (1, 2), b is (3, 5, 8), c is (1, 7), and d is (4, 6, 9). Note
that row 1 has been included in two states, a and c. Therefore, any
unstable state in the primitive flow table whose next state is 1 may
be arbitrarily replaced by a next state of either a or c in the reduced
flow table.
Step 3. The following state assignment will be used:

Figure 10.37 Merger
diagram.

*l*2

00 01 11 10

©/00 ©/00 b/dO c!00a

©/10 ®/10©/10b a/dO

Row©/00©/00 a/00 d/OdC

00a

@/01 @/01 @/01 b 01d c/Od
10
11Figure 10.38 Reduced flow

table.
Step 4. The excitation and output tables are shown in Fig. 10.39.
Step 5. The following excitation and output equations can be ob-
tained using the K-maps in Fig. 10.40.

Yi = y^2 +*i>'i+ x2 yi + -V2T2

Y2 = X l X2 + X \ y2 + X2 y2

Zi = y,y2

= Tl>,2
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*1*2

00 01 11 10
*1 *2

00 01 11 10

00 10 00 00 do01 00

© © ©00 do 1001 10 10
yiyi

10 00 11 00 00 0d 00

(0) © © 0d11 10 01 01 01

Y\ Y2 Z\ Z2

Figure 10.39 Excitation and output tables.

00 01 11 10

00 00 0 T

01 1 1 10

11 1 1 10

10 0 0 1 0

Y2

01 11 10

0 0 0

0 0 0

Da11 1 1

10 00 0 d

Z2

Figure 10.40 K-maps for the excitation and output tables.

Step 6. The circuit realization is shown in Fig. 10.41.

Sometimes we can implement a fundamental-mode circuit design without
deriving a primitive flow table. This is illustrated by the following example.
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£>°— ) z 1

> -2

)l*1

Y

yx2

)-0°—

)

At
V2

A/
>' i

Figure 10.41 Realization of the design example.

EXAMPLE 10.9 We wish to implement a switch debounce
filter, as illustrated in Fig. 10.42a. Mechanical
switches are notorious noise generators in
digital circuits because the contacts vibrate
against each other as they open and close.
Therefore, we want to design a
fundamental-mode circuit that performs
according to the timing diagram of
Fig. 10.42b. As the push button releases from
its contact on input JCJ , a momentary
oscillation is shown in the timing diagram.
After a short time period (usually a few
milliseconds for commercially available
switches), the signal will stabilize to logic
1. Then as the contacts at JC2 close, they
initially oscillate and finally pull down x2 to
logic 0. When the push button is released, the
same sequence of events occurs in reverse.
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Push button
5 V

Spring Oscil ations

L°0 1 1 1*i*1 z*
i

Combinational
01 1 1 1*2

i
l

ZY
i i
i i

State bState a State a
(b)

*1*2

00 01 11 10

©/0 ©/0 b!-a

®/i ®/ ib a/~

(*i *2 = 00 will not occur)
(d)

00 01 11 10

0 0 0 1d
y

a J)i 0d

Y /z Y

(f)(e)

Figure 10.42 Switch debounce filter design, (a) Mechanical switch with
debounce filter, (b) Desired timing behavior, (c) Desired flow sequence,
(d) Complete reduced flow table, (e) Excitation table, (f) K-map for Y .
(g) K-map for z.
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In Fig. 10.42c, we have shown an example of a flow table (without the output z
displayed) that illustrates the state behavior we are seeking. The oscillations in
the inputs are “filtered” by allowing the circuit to bounce back and forth between
stable states @ in the first row and(b) in the second row. The oscillations are
shown as a single cycle in the flow table, but in an actual switch might occur a
dozen or more times! The complete flow table is shown in Fig. 10.42d.

The synthesis of this switch debounce filter proceeds as follows:

Step 1. Omitted in this case.
Step 2. The reduced flow table is given in Fig. 10.42d.
Step 3. Since only one state variable is needed, we make the as-
signment a — 0 and b = 1.
Step 4. The excitation table and K-maps for this circuit are shown
in Figs. 10.42e, f, and g.
Step 5. The logic equations are

Y = x2 +* jy = x2
• ( jqy)

or z = Yz = y
Note that the time delay element is usually implemented by con-
necting a wire from the output back to the input, so the output z = y
or z = Y is essentially the same implementation.
Step 6. The logic diagram for our switch debounce filter is shown in
Fig. 10.43a for a NAND gate realization. Notice that we can redraw
the circuit as shown in Fig. 10.43b in the familiar cross-coupled
NAND gate configuration for an SR latch!

Y>x2
S Q z

x\

*- z

X \
R

Feedback

(a) (b)

Figure 10.43 Switch debounce filter logic circuit, (a) Logic diagram, (b) Equivalent
logic diagram.

A fourth design example, which involves the selection of a secondary state
assignment, will be presented later in the next section. Special requirements
must be considered when making this assignment for a fundamental-mode
circuit. These requirements will now be discussed.
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10.6 Introduction to Races
Cycles, and Hazards

5

The characteristics of individual components from which a logic circuit is con-
structed influence the performance characteristics of the circuit. In particular,
the relative response time of components has a significant effect on the be-
havior of fundamental-mode asynchronous circuits. These effects will now be
considered.

Before proceeding, however, the sources of delays in fundamental-mode
circuits will be briefly discussed. The fundamental-mode circuit model given
in Fig. 10.2 shows feedback paths with delay elements. Additional delays
are present in all physical circuits and result from the logic elements and
the interconnection wires. Therefore, when circuits are realized without delay
elements, delays inherent in the network are due only to the logic devices and
wires.

The effects of delays on circuit performance will be divided into two
categories. The first includes effects caused by delays in the feedback paths;
the second considers the effects of delays in the logic and wires.

Inertial-type devices are often used as delay elements in feedback paths.
An inertial delay element is an element that responds only to signals that persist
for a time equal to or greater than the delay time of the device. To be specific,
let ID represent an inertial delay with input Y , output y , and delay At , as
shown in Fig. 10.44a. The output y assumes the value of input Y after a time
of At if the duration of Y is greater than or equal to At . An input of duration
less than At will not propagate to the output. The response of an inertial delay
element to a typical input is shown in Fig. 10.44b.

Inertial delay elements serve to filter out unwanted transients that may
occur in the feedback signals. These transients are produced as a result of the
unequal response times of the logic elements and can cause incorrect behavior
by the circuit if not eliminated.

ID, At v

(a)

n—i L_n'4
Ly

i\ h h U

t\ + At t2 + At /3 + At t4 + At

(b)

Figure 10.44 Inertial delay element, (a) Inertial delay element,
(b) Typical response sequence.
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Inertial delay elements are more difficult to realize than are pure delay
elements. However, the advantages provided by their use overcome the realiza-
tion complexity. Therefore, for the remainder of the chapter, all delay elements
will be considered to be inertial delays.

10.6.1 Races and Cycles
A race condition is said to exist in a fundamental-mode circuit when two or
more secondary state variables must change value when the circuit is required
to make a transition from one stable state to another stable state. In physical
circuits, the amounts of delay in the different feedback paths are usually not the
same. When unequal delays are possible, a race condition may cause unexpected
or incorrect performance by the circuit.Such a condition will be illustrated later.
Throughout the remainder of the discussion on fundamental-mode circuits, we
will assume that the delay elements in one feedback path are not the same as
those in another.

A race condition is said to be noncritical if the circuit always operates
properly in the presence of the race. The circuit operates properly if it ends up
in the correct stable state following any input change. However, in many cases
a race may cause the circuit to enter and remain in an incorrect stable state.
This latter case is referred to as a critical race condition. Critical races must
always be avoided when designing a circuit. On the other hand, designers may
often use noncritical races to their advantage.

The avoidance of critical race conditions can be accomplished by the
proper assignment of secondary states. This assignment problem is nontrivial
and will be considered in detail later. To more clearly understand the problems
of race conditions, consider the following example.

EXAMPLE 10.10 Consider the flow table of Fig. 10.45 as a
vehicle for analyzing critical and noncritical
race conditions.
The state assignments = 00, b = 01, c = 10, and d = 11 yields the excitation
table in Fig. 10.46. Both critical and noncritical race conditions exist in this
table. A circuit realization of the table is shown in Fig. 10.47.

*1*2

00 01 11 10

©/0 ©/1b/0 b/\

In the following discussion, delay elements will be assumed to be inertial,
and delays in both the logic gates and wires will be assumed to be negligible.
The total state will refer to the value of the vector xxx2 yxyv which is the
combination of the input xxx2 and the secondary state yxy2.

An examination of the excitation table indicates that a race condition
exists when a transition is made from total state 1011 to total state 0000. We
will show that this race is noncritical through an analysis of the circuit for
Ajt > A2t and for Axt < A 2t . To simplify our discussion, let t0 represent a
time when the circuit is in state 1011, let represent the time when the input
state changes from 10 to 00, let t2 represent the time when the first delay element

®/o ® /0a/0 c/0b

©/1 © /0 d/0a!1

@ / ld a/0 c/0 a!1

Figure 10.45 Flow table.
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*1*2
00 01 11 10

*1*2

00 01 11 10

00 01 01 0 0 1 1

@>00 10 0 0 0 001
y\ y2

® ®10 00 0 011 1 1

©00 10 00 0 0 111 1

Y\ Y2 z

Figure 10.46 Excitation and output tables.

)G1

0°*i
G2

i7
!

)G4H>>

0°0°*2

ID, At2 *V2

ID, Ar,
V i

Figure 10.47 Circuit with races (for convenience, the output logic has
been omitted).

responds, let t3 represent the time when the second delay element responds,
and let t4 represent a time after ty

Consider now the following sequence of events. At time t0, the circuit
is in state 1011 and the gate outputs are G1 = 0, G2 = 0, G3 = 1, G4 = 0,
G5 = 0, G6 = 1, G7 = 1, and G8 — 1. When the input changes from 10 to 00
at time tv all gate outputs become 0. Hence, Yx Y2 = 00. However, yxy2 remain
11 since they are delay element outputs. Therefore, the circuit is in an unstable
state since yx =/ Yx and y2 =/ Yv
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The remaining analysis is influenced by the relative response times of the
delay elements. Assume that Axt > A2t. At time t2 = tx + A2ty y2 becomes
0 in response to an earlier change in Yv No further changes in Yx or Y2 are
produced by y2 = 0. Hence, at t3 = tx + Axt , yx becomes 0 in response to
Yx — 0. However, no change in Yx Y2 is produced, and therefore the circuit has
reached a stable state since yx = Yx and y2 = Yv The following sequence of
total states occurs as a result of the noncritical race when A xt > A2t :

1011-0011-0010-0000
l2 hro t I

The reader is encouraged to verify that the following sequence is obtained when
Ajt < A 2t\

1011-0011-0001-0000
h h

Timing diagrams of these state changes are given in Fig 10.48.
ro t i

1*i

A'2

>’l

J2

yi

y2
Time to t } t2 t2 U

(a)

1*i

*2

yi

V2

Y\

1y2 Figure 10.48 Timing for non-
critical races, (a) Axt > A 2t .
(b) A 2t > A , / .

Time to h h h h
(b)

It is important to note that the circuit response was a function of the
relationship between Axt and A2t . However, in each case the final stable state
was the desired state. This is characteristic of noncritical races. The sequence
of unstable states through which a circuit transitions is often unimportant as
long as the correct final state is reached.

The occurrence of two or more consecutive unstable states is referred to
as a cycle. We will delay our discussion of this topic until later.
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In contrast to noncritical race conditions, a critical race condition may
lead to erroneous circuit behavior. For example, consider the total state 1001,
and let us analyze the circuit response as the input changes from 10 to 11. The
gates in the circuit have the following outputs when in state 1001: G1 = 0,
G2 = 0, G3 = 0, G4 = 0, G5 = 0, G6 = 1, G7 = 0, and G8 = 1. At time
tx , when the input changes to 11, gate G1 = 1 and G6 = 0, and hence Yx — 1
and Y2 = 0. The remainder of the analysis is influenced by the relationship
between Axt and A2t. Assume now that A { t > A 2t . At time t2 — tx -\- A 2t ,
y2 — 0 since Y2 = 0. However, when y2 becomes 0, it forces Y{ = 0 before
/ Dj responds to Yx = 1. Hence, yx = 0 = Yx and y2 = 0 = Yv which implies
that the device has stabilized in state 1100. This is an erroneous response, as
indicated by the excitation table. The transition sequence is

1001-1101-1100-1100
t2 t2

Let us now consider the case where Axt < A2t . Furthermore, assume
that 2 Axt > A2t . At time t2 = tx 4* Axt , yx becomes 1 in response to Yx =
1. This change forces G1 to 0, which results in Yx = 0. At time t3 = t{ +
A2t , y2 becomes 0 since Y2 = 0. When y2 becomes 0, G4 becomes 1, forcing
yx = 1 again. By assuming that 2A { t > A2f , then t3 — t2 < Axt . Hence, the
momentary change in Yx is not reflected in yx .The device is now in the specified
stable state 1110. The state sequence is then:

1001-1101-1111-1110-1110
t2 t2

A more detailed timing diagram is shown in Fig. 10.49. The reader is encour-
aged to examine the circuit for the other critical race conditions that exist.

The example illustrated that a critical race condition can result in erro-
neous circuit behavior. Clearly, such situations should be avoided. Hence, the
problem of avoiding critical races will now be presented.

*2 J
yi

V2

Y\

Y2 l
Time to 11 h h U

(a)
*0 t 1

*2

yi

1>’2
j—i r

> 2

Time /Q t\ t2 h U
(b) *0 t1

Figure 10.49 Critical race,

(a) A,/ > A2 f. (b) A { t < A2t .

10.6.2 Avoidance of Race Conditions
Race conditions may be avoided through proper selection of the secondary
state assignment. Simply stated, the secondary state must be assigned so that
only one secondary variable at a time will be required to change for any state
transition in the flow table. To accomplish this, it is often necessary to estab-
lish cycles between two stable states, as well as increase the number of state
variables employed.

Now consider the problem of making a race-free assignment for the flow
table in Fig. 10.45. An examination of the table indicates that transitions must
be made from row a to row b, from row b to row c, from row c to row d , from
row d to row a, and from row c to row a.This information is summarized in the
transition diagram shown in Fig. 10.50a. Each node in the diagram corresponds
to a row of the flow table. A line connects two nodes when transitions may
occur between the corresponding rows. Lines are labeled with the input states
that may exist when the transition occurs.
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(00)
(01) (01)
(10) (10) ba a

(00) ( 1 1 ) (ID(ID

d c(10)

(a) (b)

Figure 10.50 Transition diagrams for the example,

(a) Complete transition diagram, (b) Critical transition
diagram.

As stated earlier, only critical race conditions must be avoided when
designing a circuit. Figure 10.50b is a transition diagram that includes only
transitions that may lead to a critical race. Only those transitions that take place
in flow table columns containing two or more stable states are critical, since
a critical race requires that there exists the possibility of reaching an incorrect
stable state for a given input.

A critical race-free secondary state assignment will exist if the codes
corresponding to connected nodes on the transition diagram differ in only 1 bit,
which implies that only one secondary variable will be required to change in
response to a given input change. The following assignment is clearly critical
race-free for the transition diagram of Fig. 10.50b.

Row
00a

b 01
1 1c

d 10

Figure 10.51 illustrates the excitation table and circuit realization for this as-
signment.

Numerous other critical race-free assignments exist for this example. A
simple procedure for choosing such an assignment is to arbitrarily code one
state, for example, c = 10, then code one of the connected states by changing
1 bit in the previous code, for example, b = 00, and then repeat this procedure
until all states are coded, for example, a = 01 and d = 11. As a general rule,
the state assignment problem is more complex than this and will be discussed
in more detail in the following section.

10.6.3 Race-free State Assignments
We will now describe two methods for making race-free state assignments. The
first method is based on the creation of cycles between stable states, while the
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*1 x2
00 01 11 10

00 01 01

© ©01 00 11
yi >’2

© ©0011 10

©00 0010 11

y\ y2

(a)

0°*1 )
y\

-D>° )
)*2

> 2

)i>
D *y-j

D *V|

(b)
A'i X2

00 01 11 10 Figure 10.51 Critical race-free realization, (a) Excitation table,

(b) Circuit realization.
©/0 ®/0b/0 d-a

second method requires the establishment of redundant rows in the flow table.
The most economical assignments are usually obtained by the first method, but
the second method is a more straightforward procedure.
Method1. Consider the reduced flow table of Fig. 10.52. The critical transi-
tion diagram in Fig. 10.53 indicates clearly that no assignment can be made to
satisfy the needed adjacencies.

®/o ®/0b d-a/0

©/1 ©/1 ©/1al-c

Figure 10.52 Reduced flow
table.
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However, if the flow table is modified such that a cycle exists between
any two stable states, then a race-free assignment can be made. To illustrate
this approach, a cycle will be established between states a and c in column 11.
The modified flow table is given in Fig. 10.54.

Note that the following sequence of states occurs during the transition
from ( a ) in column 10 to (c) in column 11:

d(a ) 0c )c
Figure 10.53 Critical
transition digram

Hence, the critical transition diagram becomes that shown in Fig. 10.55.

*1*2
00 01 11 10

©/o ©/0b/Q di-et (01)
a m-

® /o ©/0b «/0 d-

(10)(11)
©/i ©/i ©/ial-c

d al- d- d cC D

Figure 10.55 New
critical transition diagram.

Figure 10.54 Modified flow
table.

*l *2
Numerous race-free assignments exist for the modified flow table. An

example is the following:
oo oi l l 10

@>00 01 10
Row

© ©01 00 11 00a
y i .V2 b 01

© © ©1 1 00 11c
d 10

10 00 dd 11 dd

The resulting excitation table is given in Fig. 10.56
Note the 00 excitation state assigned to state 0010. This assignment

avoids the possibility of an unwanted stable state being established in row 10.
In the previous example, a cycle was created without the need to increase

the number of state variables above the minimum required. This is not always
possible, as will now be illustrated with the flow table in Fig. 10.57. The critical
transition diagram in Fig. 10.58 indicates that not all required adjacencies can
be met. In this case, cycles can be created to yield race-free state assignments
only if three secondary state variables are used.

There are numerous ways in which to establish cycles in this problem that
will avoid critical races. One way is to create a cycle between b and c in column
11, a cycle between b and d in column 01, and a cycle between c and d in

Y I Y2

Figure 10.56 Excitation table.
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*1*2

00 01 11 10
(10)

©/1 ©/0 (00)c/0 b/0 ba a

(01)
® /l @ /0b a!1 c/1

( I D ( I D(01)
© /1©/0d/0 d/\c

dQm CQ)io (00)a/-d to- rn
Figure 10.58 Critical
transition diagram.

Figure 10.57 Example flow
table.

X\ x2

00 01 11 10 columns 00 and 10.These cycles are illustrated in the modified flow table in Fig.
10.59. The transition diagram for this modified flow table is given in Fig. 10.60.

An adjacency map is helpful when selecting the codes to meet the require-
ments given in the transition diagram. This technique has been used in Chapter
9. The map is similar in format to a K-map except that each cell represents a
unique state code. Hence, adjacent cells represent adjacent codes. The three-
variable map in Fig. 10.61 shows a state assignment that satisfies all adjacencies.
Note that it was also necessary to employ another transition from d to b.

The corresponding state assignment is as follows:

©/ l ©/0c/0 b/0a

©/1 ©/0blnb a/\

b1 -/- -/- c/1 -/-

©/0 ©/1c'/0 c1/!c

Row WJc1 d/0 -/- -/- dl\
000a

b 001©/1© /0 d' l-d a/-
b [ Oil

010cd ] b/- -/--/- -/-
c1 110
d 100Figure 10.59 Modified flow

table with created cycles. dl 101

yiy?.
00 01 11 10

b 10 b ca
y i

c1d}1 d

Figure 10.60 Tran-
sition diagram for the
modified flow table.

Figure 10.61 State assignment
satisfying required adjacencies.
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An excitation table can then be produced and is shown in Fig. 10.62.

xl x2

00 01 11 10

Cooo)(boo)ooo 010 001

(ooD Coop001 ooo Oil

on ddd ddd 010 ddd

cm (010 )yiyiyi oio no 110

ddd ddd 100110 100

(m) Obo)100 101 ooo

*1*2

00 01 11 10
ddd 001 ddd ddd101

Figure 10.62 Excitation table
derived with method 1.

y\ yiy-i yi Y2 P
(boo)(boo) oio 001a 000

(Too) CIbb)oooa 100 000 Method 2. This method is based on the replication of rows in the reduced
flow table. States are assigned to the expanded table in such a way that one row
in each set of equivalent rows is adjacent to one row in each remaining set of
equivalent rows. In addition, each row within a set of equivalent rows is adjacent
to at least one other row of the same set. Hence, race-free transitions can be made
between any two stable states by properly establishing row-to-row transitions.

For four-row flow tables, each row is duplicated in this approach. The
state assignments for the expanded table are given in the following table:

(OOP (OOPb 001 ooo Oil

(oTP (oTPb Oil 001 010

(oio) (oio)c 010 110 110

(TIo) cmc 110 111 111
0 1

00crop (EDd 101 001 100 a a
01 b d

b d11CUD (HDd 111 101 101
10 c c

y i Y2 y3 For this assignment, a = 000 is adjacent to b = 001 and c = 010, while a —
100 is adjacent to d = 101. The excitation table for the previous example is
shown in Fig. 10.63.

In general, this second method is not as economical as the first since no
don’t-care conditions exist in the final excitation table. However, the second
method requires no trial and error code selection since codes have been pub-
lished for many different-sized tables. Figure 10.64 illustrates the assignment
tables for six-row and eight-row tables.

Figure 10.63 Excitation table
derived with method 2.
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y\ yi

00 01 11 10
>'3 ^4>'5

00 be e e

01 b f fe
y$ y*

11 /ec c

10 d d fe

(a)

Figure 10.64 Assignment tables for six- and eight-row tables, (a) Six-row tables,
(b) Eight-row tables.

EXAMPLE 10.11 We wish to design a two-input (xvx2 ),
one-output (z) fundamental-mode circuit that
will operate as follows. The output changes
from 0 to 1 only on the first xx input change
that follows an x2 input change. A 1 to 0
output change occurs only when xl changes
from 1 to 0 while x2 = 1.

Step 1. The primitive flow table of Figure 10.65 satisfies the stated
requirements. Note the presence of two states with output 0 in each
column. This condition is a result of the requirement that a 0 to 1
output change should occur only on the first x, input change that
follows an x, input change.
Step 2. The use of an implication table for the primitive flow table
indicates that (1, 2), (3, 4), (4, 6), (4, 8), (5, 7), (6, 8), (9, 10), and
(11, 12) are compatible rows. The corresponding merger diagram
is shown in Fig. 10.66.

As the diagram indicates, rows 4, 6, and 8 can be merged into
a single row. All other rows must be merged in pairs. The minimal
reduced flow table that results from the merger diagram is shown in
Fig. 10.67, where a = (1,2), b = (3, 4), c = (5, 7), d = (4, 6, 8), e =
(9, 10), and / = (11, 12). Note that the output assignment shown
in the reduced flow table has been completed in order to avoid the
occurrence of an output glitch, as described in items 2 and 3 of
Step 1 of Example 10.7.

X [ X2

00 01 11 10

(Do 21- 4/-1 -/-

©/02 1/- 3/- -/-

©/13 -/- 51- M-

®n61- 31-4 -/-

®/01/-5 V- -/-

®n6 8/- -/- 41-

©/07 -/- 5 /- 91-

®/l61- -/-8 31-

®/010/-9 61- -/-

@/0-/- 91-10 8/-

(0) /o 2/- 12/-11

@/012 7/-11/- -/-

Figure 10.65 Primitive flow
table for the example.
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X ] X2
51 2 00 01 11 10

&0 (S)o b/- b/-a

(5)i (5)id—b d!1

(5)o (5)o e/04 3 9 a/010 c

(3)i (3)i (3)i6/1d

Q)o (e)0d/~ d/~e

0)!0 ©/0/ a/0 c/06 8 11 12

Figure 10.66 Merger diagram. Figure 10.67 Minimal
reduced flow table.

(10) (00)
(ID b (IDa

Step 3. The critical transition diagram is given in Fig. 10.68. A mini-
mum of three secondary state variables is required since there are
six rows in the reduced flow table. A three-variable assignment can
be obtained through a judicious use of cycles.

Method 1 will be used to obtain a race-free assignment. Inter-
mediate states c1 and f\ added as indicated in Fig. 10.69, permit
this assignment to be made. The chosen assignment is illustrated
by the map in Fig. 10.70.

(00)
(01) (00) (01) (01)

e
(ID (10)

Figure 10.68 Critical transition
diagram.

yiy*
* d 00 01 11 10

c10 ba c
yi

11 / d fe
e

Figure 10.69 State assign-
ment using method 1.

Figure 10.70 Map of the
chosen state assignment.

Step 4. Excitation and output tables are given in Fig. 10.71.
step 5. The corresponding excitation and output equations are

Y\ = x l x1y1y i + x x x2 y2 + y x y^ + + x l y x y^ + x1y l

Y2 = ^1^1^+*1*23^3 + >)
1>2>;3 +*1>;2

y
3 =^3 +^2^, + >’1>?

3 + -*2>,3

^ = y2 y3
step 6. A logic realization of these equations completes the design
process.
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*1*2

00 01 11 10
*1*2

00 01 11 10y\ym

@)@)a 000 001 001 0 0

©b 001

c1 010

101 Oil 1 1 1

000 O i l 0 0

<©c Oil 010 111 0 0 0 0

@) @)/ 100

d 101

f ] 110

e 111

000 110 0 00 0
(m) (KM) (©001 1 1 1 1

010 0

(HD (QD101 101 0 0

r, Y2 Y3 z

Figure 10.71 Excitation and output tables.

10.6.4 Hazards
The subject of hazards was initially discussed in Chapter 3 for combinational
logic networks. Static and dynamic hazards can also be present in the combina-
tional logic portion of sequential circuits and should be considered in sequential
circuit design. The previous discussions remain valid here also, and therefore
no further consideration will be given to this subject. It is important to note,
however, that inertial delay elements can often be used to filter out transients
caused by these hazards.

A third type of hazard is special to fundamental-mode circuits and will
be briefly considered. In the discussion that follows, we will assume that all
logic elements have some inherent delay associated with them. An essential
hazard is a hazard caused by unequal delays along two or more paths that
originate from the same input line. Such a hazard can cause the circuit to
respond incorrectly to input changes. To illustrate this situation, consider the
circuit shown in Fig. 10.72a. The excitation and output table for the circuit are
given in Fig. 10.72b.

Assume that the circuit is in state x = yx = y2 = 0. Hence, Yx = Y2 = 0.
Furthermore, assume that NOT gate N 1 has a delay associated with it that is very
large in comparison to the delays of the other elements in the circuit including
the feedback delay. Now consider the response of the circuit to a 0 to 1 change
in x at time tx . A timing diagram of the response is shown in Fig. 10.72c. As
this figure illustrates, the circuit becomes stable in state x = 1, yx = 1, and
y2 = 0. This is an incorrect response, as shown in the excitation table.

Critical events occur at times r5, r6, t10, and txy The circuit is in the correct
secondary state 01 at time t5 . However, since Nl has not yet responded to the
input change, A2 becomes 1, which forces Yx = 1 at t6. This subsequently
causes A3 to go to 0. At r10, Nl becomes 0, forcing A2 to 0, which causes
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X X

N 1

O0 0 11.V

©00 01 0 0N2

©01 1 1 0 0
y\ yi

©Delay,
^ 11 10 1 1

A21>’2

©10 00 1 1
Delay,

A\tV| Ki Y2 z
(b)(a)

•4
.Vi

V2

N 1
1
1N2 1

1A 1 1
1

A2 1
1
1
1A3 1

1
1
1Y , = 01 11 1

1

M 1Y2 = 02 11
1 1

t 11 1

Time t\ t2 t3 14 t5 ?6 r7 r8 r9 Oo Oi O 2 O3

(c)

Figure 10.72 Circuit with essential hazard, (a) Circuit diagram, (b) Excitation
and output tables, (c) Timing diagram.

Y2 = 0. At tl 3 , y2 responds to Y2 = 0, and the circuit has reached a stable
condition.

Hence, the delay in Nl has incorrectly forced Yx = 1 at t6 , which trig-
gered the sequence of events leading to an incorrect stable state. The effect of
such delays can be overcome by providing a sufficient amount of delay in the
feedback paths.
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10.6.5 Analysis
The analysis procedure given earlier in the chapter involved the determination
of excitation tables, output tables, and flow tables from a circuit diagram. Given
these tables, a thorough study is usually warranted to determine if any critical
races or hazards exist in the circuit.

•10.7 Summary
This chapter has been an introduction to the subject of asynchronous sequen-
tial circuits. Both pulse-mode and fundamental-mode circuits were considered.
Attention was first given to the analysis and design of pulse-mode circuits. Anal-
ysis and design procedures were presented and were illustrated with several
examples. The analysis and design of fundamental-mode circuits was consid-
ered next. Analysis and design procedures were again given and demonstrated
by examples. Finally, a discussion of races and hazards was undertaken. Pro-
cedures for making race-free state assignments were presented and illustrated.
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1.

2.

3.

4.

5.

PROBLEMS Analyze the pulse-mode circuit shown in Fig. PI0.1.
(a) Determine a state table.
(b) Construct a timing diagram for the circuit in response to the following

input sequence. Include xv x2 , xv v, , y2, J ] , Kr J2, Kv Yv Y2 , and z in
your diagram.

10.1
*****

Analyze the pulse-mode circuit shown in Fig. PI0.2.
(a) Determine a state table.

(b) Determine the output response to the input sequence xl-x2-xl-xl-xl-xl-
x2-x2 if the starting state is 00.

(c) What form (level or pulse) will an output of z — 1 have? Why?

10.2
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yi
j Qiy~\
K\ Qx\

z

h Q

x2 y2
K2 Qx3

Figure P10.1

y i
Q

X\

x2
Q

z

y2
Q

T2

Q

Figure P10.2

Determine a realization of the following pulse-mode state table. Use JK flip-
flops with AND, OR, and NOT gates.

10.3

Present^. x\ x2 x3
state

A/0 BIO C/1A

BIO CIO D/0B

C CIO D/0 All

D D/0 A/0 B/1

Next state/z

Design a pulse-mode circuit that meets the following specifications. Use AND,
OR, and NOT gates with SR flip-flops to realize the circuit. The circuit will
have two inputs x1 and x, and one output z. An output pulse will be produced

10.4
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simultaneously with the last of a sequence of three input pulses if and only if
the sequence contained at least two x { pulses.

A pulse-mode sequential circuit is needed that satisfies the following require-
ments. Two input lines xx and x2 will be provided along with one output line
z . An output transition from 0 to 1 will be produced only on the occurrence of
the last x2 pulse in the sequence x -x2-x [ -xr The output will be reset from 0
to 1 only by the first JC, pulse that occurs following the 0 to 1 output transition.
Allow overlapping sequences. Design the circuit using T flip-flops with AND,
OR, and NOT gates.
Analyze the fundamental-mode circuit shown in Fig. PI0.6.
(a) Determine the excitation table and output table.
(b) Construct a flow table.
(c) Use the flow table to determine the output response to the input sequence

x } x2 : 00-01-11-10-00-01-00-10. Assume initially that xx = x0 = v, =
y2 = rl = r2 = o.

10.5

10.6

=o z

X\

x2

H>>

>0~l

y i At

y2y2 At

Figure P10.6

10.7 Consider the circuit in Fig. PI 0.7a. Analyze the circuit as follows:
(a) Construct a timing diagram for the input sequence of Fig. P10.7b. Assume

no delay in the logic gates. Also assume that initially yx = Yx = 1 and
y2 = Y2 = 0. Include xx , x2 , y, , y2 , Yv Y2 , and z in the timing diagram.

(b) Repeat part (a) assuming that each logic gate has a delay of \At .

Determine a primitive flow table for a fundamental-mode circuit that has the
following requirements. One input x and one output z are needed. The out-
put should follow the input on every other 0-1-0 transition, as indicated in
Fig. P10.8.

10.8
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z

{> )“l
*1

{> y*2

>

>’2

y i

(a)

2At

1*1

J*2

(b)

Figure P10.7 (a) Logic diagram, (b) Input sequence.

z

Figure P10.8

10.9 A fundamental-mode circuit must be designed to satisfy the following require-
ments. Two inputs ( jtj , x,) and one output (z) are required. The output z = 0
will always be produced when JC, = x2. When xx = 0 and x2 changes from 0
to 1, an output z = 1 must occur. When x{ = 1 and x2 changes from 1 to 0,
an output z = 1 must occur. Otherwise, no input change will cause an output
change. Determine a primitive flow table for the circuit.
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Construct a primitive flow table for a fundamental-mode circuit with the fol-
lowing specifications. The circuit must have two inputs Otj, x2 ) and two outputs
(Zj , z2). When x { = x2 = 0, the outputs must be z, = z2 = 0- If x2 = 1 and x2
changes from 0 to 1, an output zx = 0, z2 = 1 will be produced. If x2 = 1 and
xl changes from 0 to 1, an output z, = 1, z2 = 0 will be produced. Outputs are
reset to z, = z2 = 0 only when both x { and x2 equal 0. No output change is
produced by any other input change.

Reduce the following primitive flow table to a minimum row table:

10.10

10.11

*1*2

00 01 11 10

©/0 -/- 3/-1 2/-

©/12 4/- 51- -/-

©/03 1 /- -/- 51-

©/4 21- -/- 61-

©/5 21- 61--/-

6 U- -/- 5/-
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10.12 Repeat Problem 10.11 for the following primitive flow table:

*1*2

00 01 11 10

21- 4/--/-1

©/02 1/- 3/- -/-

©/02/- 8/-3 -/-

©/14 51- -/- 7/-

©/1 61- -/- 4/-5

©/16 51- 1/- -/-

8/-7 -/- 6/-

8 1/- -/- 3/-

10.13 Determine a circuit realization for the following reduced flow table. Use the
indicated state assignment. Assume AND, OR, and NOT gates are available
for use in the realization.

X\*2

00 01 11 10y02

®n b/- d-00 a

®/o01 b al- d/-

®n©/ia/- al-11 c

d-10 d al- b/-
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10.14 Determine a minimum row flow table compatible with the following primitive
flow table:

*1*2

00 01 11 10

®/l 61- -I- 51-1

©/0 3/-2 4/- -/-

®/o3 21- 91-
©/02/-4 7/- -/-

®/i5 1/- -/- 7/-

©/16 -/-1/- 7/-

©/04/- 10/-7 -/-

®/o8 4/- -/- 10/-

®/l 3/-9 6/--/-

© /010 1/- -/- 91-

10.15 Repeat Problem 10.13for the following flow table, but assume that only NAND
gates are available for use in the circuit.

X\X2

00 01 11 103̂ 2

©/00©/00 b/- <U-00 a

©/01 @/01al— d-01 b

©/01©/10 ©/10di-ll c

@/10@/00 d-10 d d-
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10.16 Repeat Problem 10.13 for the following reduced flow table.

*1*2

00 01 11 10y\ ym

@/i©/!000 a d- b/-

®I0©/0 al-001 b d!-

©/0©/0010 c al- el-

@/i@/ib/- fl-101 d

©/1 ©/1110 e d-P-

©/o al-100 / al-

10.17 Given the following excitation table:

X X X2

00 01 11 10

1 1 0100

1001 11y\ yi

oo ooli

©10 10 10

Y I Y2

(a) Find all race conditions in the table.
(b) Are the races critical or noncritical?
(c) Do any cycles exist in the table?

10.18 Analyze the circuit in Fig. PI0.18 to determine if the circuit has a critical race.
If so, draw a timing diagram to show the effect that the race can have on the
circuit response.

10.19 Repeat Problem 10.18 for the circuit shown in Fig. P10.19.
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D» )

0°

)X i

£*>
x2

J2 y2ID, At2

Yi
/D, Ar,

Figure P10.18

Determine a critical race-free state assignment for the following reduced flow
table. Construct the corresponding excitation table.

10.20

X

o l

di-et

(b)nb d—
©/0a/0c

d b/0
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0°

H>°
x2

y2 Y2ID, A?2

Y\y i ID, At i

Figure P10.19

10.21 Repeat Problem 10.20 for the following reduced flow table:

X\X 2

00 01 11 10

(a)/0bi- d-et

®n®/i ®/ i cl 1b

©/1©/1b!1d-c
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10.22 Given the following reduced flow table:

X\X2

00 01 11 10

©/1©/0 d/0 c/0a

®/o ®/ob c/~ d/~

&\ ©/0b/0 allc

©/0d a/0 b/0

(a) Use method 1 to find a critical race-free assignment for the table. Construct
the corresponding excitation table.

(b) Repeat part (a) using method 2.

A fundamental-mode circuit is to be designed to function as an electronic
lock. The lock has two switch inputs © and x2 ) . Design the circuit so that an
open signal ( z = 1 ) is produced only after the following conditions have been
satisfied:
1. Begin with = x2 = 0.

2. While x2 = 0, x { is turned on, then off twice.

3. While jCj remains off , x, is turned on to open the lock.

10.23

10.24 A fundamental-mode asynchronous sequential circuit is defined in Fig. PI 0.24
and the following equations.

yi = ^2-V2 + Xl >'l +*1*2
y

2 = i®2 +*l*2 + *2>'l

2 = x t x2 + x2 y { + x xy2

z

x2 Combinational
logic circuit

y2yiy2

At

At

Figure P10.24
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(a) Find a flow table.
(b) Using the flow table developed in part (a), find the output sequence for the

input sequence JC, JC2 = 00, 01, 11, 10, 11, 01, 00, 10 if the delay lines are
initially at zero (stable state x { = x2 = y { = y2 = 0).

Given the following reduced flow table, find a critical race-free secondary state
assignment for this asynchronous sequential circuit. Find a two-level NOR
realization using inertial delay elements.

10.25

X\X 2

00 01 11 10

©/0 ©/! bl-b/-a

®/0 ®/0b at- d-

©/ i ©/0 bl-al-c

10.26 Find a two-level NAND realization for the following primitive flow table:

X\X 2

00 01 11 10

©/0 bl- -/- cl—a

®nb dl- -/-al-

©/1at- -/- dl-c

@/0bl-d -/- el-

©/0di-al- -/-e

10.27 Find a two-level NOR implementation for a fundamental-mode asynchronous
sequential circuit with two inputs ( x { , x2 ) and one output (z) that satisfies the
following conditions: First, z is always zero when x2 = 1. The output z changes
to logic 1 on the first 0 —> 1 transition of when x2 = 0 and remains at logic
1 until x2 goes to logic 1 and forces z back to logic 0.

10.28 Find a two-level NAND realization of a fundamental-mode circuit that has two
inputs (jCj , JC2) and one output (z) that satisfies the following conditions: First,
z = 0 when = 0. The output z goes to logic 1 on the first 1 0 transition
of x2 when x ] = 1. The output remains at logic 1 until x l returns to 0.
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)X 10.29 Consider the asynchronous sequential circuit presented in Fig. PI0.29. If the
circuit input is synchronous pulses, determine the following:
(a) The state table if A = 0, B = 1.
(b) The state diagram.
(c) The timing diagram for x = 010011010 and y° = 0.
Hint: You may use K-maps.

10.30 Analyze the asynchronous sequential circuit of Fig. PI0.30. This circuit has
synchronous pulses as its input x. Construct the following:
(a) A timing diagram for the input sequence x = 01101000 and y° = 0.
( b) A state table.
(c) A state diagram.

In your solution you may define the pulse widths of the input x to be equal
to the time delay of the T flip-flop. Discuss what effect the following condition
will have on the operation of this sequential circuit: Allow the input pulse to
be somewhat longer than the flip-flop time delay. Show your conclusions on
the timing diagram for part (a).

10.31 Analyze the asynchronous sequential circuit of Fig. PI0.31 if the circuit input
x is in the form of synchronous pulses. Find the following:
(a) The timing diagram if x = 01010010100 and y^ y® = 11.
(b) The state table.
(c) The state diagram.
Hint: K-maps yield incorrect results because assumption 3 for pulse-type cir-
cuits is violated.

z

)

y sQ
y RQ

Figure P10.29

> z
X

4>>i )

y
Q

y
Q

Z2

Figure P10.30

y i Q
y i

Q K

yi
Q

yi
Q

Figure P10.31
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InChapter5 we examined programmable
logic devices ( PLDs), which are used to re-

place small scale integrated circuits in imple-
menting combinational logic circuits. A number

of programmable devices also support the imple-
mentation of sequential circuits, both synchronous and

asynchronous. These devices contain either latches/flip-
flops or logic gates that can be interconnected to cre-
ate latches and flip-flops. In this chapter we examine
two basic types of user-programmable circuits: pro-
grammable logic devices ( PLDs ), including field-pro-
prammable logic sequencers ( FPLS ) and programmable
array logic devices ( PALs) with registered or macrocell
outputs, and programmable gate arrays, which include
logic cell arrays ( LCAs) and field-programmable gate
arrays ( FPGAs).After examining their basic structures,
sequential circuit design with these devices will be dis-
cussed. Finally, computer-aided design (CAD) tools
used to develop sequential circuits with programmable
logic will be described.
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1 Sequential Circuits with
Programmable Logic Devices'

•r
.MillMLlMiUU Jl. IL.I

•11.1 Registered Programmable
Logic Devices

As discussed in Chapter 8, the basic model of a sequential circuit is that of Fig.
11.1, comprising a combinational logic block and memory. The state of the
circuit is stored in one or more memory elements, usually flip-flops or latches.
The inputs to the combinational logic block are the external inputs to the circuit,
(jcp . .. xn\ and the circuit state variables, ( yv . . . yr ), which are the outputs
of the memory elements. The combinational logic block produces the external
outputs of the circuit, ( zv . .. zm\ and the next-state information, (Fp . . . Yr\
in the form of flip-flop excitation equations.

Several variations of the basic model of Fig. 11.1 are often used to
illustrate various aspects of the sequential circuit structure. The most common
is to partition the combinational logic block to distinguish the generation of
outputs from next-state variables. This allows us to more easily distinguish
a Mealy model from a Moore model, as defined in Chapter 8. Figure 11.2a
shows a Mealy model, in which both the outputs and the next-state variables
are functions of the inputs and the present state. Figure 11.2b shows a Moore
model, in which the outputs are functions of the state variables only. For some

* Zix\

*xn Combinational
logic

Yr *\y i Jr
• • •

*
Memory

Figure 11.1 General model of a sequential logic circuit.
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circuits, such as counters and shift registers, the Moore model outputs are
simply the state variables, as shown in Fig. 11.2c.

In Figs. 11.2a and b, the outputs of the circuit are combinational; that is,
they are outputs of combinational logic circuits and are thus asynchronous to
the clock. Combinational outputs respond immediately whenever the inputs or
the state variables change. In many cases it is desirable to synchronize output
changes with a clock in the same manner as the state variable changes are
synchronized to a clock. This is done by adding an output register to the circuit,
as illustrated in Fig. 11.3, with the clock controlling both the state and the

*-*i
Z|Output

combinational
logic

Output
combinational

logic

*xn

4 ^ ' mm

>*1

Next-state
combinational

logic

Next-state
combinational

logic

> xn
*»

>
Yr y iYr y iyr V 1 yryi

• • • • • •

Memory Memory
4-

(a) (b)

•- i

' m

*x\

Next-state
combinational

logic

x2

yr Y\y! >v

4
Memory

4

(c)

Figure 11.2 Sequential circuit models with separate combinational logic for
outputs and next state, (a) Mealy model, (b) Moore model, (c) Moore model
(outputs = state variables).
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*1 Output
registerxn Combinational

logic

yr y,y\

• • •

Memory

Clock

Figure 11.3 Sequential circuit model with synchronous outputs.

output flip-flops. The output register thus holds the outputs constant until the
clock triggers a change in state.

Output registers are often used with nonsequential logic circuits as well
to hold the outputs of a combinational logic circuit constant while inputs are
changing. A clock then causes the outputs to all change simultaneously once
the inputs are stable.

The PLDs described in Chapter 5 are ideal for implementing the com-
binational logic block(s) of a sequential circuit, with the restriction that all
excitation and output equations be expressed in two-level SOP form. The se-
quential circuit is completed by adding memory elements. Many commercially
available PLDs contain flip-flops or latches whose excitation inputs are driven
by the outputs of a standard PLA or PAL. The outputs of the flip-flops/latches
are often fed back to the inputs of the PLA/PAL circuit. Hence, these devices
are ideally suited to implementing sequential circuits of the form of Fig. ILL

The general structure of a registered PLD is shown in Fig. 11.4. As with
combinational PLDs, a registered PLD contains a programmable AND array
whose outputs feed an OR array; the OR array is programmable in PLA-based
devices and fixed in PAL-based devices. Each output of the OR array drives
either an external output pin, in which case it is referred to as a combinational
output, or an excitation input of a flip-flop. Rip-flop outputs may be connected
to external pins, in which case the pins are referred to as registered outputs,
or else the flip-flop outputs may be fed back to the AND array without being
connected to external pins, in which case they are referred to as buried registers.
Both combinational and registered outputs may likewise be fed back to the AND
array. These different configurations are illustrated in Fig. 11.5.

Mealy models of the form of Fig. 11.2a can be implemented with regis-
tered PLDs as shown in Fig. 11.6a, by using combinational outputs for the out-
put functions and flip-flops to store the state variables. Since the state variables
need not be visible at the outputs, either buried registers or registered outputs
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«-AND
arrayInputs < •

2• •

DH
OR Outputsarray oo

PAL or PLA Output registers

Figure 11.4 General structure of a registered PLD.

>
AND
array

Inputs •< «*

*

~L> Combinational output
(with feedback)

Combinational output
(no feedback)

Registered output
(with feedback)

Registered output
(no feedback)

—o
OR CMarray

£H

Buried register

Figure 11.5 Registered PLD output options.

with feedback can be used. Moore models of the form of Fig. 11.2c require
that the state flip-flops drive the external outputs, as shown in Fig. 11.6b, and
thus registered outputs with feedback are needed. Moore models of the form of
Fig. 11.2b are likewise implemented as in Fig. 11.6a, with the output equations
generated in the AND/OR array as functions of the state variables only.

For Moore models of the form of Fig. 11.2c, combinational outputs are
not required. However, all state variable flip-flops must drive external outputs.
Typical examples include counters, shift registers, and accumulators.

To implement a sequential machine with synchronous outputs, as shown
in Fig. 11.3, registered outputs are needed to latch the outputs, although these
output values do not need to be fed back to the AND array.
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Present

state
Present

state
yr Vr
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OR OR Outputsarray array Y r '
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O ^ Z\
Outputs£>
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Figure 11.6 Sequential circuit models mapped onto registered PLDs.
(a) Mealy model, (b) Moore model (z. = y{ ).

Sequential PLDs often include a number of other useful programmable
features. In some devices, the mode of operation of the flip-flops can be pro-
grammed, allowing the designer toconfigure each storage element as a D, T, JK,
or SR flip-flop, as best fits the design. Another common option is programmable
output polarity, allowing either true (Q) or complemented (Q ) flip-flop outputs
to drive the external output pins.

Many PLD flip-flops have synchronous or asynchronous clear and/or
preset inputs. Most clear/preset inputs are driven by single product terms gen-
erated in the AND array, although some devices connect an external control
pin to these inputs to facilitate implementation of an external reset line.

Some PLDs support asynchronous sequential machine design by allowing
individual flip-flop clock inputs to be driven by terms from the AND/OR array,
rather than synchronizing all flip-flops to a single clock signal from an external
pin on the device. In some cases, the user can select either synchronous or
asynchronous operation for each flip-flop.

In the next sections we examine two primary classes of PLDs that are used
in synchronous sequential machine applications: PLA-based devices, called
field-programmable logic sequencers, and registered PAL devices.

11-1.1 Field-Programmable Logic Sequencers
The field-programmable logic sequencer (FPLS), introduced by Signetics in
1979[1], is one of the oldest programmable logic elements developed to support
sequential logic circuit implementation. A typical FPLS device is organized
around a field-programmable logic array (FPLA). As described in Chapter 5,
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an FPLA contains a programmable AND array whose outputs feed a pro-
grammable OR array, as shown in Fig. 11.4. In an FPLS, the OR array outputs
drive either flip-flop excitation inputs or combinational outputs. The outputs of
the flip-flops are normally fed back to the AND array, allowing state variables
to be realized.

Sequential circuits are realized in an FPLS by assigning state variables
(yp • • • * yr ) to r flip-flops (buried registers or registered outputs with feed-
back), assigning the external outputs ( z x , . . . , zm ) to combinational output pins,
and assigning the external inputs (jtp . . . , xn ) to input pins. Most FPLS de-
vices include some mixture of registered and combinational outputs, with the
registered outputs realizing the state variables and the combinational outputs,
the output variables. After assigning resources, the output equations and flip-
flop excitation equations are derived in two-level SOP form, as described in
Chapter 8, and then mapped onto the programmable AND and OR arrays.

Table 11.1 lists several FPLS devices available from Philips [1], which are
typical of the devices available from various manufacturers. We will examine
two of these in detail, the PLS105, which contains SR flip-flops, and the
PLS155, which contains user-configurable flip-flops.

TABLE 11.1 SIGNETICS FPLS DEVICES [1]

Organization Registered Outputs Buried Registers
16 x 48 x 8
16 x 45 x 12
16 x 45 x 12
14 x 48 x 6
12 x 48 x 8
20 x 45 x 12

FF TypeDevice
PLS105
PLS155
PLS157
PLS167
PLS168
PLS179

8 6 SR
0 D/JK/T

D/JK/T
4
6 0

SR6 6
8 6 SR
8 6 D/JK/T

PLS105
The PLS105 FPLS device [1] was one of the first FPLS devices commercially
available and is based on the PLS100 FPLA device. As shown in Fig. 11.7,
the PLS105 contains 14 SR flip-flops. The outputs of eight of the flip-flops are
connected to external output pins and are not fed back to the AND array, so
they are not suitable for implementing state variables. These flip-flops would be
used to create an output register. The outputs of the remaining six flip-flops, P5
to P0, are fed back to the AND array, but are not connected to external output
pins. In this configuration, the latter six flip-flops are referred to as buried
registers, since they are contained within the chip without their outputs being
directly accessible. Thus, sequential machines with up to six state variables and
eight outputs may be realized with a single PLS105.

All 14 of the flip-flops on the PLS105 are driven by a common clock
input pin, CK, and a common preset input pin, PR/OE. If the preset option is
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Figure 11.7 Philips PLS105 FPLS [1]. Source: Philips, "Programmable Logic
Devices (PLD) Data Handbook,” Philips Semiconductors, Sunnyvale, CA, 1994.
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not needed, the PR/OE pin can be used to enable the tristate drivers connected
to the output register.

The overall organization of the PLS105 is 16 x 48 x 8, with 16 dedicated
inputs /15 to 70, 8 outputs F? to F0, and 48 product terms generated in the AND
array. The OR array of the PLA portion of the device has 29 outputs; 28 drive
the S and R excitation inputs of the 14 flip-flops, and one complemented SOP
expression, C, is produced and fed back to the AND array along with the six
flip-flop outputs P5 to P0.

PLS155
The PLS155 [1], shown in Fig. 11.8, contains four registered outputs, F3 to F0,
and eight combinational outputs, Z?7 to B0. All 12 of these signals are fed back
as inputs to the AND array. Note that the combinational outputs are similar to
those of a standard FPLA, such as the PLS100 described in Chapter 5. The data
sheet for the PLS155 [1] lists its organization as 16 x 45 x 12, indicating that
there are 16 inputs, 45 product terms, and 12 outputs. Examination of Fig. 11.8
shows that there are only four dedicated inputs, 73 to 70. Tristate drivers on the
eight combinational outputs can be disabled by product terms Dn to D0 to allow
the corresponding pins to be used as inputs or enabled to drive the outputs.

The tristate drivers on the registered outputs can likewise be disabled to
allow these pins to be used as inputs. In this case the inputs are not fed directly
to the AND array. Instead, these pins force values onto the flip-flop excitation
inputs, thus loading the flip-flops directly from the external pins. The flip-flop
outputs are fed back as inputs to the AND array, allowing them to store the
state variables of a sequential circuit. Hence, sequential circuits with up to four
state variables can be implemented in a single PLS155 device.

The flip-flops of the PLS155 are flexible in that they can be programmed
to operate as either JK or D flip-flops. Examine the circuit of flip-flop F0,
which is enlarged in Fig. 11.9. The storage element itself is a JK flip-flop. The
foldback buffer, controlled by Af0, determines the actual mode of operation. If
the buffer is disabled by M0 = 1, it acts as an open circuit, making the J and
K inputs to the flip-flop independent, as illustrated in Fig. 11.10a. If the buffer
is enabled by M0 = 0, as illustrated in Fig. 11.10b, the K input becomes equal
to the complement of the J input. Note that the output of the foldback buffer is
wire-ORed with the output of OR gate G2. Therefore, the output of G2 must
be set to 0 to allow the foldback buffer output to determine the K input to the
flip-flop. Recall from Chapter 6 that a JK flip-flop is made to operate as a D
flip-flop by setting J = D and K = D. In this case, the D input is the output
of OR gate Gl.

If desired, M0 can be fuse-programmed to 0 to configure the flip-flop
permanently as a D flip-flop. Otherwise, the behavior of the flip-flop is deter-
mined by the output of AND gate Fc, allowing the flip-flop to be dynamically
switched between JK and D modes of operation. If an SR flip-flop is desired,
we simply use the JK flip-flop configuration with J = S and K = R, with the
combination S = R = 1 disallowed. Likewise, the equivalent of a T flip-flop

www.youseficlass.ir



Section 11.1 Registered Programmable Logic Devices 695
(Control terms)(Logic terms-T)

11 OE

•iHHZ
fcEKZ
'jtK-d

Fo
F,
F2 =
F3

Bo
Bl

B2 —
B3 p
B4 =
B5 3—B6 =
B7

w 0 0 00 0 01010 0 c 00 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0u o D o o0 EB EADoLB LA D7 D6 D5 D4 D3 D2 D,
S7C J9j B7

m B6

1B5

12] B4

3 B3

3 B2

X,
S6

S3

S2

>D*
7 B l

6 B0Xo

ORB
PB 1 P | R

17 F3O o- J Q
M3

O « K ‘-O CK'

16 F2O O- J Q
M2

£> K ‘“°CK'

£>RA
>PA ] P |R

FiJ Q

< —o CK'> &
<3

Fon> J Q
Mo

K ' ~OCK"r >̂ &n <30 Fc16 15 8 731 24 23
CK'o <] [T] CKNotes:

1. All OR gate inputs with a blown link float to logic "0".
2. All other gates and control inputs with a blown link float to logic "1".
3. © denotes WIRE-OR
4. 4 Programmable connection.

Figure 11.8 Philips PLS155 FPLS [1]. Source: Philips, “Programmable Logic
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Figure 11.9 PLS155 programmable flip-flop.

R>

R>
Figure 11.10 Equivalent circuits of the PLS155 flip-flop for JK
and D operation, (a) Foldback buffer disabled ( M0 = l) (JK flip-
flop operation), (b) Foldback buffer enabled (M0 = 0) (D flip-flop
operation).

can be created by setting J = K = 7\ programming both OR gates G1 and
G2 to supply T .

One additional feature of the four PLS155 flip-flops is that they can be
synchronously loaded from pins F3 to F0. This is done for flip-flop F0 of Fig.
11.9 by setting the output of the load AND gate ( LA ) to 1, which enables gate
G3 to apply the value on pin F0 and its complement to the J and K inputs of
the flip-flop, respectively. The flip-flop is set or reset to the desired state on the
next clock pulse. Because of the wired-OR connections at the J and K inputs,
the outputs of gates G1 and G2 must be forced to 0 during a load operation.

11.1.2 Registered PALs
Registered PALs are similar to the FPLS devices just examined in that they
contain standard PAL configurations with one or more outputs driving flip-flop
excitation inputs.The notation used to designate registered PALs is the same as
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for combinational PALs: PALxyz , where x is the total number of inputs, z is the
total number of outputs, and y indicates the output architecture. Other suffixes
are often appended to indicate the speed of the device, the power consumption,
and the circuit technology (bipolar TTL, CMOS, UV-erasable, electrically
erasable, and the like) [2]. Often a single PAL architecture is available in
multiple technologies.

Many PAL devices are members of families that utilize a single basic
PAL structure but have different output architectures. The most common output
architectures are summarized in Table 11.2. For a simple registered PAL, the
designation R indicates registered outputs. For example, a PAL16R6 has a total
of 16 inputs and 6 registered outputs. This device will be examined in the next
section.

TABLE 11.2 REGISTERED PAL OUTPUT ARCHITECTURES

Code Meaning
Registered
Registered with programmable polarity
Registered asynchronous
XOR registered
Arithmetic registered
Versatile macrocell

R
RP
RA
X
A
V
S Sequencer

Registered asynchronous outputs differ from standard registered outputs
in that the flip-flop clock inputs are driven by product terms or SOP expressions
generated in the AND/OR array, rather than by a single clock input pin. This
allows asynchronous sequential circuits to be implemented as described in
Chapter 10, since the individual flip-flops can be controlled independently as
functions of the inputs and state variables.

XOR registered devices, such as the PAL16X4, and arithmetic registered
devices, such as the PAL16A4, are similar in that exclusive-OR gates drive
the excitation inputs of D flip-flops, facilitating the implementation of arith-
metic functions, such as addition and subtraction. Typically, the two inputs to
these XOR gates are SOP expressions generated in the AND/OR array of the
PAL. The arithmetic registered architecture also includes special logic on the
feedback lines to facilitate the implementation of carry and/or borrow signals
between bits of various arithmetic circuits.

The output architecture designation V indicates versatile logic macrocells
at the outputs, which contain a number of programmable options. A common
example is the PAL22V10, which has 22 inputs and 10 outputs, with each output
containing a programmable macrocell. The PAL22V10 will be examined in
more detail later.
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Table 11.3 lists several commonly used registered PALs and their con-
figurations. The reader is referred to [ 2 ] for further details on these and other
PAL devices.

TABLE 11.3 REGISTERED PALS [2]

Dedicated
Registered

Outputs;

Dedicated
Inputs I/O Pins ProductsDevice

PAL16R8
PAL16R6
PAL16R4
PAL16RP8
PAL16RA8
PAL16X4
PAL20R8
PAL20XRP8
PAL22V10
PAL32VX10
PAL23S8

8 8 0 8
8 6 2 8
8 4 84

8 0 88
0-8 8-0 48

8 4 4 8
012 8 8
210 8 8

0-10 10-012 8-16
0-10 8-1612 10-0

9 4 8-124

PAL16R6
The PAL16R6 is one of the PALI 6R8 family of 20-pin registered PAL devices.
As shown in Fig. 11.11, the PAL16R6 contains eight dedicated input pins, /
to /j, and eight output pins, of which two are combinational ( //Og and I/0 } )
and six are registered (0 7 to 02 ). Each registered output pin is driven by a D
flip-flop whose outputs and their complements are fed back to the AND array.
The combinational outputs are likewise fed back, making a total of 32 inputs to
the AND array. Each D flip-flop excitation input is driven by one of the eight
PAL SOP outputs. Hence, the PAL has a total of 32 inputs and 8 outputs. All six
flip-flops are controlled by a single clock input pin CLK. All eight output pins
are driven by tristate drivers that are controlled by the single OE control pin.

Other registered PALs in the PAL16R8 family include the 16R4 and
16R8, which use the same basic PAL circuit, but with different distributions
of flip-flops and combinational outputs at the eight output pins. For example,
the 16R4 has four combinational and four registered outputs, and the 16R8 has
eight registered outputs and no combinational outputs.

Other devices in the PAL16R8 family, such as the PAL16A4, the
PAL16X4, and the PALI 6RP8, utilize the same basic PAL circuit, but have dif-
ferent output architectures. Additional registered PAL families are built around
different PAL configurations. These are described more fully in [2].

8
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Figure 11.11 AMD PALI6R6 [2]. Copyright © Advanced Micro Devices, Inc
1993. Reprinted with permission of copyright owner. All rights reserved.
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11.1.3 PLDs with Programmable
Logic Macrocells

To make registered PLDs more flexible, universal devices have been created
that contain programmable logic macrocells instead of simple flip-flop configu-
rations at the outputs. A macrocell is a logic circuit associated with an output pin
that contains a flip-flop and a number of programmable options. This minimizes
the number of device types needed for a given design, since the output cells of
a single device can be configured in a variety of ways. Typical programmable
options include the ability to either use or bypass the flip-flop, selection of the
operational mode of the flip-flop (D, T, SR, or JK), selection of the true (Q )
or complement (Q) of the flip-flop as the output and/or as the feedback signal,
the ability to make the flip-flop either a registered output or a buried register,
and other options related to flip-flop clock, preset, and clear inputs.

A programmable macrocell can be configured to operate in a manner
equivalent to most of the fixed registered-PAL output configurations. For this
reason, a single device type can be used in a variety of applications. Con-
sequently, fixed registered PALs are gradually being replaced by macrocell-
based PALs.

Two of the more commonly used configurations are the PAL22V10 and
the Altera EP910. These will be examined in this section.

PAL22V10
The PAL22V10 contains a 44 x 132 PAL that drives 10 output macrocells,
as illustrated in Fig. 11.12. Each macrocell, as shown in Fig. 11.13, has four
output options and two feedback options, which are programmed using fuses
Sj and SQ according to Table 11.4.

The output of the macrocell is selected by a 4-to-l multiplexer; output
options include the PAL combinational output and its complement and the Q
and Q flip-flop outputs. The output is programmed by fuse S } to be either
combinational or registered and by fuse S0 to be active high or low. Fuse
also selects the feedback signal by controlling the feedback multiplexer. When
Sl selects a combinational output, the feedback signal comes directly from
the I/O pin; otherwise, the feedback signal comes from the Q output of the
flip-flop. Note that the feedback signal is supplied to the AND array in both
complemented and uncomplemented forms.

TABLE 11.4 PAL22V10 PROGRAMMABLE MACROCELL

Output Feedback
0 0 I/O pin

I/O pin
Flip-flop output Q
Rip-flop output Q

Combinational (active high)

Combinational (active low)
Registered ( Q)
Registered ( Q )

0 1
1 0
1 1
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The complete logic diagram of the PAL22V10 is shown in Fig. 11.14.
Note that all 10 flip-flops are controlled by common clock, preset, and reset
signals. The clock comes from the CL K / I Q dedicated input pin, and the preset
and reset signals are supplied by product terms generated in the AND array.

The PAL circuit has a total of 44 inputs, including the true (noninverted
form) and complement (inverted form) of each of the 12 external inputs and
the true and complement of each of the 10 feedback signals.

EP910
The Altera EP910 is one of a family of EPLD (erasable PLD) devices that
contain a PAL with macrocell outputs [3]. The fuse configuration of an EPLD
can be erased by exposing it to an ultraviolet light for a short period of time, in
the same manner as an erasable programmable read-only memory (EPROM).
The EPLD can then be reprogrammed with a new configuration. This makes
EPLD devices useful for prototype development.

As shown in Fig. 11.15, the EP910 contains 24 macrocells. The PAL
section of the EP910has72 inputs, which comefrom the true and complemented
forms of 12 dedicated input pins and feedback lines from the 24 macrocells,
and generates 72 product terms. Each of the 24 macrocells is driven by one
PAL output, which is a sum of eight product terms. One additional product
term controls the asynchronous reset input of the flip-flop in the macrocell,
and another product term controls either the flip-flop clock input or the output
enable control line of the tristate output driver.

The output macrocell structure, shown in Fig. 11.16, is similar to that
of the PAL22V10 in that the output and feedback signals are selected by pro-
grammable multiplexers. However, the EP910 has several other programmable
options. The operating mode of each flip-flop can be programmed (D, T, JK,
or SR), as illustrated in Figs. 11.17a through d, or the flip-flop can be bypassed
to create a combinational output, as in Fig. 11.17e. If a D or T flip-flop is used,
the feedback multiplexer selects either the flip-flop output or the external I/O
pin to supply the feedback signal. A two-position multiplexer selects the flip-
flop clock input and output driver control signals. In one position, the external
clock pin drives the flip-flop clock input, and a product term controls the output
driver. In the other position, the multiplexer selects the product term to drive the
flip-flop clock input and permanently enables the output driver. The external
clock pin is normally used for synchronous sequential circuits, while the ability
to use a product term to control the clock is needed for asynchronous operation.

Altera provides a family of EPLD devices whose features are similar to
those of the EP910. These are summarized in Table 11.5.

•11.2 Programmable Gate Arrays
A PLD is limited by its basic architecture to realizations of two-level SOP
switching expressions for all outputs and excitation variables. In addition, the
number and configurations of the registers is limited. In contrast, a gate array
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Figure 11.16 EP910 macrocell structure [3]. Source: Altera, User-configurable
Logic Databook, Altera Corp., Santa Clara, CA, 1988.

TABLE 11.5 ALTERA EPLDS [3]

Macrocells InputsDevice
EP310, EP320
EP512
EP600, EP610
EP900, EP910
EP1800, EP1810

108
12 10
16 4

1224
1648

has no fixed interconnection architecture, but instead provides a pool of simple
logic gates and other elements with no fixed connections between their inputs
or outputs. Circuits are created by specifying desired interconnection patterns,
with virtually no limits on these patterns. Gate arrays can be ordered from
and configured by the manufacturer by providing the manufacturer with an
interconnection pattern. In contrast, field-programmable gate arrays (FPGAs)
are programmed by the user, using a special device programmer to create the
interconnections between gates.

11.2.1 Logic Cell Arrays
The logic cell array (LCA) is a unique family of programmable devices intro-
duced by Xilinx [ 4]. As illustrated in Fig. 11.18, each LCA contains a matrix
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Figure 11.17 EP910 output architectures [3]. (a) D flip-flop, (b) T flip-flop,

(c) JK flip-flop, (d) SR flip-flop, (e) Flip-flop bypassed. Source: Altera, User-
configurable Logic Databook, Altera Corp., Santa Clara, CA, 1988.
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Figure 11.18
© Xilinx, Inc., 1992. All rights reserved.

Xilinx logic cell array structure [4]. Figure courtesy of Xilinx, Inc.

of configurable logic blocks (CLBs), with each CLB containing a flip-flop
and a small block of combinational logic. The matrix of CLBs is ringed by
user-configurable I/O blocks (IOBs), which provide several different options at
each I/O pin. The inputs and outputs of the CLBs and IOBs are interconnected
with wire segments that lie in wiring channels between the rows and columns
of blocks. Multiplexers at the block inputs and outputs connect the blocks to
these wire segments, and matrices of switches at each row-column intersection
connect the wire segments.

A circuit is created in an LCA by specifying the configuration of each
CLB and IOB and by specifying the interconnections between these blocks.
The configuration is programmed into the LCA by loading a pattern of ones and
zeros into a volatile random-access memory (RAM) within the LCA each time
the chip is powered up. If desired, changes can be made to the configuration
while the LCA is operating, producing a dynamically changing design.
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The IOB structure is shown in Fig. 11.19. Each I/O pin can be pro-
grammed to be a dedicated input or output or to be dynamically switched
between input and output. The output driver control signal comes from a 3-to- l
multiplexer. If the OFF input of the multiplexer is selected, the output driver
is disabled, and the pin operates as a dedicated input. If the ON input of the
multiplexer is selected, the output driver is enabled, making the pin a dedicated
output. If the T 5 (three-state control) input of the multiplexer is selected to
control the driver, the driver is enabled when 75 = 0 and is disabled when
7 5 = 1. The 75 signal is generated by logic within the LCA to make the pin
switch dynamically between input and output operating modes.

When the I/O pin is used as an input, a 2-to-1 multiplexer selects either
the buffered input signal or the output of a flip-flop to supply the signal to the
LCA. This allows an input to be clocked into a flip-flop and held, creating a
registered input.

The CLB, shown in Fig. 11.20, contains a combinational logic section
and a storage element, along with a number of programmable multiplexers
that are used to configure the output and flip-flop options. The combinational
section has four inputs (A, B, C, and D ) and two outputs (7 and G ) and can
realize any function of four variables with a single output (with F = G ) or
any two functions (7 and G) of three variables. These functions are realized
by a lookup table stored in a high-speed 16-bit memory, similar to the manner
in which logic functions are implemented with PROMs, as was described in
Chapter 5.

The storage element can be programmed to operate as either a D flip-flop
or a D latch, with the clock active high or low. The D input is driven by the
7 output of the combinational section. The clock, set, and reset inputs to the
storage elements are selected by multiplexers. The clock can be synchronous,

MUX . Off

TS (output enable)n4 On
r-< *- OutPin

D In

o -rD MUX

I/O clock

Figure 11.19 LCA I/O block structure [4]. Figure courtesy of Xilinx
Inc. © Xilinx, Inc., 1992. All rights reserved.
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Figure 11.20 LCA configurable logic block (CLB) structure [4]. Figure courtesy of
Xilinx, Inc. © Xilinx, Inc., 1992. All rights reserved.

with the clock signal distributed by the K pin that is common to all CLBs, or
asynchronous, with the clock supplied by the combinational function block or
the C input.

The two outputs of the CLB, X and Y , are selected by separate output
multiplexers whose inputs are the F and G outputs of the combinational section
and the flip-flop output Q. Thus, the CLB may have either combinational or
registered outputs or both.

The inputs and outputs of the CLBs and IOBs are connected to metal
segments (wires) that lie in the channels between the rows and columns of
blocks. At each row/column intersection is a switch matrix that is programmed
to connect the desired logic elements. Interconnections are made using three
types of routing resources: general-purpose interconnects, long lines, and direct
connections.

General-purpose interconnects lie in the channels between the rows and
columns of CLBs and IOBs, as shown in Fig. 11.21. At each row/column
intersection is a switch matrix that connects wire segments in the connected
rows and columns. There are four horizontal wire segments between rows and
five between columns, each segment running the length of the channel between
switch matrixes.

Long lines extend across the entire CLB array, with two per vertical
channel and one per row, as shown by the bold lines in Fig. 11.21. These are
used to distribute clocks and other signals with minimum skew around the chip.

Separate direct interconnects exist between neighboring CLBs. The X
output of each CLB can be directly connected to the C or D inputs of the CLB
immediately above it or to the A or B inputs of the CLB immediately below
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Figure 11.21 LCA general-purpose and long-line interconnects [4]. Figure
courtesy of Xilinx, Inc.© Xilinx, Inc., 1992. All rights reserved.

it. The Y output of a CLB can be directly connected to the B input of the CLB
immediately to its right. Thus, in laying out a design on an LCA, signal flow
is usually from left to right horizontally and from the center toward the outside
vertically.

The devices within a Xilinx LCA family share a common CLB and IOB
architecture, but have different numbers of CLBs and IOBs, as summarized in
Table 11.6. Several families are available, with additional functionality added
to the CLBs and IOBs in the XC3000 and XC4000 series. The CLB and IOB
configurations presented so far are those of the XC2000 series, which includes
the XC2064, which has 58 IOBs and 64 CLBs arranged in an 8 x 8 matrix,
and the XC2018, which has 74 IOBs and 100 CLBs arranged in a 10 x 10
matrix. The XC2064 is equivalent to approximately 1200 logic gates, while the
XC2018 is equivalent to approximately 1800 gates.

The XC3000 series device capacities range from 2000 to 9000 equivalent
logic gates. The CLB of the XC3000 extends the CLB design of the XC2000
series devices to a five-input combinational function block and two flip-flops,
along with a control section to select a number of flip-flop and output options.
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TABLE 11.6 XILINX LOGIC CELL ARRAY DEVICES [4]

Device
XC2064
XC2018
XC3020
XC3030
XC3042
XC3064
XC3090
XC4002
XC4003
XC4004
XC4005
XC4006
XC4008
XC4010
XC4013
XC4016
XC4020

Equivalent Gates
1,200
1,800
2,000
3,000
4,200
6,400
9,000
2,000
3,000
4,000
5,000
6,000
8,000
10,000
13,000
16,000
20,000

CLBs lOBs
64 64

100 64
64 64

100 80
144 96
224 120
320 144
64 64

100 80
144 96
196 112
256 128
324 144
400 160
576 192
676 208
900 240

The newest family of devices, the XC4000 series, ranges from 8 x 8 to
30 x 30 matrices of CLBs and from 64 to 240 IOBs, providing the equivalent
of 2000 to 20,000 logic gates. The architecture of the XC4000 family CLB is
a considerable enhancement over that of the XC2000 and XC3000 families.
As shown in Fig. 11.22, this CLB contains two independent storage elements
and three function generators, with a total of 13 inputs and 4 outputs. Two
of the outputs are combinational and two are registered. Two of the function
generators have four inputs ( Fx to F4 and Gx to G4), while the three inputs of the
third function generator include the outputs of the other two function generators
( F' and G' ) and one external input Hx. As in the XC2000 and XC3000 families,
high-speed memory lookup is used to implement the function generators. When
used together, the three function generators are capable of generating any two
independent functions of four variables any single function of five variables,
one function of four variables, and some functions of five variables, or some
functions of up to nine variables. Thus, wider-input combinational functions
can be realized in a single CLB than with previous LCA families.

Not shown in Fig. 11.22 is a special arithmetic carry circuit between
the two function generators F and G. This allows a 2-bit adder to be created
conveniently, with the carry between the modules handled by the special carry
logic.
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Figure 11.22 Xilinx XC4000 CLB architecture [4]. Figure courtesy of Xilinx
Inc. © Xilinx, Inc., 1992. All rights reserved.

The two storage elements of the XC4000 family CLB are edge-triggered
D flip-flops with a common external clock input K . Each flip-flop is pro-
grammed independently to trigger on the rising or falling edge of the clock. To
facilitate holding the state of a circuit, separate clock enable { E C ) inputs are
used on each flip-flop. Additionally, each flip-flop has a separate input that can
be programmed as a set or a reset control line, with the two flip-flops configured
independently. Note that the D I N , S / R, and E C inputs are connected to the
external CLB inputs C x to C4 using a multiplexer. This allows any of the four
inputs to be connected in any order.

In addition to the improved CLB and IOB designs, the XC4000 also
includes twice as many long line interconnections as the previous families, in
addition to increased numbers of other routing resources.
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11.2.2 ACT FPGAs
The ACT-1 family of FPGAs from Actel [5] is also constructed around a matrix
of logic modules ringed withI/O blocks. Wiring channels between the rows
contain 25 wires each, and 13 vertical wiring tracks are provided per column
of logic modules.

As illustrated in Fig. 11.23, each logic module has eight inputs and one
output and can realize the four basic logic gates (AND, OR, NAND, and NOR)
with two, three, or four inputs each and with active-high or active-low inputs.
D latches, XOR gates, and simple AND-OR and OR-AND functions can also
be realized with a single logic module. All switching functions are realized
with 2-to-l multiplexers, as described in Chapter 4, with four of the logic
module inputs applied to multiplexer data inputs and the other four module
inputs controlling the multiplexer select lines, as illustrated in Fig. 11.23. Each
module input is connected to one of the vertical wiring channels, as is the
module output. As in the Xilinx LCAs, a logic block at eachI/O pin allows
it to be configured as a dedicated input, a dedicated output, or a bidirectional
signal.

MUX

AO 0

A\ 1
MUX

SA

MUX
5

BO 0

B1 1

Figure 11.23 Actel ACT-1
family logic module structure [5].
Source: Actel, “ACT Family
Field Programmable Gate
Array Databook,” Actel Corp.,
Sunnyvale, CA, 1991.

5

SB

SO

S1

The logic modules of the ACT FPGAs contain no dedicated flip-flop
circuits. A D latch can be realized with a single combinational logic block,
using feedback, and a flip-flop can be realized with two logic blocks. Other
flip-flops and more complex gates are thus implemented by interconnecting
multiple logic modules. The Actel design system includes a library of common
circuits, called macros, that are implementable by the logic modules. Hard
macros are circuits that can be realized with a single logic module, while soft
macros require more than one logic module to realize them. Each soft macro
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comprises configurations for two or more logic blocks and an interconnection
pattern between the blocks.

The interconnect architecture is illustrated in Fig. 11.24. For simplicity,
only a few of the interconnection lines are shown. The vertical wiring tracks
traverse the logic blocks themselves, while the horizontal wiring tracks lie
between rows of logic modules. Each input and output of a logic module is
connected to a dedicated vertical wire segment. Some vertical segments serve
as feedthroughs between the channels. Connections are made to horizontal
wire segments using programmable fuses that are placed at each crosspoint of
a vertical and horizontal segment (shown as circles in Fig. 11.24). Horizontal
segments are connected by blowing cross fuses.Thus, a desired circuit structure
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control

Vertical
track

segment 9G-G-G-G
G-G-G-G
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Figure 11.24 Actel ACT-1 interconnect architecture [5]. Source: Actel, “ACT
Family Field Programmable Gate Array Databook,” Actel Corp., Sunnyvale, CA,
1991.
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is created by specifying a pattern of fuses to be blown to create the necessary
interconnections between logic modules.

The devices within the ACT-1 family differ in numbers of available logic
modules and I/O pins, as shown in Table 11.7. For example, the A1010 contains
295 logic modules and 57 I/O pins and is equivalent to approximately 1200
logic gates, while the A1020 contains 546 logic modules and 69 I/O pins and
is equivalent to approximately 2000 gates.

TABLE 11.7 ACTEL ACT-1 (A10XX) AND ACT-2 (A12XX)
FAMILY DEVICES [5]

Equivalent Gates Logic Modules I/O
1200
2000

Device
A1010
A1020
A1225
A1240
A1280

57295
546 69

2500 451 82
4000 684 104
8000 1232 140

The ACT-2 family includes devices with considerably more logic gates
and I/O pins, ranging from 2500 logic gates for the A1225 to 8000 gates for
the A1280 (1232 logic modules and 104 I/O pins).

•11.3 Sequential Circuit Design and PLD
Device Selection

Sequential circuit design with programmable logic proceeds in the same manner
as when using discrete gates and flip-flops.

1. Design a state diagram from the problem description and derive the state
table.

2. Identify and remove redundant states.
3. Make a state variable assignment and derive a state transition table.
4. Select flip-flop types and derive excitation tables for each flip-flop.
5. Derive excitation equations from the excitation tables.
6. Derive output equations from the state table.
7. Map the equations onto logic gates and flip flops.
Steps 1 through 3 are independent of whether discrete gates or pro-

grammable logic devices are to be used for the implementation and are per-
formed as discussed in Chapter 8. In step 4, the selection of flip-flop type
may be dictated by the type of logic device to be used, or vice versa. In some
FPLS devices and registered PLDs, the flip-flop type is fixed. In these cases
we must work with the given types. In FPLS devices like the PLS155 and in
some PAL devices with programmable output macrocells, each flip-flop type
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can be individually programmed, in which case we can proceed as if arbi-
trary discrete flip-flops were available and make a selection that best fits the
problem.

The derivation of excitation and output equations may likewise be con-
strained by the device type. In FPLS devices and PLDs, we must utilize two-
level sum of products formats to map the equations onto a programmable
AND/OR array. In LCA devices, the optimal approach is to fit the excitation
logic of each flip-flop into the same CLB that contains the flip-flop. In FPGA
devices, there are fewer restrictions on the architecture of the flip-flop and its
excitation logic, so the designer can concentrate on minimizing the number of
cells utilized.

Once all equations are developed, realization of the design in the chosen
device requires mapping of the logic equations onto the resources of the selected
device. This is usually accomplished with the aid of special CAD tools that
convert the equations to proper format and fit them into the target device,
creating a fuse map that can be loaded into the device by a device programmer.

The selection of a programmable logic device to realize a given design is
dictated by a number of key features of the design.

1. Number of inputs.The design will have one or more external “data” inputs,
as well as a clock and possible set/reset control signals. Programmable
device inputs include dedicated input lines that drive the AND/OR array,
I/O lines that can be programmed to operate as inputs, and other dedicated
inputs that drive flip-flop clock inputs, set/reset inputs, and so on.

2. Number of storage elements. The number of storage elements required
for a design is a function of the number of state variables and the number
of synchronous outputs that are required. State variables must be realized
in flip-flops whose outputs are fed back to the AND/OR array. These
flip-flops may be registered outputs or buried flip-flops. Synchronous
outputs must be realized in registered outputs, although these do not
need to be fed back to the AND/OR array. Where registered outputs are
needed, either dedicated outputs or I/O lines configured to operate as
outputs can be used.

3. Flip-flop types. The types of flip-flops available on a programmable
device may be fixed, in which case the designer must decide whether the
available types are suitable for the design. If not, another device must
be selected. In many programmable devices, the operating mode of the
flip-flops may be programmed. In these cases, the designer has maximum
flexibility.

4. Number of outputs. A design may require combinational or registered
outputs. In most cases, the outputs are separate from the state variables,
although in some Moore machine designs, the state variables are also
external outputs of the circuit. Programmable devices may have one or
more dedicated outputs, either registered or combinational, and/or I/O
lines that can be programmed to operate as outputs. Other output options
may include programmable polarity.
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5. Combinational logic. In PAL- and PLA-based devices, all excitation and
output equations must be derived in two-level sum of products form
that can be mapped onto AND/OR arrays. In registered PALs, the OR
array is fixed, limiting the number of product terms that can be used in
each excitation and output equation. In FPLS devices, the OR array is
programmable, allowing an arbitrary number of product terms to be used
in each equation, within the limits of the total number of product lines on
the device. Sharing of product terms between expressions can be done to
save product lines.

6. Special features. A variety of special features is available on many
programmable devices that may be desirable or required for a given
design. These include asynchronous clocking of flip-flops, logic terms
to drive flip-flop set and reset inputs, and enable logic for tristate output
drivers.

7. Physical properties. In many cases, designs are constrained by certain
physical requirements, such as device package size, power consumption,
operating speed, and chip cost and availability. In these cases, the
designer may be forced to make trade-offs between device functionality
and physical characteristics.

•11.4 PLD Design Examples
The following examples illustrate the design and mapping of synchronous
sequential circuit designs onto PLD devices.

EXAMPLE 11.1 Design a circuit with one input x and one
output z that will produce an output of 1
whenever the last four inputs are 1, that is, a
circuit that recognizes the input sequence
x = 1111. Realize the circuit in a PAL16R6
device.
Using the design procedures described in Chapter 8, the state diagram and
reduced state table are shown in Figs. 11.25a and b. The state assignment for
the example is arbitrarily chosen as follows:

A = 00
B = 01
C = 10
D = 11

The resulting transition table and output map are given in Figs. 11.25c and
d. From these, we see that two flip-flops and one combinational output are
required to realize the circuit.
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Examination of the PAL16R6 circuit of Fig. 11.11 shows that there are
six D flip-flops and two combinational outputs available. Let us use the flip-
flops at outputs 01 and 06 for the state variables y } and y2 and combinational
output // 08 for the output z.

l/ l0/0 0/0

0/0

(a)

x
k „k 0 1ym

oo 00 01

C/0 00 10A/0 01B

AI0 D/ 1 11 00 11c

D/0 10 00 11A/0D

yi +lyik+l

(b) (c)

Figure 11.25 Sequential circuit that detects the input sequence JC = 1111.
(a) State diagram, (b) State table, (c) Transition table, (d) Output map.

The excitation equations for the D flip-flop excitation inputs D, and D2
are derived from the transition table of Fig. 11.25c, and the output equation is
derived from the output map of Fig. 11.25d.

D ] = xy } +*y2

D2 = xy\ + xh
z = xyxy2

=* + yi + y2
These equations are mapped onto the PALI6R6 as illustrated in Fig. 11.26. For
illustration purposes, only the portion of the PAL16R6 used in the implemen-
tation is shown.
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Figure 11.26 PAL16R6 realization of a sequence * = 1111 recognizer.
Copyright © Advanced Micro Devices, Inc., 1993. Reprinted with permission of
copyright owner. All rights reserved.

EXAMPLE 11.2 Repeat Example 11.1, but using the PLS155
FPLS device with the storage elements
configured as JK flip-flops.
Observation of the PLS155 diagram in Fig. 11.8 shows that there are four
registered and eight combinational outputs available. Let us map state variables
yx and y2 onto registered outputs F3 and Fv respectively, and map output z
onto combinational output #7.

We begin by deriving excitation maps for JK flip-flops from the transition
table of Fig. 11.25c. These maps are shown in Fig. 11.27. From the excitation
maps, the following excitation equations are derived.

J\ = *y2’
K1 = x ,

J2 = x
K2 = x + y x

These equations are mapped onto the PLS155 as illustrated in Fig. 11.28. Note
that M2 and M3 must both be set to 1 to disable the foldback buffers of the
flip-flops, configuring the flip-flops for JK operation.
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10 0 101 d d Figure 11.27 JK excitation
maps for the sequence * = 1111
recognizer.J2 K2

EXAMPLE 11.3 Design a 4-bit binary up/down counter with
parallel load. The inputs include paraMel data
input lines A3 to A0, control signal L/ C , which
is high to enable a parallel load of data and
low to enable counting, control signal U / D,
which is 1 to signal up and 0 for down during
counting, and a clock, CLK. The outputs are
the 4-bit count Q3 to Q0 and a signal OVR,
which indicates an overflow, that is, either a
count from 1111 to 0000 or from 0000 to 1111
on the next clock pulse.
From this description, the counter requires six inputs, four registered outputs to
realize the count, and one combinational output to realize the O V R output. Ex-
amining Table 11.3, we see that the counter would fit into any of the registered
PLDs listed in the table, with the exception of the PAL16R8, which contains
no combinational outputs. The other devices all have at least four registered
outputs with feedback and at least six inputs. For this example, let us use the
PAL16R4 device, which has eight dedicated inputs, four registered outputs,
and four combinational outputs.
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Figure 11.28 PLS155 realization of a sequence JC = 1111 recognizer.

Since the PAL16R4 contains D flip-flops, we derive the following ex-
citation equations, using the design procedures described in Chapter 8. The
output drivers on the registered outputs of the PAL16R4 are inverting, as they
are on the PAL16R6 shown in Fig. 11.11. Therefore, the values loaded into the
flip-flops must be inverted.

D0 = A0( L/ C ) + Q0{ L/C )

D l = A, ( L/ C ) + Q X ( Q0(U / D ) + Q0(U / D ) ) ( L/ C )

D2 = A2( L/ C) + 02(0, Q0(U/ D ) + 0, Q0( U / D)) (L/C)

z>3 = A 3(L/C) + 03(2201Q0( U / D ) + 020, Q0( U / D ) ) ( L/ C )
Overflow occurs when counting upfrom Q3 Q2 Q x <20 = 1111 orcounting down
from Q3 Q2 Q X Q0 = 0000. Therefore, the expression for the O V R output is

O V R = Q3 Q2 Q l Q0( U / D ) + Q3 Q2 Q ] Q0( U / D )
The excitation and output equations are mapped onto the PAL16R4 as shown
in Fig. 11.29.
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Figure 11.29 PAL16R4 realization of a 4-bit binary up/down counter with
parallel load. Copyright © Advanced Micro Devices, Inc. Reprinted with
permission of copyright owner. All rights reserved.
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It is often desirable to use T flip-flops in binary counter designs. If this
were the case in the previous example, we would select either an FPLS device,
such as the PLS155 that has programmable flip-flop types, or else one of the PAL
devices containing programmable output logic macrocells, such as the EP910
device, in which the flip-flop types can be programmed. The design would then
be realized by deriving the T flip-flop excitation equations, configuring four
registered outputs for T flip-flop operation, and then mapping the excitation
equations onto the device.

•11.5 Computer-aided Design of
Sequential PLDs

In Chapter 5 we examined computer-aided design (CAD) tools for use in
designing combinational PLDs. In this section we examine a number of features
of these tools that support sequential circuit design.

Recall that most PLD CAD packages allow designs to be created and
entered in several formats, including schematic diagrams, logic equations, truth
tables, state diagrams, and state tables. As shown in Fig. 11.30, each design
is translated, or compiled, into logic equation form and then the equations
are minimized, using methods similar to those described in Chapter 3. The
compiled design may then be simulated to verify its correctness and estimate
timing and other parameters. When the design is correct, the logic equations
are mapped onto a selected PLD device.

Most PLD design packages utilize a high-level language to express de-
signs in logic equation, truth table, state table, or state machine format. Many
of them also accept designs created with schematic capture programs. In these
cases, the schematic is translated into logic equation form in the language used
by that package. For example, Fig. 11.31 shows a schematic diagram for a 4-bit
binary counter with an asynchronous clear input. This diagram was created
with the Mentor Graphics Design Architect schematic editor and then trans-
lated by the Mine PLDesigner program into the PDL language. The resulting
PDL listing is given in Fig. 11.32, and the reduced logic equations produced
by the PDL compiler are given in Fig. 11.33.

The next section presents an overview of the sequential circuit support
features of the PDL language. Other PLD design languages are similar to PDL.
The reader is referred to [9, 10] for more details.

11.5.1 Sequential Circuit Design
Representation with PDL

As discussed in Chapter 5, PDL (PLDesigner Design Language) is typical of
the high-level languages used by PLD design tools. Designs can be entered in
equation, truth table, state diagram, state table, and other behavioral forms. As
illustrated by the example in Fig. 11.32, a PDL file includes a header section,
which provides a verbal description of the design, an optional macro definition
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Figure 11.30 PLD design process.

section, which allows symbolic representations of functions and expressions,
and a function definition section containing input and output signal declarations
and the logic equations, truth tables, and/or state machine descriptions that
describe the function to be realized.

Input and Output Signal Declarations
Every design has some number of external inputs and outputs and, in some
cases, bidirectional input/output lines. In a PDL file these signals are defined,
or declared, prior to listing the functional description of the design. In pro-
grammable logic devices, external inputs can either be dedicated input pins or
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Figure 11.31 Four-bit counter schematic diagram.

I/O lines whose output drivers are disabled. Outputs can be combinational or
registered, with or without a tristate driver. If registered, the register may be a
flip-flop or latch that has a clock input and possibly asynchronous reset and/or
present inputs. The following examples illustrate a number of input and output
signal declaration formats.

INPUT x,y,[13..10];
OUTPUT x,[c3..c0];
OUTPUT x,y ENABLED.BY oe;
BIPUT xl,x2 ENABLED.BY oe;
OUTPUT bO.bl CLOCKED.BY elk HIDDEN;
OUTPUT [qO..q3] CLOCKED.BY elk RESET.BY r PRESET.BY p;

1 1dedicated inputs:
combinational outputs
combinational outputs vith tristate drivers
bidirectional I/O line

< t

1 1

4 4

i e buried register
registered output4 4

The ENABLEDJBY keyword indicates a tristate driver associated with an out-
put and defines the control signal for the driver. The CLOCKED_BY keyword
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:22222222«:

< 4 Header Section
1 1

TITLE schematic.vpt ;
ENGINEER Joe E. Student;
COMPANY State University ;

EE401 Homework Project ;PROJECT
REVISION 1.0 ;
COMMENT Four-bit up counter circuit ;
< 4 2

4 4 Macro Definition Section
* *BSsaasaBin1 222222

4 4Macros for AND gates and T flip-flop
MACRO AND2(iO,il)(iO * il);
MACRO AND3(iO,il,i2)(iO * il * i2);
MACRO AND4(iO,il,12,13)(iO * il * 12 * i3) ;
MACRO TFFR(tt,clk,r,q,qb) {q.t - tt ; >
< *.«
< < Function Definition Section
4 4

FUNCTION schematic ;

4 4 Declare external input and output signals
INPUT
OUTPUT

CLK.CLR.CNT ;
Q3,Q2,Q1,Q0 CLOCKED.BY CLK RESET.BY /CLR ;

« 4 Instantiate three AND gates
MACRO N$14 AND4(CNT,Q0,Q1,Q2) ;
MACRO N$13 AND3(CNT,Q0,Q1) ;
MACRO N$ll AND2CCNT.Q0) ;

( 4 Instantiate four T flip-flops
TFFR(N$14,CLK,CLR,Q3,_x_x_x_x)
TFFR(N$13,CLK,CLR,Q2,_x_x_x_x)
TFFR(N$11,CLK,CLR,Q1,_x_x.x

_
x)

TFFR(CNT,CLK,CLR,QO,_x_x_x_x) ;

END schematic ;

Figure 11.32 Four-bit counter PDL description generated from the schematic.

indicates the signal controlling one or more flip-flop clock inputs, and likewise
the RESET_BY and PRESET_BY keywords define signals controlling flip-flop
preset and reset control lines. Finally, the HIDDEN keyword indicates a reg-
ister that does not drive an output pin, that is, a buried register. The keywords
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(1 term)
(1 term)

< <Q3.CLK
. RESET

- CLK ;
= /CLR ;- Q2*Q1*Q0*CNT ;

4 4

(1 term)( 4.T

4 4(1 term)
(1 term)

Q2.CLK
.RESET

- CLK ;- /CLR ;- Q1*Q0*CNT ;
4 4

(1 term)( 4.T

4 4(1 term)
(1 term)
(1 term)

Ql .CLK
.RESET - CLK ;

= /CLR ;
= QO*CNT ;

4 4

4 4.T

( 4(1 term)
(1 term)
(1 term)

QO.CLK
.RESET

- CLK ;
= /CLR ; 4 4

4 4.T - CNT ;

Figure 11.33 PDL equations for the 4-bit counter generated by the PDL compiler.

RESET.BY, PRESET.BY, CLOCKED_BY, HIDDEN, and ENABLED.BY are
used or omitted as needed to match the actual inputs and outputs of a particular
logic device.

Logic Equations
Logic equations are expressed in PDL exactly as they would be written on
paper. The available PDL logic operators were listed earlier in Table 5.5. For
registered outputs, each flip-flop output is assigned a name in an OUTPUT
declaration, and then all flip-flop excitation and control inputs are specified by
appending suffixes to this name. For example, Figs. 11.34a and b show a JK
flip-flop circuit and its PDL description. In this example, note that the J and
K inputs of flip-flop qO are designated as qO.J and qO.K respectively. Also
note that separate expressions are not written for the flip-flop clock and preset
inputs, since these signals are defined in the OUTPUT declaration of qO. Other
flip-flop excitation input suffixes include {.D, .R, .S, .T}.

State Machine Description
Recall that a state diagram shows the states of a sequential machine, the transi-
tion between states caused by each input combination, and the outputs produced
for each state-input combination. In Mealy machines, each output is a function
of both state and input and is thus assigned to a state transition arc. In Moore
machines, each output is a function of the state only and is thus assigned to the
node representing the state.

Figures 11.35a and b present the state diagram and state table of a two-
state Mealy machine. A PDL state machine description of this machine is listed
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clkl (-»-)
1

p) OQJ

>> K Q

(a)

a l ;INPUT
OUTPUT qO CLOCKEDJBY clkl PRESET.BY pi;

= al •/qO;

= /al •qO;
qOJ
qO.K

(b)

Figure 11.34 JK flip-flop circuit, (a) Schematic diagram,

(b) PDL description.

in Fig. 11.35c. As can be seen in the example, a PDL state machine description
includes a CLOCKED_BY declaration, which defines the clock that triggers
the state transitions, and an optional STATE_BITS declaration, which defines
the names of the state variables.

Each state is assigned a symbolic name using a STATE declaration. The
state declaration alsodefines the state transitions and outputs associated with the
state. Two types of information must be defined for each state: state transitions
and outputs. State transitions are specified by GOTO statements that indicate
the next state for each state-input combination. Outputs are defined by logic
equations.

Where there are multiple input combinations, a CASE GOTO construct
can be used, as in the example illustrated in Figs. 11.36a and b, which show a
state table and the PDL description of the state transitions and outputs for state
A for each of the four combinations of the inputs xxx2.

To define the outputs of a Moore machine, output expressions are defined
immediately following the state name, as in the partial binary counter descrip-
tion of Fig. 11.37. If a specific state assignment is desired, it is specified with
the STATEJBITS construct. The state variables are first defined, followed by
the desired assignment for each state.

State Table Format
State machines can also be expressed in state table format, using the TRUTH.
TABLE construct described earlier. In this case, each state variable is shown as
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xkInput
Present

state
0 1

,4 A/0 BIO

B/0 A/1B
Next state/output

(a) (b)

STATE.MACHINE example;
CLOCKED.BY elk;
STATE-BITS [yj;
STATE state_A (0);

IF (x) THEN
BEGIN

"clock triggering state transitions
"define the state variable
"define actions if in state A

"action for x= l
"output is 0
"next state is B

z = 0;
GOTO slate _B;

END;

ELSE
"action for x=0BEGIN

z = 0;

GOTO state _A;
END;

STATE state_B [1]:
IF (x) THEN

BEGIN

"define actions if in state B

"action for x=1
z = 1;
GOTO state_A;

END;
ELSE

BEGIN "action for x=0
z = 0;
GOTO stateJB;

END;
END example;

(c)

Figure 11.35 Representing a state machine in PDL. (a) State table,
(b) State diagram, (c) PDL description.

both an input and an output in the truth table, with the output defining the next
state of that variable. Figures 11.38a and b show PDL descriptions of the state
table of Fig. 11.36a.

11.5.2 Processing a PDL Design File
After a PDL description of a design has been prepared, the PDL compiler is
invoked to translate and reduce the design. This involves several steps. For a
behavioral description, such as a state table or other state machine description,
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*1 *2
00 01 11 10y\ yi

A, 0 B,000 = A >4 , 0 C, 0

01 = B C, 0 B, 0 D, 1 A, 1

11 = C A, l C, 0 c, 1 D, 0

10 = D A, 0 1 D, 1 A 1

(a)

STATE A: (/xl * /x2):
BEGIN

” action for x 1=0, x2=0

z = 0;
GOTO A;

END;
(/xl * x2):

BEGIN
” action for x 1=0, x2=1

z = 0;
GOTO A;

END;
(xl * x2):

BEGIN
"action for x 1=1. x2=1

z = 0;

GOTO B;
END;

(xl * /x2):
BEGIN

” action for x1=1, x2=0

z = 0;
GOTOC;

END;
END;

(b)

Figure 11.36 Use of CASE construct to define state
transitions, (a) State table, (b) Partial PDL description, showing
actions for state A.

the compiler first synthesizes the machine by converting the state machine
description to logic equations for all outputs and flip-flop excitation inputs.
Once the design is in logic equation form, the equations are simplified to
two-level SOP form, which can be mapped onto a PAL or PLA AND/OR array.

In the process of simplifying equations, the equations are minimized
using one of four options that can be specified by the user. The first is to
do no reduction at all, but to simply leave the equations in SOP format. The
second option is to apply the Espresso algorithm, which reduces the equations
quickly and with little memory usage, but without necessarily producing an
optimum solution. The third option is to use the Espresso algorithm with
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OUTPUTS c3,c2,c l ,cO,
STATE-MACHINE couni4;

CLOCKEDJY elk;
STATE-BITS [q3..q0];
STATE cniO [0000b]:

c3 = 0; c2 = 0; c1 = 0, cO = O."Moore outputs
if (clr) THEN

GOTO cntO;

ELSE
IF (ent ) THEN

GOTOcntl ;
ELSE

GOTO cntO;

STATEcntl [0001b]:
c3 = 0; c2 = 0: c I = 0; cO = 1; "Moore outputs
if (clr) THEN

GOTO cntO;
ELSE

IF (ent) THEN
GOTO cnt2;

ELSE
GOTOcntl;

END count4;

Figure 11.37 State machine description of a 4-bit
counter with Moore outputs.

some of the Quine-McCluskey techniques applied to derive a better cover. The
fourth option is to use the full Quine-McCluskey method, which produces an
optimum solution, but at the expense of longer computation time and more
memory usage.

For example, from the state tables of Fig. 11.38, the PDL compiler
generated the logic equations given in Fig. 11.39.

After a design has been compiled, the next step is to verify its correct-
ness using functional simulation. The PDL language allows test vectors and
simulation controls to be specified within the design file, so compilation can be
followed immediately by simulation with the PLDsim tool of the PLDsynthesis
system. When PLDsynthesis is integrated into another design environment,
such as the Mentor Graphics Falcon Framework, other simulators may also
be used, such as the Mentor Graphics QuickSim II logic simulator. The reader
is referred to [9] for further details on simulation within the PLDesigner and
Falcon Framework environments.
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FUNCTION stalemach2;

MACRO StatcA 0.0;

MACRO StateB 0.1;
MACRO StatcC 1.1;
MACRO StateD 1,0;
INPUT x l , x2, elk;
OUTPUT z;
OUTPUT y1. y2 CLOCKED.BY elk;

TRUTH.TABLE
yi. y2, xi . x2
StaleA. 0, 0
StaleA, 0, I
StateA, I , 0
StaleA. 1 , I
StateB, 0, 0
StateB. 0, 1
StateB. 1. 0
StateB. 1. 1
StateC, 0. 0
StateC. 0, 1
StateC. 1. 0
StateC. I . 1
StateD, 0. 0
StateD, 0. 1
StateD. 1, 0
StateD, 1. 1
END;

END statemach2;

FUNCTION statemach;

INPUT xl .x2.clk;

OUTPUT z;
OUTPUT y I ,y2 CLOCKED_BY elk;
TRUTH.TABLE
y l . y2, xi. x2yLy2.

StaleA.
StatcA,

StateC.
StateB,

StateC.
StateB.
StaleA,
StateD,
StateA,
StateC,
StateD,
StateC,
StateA.
StateB,
StateD.
StateD,

yi. y2Z z
0 0 0 0 0. 0.0 0

0, 0
I . 0

0 0 0 0 0.
0; 0 10 0,

0 0 1 0 1 . 00 I.
0; 0 0 0 I. 1, 0
0 0 0 0. I. 0
1 0 1 1. 0. 1
1 0,0 1 0 0. 1
I 0 0. 10 0.
o- 0 1. 1, 0
0 1 1. 1. 1

01 0 1. 0,
0 0 0.0 0 0, 0

0 0I 0, 1, 1
I 0 0. II 1.

0 01 I 1. 0. 1
END;
END statemach;

(b)(a)

Figure 11.38 PDL descriptions of a state table, (a) Symbolic state names
used, (b) State variable values specified.

The next step in the process is mapping the reduced equations onto a
selected device. The PLDesigner system includes a library of devices, from
which those devices can be selected that best fit a design while meeting any
user-specified criteria.

In PLDsynthesis, these user-specified criteria, or constraint values, in-
clude package type, logic family, manufacturer, temperature rating, maximum
current, maximum frequency, maximum delay, and component price. Each
constraint is assigned a weighting factor so that the selection of a device can be
made by placing more importance on those constraint values considered most
critical by the designer.

The output of the device fitting operation is a fuse map, which can then
be downloaded to a device programmer to program the chip. In some cases,
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= X1*X2*Y2
+ Y1*/XIVX2*Y2

/Y1*X1*Y2
Y1*X2*/Y2

; “(5 terms)

Z.EQN

Yl.CLK = CLK ; '*(1 term)

= Y2VY1VX2VXI
+ Y1*X 1
+ /Y2*/X2*X 1
+ Y2*Y1*X2
+ Y2*X2*Xl ; "(5 terms)

.D

Y2.CLK = CLK ; M( I term)

= Y1VX1*X2
+ YDY2*X2
+ /Y1*/Y2*X1
+ /Y 1*Y2*/X1 ;’*<4 terras)

D

Figure 11.39 Reduced
excitation and output equations
for the state table of Fig. 11.38.

simulation information can be supplied to the device programmer to allow it to
exercise the device and compare actual operations to simulated results.•11.6 Summary
In this chapter we have examined programmable logic devices, such as PLDs
and FPGAs, that can be used in realizing synchronous and asynchronous se-
quential circuits. The mapping of both Mealy and Moore machines onto these
devices was illustrated. Finally, CAD tools that can be used to develop PLD-
based designs were examined, including a description of the Mine PLDsynthe-
sis system.
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10.

PROBLEMS Design a PAL16R4 implementation of a synchronous sequential circuit that
recognizes the input sequence 1010. Sequences may overlap. For example,

x = 00101001010101110
z = 00000100001010000

Derive the logic equations, then draw the PAL16R4 circuit diagram using the
format of Fig. 11.26.

11.1

Design the four-state sequential circuit defined by the following state table,
using the indicated state assignment. Identify the pin number to be assigned to
each input, output, and state variable, and write the logic equations in a format
suitable for implementation in:
(a) A PAL16R6.

(b) A PLS155, with the flip-flops configured for JK operation.

11.2

x
0 1>21

0 0
0 1
1 1
1 0

B/0 C/0
D/0 All
All D/0
D/ l Bll

A
B
C
D

For the circuit described by the state table and state assignment given below,
find a PLS155 implementation, configuring the flip-flops for JK operation.
(a) Write the logic equations and indicate the PLS155 pin number to be

assigned to each input, output, and state variable.
(b) Sketch the logic diagram using the format of Fig. 11.28.

11.3

JC

0 1y2i
o o
o 1
I I
1 o

A B/0 D/0
C/0 A/0
D/0 B/0
A/ l Cl1

B
C
D

Repeat Problem 11.3, but implement the circuit with a 22V10, indicating the
configuration of each macrocell used in the design.

11.4

Given the following reduced state table and assignment, find the synchronous
sequential circuit logic equations and sketch the logic diagram using the fol-
lowing devices.
(a) PAL16R6.
(b) PLS155, with the flip-flops configured for JK operation.
(c) 22V10.

11.5
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X

0 1y2
o o
0 1
1 1
1 0

A A/0 B/0
C/0 B/0
D/0 B/0
A/1 B/0

B
C
D

11.6 Design the Moore model sequential circuit described by the state table and state
assignment given below, using the following devices (do not use combinational
outputs). Derive the logic equations and then sketch the logic diagram.
(a) Use a PLS155 with the flip-flops configured for JK operation.
(b) Use a 22V10.

X

0 1yi y2 z
z 0 0

0 1
1 1
1 0

A A B
C B
D B
B A

1
0B

C 0
1D

) Find a PAL16R6 realization for the reduced state table below, using the one-hot
state assignment shown.

11.7

x
10y yi y3 >4 y5 y6y1 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

A B/0 D/0
A/0 C/1
D/1 C/0
B/\ E/\
C/0 A/0
E/0 Ft1

Q D x -
Q O

y1 B
C
D
E

yi FQ D2 -

Q C2 O Implement the pulsed asynchronous sequential circuit given in Fig. PI1.8,
using an Altera EP910. Sketch the logic diagram in the format of Fig. 11.26,
with the macrocells drawn as illustrated in Fig. 11.17. ( Hint: three macrocells
are needed.)

Design an 8-bit parallel load register using a PLS105. The register is to have
8 data inputs D?-D0, 8 outputs Q7-Q0, clock input CLK, and preset control
input PRE. Sketch the logic diagram in the format of Fig. 11.28, or mark the
inputs, outputs, and fuse connections on a copy of the PLS105 diagram.

11.8

Figure P11.8

11.9

Design a 4-bit bidirectional shift register and implement it in a PAL16R6. The
shift register is to have serial inputs Sin-Right and Sin-Left, parallel inputs A,
B, C, D, parallel outputs QA QB QCQD, a clock input CLK, and two function
select inputs S ] SQ. The shift register functions are defined in the following
table:

11.10

S ] s0 Function
0 0
0 1
1 0
1 1

No operation
Load
Shift right
Shift left
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(a) Derive the logic equations and indicate the pins to be assigned to each
input, output, and state variable. Note that the PAL16R6 output drivers
are inverting.

(b) Sketch the logic diagram in the format of Fig. 11.26, or else mark the
inputs, outputs, and fuse connections on a copy of the PAL16R6 diagram.

Design a 4-bit up/down, modulo-12 counter using a PLS155 with the flip-flops
configured for JK operation. Thecounter is to have parallel inputs{D, C, B , A ] ,
outputs { Q d , Q c , Q b , Q A ), clock input CLK, and two function select inputs
5, SQ. The counter functions are defined in the following table:

Mode
no operation
load
count up
count down

(a) Derive the logic equations and indicate the pins to be assigned to each
input, output, and state variable.

(b) Mark the inputs, outputs, and fuse connections on a copy of the PLS155
diagram.

Design a serial subtractor that will perform the operation A — B , where
A =
subtractor sequentially, beginning with bits aQ and bQ. Use a PLS155 with the
flip-flops configured for JK operation.
Design a serial parity detection circuit using a PLS105. The circuit receives a
sequence of bits and determines whether the sequence contains an even or odd
number of ones. The circuit output, p, should be 0 for even parity, that is, if the
sequence contains an even number of l ’s, and 1 for odd parity. Sketch the logic
diagram, and indicate the configuration of all macrocells used in the design.
Note that the state variable and output require separate flip-flops in the PLS105.

Design a logic circuit to implement the candy machine control unit designed
in Example 8.18. Use a one-hot state assignment, and implement the circuit
in a PAL16R6. Sketch the logic diagram or else mark the inputs, outputs, and
fuse connections on a copy of the PAL16R6 diagram.
Design a logic circuit for the binary multiplier control unit whose ASM diagram
was designed in Example 8.20, using a 22V10 and a one-hot state assignment.
Design a 1-bit binary counter using a single Xilinx XC2000 Family CLB. The
counter is to have a clock input, Clock, an enable input, Enable, a synchronous
reset input, Reset, and a single output, Q. Draw the CLB diagram, labeling the
inputs and output and highlighting the paths through the multiplexers. Also
write the truth table of the combinational logic block.

Repeat the sequential circuit design of Problem 11.2, but implement the circuit
with two Xilinx XC2000 Family CLBs. Draw the logic diagrams of the CLBs,
showing how the multiplexers are to be configured, and draw the interconnec-
tions between the CLBs, input *, and output z. Also list the truth table of each
CLB combinational logic block.

11.11

5, SQ
0 0
0 1
1 0
1 1

11.12
. .a } aQand B = b . .b{ bQ.The operands are applied to the seriala . .n — 1 n — 1

11.13

11.14

11.15

11.16

11.17
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11.18 Design the serial subtractor circuit described in Problem 11.12, using a single
XC4000 CLB to realize the circuit. Show how each multiplexer in the CLB
is configured, and give the truth tables or minterm lists of the combinational
logic blocks used.

11.19 Realize each of the following switching functions with a single Actel ACT-1
family logic module.
(a) f (a , b , c ) = abc.
(b) f (a , b, c, d ) = a b+ a c + d.
(c) A four-to-one multiplexer.
(d) f (a , b , c ) = a b + a c + b c.

11.20 Implement the following memory devices with Actel ACT-1 family logic
modules. Sketch the logic diagram for each.
(a) A gated D-latch with inputs D and C, and one output Q (use one module).
(b) A master-slave D flip-flop with inputs D and C, and one output Q, with

output Q changing on the rising edge of C (use two modules).

11.21 Design the parity detection circuit described in Problem 11.13 using ACT-
1 family logic modules. Use the master-slave D flip-flop design of Problem
11.20b for the memory element. Draw the logic diagram, showing all connec-
tions to the logic modules.

11.22 Write a PDL model of the synchronous sequential circuit represented by the
following state table and assignment: (a) using state table format, (b) using
state machine format.

x
0 1y\ yi

0 0
0 1
1 1
1 0

A/0 B/0
C/0 B/0
D/0 B/0
B/\ A/0

A
B
C
D

Write a PDL state machine model for the sequence recognizer described in
Problem 11.1.

Derive excitation and output equations for the synchronous sequential circuit
described in Problem 11.4, then write a PDL model of the circuit in terms of
these equations. Assume the circuit is to be implemented in a PAL16R4.

Design a PDL state machine model of the modulo-12 up/down counter de-
scribed in Problem 11.11.

11.23

11.24

11.25
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leaves the factory must be thoroughly checked
to verify that it will function as designed. The

effort needed to develop a test procedure and the
actual testing of a circuit can add significantly to its
overall cost and delivery time. Consequently, both the
development of a fault testing strategy, or test, and the
application of the test to each circuit must be done as
efficiently as possible, while providing a high likeli-
hood of detecting any faulty circuit.

This chapter will introduce the types of faults
that occur in digital logic circuits. Then methods will
be described for deriving tests to detect and locate
faults in both combinational and sequential logic cir-
cuits. To facilitate the testing process, design methods
which improve the testability of logic circuits will be
presented. Finally, the design of built-in test features
that can be used in digital integrated circuits and in
circuit boards will be described.
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B 12.1 Digital Logic Circuit Testing
The two primary objectives of testing are fault detection and fault location. A
fault will be defined informally as any condition that causes a device to function
improperly. Fault detection testing is the process of determining whether or not
a fault is present in a given device. A set of inputs to a logic circuit that can
be used to detect a fault in the circuit is a fault detection test set (FDTS). Fault
location testing is the process of determining which fault is present in a faulty
device. A fault location test set (FLTS) is a set of inputs that can be used to
locate a fault. The fault coverage of a fault detection or fault location test is
defined as the percentage of all the potential faults in a circuit that are detected
or located by the test.

Figure 12.1 shows a typical digital circuit test setup. The circuit under test
(CUT) is stimulated by applying the test vectors of a FDTS or FLTS to the CUT
inputs. The operation of the CUT is evaluated by capturing its responses to the
test vectors and comparing them to the expected values. In most automatic test
equipment (ATE), as illustrated in Fig. 12.1a, test vectors are stored in a memory
from which they are retrieved and applied to the CUT by a microprocessor. In
some ATE systems and in circuits with built-in self-test (BIST), test patterns
are generated automatically by special circuits, as illustrated in Fig. 12.1b.

Responses of the CUT to applied test vectors are evaluated by capturing
and comparing them to expected values. This is done in most ATE systems by
retrieving the expected values from a memory as each test vector is applied
and comparing each to the corresponding circuit output. In most cases, lists of
expected values are produced using logic simulation. In many ATE systems and
where built-in test circuits are used, response data from an entire test sequence
are compressed into a single value called a signature, which is then compared
to the signature of a known-good circuit. This eliminates the expense of storing
individual response vectors.
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Stimulus Response

t t
Result

captureMicroprocessor CUT*>

+

Compare *
Pass/Fail

Test
pattern

memory

Expected
response
memory'

Automatic test
equipment (ATE)

(a)

Stimulus Response

\ i
Automatic

pattern
generator

Response
compressionCUT Compare

Pass/Fail

Built-in self-test
Good

signature

(b)

Figure 12.1 Digital logic circuit testing, (a) ATE test setup, (b) Built-in test setup.

W> 12.2 Fault Models
We will now consider the concept of a fault in more detail. Logic networks
may contain faults caused by broken or shorted interconnections, bad logic
elements, improper power voltage, poor noise immunity, and so on. Faults may
be categorized in several ways. A faulty condition that does not change with
time is referred to as a solid or permanent fault. On the other hand, a fault that
appears and disappears with time is called an intermittent fault. Other categories
of faults specify the effect of a fault on the device. In this context, logical faults
are faults that cause a given logic device to function as an entirely different
logic device. Nonlogical faults include all faults other than logical faults. We
will be concerned only with solid, logical faults.

To study the effect of faults on a logic circuit, a fault model must be
established. A popular and useful model for representing faults in logic circuits
is the stuck-at fault model. In this model, a fault in a circuit is represented as a
wire in the circuit either stuck at logic 0 (s-a-0) or stuck at logic 1 (s-a-1). Figure
12.2 shows a circuit with a s-a-0 fault. The fault can be identified as wire (lead)
(5) s-a-0. An abbreviated notation for the fault is 3/0. A faulty circuit can be
considered as a logic circuit that realizes a function different from that realized
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by the fault-free circuit. A standard functional notation will be adopted for
the representation of faulty circuits. If / (xn ) = /(;cp JC2, . . . , x n ) represents a
fault-free circuit, f p/ d ( x n ) represents the same circuit with fault p/ d , where
p is a wire label, d can be 0 or 1 as appropriate for s-a-0 or s-a-1, and n is
the number of input variables. The faulty circuit of Fig. 12.2 has the following
representation:

© ©*i ©x2 ©
s-a-0

2 =/(x3)*3 —* /3/0(X3) =© x x x2
Fault 2/1 would yield the function:

Figure 12.2 Stuck-at fault model
for 3 s-a-0. /2/1(X3) = X] + X3

A single fault exists when one and only one wire is stuck. When more
than one wire is stuck, a multiple fault exists. Circuits with r wires have 2r
possible single faults based on the stuck-at model. When multiple faults are
considered, 3r — 1 faults can be enumerated. The latter number includes single
faults as a special case of multiple faults.

The stuck-at model is justified by its simplicity and by its accurate rep-
resentation of a large class of faults that occur in practical circuits. Open or
shorted components such as transistors and diodes can be described as causing
stuck-at faults in a circuit. Broken wires and wires shorted to ground or to high
voltage can be represented as stuck-at faults.

Other potential faults in digital circuits are not as simple to model and
detect. Examples include bridging faults, which are shorts between wires that
allow a signal on one wire to affect the signal on another. Programmable logic
suffers from a unique class of faults called crosspoint faults, which are the
erroneous absence or presence of diodes and/or fuses at crosspoints in the logic
array. Bridging and crosspoint faults both alter the logic function realized by
the circuit in a manner different from stuck-at faults.

Many faults are nonlogical in that they do not alter the logic function
realized by the circuit, but instead affect such circuit parameters as propagation
delays and voltage/current levels. Nonlogical faults require special parametric
tests and other test methods beyond the scope of this text.

In this chapter, we will focus our attention on single, stuck-at faults.
However, the techniques presented are fundamental to testing for other fault
types as well.

M 12.3 Combinational Logic Circuit Testing
We will now consider the problem of fault diagnosis for combinational logic
networks. The following discussion serves to introduce the topics covered later.

Let f ( x n ) represent the output of a logic network that is being tested
for a possible fault. Clearly, the set of all 2n possible inputs to the networks
could be used as a FDTS. The use of all possible inputs for testing is referred
to as exhaustive testing and is impractical for networks with a large number of
input wires. However, the method is straightforward, as seen by the following
example.
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Consider the network shown in Fig. 12.2. Two copies of the network
were tested by applying all eight possible input combinations to each copy
and by observing the resulting network responses. Table 12.1 shows the results
of the test. Copy 1 is seen to contain a fault, since some incorrect responses
were obtained. Copy 1 has (5) s-a-0. On the other hand, copy 2 is judged to be
fault-free.

TABLE 12.1 EXHAUSTIVE TESTING

Tests Responses
Copy 1 Copy 2x X 2 *31

0 0 0 0 0
0 0 1 0 1
0 0 0 01
0 1 1 0 1

0 0 01 0
01 1 0 1

1 0 11 1
1 1 1 1 1

Most networks can be adequately tested without the use of the exhaustive
approach, as will be seen on the following pages where the determination
of efficient FDTSs for combinational logic networks will be discussed. An
efficient FDTS is a set of input combinations that tests for any possible fault
in a specified set of faults. The test set contains a minimum or near-minimum
number of input combinations.

12.3.1 Test Generation
Test generation can be described as the process of determining a test for a given
fault in a given network. When more than one such test exists, all tests that
can be used to detect the fault are usually determined. This section contains a
discussion of test generation for single stuck-at faults in combinational logic
networks. Two methods for test generation are described: the exclusive-OR
method and the path-sensitizing method. Also included are discussions of
untestable faults and test generation for multiple output networks.

Let f (\) represent a fault-free logic network. A test T. for fault p / d is
any input xJn to the network for which the following relationship is satisfied:

= f p/ d ( x i )
where the superscript j is the decimal value of the n binary inputs. For example,
from Fig. 12.2, x\= (001) is a test for 3/0 since /(X3) = 1 — 6 = /3/0(x3).
This definition is justified by observing that a test for a given fault must produce
a different response when the fault is present than when the fault is absent. A

(12.1)
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given fault may have more than one test vector, and a given test vector may test
for more than one fault.

The previous condition, which must be satisfied by an input in order to be
a fault test, may be restated in terms of the exclusive-OR operation as follows:

f K) © f p/d K ) = i
This alternative description forms the basis of the first test generation procedure
presented later.

A f a u l t t a b l e is a table that displays a set of faults and a set of test inputs.
Table 12.2 shows a fault table containing all single faults and all inputs for the
network in Fig. 12.2. A 1 in row i , column j , ( i , j ), indicates that the input
listed in row i is a test for the fault listed in column j . On the other hand, a 0
in (/, j ) indicates that input i is not a test for fault j . For example, input 010 is
a test for faults 1/1, 3/1, 4/1, and 5/1, but is not a test for 1/0, 2/0, 2/1, 3/0, 4/0,
or 5/0.

(12.2)

TABLE 12.2 FAULT TABLE

FaultsTests
X l X 2 X 3

0 0 0
0 0 1

3/11/1 2/0 2/1 3/0 4/0 4/1 5/0 5/11/0
0 0 0 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0 1 0

0 1 0 0 1 0 0 0 1 0 1 0 1
0 1 1 0 0 0 0 1 0 0 0 1 0
1 0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 1 0 0 0 1 01 1
0 0 1 0 0 0 1 0 1 01 1 1

0 0 0 0 0 0 0 0 1 01 1 1

Exclusive-OR method
A straightforward method for generating all possible tests for a given fault in a
network will now be described. Let f ( x n ) represent a fault-free network, and
let p/ d be a fault for which tests are to be derived. The method starts with the
construction of the truth tables of / and of f p/d. Next, compute and record
/ ® f p )d for each row of the truth tables. These steps are illustrated in Table
12.3 for faults 1/0, 2/1, and 3/0 in the network of Fig. 12.2.

From the definition of a fault test, Eq. 12-2, it follows that tests for fault
p/ d are indicated by the ones in the column corresponding to / ® f p^d . For
example, fault 1/0 can be tested only by input 110, whereas fault 3/0 can be
tested by either 001, 011, or 101.

Tests for fault p/ d are minterms of the switching function / ® f p l d .
Hence, by expressing / and f p/ d algebraically, an expression that gives all tests
for p/ d can be determined by application of Boolean algebra without the use of
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TABLE 12.3 EXCLUSIVE-OR METHOD

Tests Functions Realized by Faulty Circuits
/ ®/i/o / ®/2/ if v° f n 3/0 /®/3/0//JC *3*21

0 0 0 0 0 00 0 0 0
0 0 00 1 1 1 1 0 1

0 0 00 1 0 0 0 0 0
0 00 1 1 1 1 1 0 1

0 0 0 0 0 0 1 01 1
0 1 1 1 1 0 0 0 11

0 0 1 1 0 01 1 1 1
1 1 1 1 1 0 0 • 01 1

truth tables. If Fp/d represents all tests for fault p/ d , then Fp/ d — f 0 fp,d.
For fault 1/0 in Fig. 12.2,

F1/0 = (xxx2 + x3 ) ® (JC3) = xxx2x3
The minterm xxx2x3 implies test 110. For 3/0,

F3 /0 = ( xxx2 + x3 ) © ( xxx2 )

= ( x x + X2 )x3

= xxx3 + x2x3

xxx2x3 , and xxx2xv implying tests 001, 101, andwhich has minterms xxx2xv
011.

The algebraic approach is especially beneficial when functions of a large
number of variables are involved. For example, consider the network in Fig.
12.3. (Such a network might be used where only two-input gates are available.)

© ©o*1

-*2

©
©*3

*4

©*5

©'6 ©
Figure 12.3 Network with fan-out.

The six-variable function that corresponds to this network is
g(x6) = (*, + *2 + JC3 + X4)05 + X6 )
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Consider the generation of tests for 6/0. The truth table approach would require
the formation of three tables of 64 entries each. Clearly, this requires more
effort than the algebraic approach illustrated next for the same case:

G6/0 = S(X6) © £6/0(X6)

= [(*! 0 X 2 0 X 3 0 X4 )( x5 + X6 )i 0 [ x ] + X2 + X3 0 X4 ]

= ( X y + *2 0 X3 0 X4 )X5 X6— 0*2X5X6 + X 3X 5 X6 + X4 X 5 X 6
Many tests for 6/0 are seen to exist.

Tests for internal faults such as 10/1 can also be determined by the
preceding method as follows:

G'0/ ] = S(X6) ® 210/1 (X6)

= l ( X y 0 X2 0*3 0 X4 ) ( x5 0 x6)l 0 U5 0 X 6\
= X y X 2 X 3X 4( x5 0 x6 )

= X y X 2 X 3 X4 X s 0 X y X2 X3X4X6
One test implied by G10/ 1 is xx = x2 = x3 = x4 = x6 = 0, x5 = 1.

While the Exclusive-OR method is straightforward, computation is often
lengthy for the truth table approach and tedious for the algebraic approach.
This is especially true when tests must be derived for all 2r single faults in a
network. A test generation method that overcomes some of these computational
difficulties is presented in the next section.

Path-sensitizing Method
The approach taken in the path-sensitizing method is to first select a path from
the fault site to the network output. Inputs are then chosen so that the logic
values of lines in the path are a function of the fault. A path has been sensitized
from the fault site to the output when this condition has been established.
Consider the OR gate in Fig. 12.4a for an example. Output z is dependent on
the logic value at line (T) when the logic value at line (2) is 0. Let 1/0 be

o ©
©0r* x\ = 0

*2 =
1 /0

0 © 0 —©
(a) (b)

©©
3 3y=X\ = 0

*2= 1
* *1/0 I / I

©© ©
(c) (d)

Figure 12.4 Path sensitizing for gates, (a) OR gate with
1/0. (b) OR gate with 1/1. (c) AND gate with 1/0. (d) AND
gate with 1/1.
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the fault for which a test is being derived. The input x{ = 1, x2 = 0 makes the
output z = 1 when 1/0 is not present and z = 0 when the fault is present. Hence,
x { = x2 = 0 sensitizes a path from the potential fault 1/0 to the output and
is therefore a test for 1/0. The input x{ = x2 = 0 sensitizes a path for fault 1/1
as shown in Fig. 12.4b and is a test for 1/1. Paths can be sensitized in an AND
gate as shown in Figs. 12.4c and d. In general, paths are sensitized through the
basic logic gates as shown in Fig. 12.5.

* *i/0 /71

(a)

* *I/O /71

(b)

* *I/O in

(c)

* *I/O in

(d)

Figure 12.5 Path sensitizing in popular logic gates,

(a) OR gate, (b) NOR gate, (c) AND gate, (d) NAND
gate.

Path sensitizing can be extended for use in networks of logic gates. This
extension will now be described for the fan-out-free network shown in Fig.
12.6. First, a test will be determined for fault 1/0. Only one path from lead (T)
to the network output exists and will be sensitized as shown in Fig. 12.6a. The
input xx = 1 is required to establish the proper logic value at line (T) to test for
a stuck-at-0 fault, while the value x2 = 1 is necessary for sensitizing the path
through the AND gate. To extend the path through the OR gate to the output,
input x3 = 0 is needed. The test 110 has therefore been established for fault 1/0.

A
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©
*1 = 1

*2= 1
*I /O

I© ©T^' - m)
©A3 = 0

©
(a)

© 0*1

*2 ©© ® — m)
*A3 = 0 Figure 12.6 Path sensitizing

for networks, (a) Path for 1/0.
(b) Path for 3/1.

3/1

(b)

Now consider the test determination for fault 3/1. The input JC3 = 0 is
required to initialize the path since a s-a-1 fault is being considered. A path is
sensitized to the output by establishing logic value 0 at lead ( 4). This lead is
labeled x4 as shown in Fig. 12.6b. Setting x3 = x4 = 0 sensitizes the necessary
path and is referred to as the forward trace step in the path-sensitizing method.
To make x4 = 0, xx and x2 must be either 00, 01, or 10. Fixing xl and JC2 is
referred to as the backward trace step in the method. The three tests 000, 010,
or 100 have thus been found for 3/1.

The path-sensitizing method can be summarized as follows:

1. Select the fault for which tests are to be determined and select a path
from the fault site to the network output.

2. Sensitize the path (forward trace).
3. Establish network inputs as required by step 2 (backward trace).
A useful application of path sensitizing besides test generation is the

determination of the set of faults tested by a given input. Again consider the
network in Fig. 12.6 with input 110. For clarity, the network has been redrawn
in Fig. 12.7. Lines along the path from input x } to the network output are
labeled 1 0, which has the following meaning: (logic value with no fault)—> (logic value with fault). Hence, faults 1/0, 4/0, and 5/0 are all tested by input
110. The path from(2 ) to (4 ) is also sensitized by x } = 1. Therefore, the input
110 tests for 2/0 also.

® 1 -> 0

3i'A , = 1

*2 = 1
*1/0

© 1 -* 0
/(*3)

Figure 12.7 Propagation along
a sensitized path.

A3- 0
©
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The previous discussion can be summarized as follows. For a given
sensitized path, each lead along the path is tested for an s-a-0 or s-a-1 fault.
This property also leads to the following fact about fan-out-free networks. Fan-
out-free networks can be tested for all possible single s-a-0 and s-a-1 faults by
testing each input lead for s-a-0 and s-a-1 faults. Networks with fan-out do not
exhibit this property.

The use of path sensitizing on networks with fan-out will now be consid-
ered. Care must be taken for this case. Three examples involving networks with
fan-out will be presented to illustrate the potential problems. After identification
of the problems, guidelines will be given for avoiding the problems.

A simple network with fan-out is shown in Fig. 12.8. Consider the deriva-
tion of a test for fault 2/0 in the network. Since line ( 2 ) fans out, there are two
paths from the fault site to the network output. Hence, there are two single paths
and one double path that can be sensitized. These three cases are illustrated in

= I

x2 ~ 1
©2/0

)©
XT,= 0

©
(a)

©
A'|= 0 )

>̂ 01 ^ 0
A2 = 1

2/0 I o© I .

1 -> 0*3 = 1 ©
(b)

©
A, = 1 1 ^ 0:©>

**2 =
2/0 r>© i

A3 = 1 1 -> 0©
(c)

Figure 12.8 Path sensitizing in network with fan-
out. (a) Single path produced by 110. (b) Single path
produced by 011. (b) Double paths produced by 111.
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Figs. 12.8a, b, and c, respectively.The notation 1
each case produces a test for 2/0. Hence, 110, 011, and 111 are all tests for 2/0.

Tests will now be derived for fault 2/0 in the fan-out network of Fig.
12.9. Note that this is a simple 2-to-l multiplexer with x2 being the selection
control bit. Again, two single paths and one double path exist for the fault.
Notice, however, that when the double path is sensitized the network output is
1 whether or not the fault 2/0 is present. Hence, the input 111 is not a test for
the fault. But inputs 110 and 011 are both tests.

0 is again used to show that

©
X \ = 1 ©

© j
X

J

*2 = l%>o ®2/0

©
*3 = 0 ©

(a)

©x\ - 0 ) I ©©
©

*
I -> 0

*2 = 1
i K. ©w°

2/0
i ®0 -» 1

0-> 1*3 = 1 ©
(b)

©
*1 = 1 ©© ! ©© J_-±0. I

X
J

*2 = 1
1 JSn ©w°

2/0
i ©n>1

*3 = 1
©

(c)

Figure 12.9 Path sensitizing-network with unequal parity,
(a) Single path produced by 110. (b) Single path produced by
011. (c) Double path produced by 111 is not a test.

The last two examples illustrate that in one case a multiple path produced
a test, but in another case a multiple path did not produce a test. Single paths
produced tests for both examples. A generalization that might be considered
after seeing these examples is that only single paths should be sensitized when
deriving tests. However, the network shown in Fig. 12.10 provides a coun-
terexample to such a generalization. This network is often used in place of an
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exclusive-OR gate, since it utilizes only simple two-input NAND gates with no
additional inverters. The attempt to obtain a test for a/\ by sensitizing a single
path is shown in Fig. 12.10a. Contradictory requirements for network inputs
are indicated because a 0 cannot be applied to a and still have a 0 on the lower
input of the nonpath NAND gate as shown. Similar results are obtained when
the other single path is sensitized. Figure 12.10b gives the successful derivation
of a test when the double path is sensitized.

1 y>U-r
S a/1 L 1

0

(a)

1 i
•*i = 1

X 2 = 1 s a/ l iL
_

1
1

(b)

Figure 12.10 Counterexample to single path sensitizing,

(a) Single path does not produce a test, (b) Double path
produces a test.

The effect of fan-out on path sensitizing can be summarized by the
following three cases:

Case 1. Both single and multiple paths produce tests.
Case 2. Only single paths produce tests.
Case 3. Only multiple paths produce tests.

The following guidelines are helpful for avoiding problems that can arise
when using path sensitizing to derive tests for a fault in fan-out networks.

1. Attempt to derive tests using only single paths. Continue to step 2 only if
no tests are found.

2. Attempt to derive tests using multiple paths. Check each potential test for
validity. Stop when a test is found.

3. If there are m possible single paths, all possible multiple paths of 2,
3,. . . , m combinations must be examined before concluding that no test
exists.

A procedure based on these guidelines does not guarantee that all tests for a
given fault will be found.
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12.3.2 Untestable faults
A fault p/ d is said to be testable if and only if there exists at least one test for the
fault. All faults considered in previous examples have been testable. However,
not all faults are testable, as will be shown next. Such faults are referred to as
untestable faults.

Consider fault 8/1 in the network given in Fig. 12.11a. It can be shown
algebraically that f */ x = fa. Therefore, by the exclusive-OR method, F^ 1 =
0, which implies that no tests exist for fault 8/1. Hence, fault 8/1 is untestable.

© ©x\

© ©x2

© fa

©©
x3

©
(a)

© ©*1 © ©x2

>̂§]— h*3 © ©©

©
(b)

Figure 12.11 Networks with redundancy, (a) Literal
redundancy, (b) Term redundancy.

A similar situation arises for fault 13/0 in the network of Fig. 12.11b.
8/1 13/0Function / y = fy and therefore Fp = 0, and thus fault 13/0 is untestable.

Note, however, that F®/0 and F^3/1 are nonzero, as shown next:

Fa ° = (*i*2 + *1*2*3) ® (*1*2)

= xlx2 x3
13/1 = ( xxx2 + X x x3 + X 2 X3 ) ® (1)

— *1*2 *1*3
Hence, 8/0 in fa and 13/1 in fp are testable.

The question of how to identify untestable faults thus arises. An answer
to the question can be found in a study of redundancy in logic networks. A
network contains redundancy if and only if there exists a line in the network

F
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that can be cut and replaced by an appropriate logical constant (0 or 1) without
changing the function realized by the network. A network without redundancy
is referred to as a nonredundant network. The networks in Fig. 12.11 both
contain redundancy, as demonstrated next.

Line (8) of the network in Fig. 12.11a can be cut and replaced with a
constant 1 input to the AND gate without modifying the logic function fa . This
can be easily justified with Boolean algebra. Hence, the literal x2 is not needed
in the expression and therefore indicates a redundancy in the network.

In Fig. 12.11b, line (l3) can be cut and replaced by logic 0 without
changing the function realized by the network. Therefore, the line is redundant.

Untestable single faults can occur only in networks with redundancy.
The untestable faults correspond to redundant lines in the network and can be
identified as follows. Let i be a redundant line in a network. If i can be cut and
replaced by the logical constant value v (0 or 1, but not both), the fault i / v is
untestable. However, fault i / v is testable. If i can by replaced by both v and u,
faults i / v and i / v are both untestable.

12.3.3 Multiple Output Networks
Most logic networks that occur in practice have more than one output terminal.
In other words, more than one logic function is realized by the network. Figure
12.12 shows a network with two output terminals. When generating tests for
a fault in this network, both output functions must be considered. Let Fp,d
represent the Boolean function that describes all possible tests for fault p/ d .
Then

pp/ d _ pP /d pP /d
1 2

where and F2
d represent all tests for fault p/d at terminals /, and f

respectively. For example, consider faults 1/0 and 3/1 in Fig. 12.12:
F1/0 = F l{ /0 + F21/0

= [(x, x2 + x2x3) © (x2x3)] + [(x2x3 + x3x4) © (x2x3 + x3x4)]

= [X!X2X3] + [0]

2’

= X, X2X3

©X ,
©

© /]© ©*2 S L Jx3 ©© h© )©*4

Figure 12.12 Multiple output network.
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1/0 = 0 since fault 1/0 cannot be observed at fv
F3/1 = F p + F y1

= l ( x ] x2 + X 2x3 ) 0 ( xxx2 + X 2 ) ] 0 [ ( x2x3 0 x3x4 ) 0 ( x2 0 x4 ) ]

= [ xxx2 x3\0 [ x2 x3 0 X 3 X4 ]

Fi

= x2 x3 0 X3 X4
In general, for a network with m output terminals, the tests for fault p/d are
given by the following:

Fp/d = Fp/d + Ff ,d + • • • + Fp/d

Many other algorithms exist for generating tests for faults in combina-
tional logic circuits, most of which are designed to produce tests automatically
from the circuit description. For example, the D-algorithm [20] is an automated
path-sensitization method that utilizes special logic values to represent error
conditions: D represents a signal whose correct value should be 1 but is erro-

neously 0, while D represents the opposite error condition. The D-algorithm
automatically determines the inputs required to produce a D (or D) at the site
of a fault, and additional inputs required to propagate a D or D to a primary
output. LASAR (Logic Automated Stimulus and Response) [20] likewise prop-
agates error conditions by using “forcing” and “critical” values at each logic
gate. PODEM [20] uses a branch and bound method to examine all input com-
binations by considering the values of one input signal at a time to determine
if it can lead to a test.

12.3.4 Fault Detection Test Sets
Two methods for determining tests for a given single, testable s-a-0 or s-a-
1 fault were presented in the previous section. The problem of selecting an
FDTS for a given network will be considered in this section. An FDTS for a
given network is said to be complete if there is at least one test in the set for
every possible fault in the network. A minimum FDTS is a complete FDTS that
contains the fewest number of tests of any complete FDTS. The network in
Fig. 12.8 has the following minimum FDTS:

FDTSm = {010, 011, 101, 110}
We will derive this test set at the end of this section.

In the following paragraphs, methods for selecting minimum FDTSs will
be considered. The selection of near-minimum FDTSs will also be described.
The fault table of a network is assumed to be known before selection of a FDTS
is begun. Any one of the methods presented in the previous section can be used
to produce the fault table. However, the table need not contain all possible faults
of a network when used in the selection process. Faults can be eliminated from
the table when they are either equivalent to or dominate some other fault in the
table.

Consider the AND gate of Fig. 12.13a. Its complete fault table is given
in Fig. 12.13b. From this table it can be seen that faults 1/0, 2/0, and 3/0 have
the exact same test set: {11}. Faults with the same test set are called equivalent
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faults.Since the test set for one of these faults will detect the others, all but one
fault can be deleted from any set of equivalent faults in a test table.

©*i
z

*2

CD
(a)

Tests Faults
1/0 1/1 2/0 2/1 3/0 3/1*2*i

0 00 0 0 0 0 1
0 01 0 1 0 0 1

01 0 0 0 1 0 . 1
1 1 1 0 0 01 1

(b)

Tests Faults
1/0 1/1 2/1x X 21

0 0 0 00
0 0 01 1

0 0 01 1
1 0 01 1

(c)

Figure 12.13 Fault table reduction, (a) AND gate, (b) Complete
fault table, (c) Reduced fault table.

Next, note that the test set for fault 1/1, {01}, is a subset of the test set
for fault 3/1, {01, 10, 00}. We say that a fault fY dominates another fault f2 if
the test set of f2 is a proper subset of the test set of fx . In this case, /, (the
dominating fault) can be removed from the fault table since any test for f2 will
also be a test for .

For the AND gate of Fig. 12.13a, the removal of faults using fault equiva-
lence and fault dominance leaves the reduced fault table of Fig. 12.13c. Similar
reductions can be made for the other logic gate types. Because of these reduc-
tions, only faults at network checkpoints must be considered. The checkpoints
of a network are the wires of the network that satisfy either of the following
descriptions:

1. All input wires that are not fan-out stems
2. All wires in the network that are fan-out branches

The term fan-out stem refers to the wire preceding the fanout point, and the term
fan-out branches refers to the wires beyond the fan-out point. The checkpoints

\
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Section 12.3 Combinational Logic Circuit Testing 755

for the network in Fig. 12.8are 1, 3, 4, and 5.Table 12.4 shows the corresponding
fault table.

TABLE 12.4 FAULT TABLE WITH CHECKPOINT FAULTS ONLY
FOR FIGURE 12.8

Tests
X j x2 x3

0 0 0

Faults
1/0 1/1 3/0 3/1 4/0 4/1 5/0 5/1

0 0 1 1
0 1 0 1 1
0 1 1 1 1
1 0 0 1
1 0 1 11
1 1 0 1 1
1 1 1

A minimum fault detection test set can be selected from a fault table
by choosing the fewest number of inputs that cover all faults. This process
is equivalent to the prime implicant selection step of the Quine-McCluskey
procedure, in which the fewest number of prime implicants is chosen that cover
all minterms. The selection procedure described in Chapter 3 for the Quine-
McCluskey procedure is directly applicable here and will not be repeated.
Applying the procedure to Table 12.4 yields {010, 011, 101, 110} as a minimum
test set.

The selection of a minimum test set can become lengthy for fault tables
of moderate to large size. Hence, the use of procedures for selecting test sets
that are not necessarily minimum is often more practical. As will be seen, such
procedures often yield a minimum set. The near-minimum procedure described
here is based on the computation of a weight for each input in the fault table.
The weight of a given input is defined as the number of faults tested by the input.
Inputs for the near-minimum test set are selected by the following procedure:

Step 1. Compute the weight of each input (row) in the fault table,

step 2. Select the input with the largest weight. Make an arbitrary
choice if more than one input has the largest weight,
step 3. Reduce the fault table by deleting the input selected and all
the faults covered by this input.
step 4. Recompute the weight of each input in the reduced fault
table.
steps. Terminate the procedure when all inputs in the reduced
table have weight 0. Otherwise, repeat steps 2 through 5.
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EXAMPLE 12.1 The procedure will now be illustrated by a
different example circuit whose fault table is
displayed in Table 12.5.

TABLE 12.5 FAULT TABLE WITH WEIGHTS

Faults
Tests 1 2 3 4 5 6 7 8 9 Weights

1 2T 11

1 1 2T12
2T13 1 1

1 1 1 3
1 1 1 1Is 4

1 1 1 1 4I

Step 1. The inputs are weighted as follows: Tv 2; Tv 2; Tv 2; T4, 3;
T 4- T 4
step 2. Select Ty
step 3. The reduced fault table is given in Table 12.6a.

TABLE 12.6 FAULT TABLE REDUCTION PROCESS (a) T, REMOVED (b) r, REMOVED (c) Tb
REMOVED (d) T, REMOVED

Faults
2 4 5 7 8 WeightsTests Faults

Tests 2 5 8 Weights21 1T l

1 2 1TL 2 1 T12 1
1 1 2 1T13 I

I I I Il\ IA
2 1 1 26̂ 1 1 6̂

(b)(a)

Faults
Tests 5 Weights Faults

WeightsTestsoT2

T3 1 1 0TJ 2

0TA 1 1

(c) (d)
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Step 4. New weights are shown in the reduced Table 12.6a.
Step 5. Repeat steps 2 through 5.
Step 2. Select Tx .
Step 3. The reduced fault table is given in Table 12.6b.
Step 4. New weights are shown in the reduced Table 12.6b.
Step 5. Repeat steps 2 through 5.
Step 2. Select T6.
Steps 3 and 4. See Table 12.6c.
Step 5. Repeat steps 2 through 5.
Step 2. Select T3 .
Steps 3 and 4. See Table 12.6d.
Steps. Stop. Test set = [ Tv Tv T5 , T6 }.

The choice of whether to find a minimum test set or to find a near-
minimum test set will vary with the situation. When the most efficient test set
is a necessity in order to minimize testing time, a minimum test set should
be found. But when test selection time is more important than testing time, a
near-minimum test set should be the objective.

12.3.5 Fault Location and Diagnosis
The problem of locating a given fault in a network can be described as the
ability to distinguish the given fault from all other possible faults that may
occur in the network. Two faults are distinguishable if and only if there exists
at least one fault detection test for one of the faults that is not a test for the
other fault. From Fig. 12.6, faults 1/1 and 2/1 are distinguishable. Among other
distinguishable faults in Fig. 12.6 are 3/0 and 5/0. Two or more faults are
indistinguishable or equivalent if and only if they have the exact same set of
fault detection tests. In Fig. 12.6, {1/0, 2/0, 4/0} and {3/1, 4/1, 5/1} are seen to
be two sets of indistinguishable faults.

Let Flfd - j,d> be a Boolean function that represents all tests that distin
guish between faults i / d. and j jd - in a network realizing f ( xn ). Then

f l / d i ~ j / d j _ p i /d . 0 f J / d j (12.3)
where Fl ,dt and F^dJ describe all tests for i / d. and j / d j , respectively. If i / d .

and j / d j are indistinguishable, Flldi ~*ld> = 0.
For an illustration of Eq. 12.3, consider Fig. 12.6:

p W -2/ i _
F\ /\ 0 F V\

= XXX2X3 © X{X2X3

= XlX2X3+ X{X2X3
Therefore, tests 010 and 100 can distinguish between faults 1/1 and 2/1.

/0-2/0 _
^1 /0 0 p2/0

= XXX2X3 © *,*2*3

= 0
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Hence, faults 1/0 and 2/0 are indistinguishable.
Faults that are distinguishable from all other faults can be precisely

located by the use of a complete fault location test set (FLTS). However, a fault
that is indistinguishable from other faults can be located only to within the set
of equivalent faults. The precision to which an FLTS can locate a fault is called
the fault resolution of the set.

A test set is a fault location test set if and only if the response of the
network to the test input sequence uniquely identifies the fault with the desired
resolution. A FDTS must produce a response that identifies the network as
fault-free or that identifies the fault with the desired resolution. The set {001,
010, Oi l , 100, 110} is a FDTS for the network in Fig. 12.8.

The meanings of the responses that can be produced by a test set can
be conveniently displayed in a fault dictionary. Table 12.7 shows a maximum
resolution fault dictionary for the network in Fig. 12.8. Such a dictionary is
constructed by determining the network responses to each input in the test set
in the presence of each unique single fault condition.

TABLE 12.7 FAULT DICTIONARY FOR FIGURE 12.8

Test
Sequence:

Response
sequence,

Possible
Conditions
2/0,8/0
3/0,5/0,7/0
1/0,4/0,6/0
Fault-free

XlX 2X 3
011 100001 010 110

0 0 0 00
0 0 0 0 1
0 0 1 0 0z
0 0 0 11
0 0 4/11 1 1

1/1, 3/10 1 1 0 1
0 5/11 1 0 1
0 1 1 2/11 1

6/1,7/1,8/11 1 1 1 1

12.3.6 Random Testing
The test generation methods described so far are all deterministic, each test
vector is explicidy selected to detect a specified set of faults. For very large cir-
cuits, the generation of complete deterministic tests sets is expensive and often
impractical. Where built-in test methods are used, circuits that automatically
generate deterministic test sets are especially difficult to construct.

In contrast, randomly generated test vectors are often capable of achieving
high fault coverage (although usually less than 100%). Figure 12.14 shows the
relationship between fault coverage and the number of test vectors applied
during testing of a typical large circuit. The first few test vectors applied to a
circuit usually detect a high percentage of the possible faults.Consequently, the
fault coverage obtained by a small set of randomly generated test vectors may be
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%
Faults

detected

Figure 12.14 Fault coverage
versus number of test vectors.Number of test vectors

sufficiently high to produce an acceptable degree of confidence that the circuit
is fault free. Random or pseudorandom test vectors are easily generated by
algorithms implemented in software on a test microprocessor or using special
on-chip test circuits.

In general, 2 different functions can be realized by an n-input combina-
tional logic circuit, all but one of them incorrect. For a given input vector, half
of the possible functions produce an output of 0, and the other half produce an
output of 1. Thus, a single test vector determines whether the circuit realizes
one of the (22 ) / 2 = 22 ~ ] faulty functions or is one of the (22 )/2 functions
having the same output as the correct function. If a correct result is obtained, we
may conclude that the circuit does not realize one of the 2 - faulty functions.
A second vector rules out half of the remaining functions, and so on. In general,
if correct responses are obtained for m test vectors, the probability that all faults
in the circuit have been detected is approximately

2n-iIX, 2
PD = 2r - 1

By applying a sufficiently large number of test vectors, m, PD can be made
very close to 1. However, this value is not exact. Many faults are resistant to
testing by random patterns.

Consider the eight-input AND gate of Fig. 12.15a. The fault 9/1 is de-
tected by any input vector except x ] . . . JC8 = {11111111}. Therefore, the prob-
ability that fault 9/1 is detected by a random pattern is 255/256. In contrast,
there is only one test for fault 1/1, which i sx { . . . x8 = {01111111}. Therefore,
the probability of fault 1/1 being detected by a random pattern is 1/256.

In general, gates with a high fan-in are called random pattern resistant,
because they are subject to faults with low probabilities of detection by random
patterns. Other random pattern resistant faults include those on signal lines that
are separated by many levels of logic from the primary inputs or the primary
outputs. Careful design can often eliminate most of the random pattern resistant
faults from a circuit.

When a circuit does contain random pattern resistant faults, deterministic
tests are often used to detect them, with the rest of the circuit tested by a sequence
of random patterns.

Testability analysis programs are available that evaluate the controllabil-
ity and observability of faults in digital circuits. Examples include the Sandia
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SJZ*1xi © ©.*2x2 © ©? ©x4
; ©x4 —z=r9/1 : ©© **5 x5 ©© ©x6 —^©-*6 : ©©xi xi ©*8

(a) (b)

Figure 12.15 Testing with random patterns, (a) Fault 9/1 easily tested, (b) Fault
1/1 random pattern resistant.

Controllability Observability Analysis Program (SCOAP) [15]. The reader is
referred to [16] for other examples.

12.4 Sequential Logic Circuit Testing
We will now turn out attention to the problem of fault diagnosis of sequential
logic circuits. Synchronous sequential circuits that can be represented by the
finite-state machine model given in Chapter 8 will be considered. A block
diagram of the model is given in Fig. 8.1. The equations that describe the
model are repeated here.

= g i ( x v ... , x n , y v ... , y r ),
= h j ( x v ..., x n , y v ..., y r ),
= YJ

In the discussions that follow, the circuit inputs x v . . . , x n will be referred
to as primary inputs to the combinational logic in the model. Circuit outputs
z{ , . . . , zm will be called primary outputs. The states y{ , . . . , yr and next states
Y{ , . . . , Y r will be called secondary inputs and secondary outputs, respectively.

It will be assumed that in general only primary inputs can be indepen-
dently controlled and that only primary outputs can be observed during testing.
In other words, tests can only be applied at the xv . . . , xn inputs, and test
responses can only be observed at the z x , . . . , zm outputs. Hence, the states of
the circuit cannot be observed directly.

It will also be assumed that the fault-free circuit is a realization of a
reduced state table. In other words, the state table that corresponds to the fault-
free circuit contains no equivalent states. Finally, it will be assumed that the
fault-free circuit is strongly connected. A circuit is strongly connected if and
only if there exists for each ordered pair of states (£. , 5. ) of the circuit an input
sequence that will transfer the circuit from state St to state Sj .

Generally, a test sequence for a specified fault will consist of two dis-
joint subsequences called the initialization sequence (IS) and the observation

i = 1, . • . , m
j = l , .. . , r
j = 1, . .. , r

Y.
k+\y j
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sequence (OS). The purpose of the initialization sequence is to take the ma-
chine under test from an unknown starting state to a known state. Then the
observation sequence makes the result of the state transition observable from
the primary outputs.

An alternative to the use of an initialization sequence is the incorporation
of special reset logic into the realization of the machine. However, the reset
logic would be subject to failure and in many cases would not be practical
for all possible states of a machine. Before presenting methods for developing
initialization sequences, the following background material is necessary.

A transfer sequence (TS) for states S - and S. of a sequential machine is
the shortest input sequence that will take the machine from state S. to state S..
The following example illustrates the derivation of transfer sequences.

EXAMPLE 12.2 Let us derive the minimum input sequence
that will take the sequential circuit described
by the state table in Fig. 12.16a from state A
to state B.

To accomplish this, we assume the circuit is in state A and we form the tree
shown in Fig. 12.16b. The tree, which is derived from the state table, indicates
that an input of 0 or 1, when applied to the circuit in state A , will transfer
the circuit to state A or state C, respectively. The complete tree is generated
by following this procedure and terminating a branch whenever a state is
duplicated.

0 1

A/0 C/1A

Bl1 C/0B

C D/1 C/0

BIO A/\D
Figure 12.16 Deriving a
transfer sequence, (a) State
table, (b) Transfer tree.

(a)

Figure 12.16b shows that the shortest transfer sequence that will drive
the circuit from state A to state B is x = 100.

A homing sequence (HS) is an input sequence that produces an output re-
sponse that uniquely indicates the state of a machine after the homing sequence
has been applied. A preset homing sequence is a homing sequence that does not
employ the output response to determine subsequent inputs in the sequence. In
other words, the symbols in the sequence are independent of the response to
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the sequence. The derivation of preset homing sequences will be illustrated by
the following example.

EXAMPLE 12.3 Let us derive a homing sequence for the
sequential circuit defined by the state table
shown in Fig. 12.17a.
The homing sequence is derived using the homing tree shown in Fig. 12.17b.
Each node of the tree represents a set of states referred to as an ambiguity,
since it indicates a lack of knowledge about the actual state of the circuit. A
branch is drawn from each node for each possible input to the circuit. The tree
is constructed as follows. Assume the ambiguity ( A B C D ), which indicates
that the state of the circuit is unknown. Determine the ambiguity ( A B )( C D )
for a 0 input. Note that the component ( A B ) corresponds to an output of 1, and
the component (CD) corresponds to an output of 0. The complete homing tree
is derived by generating the branches in this manner. A branch is terminated
whenever all components of an ambiguity contain only a single state or when an
ambiguity is repeated. The ambiguities containing only single state components
are labeled with an (S ), as shown in Fig. 12.17b. The input sequences that lead
from the initial ambiguity { A B C D ) to an ambiguity containing only single
state components are homing sequences.

( ABCD )

x
0 1

( AB )( CD ) ( AB )( BD )
C/0 A!1A

A/ 1 B!0B

( A )(Q( B )( D ) (.A )( B )( B )( D) ( A )( Q( AB ) ( A )( B )( BD )D/0 B/ lC cs) ( S )
B/\ D/0D

(a)

(b)

Initial State Input Output Final State
A 00 00 D

00 10 cB
C 00 01 B
D 00 11 A

(c)

Figure 12.17 Preset homing sequence, (a) State table, (b) Homing tree,

(c) Homing sequence 00.

An analysis of the homing sequence 00 is shown in Fig. 12.17c. Note
that every output sequence can be identified with a unique final state.
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All reduced sequential machines possess at least one homing sequence.
By definition, a strongly connected machine has at least one transfer sequence
for each ordered pair of states. Hence, a reduced, strongly connected machine
M can be initialized to any desired state Sj by the following method:

1. Select a homing sequence (HS) for M.

2. Apply HS to M and observe the output response.
3. Determine the state of M after applying HS. Call this state S ..
4. If S. S ., apply a transfer sequence TS (5., S ).
The generation of initialization sequences as described pertains to fault-

free circuits. Hence, if an initialization sequence so generated is applied to a
faulty circuit, the desired initialization may or may not occur. This suggests
two questions. First, if the proper initialization does not occur, can the fault be
detected by the method described here? Second, can initialization sequences
be generated that are independent of the fault? Answers to these questions are
beyond the scope of this text.

In practice, the design of initialization and observation sequences is often
impractical for circuits having more than a small number of states. In such cases,
special design for testability methods are used in the sequential circuit design
to improve the ability to force the circuit into a desired state and to observe its
outputs. As a result, the cost of developing a test for the circuit can be greatly
reduced. We shall examine these methods in the next section.

•12.5 Design for Testability
A number of design techniques have been developed to improve the testability of
digital logic circuits, that is, to make it easier to derive and apply test procedures.
Careful design can make logic signal lines in a circuit more controllable or
observable. The controllability of a signal line is the ease with which it can
be set to a desired logic value from the primary inputs of the circuit. The
observability of a logic line is the ease with which the current logic value of
that line can be propagated to an observable primary output.

In addition to improving controllability and observability through logic
design methods, special circuits that participate in the application of test vectors
and the capturing of results are often integrated into the circuit design. In many
cases, these special built-in self-test (BIST) features are created with simple
design modifications; in other cases, dedicated test circuits are added to the
circuit.

This section will examine several techniques to improve sequential circuit
testability, including the scan path design method to improve the controllabil-
ity and observability of the state variables of sequential logic circuits and
techniques for creating BIST circuits for use in integrated-circuit chips and
printed-circuit boards.
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12.5.1 Scan Path Design
HNlM IM/iiWMMi'K-mi'

A sequential circuit with n inputs and r memory elements, as shown in Fig.
12.18a, requires 2n+r test vectors to perform an exhaustive test of the combina-
tional logic block (CLB). However, the CLB state variable inputs y { . . . yr , that
is, the memory element outputs, are not directly controllable from the primary
inputs JCJ . . . xn . Likewise, the CLB next-state outputs Y{ . . . Yr are not directly
observable from the primary outputs z { . . . zm . Therefore, significantly more
than 2n+r test vectors may be required to produce all the 2n+r patterns at the
CLB inputs and to verify that the proper CLB outputs were generated for each.

Z\

* Zmx„ Combinational
logic

*

Yr Y iy i

Memory
elements

(a)

* z\X \

>X„ ZmCombinational
logic

>

Yr Y .Vi

< .
Test data out TIN (Test/Normal)

Test data in
(b)

Figure 12.18 Incorporating scan design into a sequential
circuit, (a) Generic sequential circuit model, (b) Flip-flops
isolated from the combinational logic for testing.
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Sequential circuit testability can be improved dramatically by isolating
the memory elements during test operations and providing special inputs and
outputs to control and observe their values.

Scan path design is a commonly used method to allow sequential circuit
flip-flops to be configured for test and normal operation modes. As shown
in Fig. 12.18b, a special control signal pin, T / N , is added to the circuit to
configure the flip-flops for either the test mode or normal mode of operation.
To provide the two operating modes, a two-to-one multiplexer is added to
each flip-flop excitation input, as illustrated in Fig. 12.19, with the multiplexer
controlled by the T / N pin. In normal mode ( T / N = 0), the CLB next-state
outputs Y x . . . Yr are connected to the excitation inputs of the flip-flops; that is,
D = Y. for each flip-flop. Thus the circuit operates according to its state table.
In test mode ( T / N = 1), each flip-flop input is connected to the output of the
previous flip-flop; that is, D = yix , configuring the flip-flops into a serial shift
register, called the scan path. Note that the input to flip-flop yx is connected to
the Scan-in pin, and the output of flip-flop yr is connected to the Scan-out pin.

From ihc CLB outputs

> 2Y\ Yr
Scan-out -*

0 0C/3
0Dc

'5- DScan-in D73 <6 Q 1Q Q>7-1o > CX > cPJ > c
T/N

Clock

’ r

>2 yryi

To the CLB inputs

Figure 12.19 Scan path register design.

The test process for a synchronous sequential circuit implemented with
the scan path design method is as follows:

step 1. Verify the operation of the flip-flops by setting T / N = 1 and
shifting a designated pattern of ones and zeros through the scan
path using the Scan-in line. Verify that the sequence on Scan-out
is the same as the sequence applied to Scan-in.
step 2. We can proceed in two ways: (a) verify the state table, or
(b) test the CLB for stuck-at faults.
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(a) To verify the state table of the circuit, the combinational logic
block is tested as follows.

1. Set T / N = 1 to select the test mode.
2. Shift a pattern y x .. . y r into the flip-flops to force the circuit

into a specific state.
3. If all state transitions in the state table have been verified,

stop. Otherwise, apply an input pattern to x x . . . x n.
4. Observe the primary outputs z l . . . z m and verify that z =

/(x, y)._
5. Set T / N = 0 to select the normal mode.
6. Clock the circuit to force a state transition, that is, to load

Y x ... y into the flip-flops.
7. Set T / N = 1 to select the test mode.
8. Shift out the new state, corresponding to the value of

Y ] ... Y r produced by the CLB, and verify that y = /(x, y).
While shifting out the current state, shift in the next pattern
for y x . . . y r . G o t o step 3.

(b) Apply the FDTS for the CLB.

EXAMPLE 12.4 Design a synchronous sequential circuit for
the state table given in Fig. 12.20a using the
scan path design method, and design a test
sequence.
The binary state table for one specific state assignment for y ^ and y2 is given
in Fig. 12.20b. From this table, the following excitation and output equations
are derived:

£>i = Y x = x y x + y x y2
D2 = Y2 = xv, + xy, y2 + xy2

z = x y2 + y I y2
The logic circuit is given in Fig. 12.20c. Note the multiplexers at the flip-flop
inputs D, and D v

The circuit is tested as follows:

Step 1. Set T / N = 1 to select the test mode and shift a sequence of
ones and zeros through the scan path, say {010100110}, to verify
that all flip-flops in the scan path can be changed between 0 and 1.
Step 2. Verify the state table of Fig. 12.20a. Figure 12.20d summa-
rizes this test process, which verifies each of the state transitions
and outputs of the state table. First the circuit is forced into state A
by shifting 00 into the flip-flops, setting y x y2 = 00, and setting* = 0.
After verifying that z = 0, the circuit is returned to the normal mode
by setting T / N = 0, and the circuit is clocked to force a state tran-
sition. The new flip-flop outputs are then observed in the next test
step by returning the circuit to the test mode and shifting out the
contents of the flip-flops, verifying that state A was reached ( Y X Y2 =
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X

X

0 1

A A /0 Bl0

A /0 B/\B

D/1 C/1C

D C/0 A/0

(a)

x
y \ y i 0 l

*oi/o00 00/0 0y2
Q D01 00/0 01/1 1 +>’2 Q C <11 10/1 11/1 l .

11/010 00/0
y\ Yi' z 0y i
(b) Q D

1
Q C < ty i

Clock 7//V wScan-inScan-out

(c)

Test Inputs
Shift in

New State

Test Outputs
Shift out Previous

Next State
Test Apply

Input
Verify

OutputClock
Cycles Y Y

i 1 23V2 x z
00 01-3 0

4-6 00 0 001
017-9 01 0 0
0010-12

13-15
16-18
19-21
22-25
26-27

01 1 1
0111 0 1
101 111

10 0 110
1110 1 0
00

(d)

Figure 12.20 Scan path design of a synchronous sequential circuit, (a) State
table, (b) Binary state table, (c) Logic diagram, (d) State transition test
sequence.
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00). While shifting out this result, the state for test 2 in the test table
of Fig. 12.20d is shifted into the flip-flops. This process is repeated
until all eight state transitions have been tested and verified.

In general, for a sequential circuit with n inputs and r state variables, the
number of clock cycles needed to verify the state table is

= ( 2n ) x ( 2r ) x (r + 1) + A-
= ( 2n+r ) x (r + 1) + r

where r -f 1 cycles are needed to shift in each state vector and clock the circuit
for each of the 2n+r state/input combinations, and r additional clock cycles are
needed to shift out the final result. For the state table of the previous example,

= (21+z) x (2 + 1) + 2
= 27 clock cycles

Nelks
(12.4)

Nelks

B 12.6 Built-in Self-test
Built-in self-test (BIST) improves device testing by placing test pattern gen-
eration and/or response capture and evaluation circuitry within the circuit to
be tested, as was depicted in Fig. 12.1b. This allows much of the testing to
proceed automatically without the aid of a tester. Figure 12.21 illustrates the use
of BIST circuits. Autonomous linear feedback shift register (ALFSR) elements
are used to generate pseudorandom test patterns to apply to the combinational

*

xn * * Z\X
Ds Zm* * Combinational

logic-v i • • •X n ' ] Capture and
MISR evaluate

T results
ALFSR >’i vr

y, Y \ ’ r

Generate
random

test vectors
Pass/fail*-

*
Capture and

evaluate
results

SISR
TIN (Test/Normal )I ALFSR

Pass/fail
Generate random

test sequences

Figure 12.21 Sequential logic circuit with built-in self-test (BIST).
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logic block and to the input of the scan path. Data from the primary outputs are
captured and compressed by a multiple-input signature register (MISR), while
serial data from the scan path are captured and compressed by a serial-input
shift register (SISR). This section will describe the design and operation of
each of these BIST elements.

12.6.1 Pseudorandom Test Vector Generation
The most common BIST circuit used to generate pseudorandom test vectors
is the linear feedback shift register (LFSR). An LFSR is a series configuration
of D flip-flops and exclusive-OR (XOR) gates whose design and operation are
based on principles of polynomial arithmetic in cyclic coding theory.

When used for generating test vectors, an autonomous LFSR (ALFSR),
that is, an LFSR with no external inputs, is often used. An n-stage ALFSR
produces a periodic pseudorandom sequence of n-bit binary numbers according
to a special generating function that is realized through feedback lines and XOR
gates within the ALFSR. If the sequence contains all 2n — 1 nonzero values,
resulting in a period of 2n — 1, the generating function is called a primitive
polynomial. (The pattern 0000 is prevented from occurring because the LFSR
would never leave this state.)

Figure 12.22a presents one general structure used for ALFSR designs.
In this circuit, a . . aQ are the outputs of the n flip-flops of the n-bit shift
register, with an the input to the shift register, equal to the exclusive-OR of the
feedback signals; that is,

n-1 *

n-1
«. = £ aici

i=0®

. . c0 are selected tocreate the primitive polynomial /?(*),
with ct = 1 if flip-flop output a- is fed back to the shift register input through
the exclusive-OR gates, and c. = 0 if a. is not connected to the feedback circuit.

Figure 12.22b presents a 4-bit ALFSR based on the primitive polynomial
p( x ) = x4 + x + 1

At output a0 , the value ax is present after one clock period, a2 after two clock
periods, and so on. This sequence of outputs is often represented in polynomial
form as

The coefficients cn — 1 ‘

A O ^f ( x ) = aAx + a3x + a2x + axx + a0
where xk represents a time delay of k clock periods. Note that

a4 = a\ ® ao
and

aA 0 ax ® a0 = 0
which corresponds to the primitive polynomial

p( x ) = x4 + *
1 + x°

= X 4 + X + 1
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If the register is initialized to a “seed” state of 1000, the sequence given in
Fig. 12.22c results.

K3
&C1

— D Qa2
D QD QD Q a\ «0«/,-1 an-2a,x

> c> c > CcClock
(a)

«oa2a3
D Q D QD Q D Q

> C> C > C> C rc ccClock

yi Vo>’3 V2

(b)

Clock «3 a2 a ] ao
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1
1 1 0 0
0 1 1 0
1 0 1 1
0 1 0 1
1 0 1 0
110 1
1 1 1 0

1
2
3
4
5
6
7
8
9
10
11
12 1 1 1 1
13 0 1 11

0 0 1
0 0 0

14 1
115

1 0 0 016

(c)

Figure 12.22 ALFSR structure 1 (a) General structure, (b) ALFSR with
p( x ) = x4 +* + 1. (c) Generated number sequence.

Primitive polynomials for sequences of length 2n — 1 are published in a
number of sources [13].
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A second type of ALFSR structure, typically used when there are two
or more feedback taps, is shown in Fig. 12.23a. As with the first structure, the
c. values indicate the presence or absence of feedback taps. The 4-bit ALFSR
utilizing this structure is shown in Fig. 12.23b, producing the counting sequence
shown in Fig. 12.23c. Its primitive polynomial is

p( x ) = x4 + x3 + x°
This polynomial is derived from that of Fig. 12.22b by replacing each

element xj of the primitive polynomial by xn~ j . In this configuration, one

an- l x0/» ^2
D Q D Q D Q

7> c > c > cccClock

(a)

>'o>’3 yi y\

a4 30 1̂D Q D Q D Qa2 ^ a\
D @ a0

>C> C > C > Cc cClock

(b)

Clock «3 «2 «1 «0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
110 0
0 110
0 0 1 1
110 1
1 0 1 0
0 1 0 1
1 1 1 0
0 1 1 1
1 1 1 1
1 0 1 1
1 0 0 1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1 0 0 016

(c)

Figure 12.23 ALFSR structure 2. (a) General structure, (b) ALFSR with
p( x ) = x4 + x3 + 1. (c) Generated number sequence.
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XOR gate is placed at the input to each flip-flop to which there is a feedback
connection. As a result, at most one XOR gate delay occurs between clock
cycles, whereas in the first structure all the XOR gates are contained in the
feedback path, resulting in k — 1 gate delays for k feedback lines. Note that
the first structure can be built with a standard shift register with XOR gates
added externally, whereas the second structure requires XOR gates to be placed
between the flip-flops.

12.6.2 Signature Analysis
The capture and analysis of the responses of a circuit to each individual test
vector of a FDTS are often impractical, especially if the test circuits are built
into the circuit module. In such cases, response data for an entire sequence of
tests are usually compressed into a single data value called a signature. If the
signature of a circuit obtained for a given test is incorrect, the circuit is known
to be faulty. If the signature is correct, the circuit is most likely fault-free.
However, since some information is lost during compression of the test results,
it is possible for certain faults to go undetected; that is, the signatures of some
faulty circuits may be the same as that of the fault-free circuit, making them
undetectable with this test. This situation is referred to as aliasing, with the
resulting signature referred to as an alias when equal to the signature of the
good circuit. The percentage of undetectable faults due to aliasing is a function
of the circuit design and the data compression algorithm used. In general, most
signature analysis algorithms detect the great majority of likely faults, with a
correct signature indicating a high probability that the circuit is fault-free.

A number of data compression methods are relatively simple to imple-
ment. Examples include counting the number of ones in a sequence of output
values, which detects all odd numbers of errors and some even numbers of
errors, counting the number of 0
lines, and computing parity over a sequence of outputs, which detects all single
errors and all odd numbers of errors. These methods are easily implemented,
although a number of output error patterns may go undetected due to aliasing.

Higher fault coverage can be achieved through the use of error-detection
coding methods, often implemented with an LFSR. Let us assume that a test
response sequence on an output line z can be represented by a polynomial z ( x ) :

z( x ) = znxn + z n_
] x t l ~ l H h z,*1 + z0

where x k represents a time delay of k clock cycles, and z k represents the
data value at clock cycle k , as produced by the &lh test vector. Recall from
our earlier discussion that a k -bit LFSR represents a generator polynomial of
degree k . Error detection is performed in cyclic coding theory by dividing the
data sequence polynomial z ( x ) by the generator polynomial of the LFSR, p( x ),
producing a quotient q( x ) and remainder r ( x ).Therefore,

z( x ) = q( x ) p( x ) + r( x )
Polynomial division is performed serially by the LFSR as the response data
sequence arrives. As the operation is performed, the n — k bits of the quotient

1 and 1 0 transitions on the output

(12.5)

!
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are shifted out of the LFSR, leaving the A:-bit remainder r ( x ) in the LFSR after
the last step.

If a circuit fault results in one or more errors in the sequence of outputs,
we can represent the output sequence by z* , where

z*(x) = z( x ) © e( x )
In Eq. 12.6, polynomial e( x ) represents an error sequence:

e( x ) = enxn -f en _ { xn ~ ] H b e{ x l + eQ
where ek = 1 if bit zk is in error and ek = 0 if bit zk is correct. Note that
zk ® ek = zk if there is an error, and zk ® ek = zn if there is no error. The
output sequence z* (x) can thus be represented by

z* ( x ) = z ( x ) © e( x )

(12.6)

(12.7)

(12.8)n-1= (e © zn )xn + ( e
!- (<? , ® z, )*1 + (e0 © z0)

The polynomial division performed on z* (;t ) by the LFSR produces

+n-1

Z* ( x ) = q* ( x ) p( x ) + r* ( x ) (12.9)
where remainder r*(jc) is the signature of the circuit. The circuit is assumed to
be fault-free if r* ( x ) = r ( x ).

Note that, for an (n — /c)-bit quotient, there are 2n ~k different quotients
out of 2n possible response sequences that have the same A:-bit remainder r( x ).
Only one of these test sequences and quotients corresponds to fault-free circuit
operation. Therefore, the probability that an error is masked (missed), that is,
the probability that r*(x) = r(x) for an incorrect sequence Z*(JC), is given by

2n— k - 1— (12.10)
2n - 1

For large values of n, Eq. 12.10 reduces to
2n ~k

= 2~k (12.11)PM *
which is a function only of the length of the LFSR. Therefore, assuming long
response sequences, the probability of missing an error is reduced as the number
of stages in the LFSR increases.

Figure 12.24a shows a LFSR with a single input; this configuration is
called a serial input signature register (SISR). The generating function of
a SISR is realized in the same manner as described previously for ALFSR
elements. For the SISR in Fig. 12.24a, the generating function is

p( x ) = x4 © x + 1
since the feedback taps are at stages 1 and 0. The operation of the SISR is
demonstrated in Fig. 12.24b for the input sequence z ( x ) = 010001101110.
Figure 12.24c illustrates the response obtained when an erroneous input se-
quence occurs; in this case, 1 bit has been altered in the input sequence of
Fig. 12.24c. Note that the error response, r* ( x ), differs from the expected
response, r ( jc ).

When a logic circuit has m parallel outputs, zx • • . zm , m SISR elements
can be used to compute individual signatures for each output. However, this
is an expensive approach. A more efficient method is to use a multiple-input

2n
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signature register (MISR), which effectively computes the signatures of parallel
input sequences concurrently within a single LFSR circuit. A 4-bit MISR is
shown in Fig. 12.25, which is based on the same generating function as the
SISRofFig. 12.24a.

Serial-outSerial-in «3 a2 <*\
D QD Q D Q D Q

> C > C

Clock

O
(a)

LFSR Contents
«3 a2 a\

Serial in Serial inLFSR Contents
«3 a2 a i OQ z( x )z(x)

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
1 0 0 0
0 1 0 0
10 10
0 1 0 1
0 0 1 0

0 0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1
0 1 0 0
1 0 1 0
1 1 0 1
0 1 1 0
0 0 1 1
1 0 0 1

0
1 1

00
00

1*0
1 1

11
00
11

1 1
11
00

1 1 0 0 r*(x ) = 1 0 0 1rix ) =
(b) (C)

Figure 12.24 SISR operation, (a) SISR logic diagram, (b) Response to correct
sequence, (c) Response to erroneous sequence.

Circuit outputs

ZQZ2 Z 123

D Q

> C> C > c> c c ppClock

<x
Figure 12.25 Multiple-input signature register (MISR).
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In this case, the probability of missing an error in one of the m data
sequences, where the response sequences contain n m-bit values, is given by

r^nm —k
P —M 2nm J

As is the case for the SISR, for long sequences, that is, for large n m ,
2nm — k

- 1
(12.12)

= 2~k (12.13)M 2
Therefore, the probability of missing an error in a long sequence of data values is
primarily a function of the number of stages in the MISR. Note that the number
of parallel inputs to the MISR, m, may be less than the number of MISR stages,
k . In this case, the inputs are combined with m of the k flip-flop inputs.

In general, an SISR or MISR of length k > 2 is capable of detecting all
single-bit errors. If the LFSR generator polynomial p( x ) has an even number
of terms [which occurs when p( x ) is divisible by (x + 1)], all odd numbers
of errors can be detected. In addition, any burst error, that is, any group of
consecutive errors, of length up to k can be detected. Therefore, the fault
coverage is a function of the number of stages k in the LFSR, the number of
parallel inputs m, and the length of the inputs sequence n, as well as the LFSR
generating function p( x ) and the initial state of the LFSR. A more detailed
description of signature analysis fault coverage properties is presented in [20].

'V nm

12.6.3 Built-in Logic Block Observer
The addition of LFSR elements to a circuit to perform pattern generation and
signature analysis adds to the complexity and expense of a circuit module.
One approach that can minimize the total number of flip-flops in the circuit
is to combine the pattern generation and signature analysis functions with the
normal state register of the circuit. The resulting register structure is referred
to as a built-in logic block observer (BILBO).

A 4-bit BILBO register is shown in Fig. 12.26. The BILBO has two
control lines, B { and B2, that select the mode of operation as summarized in
Table 12.8. For £, B2 = 00, the flip-flops are loaded with the parallel input lines,
/j to /4, thus operating as a normal parallel-load register. When B{ B2 = 01 and
B{ B2 = 11, each flip-flop except for the first is loaded with the output of the
flip-flop to its left; that is, D - = F._v When B } B2 = 01, D, = scan-in, and
thus the BILBO is configured into a serial shift register to be used as a scan
path. For B} B2 = 11, is connected to the feedback signal, configuring the
BILBO as an ALFSR. When B } B2 = 10, each flip-flop input D = / © F._v
and thus the LFSR functions as an MISR, assuming Ix to /4 are circuit outputs.

During normal circuit operation, the normal (parallel-load) mode is se-
lected; the BILBO inputs are the next-state variables Y X . . . Y A and the outputs
are the current state y x . . . y4. During testing operations, the BILBO is set to
the shift-register mode to scan values in and out. Test pattern generation and
signature analysis are performed by setting the BILBO to the ALFSR mode
to generate patterns and to the MISR mode to capture results and perform
signature analysis.
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Application circuit outputs

/4/Control
inputs

Bl

B2

'OprScan-in Scan-out

> C > Cccr- 1

<3C=:
Clock

F4

Application circuit inputs

Figure 12.26 Built-in logic block observer (BILBO).

TABLE 12.8 BILBO OPERATING MODES

Test Function
Normal (nontest) mode
Scan path mode
Signature analysis
Pattern generation

Input MUX Function
Parallel-load register
Linear shift register
MISR
ALFSR

DBy B, i

0 Scan-in
Scan-in

0 Ii

0 1 Fi-1

1 0 Feedback
Feedback

/. © F
1-1i

1 1 F/-1

When using BILBOs, the circuit is typically partitioned into modules, as
shown in Fig. 12.27, allowing selected BILBOs to operate as ALFSR elements
and the others as MISR elements during testing. For the circuit of Fig. 12.27,
the test procedure would be as follows.

Step 1. Use BILBO 1 as an ALFSR and BILBO 2 as an MISR to
test CLB 1 as follows:

1. Place both BILBOs into scan-path mode and shift in initial
values: the ALFSR seed value for BILBO 1 and all zeros
for BILBO 2.

2. Place BILBO 1 into ALFSR mode and BILBO 2 into MISR
mode.

3. Operate the circuit for the designated number of test cy-
cles. BILBO 1 generates patterns for the inputs of CLB 1
and BILBO 2 performs signature analysis on the outputs
of CLB 1.
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Scan in

B B
I I

L CLBB 2O

2

Scan out

Figure 12.27 Circuit partitioning for testing with BILBOs.

4. Place both BILBOs into scan-path mode and shift out the
final signature from BILBO 2 while shifting in the initial
values for the next test.

Step 2. Use BILBO 2 as an ALFSR and BILBO 1 as an MISR to
test CLB 2. Perform steps 2 to 4 of Step 1, swapping the roles of
the two BILBOs.

After testing is complete, the BILBOs are returned to the parallel-load
mode to allow them to operate as normal state variable flip-flops.

•12.7 Board and System-level Boundary Scan
Digital logic circuit boards and systems present an even greater challenge to
test engineers and digital designers than individual ICs and modules, although
many of the testing and design for testability concepts discussed in this chapter
can be extended to boards and systems. To address this problem, a number of
manufacturers have formed the Joint Test Advisory Group (JTAG) and in 1988
developed the JTAG Testability Bus Specification, which in 1990 was adopted
as IEEE Standard 1149.1 [18]. The goals of the 1149.1 testability bus include
the following:

1. A standard interface between ATE systems and the devices on a printed
circuit board (PCB), allowing test data to be transferred to the devices
and diagnostic information to be received from them

2. A method for testing the interconnections between the chips on a PCB,
which is a common source of faults on PCBs

3. A method for testing and locating individual faulty chips on a PCB

These goals are accomplished by extending scan path design methods to
the entire circuit board. The testability bus consists primarily of four dedicated
signal lines on a PCB, with a standard interconnection to ATE equipment and a
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special testability bus interface on each chip, including a built-in control circuit
to interpret and execute test commands issued by the ATE system.

The basic configuration of a circuit module containing a testability bus
interface is shown in Fig. 12.28. Two special features are included on each
module: a boundary scan register (BSR) and a test access port (TAP). The
BSR is an extension of the scan path design method, providing a shift register
around the boundary of each chip, with a flip-flop placed between each circuit
input/output line and the corresponding external pin, as illustrated in Fig. 12.29.
These flip-flops can be configured into a serial shift register or made transparent
for normal chip operation. Data are shifted into the BSR through the dedicated
TDI ( test data in ) pin and shifted out through the TDO ( test data out) pin.

The BSRs of the individual components on a circuit board are configured
into a single serial shift register by connecting the TDO pin of one device to the
TDI pin of the next, with one TDI pin and one TDO pin at the board connection
to the ATE system. This is illustrated in Fig. 12.30. Using this shift register,
the ATE system can supply test instructions and data to all chips on the board
and receive test results and other diagnostic data from them. If desired, any
individual chip can be temporarily eliminated from the shift register using a

Boundary-scan cell
I/O pad Boundary-scan path

Application logic
BS test bus circuits

5»TDI *
Miscellaneous

registersTTMS * A Optional

BIST registers
Scan registers

P Instruction
register*TCK

TDO ^
^

Bypass
register

«M
U «

* ôu(*X

Figure 12.28 Circuit for use the with 1149.1 testability bus.

www.youseficlass.ir



Section 12.7 Board and System-level Boundary Scan 779
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input pin

Pi Pi
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OUT IN
SIN SOUT SIN SOUT TDOTDI

IN OUT

Zi xj

On-chip
circuit

Figure 12.29 Boundary-scan cells between circuit I/O lines and external pins.

Circuit board

fDOOn
CWfc> i

L-DOCH
J-DOCH

Chip 2

LQOQJ
TDI TDI

TDO TDO

ATE TDI
system ypQ

*
*

jDOQ-
Chip 4

klOCH
jOOOi

Chip 3

kmcH
TDI TDI

TDO TDO

Figure 12.30 Circuit board configured as a single scan register.

1-bit bypass register, shown in Fig. 12.28, which routes incoming data from
the TDI pin directly to the TDO pin on that chip, bypassing the on-chip BSR.
In this manner, the ATE system can work with selected chips during testing.

The TAP has two inputs signals: TMS and TCK. TMS is used to broadcast
commands from the ATE system to the chips, synchronized by a clock signal
on the TCK pin. These commands cause the chips to interpret incoming bits
on their TDI pins as either test instructions or test data. Instructions are routed
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to a special instruction register, shown in Fig. 12.28, while data are routed to
the BSR or to an optional test data register.

Test operations are performed as follows.
1. A bit sequence is broadcast on TMS to force the devices to load their

instruction registers with a sequence of bits sent by their TDI inputs.
2. A bit sequence is broadcast on TMS to force the devices to route a test

data sequence from their TDI inputs to their BSRs.
3. Each TAP configures its chip according to the received test instruction.
4. The test instruction is executed, with results captured in the BSR.
5. The test results are shifted out to the ATE system using the TDO outputs.

Two general types of test operations can be performed: tests of intercon-
nections between chips and internal tests of on-chip circuits. The primary test
instructions include the following:

BYPASS: Bypass the BSR by routing TDI directly to TDO.
EXTEST: Drive data from the BSR onto the output pins.
SAMPLE: Capture data from the input pins into the BSR.
INTEST: Apply test vectors to the internal circuit from the BSR

and capture the circuit response in the BSR.
RUNBIST: Initiate operation of on-chip BIST circuits.

The EXTEST, SAMPLE, and INTEST instructions all involve the use of
the BSR. The configuration of a boundary scan cell is shown in Fig. 12.31. At
each chip input pin, IN is the external input and OUT drives the on-chip circuit.
At an output pin, IN is connected to the circuit output and OUT drives the exter-
nal pin. The relationships between the boundary scan cells, the on-chip applica-
tion circuitry, and the external I/O pins are illustrated in Figs. 12.28 and 12.29.

Referring to Fig. 12.31, during normal circuit operation, Mode-Ctrl = 0,
connecting IN to OUT in each BSR cell, thereby bypassing the registers in the
cells. During scan operations, ShiftDR = 1, causing SIN to be shifted to SOUT

SOUT
MUX

0IN
MUX OUT

1
0

D Q D Q
1

Mode-Ctrl> C > C

Data
register

Shadow
register

SIN

ClockDR UpdateDR

ShiftDR

Figure 12.31 Boundary-scan cell.
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by the scan flip-flop in each cell. SIN of the first cell is connected to the TDI
input, and SOUT of the last cell is connected to the TDO output to complete
the BSR.

When testing chip interconnections, data are driven onto each output pin
by connecting OUT to the BSR cell shadow register. Data are captured from
each input pin by clocking IN into the scan register. The captured data are then
examined to ensure that the transmitted and received data are the same. In this
manner, the interconnections between all signal pins on a board can be tested.

When testing an on-chip circuit, data are applied to the circuit inputs from
the BSR cells by connecting the appropriate shadow register bits to OUT, and
data from the circuit outputs are captured in the corresponding BSR cells by
connecting IN to the scan register. Test vectors are shifted into the BSR prior to
applying the test, and the captured data are shifted out of the BSR to examine
the results. Thus, any individual chip on the board can be tested independently,
provided that the chip incorporates the 1149.1 Testability Bus circuitry.

•12.8 Summary
This chapter has introduced the subjects of fault diagnosis of logic circuits and
design for testability. First, a general discussion of fault diagnosis was pre-
sented. Next, fault diagnosis for combinational and sequential logic networks
was discussed. Methods for generating tests and for making a diagnosis were
considered. Finally, design methods to facilitate digital logic circuit testing,
both for individual circuits and entire circuit boards and systems, were pre-
sented. These methods facilitate testing with automatic test equipment or allow
tests to be performed entirely within a chip.
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PROBLEMS 12.1 Determine the function realized by the network in Fig. PI 2.1 for each of the
following faults:
(a) 1/0.
(b) 1/1.

,T
Q

*3-@

(c) 3/0.
(d) 4/1.>®

12.2 Determine the function realized by the network in Fig. PI 2.2 for each of the
following faults:
(a) 2/0.
(b) 8/1.

Figure P12.1
(c) 9/0.
(d) 5/0.

12.3 Use the exclusive-OR method to determine all tests for all faults listed in
Problem 12.1.

12.4 Repeat Problem 12.3 using the path-sensitizing method.
Use the exclusive-OR method to determine all tests for all faults listed in
Problem 12.2.

12.5
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, 0*1 ©> ©0 >®0
8©

0©*5 —
Figure P12.2

Repeat Problem 12.5 using the path-sensitizing method.12.6

List all faults that can be detected by each of the following tests for the network
in Fig. PI2.2.
(a) 10101.
(b) 10100.

12.7

(c) 11011.
(d) 11010.

12.8 Construct a fault table containing all possible faults and all possible input
combinations for the network in Fig. PI2.1.
Construct a fault table containing only checkpoint faults for the network in
Fig. P12.9.

12.9

x ©
*1 ©© ©r ©*3 > h

t>-®©
*4

Figure P12.9

12.10 Find a minimum FDTS from the following fault table:

Tests Faults
/ hb dxi X 2 *3 a c e g

0 0 10 1
0 0 11 1
0 1 0 1 11
0 1 1 11
1 0 0 11

0 1 1 11 1
1 01 1 1

1 1 1 11 1 1
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784 Chapter 12 Logic Circuit Testing and Testable Design

12.11 Find a FDTS for the table in Problem 12.10 using the near-minimum selection
procedure.

12.12 Repeat Problems 12.10 and 12.11 for the following fault table:

Faults
Tests / hb da c e 8 i

1 1 1
2 1 1 1
3 1 1
4 11
5 1 1
6 11
7 1 1
8 1 1

12.13 Determine all tests that can be used to distinguish each of the following pairs
of faults in the network of Fig. PI2.9.
(a) 1/0-4/1.
(b) 2/0-3/0.

(c) 7/0-8/0.
(d) 1/1—7/1.

12.14 Given the circuit in Fig. PI2.14, determine an initialization sequence and an
observation sequence for each of the following faults:

©
) z

{>
©Q-t>o

Y2
Q Dyi

c<

-Q D

*
Clock

Figure P12.14
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(c) y /\.(a) a/1.
(b) p/o.

Repeat Problem 12.14 for the circuit given in Fig. PI2.15 and the following
faults:
(a) a/1.
(b) p/0.

12.15

(c) y /0.
(d) <5/1 .

x ©

z

K>°

©j_)

^>o

Fi— Q Dy i ^

— Q Dy2 *
#

*3— Q Dy?> *
*

Clock

Figure P12.15

12.16 Reduce the following hypothetical test table by taking advantage of test cov-
erage.
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Observation
Sequence,

Output
Sequence,Initial

State
Final
State Faults TestedzX

S 1 *21 D a0 , c{

bQ' *0

#0’ fo
h V b l
I Q , &Q

Jo* 8 1
no* h
Po > mo
f\' b0

a r i

n r ko
p r / j

d0' k l
m v d x
ev co

i

2 *2 0 ^2D
S33 1 S3D
S4 0 S4 D 1

*25 1 ^3D
6 S 1 1 0 D S31

7 03̂ 1 0 S4D
8 0S3 0 0 D S1

9 0s2 1 0 S4D
10 S4 0 1 0 S31 1 D 1
1 1 S2 0 0 s1 0 0 D
12 S3 1 0 0 00 D S!

13 S 0 0 01 1 D S31

s2 0 0 1 0
1 1 1

0 S214 1 1 D
S4 015 1 0 0 S3D

Develop a test procedure for a circuit with the following reduced test table:12.17

Observation
Initial Sequence,
State

Output
Sequence, Final

State Faults Tested
ao'drerho
bve0
co’ /0
a\’ cp /1 » SQ b

b o* d o* 81

zX

1 S 0 1 1
1 1 1
0 1 0
0 0 1
1 0

O D D
D 1 D
0 1 D
O D D
0 D

S31

2 s2 s j

3 S3 s4
S44 S1 1

s5 s21

12.18 The circuit whose test table is given in Problem 12.17 is initialized to state
S, . An input sequence 011010 is applied to the circuit and the output response
001010 is observed. Is the circuit faulty? If yes, what fault is present?

The circuit shown in Fig. PI 2.19 is initialized to state y Y = 0, y2 = 1, and the
input sequence A: = 010111 is applied. Determine all single faults that would
be detected by this sequence.

Find the state diagram and state table for Fig. 12.24a.

For the ALFSR shown in Fig. PI 2.21:
(a) Find the state diagram and state table.
(b) Determine the masking probability for the circuit.
(c) Determine the correct and error responses for the serial input sequences

in Figs. 12.24b and c.

12.19

12.20

12.21
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*1 y\
D Q>

4><H
x

z
y2

D Q*> y2

*

Clock
i
I

Figure P12.19

D QD Q D Q D Q

> c > c > c
Clock

Figure P12.21

12.22 Design an 8-bit BILBO register with the following function table:

B\ B2 Function
0 0
0 1
1 0
1 1

AFLSR mode
Scan mode (shift register)
Normal mode (parallel load)
MISR mode

Let p{ x ) = 1 -F x -I- x5 + x6 + xs.
12.23 Design a 10-bit BILBO register with the following function table:

£1 B2 B3 Function
0 0 0
0 1 0
1 0 0
1 0 1
1 1 0

Scan mode (shift register)
Synchronous reset
MISR mode
ALFSR mode
Normal mode (parallel load)

Let p{ x ) = 1 + x3 + x10.
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Design Examples

13.1 Electronic Slot Machine

13.1.1 Problem Definition
A slot machine is a casino-style game in which a player deposits a coin and pulls
a lever, causing a set of wheels to begin spinning. Each wheel has a number of
digits or images painted around its circumference, which are displayed through
a window. After the pull lever is released, the wheels freeze, each displaying one
digit/image. If the displayed numbers/images match one of a set of specified
patterns, a designated amount of money is won. The payoff\ or the amount of
money won, depends on the pattern matched and in some cases may also be a
function of the amount of money deposited (or wagered).

There are a number of variations of this game, including hand-held elec-
tronic games that utilize no money. These operate by simply pulling a lever
or pressing a button to initiate rolling and freezing of the number wheels.
To minimize mechanical parts, an electronic display is often used to simulate
rolling wheels by continuously changing the digits being displayed. Winning
combinations are signaled by blinking lights and/or audible alarms. In some
cases points are won and lost, allowing players to keep running scores while
playing the game.

In this example, we will design an electronic slot machine game that is
operated by depressing a push-button PLAY switch, causing numeric digits in
the range [1 . . . 7] to be continuously displayed and changed on an electronic
display panel in such a way as to give the appearance of rotating number wheels.
The digits will freeze on the display after the PLAY button is released. If one of a
specified set of numbers is displayed, a payoff \ a designated number of points,
will be awarded. In our machine, any combination of two or three identical
digits will be designated as winners, with three identical digits returning a
bigger payoff (more points) than two identical digits. The size of the payoff
will also be a function of the value of the matching digit and a wager, which
will be placed using two switches prior to pressing the PLAY button. Figure
13.1 shows the basic layout of the front panel of the game.

789
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Rolling digits

0 0 PlayKJ o
(push to start)

O O
Place betPayoff

Electronic slot machine Figure 13.1 Electronic slot
machine game.

13.1.2 System Requirements and Solution Plan
We begin the project by determining the requirements for the system and
developing a plan to address these requirements. From the description of the
game, several major subsystems are needed: two three-digit electronic displays
for the rolling digits and the payoff, a PLAY button, two switches to place
the wager, circuits to generate the numbers for the rolling digit display, and a
circuit to identify winning patterns and compute the payoff. These subsystems
are illustrated in the block diagram of Fig. 13.2 and are described briefly as
follows.

1. PLAY button. A push-button switch will be used for the PLAY button
of the slot machine. The button will be depressed to reset the game and
start the random-number generators and released to stop them, at which
time a decision will be made as to whether the player has won or lost.

2. Rolling-digit display. Three seven-segment LEDs (light-emitting diodes)
will be used to display the digits produced by the number generators.
These will be updated continuously while the PLAY button is being
held down to simulate rolling number wheels. To add to this effect, the
three digits will be changed at different frequencies and also frozen at
different times following the release of the PLAY button to simulate
wheels stopping one after the other.

3. Number generators. Three number generators form the basis of the
game, each producing digits in the range [1 . . . 7]. The number generators
begin operating when the PLAY button is pressed and halt after the PLAY
button is released. To make the number generators appear to be random,
making it difficult for a player to predict their final values, they will be
clocked at a fairly high rate, with each changed at a different rate. In
addition, stopping each number generator at a different time following
the release of the PLAY button will add to the difficulty of predicting the
final digit values.

4. Timing module. The timing module will contain an oscillator circuit
and various timing circuits to produce signals that control the number
generators. One set of timing circuit outputs will initiate operation of the
number generators when the PLAY button is pressed and halt them at
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Rolling digit
display

n m IT

Winning
pattern
detector

*
*
*

Random
number

generator

Random
number

generator

Random
number

generator
2 3

Payoff display*Payoff
generator

i .

m m*

Play
Timing
circuit

button * SWl SW2o Bet placement
switches

Figure 13.2 Electronic slot machine game block diagram.

different times after the PLAY button is released. A second set of outputs
will make the number generators change at different rates.

5. Wager placement inputs. The number of points won will be multiplied
by a scale factor in the range [1 . . . 4] that will be selected by two switches
that are set before pressing the PLAY button. This simulates placement
of a wager on the outcome of the game. It can be assumed that some
number of points is lost if a winning combination does not occur, with
the loss being a function of the wager.

6. Winning pattern detector. This module will evaluate the outputs of the
three number generators, after the number generators have all halted, to
determine if the three final numbers produced by the number generators
correspond to one of the winning combinations, that is, to determine
whether two or three numbers match. The results will be sent to the
payoff generator.

7. Payoff generator. The payoff generator will compute the payoff, the
number of points won, based on whether a matching combination
was detected and the value of the matching digit. The payoff will be
proportional to the matching digit number. In addition, the payoff for
three matching digits will be higher than for two matching digits. Finally,
the payoff will be multiplied by a scale factor (1 to 4) corresponding
to the amount wagered. A payoff of zero (000) will be displayed if no
winning pattern is detected.
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8. Payoff display. The number of points won will be displayed on a
three-digit seven-segment LED display, driven by the outputs of the
payoff generator.

13.1.3 Logic Design
To organize the logic circuit design process for the slot machine, each module
identified in the requirements will be designed and tested independently. Then
these modules will be combined to create the complete slot machine circuit.
The following paragraphs present the designs of the individual modules.

PLAY Button
A mechanical push-button switch will be used for the PLAY button. The switch
generates a logic 1 signal when depressed and logic 0 when released. A spring
will return the switch to its original position when it is not being held down.
To ensure reliable operation, that is, “clean” 0
debounce circuit will be used.

A switch debounce circuit was developed in Chapter 10 (see Example
10.9) and is simply a pair of cross-coupled NAND gates (74LS00). The com-
plete PLAY button circuit is illustrated in Fig. 13.3.

1 and 1 0 transitions, a

0 5 VPush button

V////

1Spring 3A i * i— Q

Q? I * 4 Output
6 i5

i

iDebounce
circuit0 5 V

J

Figure 13.3 PLAY button and debounce circuit.

Number Generators
A truly random number generator would be ideal for this game, but it is not a
trivial circuit. Instead, a simple synchronous binary counter circuit that counts
continuously from 1 to 7 will be used for each of the three digits.The appearance
of randomness will come from the operation of a timing circuit that will do
three things:
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1. The counters will be made to run sufficiently fast that it will be difficult
for the player to predict the counter outputs when the PLAY button is
released.

2. The three counters will be operated at different frequencies. The highest
frequency will be 45 hertz (Hz) for one of the digits, with the other
two being one-half and one-third of this frequency, or 22.5 and 15 Hz,
respectively. The 15-Hz rate causes the digit to change 15 times per
second, which will allow the digits to be seen while changing sufficiently
fast to inhibit guessing the final value.

3. The three counters will be stopped at different times following the release
of the PLAY button.

To produce the numbers 1 to 7, a binary counter will be used for each
number generator that will be synchronously loaded with the value 1 after it has
reached a count of 7. Although 3 bits would be sufficient, a 4-bit counter will be
selected since 3-bit counters are not standard TTL modules. To allow different
counting frequencies and stopping times to be used, separate clock and enable
inputs are needed for each counter, in addition to parallel-load capability.

The SN74LS163A 4-bit synchronous binary counter meets the preceding
requirements. Three SN74LS163A modules will be used for this design, as
shown in Fig. 13.4

Vcc vccVcc

1010 7 7 107
74LS163A 74LS163A 74LS163A

ENP ENTENP ENT ENP ENT
3 143 14 3 14 'l QAQA QA AA

13 13 13 >>4 >. >> 4
QBB QB B QB -lrr‘, 7" t:

>CJ

> 4 % 15 12 12 5 12eij -3“3c Qc Qc C Qc “3-3 "3 33
r--6 611 11 1 1

QDD QD QD D
2 15 15 2 15

*- > CK RCO
Load CLR

> CK RCO > CK RCO

Load CLR Load CLR

O o u O9 11 1

/i h hEN| EN2 EN2

Enable signals Clock signals

From timing module

Figure 13.4 Number generation:1-to-7 counter circuits.

www.youseficlass.ir



794 Chapter 13 Design Examples

Note that three independent count-enable signals { E N r E N2, E N3 ]
and three different clock signals { /p /2, f3 } are needed to control the three
counters. The counter outputs will be sent to the rolling digit display and to the
winning combination detector.

Timing Module
A block diagram of the timing module is shown in Fig. 13.5a. Three clock
signals (/p /2, /3) and three enable signals ( E N V E N2 , E N3 ) are needed to
control the counters in the number generator, as shown in Fig. 13.4. An oscillator
circuit will be designed to produce a square wave of frequency /, = 45 Hz to
use as the clock signal for the first counter. The frequency of this signal will
then be divided by factors of 2 and 3 to produce two other signals at frequencies
f 2 = 22.5 Hz and f3 = 15 Hz, respectively. The desired operation of the three

enable signals is illustrated by the timing diagram in Fig. 13.5b. All three enable
signals will be set to 1 when the PLAY button is depressed. After the PLAY

f\Oscillator

Counter
clock

signals
W2+ 2

h ^
+ 3

EN i

EN2

EN3 „

* Counter
* enable

signals
Delay

generator
PLAY

(a)

Button
pressed

Button
released

PLAY

EN i

EN2

£A3 I

D\ D2 D3
Time delays

(b)

Figure 13.5 Timing module for the number generator,
(a) Timing generator, (b) Enable signal timing.
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button is released, ENX will be set to 0 after a short delay Dv EN2 after a
second delay D2 , and EN2 after a third delay Dy

The oscillator will be implemented with a 555 precision timer module
configured to operate in astable multivibrator mode, as described in Chapter 6
and illustrated in Fig. 13.6. The oscillating frequency will be set to 45 Hz. The
frequency of oscillation, /, was defined in Chapter 6 as

1.44
f = (13.1)

( R A + 2R b )C
Therefore, to obtain / = 45 Hz, the following component values are selected:

R A = 15k Q

R n = 8.5k Q
B

C = 1 f i F
A divide-by-2 circuit and a divide-by-3 circuit will be used to generate

the other two clock signals. Since the frequencies of pulse trains can be con-
veniently divided by binary counters, a 74LS92 modulo-12 binary counter will
be used as shown in Fig. 13.6. The outputs of the 74LS92, Q A , Q B , Qc, and
Qd, are simply pulse trains whose frequencies are 1/2, 1/3, 1/6, and 1/12 of the
clock input, respectively. Therefore, output Q A will provide f2 = /, /2 = 22.5
Hz, while Q B will provide /3 = /j /3 = 15 Hz.

Number generator
clock signals

/, = 45 Hz f2 = 22.5 Hz /3 = 15 Hz

Number generator
enable signals

EN2 EN 2vv cc EN\

ti i t .3J l 74LS279 7
1 (2 2Q 4(2RA 0.0ix RL

(15 kQ) (22 kQ)
5 8 151 152 1 R 25 2R 45 4R

CONT Vcc 3 2 1 6 5 15 1474LS92 {>4 ^4 4RESET
3 14 127

C > AOUTDISCH QA
Square
wave

6 111 74LS93RB QBTHRES(8.5 kQ) 2 6 9
R°( i )

R0(2)

TRIG Qcc 8 14 127
C > A QAQD( l ^F) O: 1 9GND

QBT SE 555 82
RO( 1 )

RO(2)

QcVcc Frequency
divider

3 1 1
QD

Play
Delay

generator
button

Figure 13.6 Timing module for the number generator.
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The counter enable signals ENVEN2,and EN3 will be produced through
three SR latches (SN74LS279). The latches will be set to 1 when the PLAY
button is pressed and then reset to 0 at different times following the release
of the PLAY button. To produce different reset times, a 74LS93 4-bit binary
counter, shown in Fig. 13.6, will be cleared (with counting disabled) while the
PLAY button is being pressed and will begin counting when the PLAY button is
released. Three of the counter outputs will be used to reset the latches. QB = 1
(a count of 2) will turn off ENV Qc = 1 (a count of 4) will turn off EN2, and
QD = 1 will turn off EN3 (a count of 8). The 74LS93 counter will be clocked
by output QD of the 74LS92 used for the number-generator clock signals. The
frequency of the waveform on output QD of the 74LS92 is

/ = 45 Hz/12 = 3.75 Hz
Recalling that clock period is the inverse of clock frequency, the delay times
for the three enable signals will be

Digit 1
Digit 2
Digit 3

fj2 = 2 -r- 3.75 Hz = 0.533 s
jji = 4 4- 3.75 Hz = 1.06 s
4TE = 8 -4 3.75 Hz = 2.13 s//8

Rolling-digit Display
The output of each random number generator is a 4-bit binary number repre-
senting one of the binary-coded values f 1 . . . 7]. Each digit will be displayed on
a standard seven-segment LED display. Therefore, a BCD-to-7-segment code
converter will be inserted between each number generator and display digit, as
illustrated in Fig. 13.4.

A search of the TTL Data Book shows the functions 7446, 7447, 7448,
and 7449 BCD-to-seven-segment converters. The 7446 and 7447 drive dis-
plays with active-low inputs (common-anode VLEDs) and the 7448 and 7449
drive displays with active-high inputs (common-cathode VLEDs). Let us select
common-cathode VLEDs.

We shall select the 7448, resulting in the circuit of Fig. 13.7. It should be
noted that current-limiting resistors may be needed between the 7448 outputs
and the display inputs, depending on the input current requirements of the
display.

Payoff Display
The payoff display is identical to the rolling-digit display. A three-digit BCD
number generated by the payoff generator will be converted and displayed on
three seven-segment LEDs using a copy of the circuit shown in Fig. 13.7.

Wager-placement Switches
The wager must be made prior to pressing the PLAY button. Transitions on
the wager-placement switches do not initiate any actions. Therefore, simple
nondebounced DIPswitches can be used. A 2-bit register will latch the positions

www.youseficlass.ir



Section 13.1 Electronic Slot Machine 797
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13a a
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generator C

/ bCl B* 102
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145 e cg
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LT

Seven-segment
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yv cc

Figure 13.7 Three-digit seven-segment display interface circuit.

of these switches at the time the PLAY button is depressed to prevent the wager
from being changed once the game has begun. The output of this register is
supplied as an input to the payoff generator. The circuit is shown in Fig. 13.8.
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To payoff generator

74LS74 2£
PR PR
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sw\ SW2

Wager
switches Figure 13.8 Wager-placement

switches and register.

Winning Combination Detector
The winning combination detector determines if there are two or three match-
ing digits from the number generators. This will be done by using 74LS85
four-bit comparators to detect matching values. Since there are three digits,
A = (A3A 2 A ] A0), B = ( B3 B2 B ] B0 ) , and C = ( C3C2C } C0 ), three compara-
tors will be used, as shown in Fig. 13.9, to detect the conditions A = B, A = C,
and B = C. Note that only the lowest 3 bits of each digit need to be checked,
since the only valid digits are 1 to 7. A NOR gate will be used to signify that
a match has been found by at least one of the comparators. Furthermore, if
A = B and A = C, it follows that B = C. Therefore, a single two-input AND
gate will be used to detect the condition A — B — C. The complete circuit is
given in Fig. 13.9.

The payoff computation circuit must know whether two or three digits
match and the numeric value of the matching digit. A multiplexer can be used
to select one of the input numbers, if it matches one or both of the others, to
send to the payoff circuit. For this purpose, a 74LS157 quad 2-to- l multiplexer
is used, with the two 4-bit inputs connected to the signal lines for digits A and
B, as shown in Fig. 13.9. If there is no pair of matching digits, as indicated
by the output of the NOR gate, the multiplexer will be disabled by its control
input, G, forcing its outputs to all zeros. If B = C, digit B will be selected by
using the B = C comparator output to control the multiplexer select line S. If
there is a match and B C, either A = B or A = C, hence, digit A will be
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Figure 13.9 Winning combination detector circuit.
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selected. The output of the AND gate is also routed to the payoff generator.
Note that a 1 indicates that there are three matching digits, and a 0 indicates
otherwise.

Payoff Generator
If a winning combination is detected, the number of points won is a function of
whether two or three of the displayed digits match and the matching digit value.
In addition, the number of points is multiplied by a factor of 1 to 4, depending
on the wager that was placed on the wager switches. Table 13.1 displays the
number of points to be awarded for each winning combination.

TABLE 13-1 WINNINGS TABLE (a) DOUBLE MATCH (b) TRIPLE MATCH

Wager Wager
DigitDigit 1 2 3 4 1 2 3 4

1 25 75 100 100 150
120 180
140 210
160 240
180 270
200 300
280 420

50 1 50 200
2 90 120 2 6030 60 240

2803 35 70 105
80 120
90 135

100 150
120 180

140 3 70
804 40 160 4 320
905 45 180 5 360

1006 50 200 6 400
14060 240 7 5607

There are six inputs to the winnings computation circuit:

1. A 3-bit number (1 to 7) corresponding to the matching digit, or all zeros
if there were no matching digits.

2. One bit indicating whether there were two or three matching digits,
assuming there was at least one match.

3. A 2-bit number corresponding to the wager that was placed.
Since the number of points is a three-digit decimal number, the winnings
computation circuit will have 12 output lines corresponding to three BCD
digits.

To realize this circuit, a 64 x 12 PROM device could be used, that is,
a PROM with 6 inputs and 12 outputs. However, 64 x 12 is not a standard
commercially available configuration; therefore, we will use two PROMs, an
82LS129A (256 x 4) to drive the hundreds digit and an 82LS135 (256 x 8) to
drive the tens and units digits. The complete payoff generator circuit is given in
Fig. 13.10, which shows the assignment of signals to the 8-bit PROM address
inputs and the PROM outputs. The PROM contents are listed in Table 13.2.
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TABLE 13.2 CONTENTS OF PAYOFF GENERATOR PROMS

Prize
/4(2-0) 0(11-8)0(7-4)0(3-0)

Inputs
A(4-3)

Prize
/1(2-0) 0(11-8)0(7-4)0(3-0) /4(5)

Inputs
A(4-3)A(5)

000 000
050025 00 00100 001 10

00 060030 0100 00 010 1
00 070035 01100 Oil 10

080040 00 10000 100 10
09000 10100 101 045 10
100050 00 110110 10 00
14000 111111 060 10 00
100050 01 001001 10 01
120010010 060 1 010 01

Oil 140070 1 010 01 Oil
100 160080 1 010 01 100

180101090 1 010 01 101
200110100 1 010 01 110
280120 01 11101 111 10
15010 00110 001 075 10
18010 010010 090 10 10
210105 10 OilOil 10 10
24010 100100 120 10 10
270101135 1 100 10 101
300110150 1 100 10 110
4201111 100 10 111 180
20011 001100 10 11 001
240120 11 010010 10 11
280140 Oil1 110 11 Oil
320160 11 10010 11 100
360180 11 10110 11 101
400200 11 11010 11 110
560111240 1 110 11 111

B 13.2 Keyless Auto Entry System

13.2.1 Problem Definition
Too many times, an automobile owner has walked up to his or her car and
discovered that the keys have been locked inside the car. To solve this problem,
a desirable feature would be a keyless entry system that would allow a car
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Figure 13.10 Payoff generator PROMs.

owner to enter a numeric combination code on a push-button keypad to unlock
the car door.

For safety reasons, such a system would have to be designed to minimize
the possibility of a thief discovering the code by trial and error, as can be done
fairly easily with many combination locks. Several things could be done to
make it more difficult to determine the correct code experimentally. One is to
make the length of the code variable so that the thief would not know how many
digits to enter. Table 13.3 shows the number of possible combinations there
would be if four numeric keys (1, 2, 3, 4) were used, with codes of length 4, 5,
6, and 7 digits. The table also gives the approximate probabilities of making a
correct guess on a single try.
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TABLE 13.3 KEYLESS ENTRY SYSTEM COMBINATIONS

Approximate
probability of correct Time to break code
guess on the first try (1 code per minute)

4/1,000
1/1,000
1/5,000

3/50,000

Code
length

Number of
combinations

4 256 4.25 hours
2.1 days

1.7 weeks
6.8 weeks

5 1,024
4,096

16,384
6
7

A further deterrent to thieves would be toautomatically disable the system
for several minutes if two or three incorrect attempts have been made to open the
lock. Most thieves will not want to stand around and wait to make additional
attempts, whereas this would be a minor inconvenience to the car owner as
compared to calling a locksmith. Table 13.3 lists the estimated time that would
be needed to try all codes, assuming one could be tried each minute with a
3-minute wait enforced after each three incorrect entries.

13.2.2 System Requirements
The keyless auto entry system will be operated by a five-button keypad near
the outside door handle. To keep this project manageable, only four numeric
buttons (1, 2, 3, 4) will be used. The entry code will be a user-defined sequence
of four, five, six, or seven digits. A RESET button will also be provided, to
be used in the event an error is made while entering the code. After pressing
the RESET button, the correct entry code sequence must be reentered from the
beginning.

To make it convenient for the car owner to set up a custom entry code
that can be easily remembered, a setup panel will be provided inside the car on
which the owner can set switches to program the digits of the combination and
the length of the code.

The system will have a single output, UNLOCK, which will activate
a mechanism to unlock the door. It is assumed that this electronic signal is
overridden by the normal mechanical lock and key mechanism. A block diagram
of the keyless auto entry system is shown in Fig. 13.11. It contains the following
subsystems:

1. Code entry keypad. Four push-button switches will be used, representing
the digits 1, 2, 3, and 4. A fifth push-button switch will activate the
RESET function. Each switch will generate one logic-high pulse when
pressed. To ensure clean pulses, each switch will be debounced. The
signals produced by the four data switches will be sent to an encoder
circuit, which will generate a single pulse each time one of the four
numeric buttons is pressed, along with a 2-bit binary code to represent
that button. The RESET button will generate a pulse to reset the system
control unit. This button will be disabled for a designated “sleep” interval
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Keypad (near door handle)

m m 4 RESET

Key detector/encoder

Key
code

Key
pressed

' ' 1

Control signals
«

Correct digit

Correct length

Sleep

Control
unitUnlock

door
Code

checker

Sleep
circuitDigit 0 Digit 1 Digit 7 Code

length

Setup panel

Figure 13.11 Keyless auto entry system block diagram.

any time three successive incorrect attempts have been made to open the
lock.

2. Setup panel. A panel of 16 DIP switches, shown in Fig. 13.12a, will
be provided to program the length of the code sequence and the digits
comprising the code. Since valid code sequences can be 4, 5, 6, or 7 digits
long, two DIP switches, B1 and #8, will be used to set the code sequence
length as defined in Fig. 13.12b. Each digit of the code sequence must be
one of the four numbers 1, 2, 3, or 4. Therefore, two DIP switches will
be assigned to each digit of the code sequence and set as defined in Fig.
13.12c. Since the maximum code length is 7 digits, a total of 14 switches
are needed to define any possible code sequence. Signals from the 16 DIP
switches will be sent to the code checker module, which will determine
if a correct code has been entered.

3. Code checker. The code checker determines if a sequence of digits
entered by the keypad is the code sequence defined by the DIP switches
on the setup panel. This module requires a counter to keep track of
the number of digits entered and a circuit to compare each digit to the
corresponding pair of switches on the setup panel. An UNLOCK signal
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DIP switch A DIP switch B

Open Open

3 0B B B B B
2 3 4 5 6 7 81 2 3 4 5 6 7 8 1

Digit Digit Digit Digit Digit Digit Digit Code
length1 2 3 4 5 6 7

(a)

Code length Switch B1 Switch B8 Digit 1 st Switch 2nd Switch

4 Closed
Closed
Open
Open

Closed
Open

Closed
Open

1 Closed
Closed
Open
Open

Closed
Open

Closed
Open

5 2
6 3
7 4

(b) (c)

Figure 13.12 Keyless entry system setup panel, (a) DIP switches, (b) Code length
settings, (c) Digit codes.

will be generated by the control unit if a correct code sequence has been
detected. An ERROR signal will be generated by the control unit if any
entered digit is in error or if too many digits are entered. Both of these
should be reset when the door is opened or when the lock is reset.

4. Sleep circuit. The function of the sleep circuit is to prevent the system
from being reset for a period of 3 minutes following a third consecutive
incorrect attempt to open the lock. This circuit will reset the system
automatically after the 3 minutes has elapsed.

5. Control unit. The control unit will provide all timing and control
signals for the other modules. In doing so, it will determine whether a
code sequence is being entered, if a reset is needed following an error
in entering a code sequence, or if the sleep circuit must be activated
following three incorrect attempts to enter the correct code sequence. <

13.2.3 Logic Design
The logic circuit design for the keyless auto entry system will be presented by
describing each module identified in the requirements. Then the modules will
be combined to create the complete circuit. The following paragraphs present
the design of the individual modules.

Keypad Interface and Encoder
The keypad interface comprises five push-button switches, debounce circuitry,
and an encoder circuit. A pair of cross-coupled NAND gatescan be used foreach
switch as a debounce circuit, as shown in Fig. 13.3 for the previous example.
To produce the 2-bit code for each button, a standard 4-to-l priority encoder
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circuit can be used, as described in Chapter 4 (Fig. 4.19). The circuit diagram
is repeated in Fig. 13.13. Note that there are three outputs: D indicates that at
least one digit button is being pressed, and d { d0 is the 2-bit code corresponding
to the highest priority button.

Keypad
buttons

K2

K l

do K4Button
code

K2 4-to-2
Priority
encoder

di r>-K3
*3 1(Digit button

D pressed)
K.4

DK\

(b)(a)

Figure 13.13 Four-to-one priority encoder for the code entry keypad, (a) Logic
symbol, (b) Logic diagram.

For correct operation, the rest of the circuitry will expect the D signal to
go high and then low again as each new button is pressed. If two buttons are
pressed at the same time, only the higher numbered button will be detected.

Setup Panel
The 16 DIP switches on the setup panel will be set in advance and will be
assumed to remain fixed throughout the operation of the system. Consequently,
debounce circuitry is not needed. The DIP switches are configured as shown in
Fig. 13.14. Each line is pulled up to a logic 1 value when the switch is OPEN
and pulled down to logic 0 when CLOSED.

A8 B1 B2 B3 Z*8Vcc A 1 A2 A3 Vcc
J .

V̂Wv-
“WvV- --WvV- -

' ~WW-
'-w\-• • •

L-WvV J 1 —VAV > 1
l ( ( {

DIP
switch

DIP
switch

0 6 0 , 0HIzJ BA

li
Figure 13.14 Setup panel DIP switches.
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DIP switches 57 and 58 are routed directly to the circuit that checks the
number of digits entered. The other 14 switches are routed to the circuit that
compares them to the entered code.

Code Checker
The code checker performs two functions. First, it counts the number of digits
entered at the keypad. Since the maximum entry code sequence length is seven
digits, a 3-bit binary counter can be used for the digit counter. The digit counter
will be incremented on the falling edge of each pulse on INCD and cleared
whenever a RESET signal is generated on CLRD. In this example, we select a
74LS93 four-bit binary counter with asynchronous reset, connected as shown
in Fig. 13.15.

The second 74LS93 shown in Fig. 13.15 counts the number of code entry
attempts. This counter is incremented after each unsuccessful try on the falling
edge of a pulse on INCT and cleared by a pulse on CLRT. At the counter
outputs, a 1 is produced at output T of the AND gate when the count reaches
3, that is, when QBQA = 11. This signals the control unit that there have been
three unsuccessful tries to enter the code.

The second function of the code checker is to compare the 2-bit code
for the nth digit of a code sequence entered by the keypad to the setting of
DIP switch pair n on the setup panel. One circuit is needed to select and route
switch pair n to a comparator, to be compared to the code for the entered digit.
Since there are seven pairs of switches, a dual 8-to- l multiplexer can be used
for this purpose. Two 74LS151 8-to- l multiplexer modules will be used, as
shown in Fig. 13.15. The switch pair is selected by the digit counter described
previously. Pair 0 will be selected immediately after the counter is reset to 0,
pair 1 after the first digit has been entered, and so on. Note that the 74LS93 is
incremented on the falling edge of each pulse on INCD, while the comparison
is performed while the pulse is high.

Two comparison circuits are needed, one to compare entered digits to the
corresponding pairs of DIP switches and the second to compare the number of
digits entered to the pair of switches that defines the code sequence length. In
the first case, a 2-bit comparator could be used and, for the sequence length, a
3-bit comparator. Rather than design these circuits, 74LS85 four-bit comparator
modules will be used for each, as shown in Fig. 13.15. For the first 74LS85,
the upper inputs come from the keypad encoder and the lower inputs from the
DIP switch multiplexer. For the second 74LS85, the upper inputs are from the
digit counter, while the lower inputs are from DIP switches B1 and 58.

Sleep Circuit
The sleep circuit is to inhibit the operation of the system for a 3-minute period
following three incorrect attempts to enter the combination. This will be done
with a 555 timer module configured as shown in Fig. 13.16 for monostable
(one-shot) operation. The 555 will be triggered by an active-low pulse from the
control unit on signal SLP whenever a third consecutive incorrect code-entry
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Figure 13.15 Code checker logic diagram.

sequence is detected, generating a SLEEP signal in the form of a pulse with a
duration of 3 minutes that will prevent the control unit from being reset.

Recall from Chapter 6 that the 555 output pulse width is given by

tw = l .l ( RA )( C ) s (13.2)

www.youseficlass.ir



Section 13.2 Keyless Auto Entry System 809

vcc

0.01RA RL
5 8

CONT Vcc
4 Inhibit control

unit reset
SLEEP

RESET
37

OUTDISCH
6 J- -LPulse from

conrol unit
THRES

3-minute
pulse

2
TRIG*SLP “U SE 555

C
GND

One-shot
multivibrator

Figure 13.16 Sleep circuit “one-shot" logic diagram.

Therefore, the values RA = 3 M£2 and C = 60 ixF produce a pulse of approx-
imately 3 minutes in duration.

Control Unit
In response to entries from the keypad, the control unit is responsible for
determining when to activate the UNLOCK mechanism, when to activate the
SLEEP circuit, and when to reset the system.

As shown earlier, the keypad encoder produces a pulse on signal D when-
ever one of the four digit buttons is pressed, and the RESET button produces
a pulse on signal R. Since these are the primary signals that initiate actions
in the system, the control unit will be designed as a pulse mode asynchronous
sequential circuit, as described in Chapter 10.

As pulses are generated on the D and R signals, three other conditions
determine what the control unit should do. These conditions are represented by
the C, L, and T signal lines as follows.

C = 1 if the current digit entered is correct, and 0 if the current
digit is incorrect.

L = 1 if the number of digits entered is equal to the entry code
sequence length, and 0 otherwise.
T = 1 if there have been three previous tries at entering the code

sequence, and 0 otherwise.
As shown in Fig. 13.15, signal C is the output of the 74LS85 comparator that
checks for correct digits, signal L is the output of the 74LS85 that compares
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the output of the digit counter to the selected code length, and T is produced
by the counter of the “three-tries detector.”

As discussed in Chapter 10, we begin the control unit design by devel-
oping a state diagram, which is shown in Fig. 13.17. From this state diagram
we see that the control unit has three states:

INIT: Initial state, waiting for the first digit to be entered.
ENTRY: Digit entry state; the control unit remains in this state as
long as correct digits are entered. This state is exited when a code-
input error is detected, when the RESET button is pressed, or when
an entire correct entry-code sequence has been entered.
ERROR: Error state; the control unit enters this state if an error
is made in the entry-code sequence, and if there have not been
three previous errors. The control unit remains in this state until the
RESET button is pressed, whereupon it returns to the INITstate.

The state table and binary state table for the control unit are given in
Figs. 13.18a and b, respectively. Let us use JK flip-flops configured to operate
as T flip-flops. The T flip-flop excitation table is given in Fig. 13.18c. From this
table we can derive the T flip-flop excitation equations, and from the transition
table we can derive the output equations for the pulse mode sequential circuit.

T x = ( D C L ) y x + ( R T ) y x
T2 = ( D C L ) y x y2 + ( D C L ) y x + ( .

D C f + D C T + R f + R T ) y2

= D C y x y2 + D C L y x + D C y2 + R y2

U N L K = ( D C L ) y
S L P = ( D C T ) y x + R T

I N C D = ( D C
~
L ) y x

I N C T = R f

C L R D = ( .D C L ) y x + R T
C L R T = ( D C L ) y

The logic diagram for the control unit is presented in Fig. 13.19.

i

l

•13.3 One-lane Traffic Controller
In many places, two-way automobile traffic must be supported by a single-
lane road, such as on narrow bridges in the country, roads under repair, and
other narrow streets. As shown in Fig. 13.20, the single lane usually connects
normal two-lane road segments. To control the two-way traffic in this single
lane requires special traffic signals at each end of the single lane road that
allow traffic to move in one direction for a period of time and then stop it to
allow traffic to flow in the other direction, alternating back and forth. For each
direction change, the traffic signal controller must halt traffic in one direction
and wait until the lane is clear before allowing traffic to proceed in the opposite
direction. To achieve optimum traffic flow, the period of time allotted to traffic
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Figure 13.17 Control unit state diagram.
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Figure 13.18 Control unit state, transition, and excitation
tables, (a) State table, (b) Binary state table, (c) T flip-flop
excitation table.
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Figure 13.19 Control unit logic diagram.
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Figure 13.20 Two-way traffic on a one-lane road.
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Section 13.3 One-lane Traffic Controller 813

in each direction should be adjusted according to the traffic conditions, with the
direction corresponding to heavier traffic allocated a longer period of time than
the other. Traffic flow measurements can be made by using sensors embedded
in the road at each end of the lane.

In this project we will design an adaptive traffic signal controller to
coordinate traffic signals at the two ends of a one-lane road to support two-way
traffic. A sensor will be positioned at each end of the road to detect cars entering
and leaving the road. Time will be allocated to traffic flow in each direction
according to traffic flow measurements obtained from the sensors during each
5-minute period.

13.3.1 System Requirements
The traffic controller will control the red, yellow, and green lamps of two traffic
signals (Gl, Y 1, and R1 for signal 1 and G2, Y 2, and R2 for signal 2), one
at each end of the road. It is assumed that each of the six lights has a separate
ON/OFF control line. Inputs to the traffic controller include signals from two
sensors, SI and S2, placed at each end of the road. Each sensor generates a
pulse whenever crossed by a car. A manual RESET button will also be provided
to initialize the controller.

The primary function of the controller is to determine when to switch the
traffic lights from one color to the next. For cars moving in direction 1, G1 will
be on for a time Tx , which will be recomputed every 5 minutes according to the
traffic flow in each direction. After time Tv the yellow light T1 will be turned
on for a single time unit Ty (10 seconds will be used as the basic time unit for
this example), after which red light R1 will be turned on until the controller is
ready to activate Gl again. This timing pattern is illustrated in Fig. 13.21.

For cars moving in direction 2, li^ht G2 will not be turned on until after
the last car moving in direction 1 has lbft the road. The number of cars still on
the road can be determined by comparing the number of cars entering the road,
as signaled by one sensor, to the number of cars leaving the road, as signaled
by the other sensor. When the difference between these counts is zero, it will

rruTraffic
signal i

LR\ i

f >2Traffic
signal ] * 2 !

2 |

h*
T2 TYTx TY t

Wait for
all-clear

Wait for
all-clear

Figure 13.21 Traffic controller timing diagram.
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be assumed that the road is clear. The duration of green light G2, Tv will be
computed as T2 = 7jol — Tv where Tlo{ is a total amount of green-light time.
rtot will be split between directions 1 and 2 according to the relative traffic flow
in each direction.

Figure 13.22 presents a block diagram of the traffic light controller. The
primary components of the controller include a time-base oscillator, a counter to
determine whether cars remain on the road, a traffic counter to measure relative
traffic flow in the two directions, a circuit to compute the green time allocations
for the two directions, and a state machine control unit. The functions of these
modules are described briefly as follows.

1. Time-base oscillator. The time-base oscillator will generate a clock signal
that will be used to compute the times at which lights will be switched.
The 10-second yellow light period will be assumed to be the shortest event
in this system. All other switching times will be computed as multiples
of 10 seconds. Thus, a clock signal with a period of 10 seconds will be
used. The amount of green light time allocated to each direction will be
recomputed every 5 minutes. Therefore, the oscillator will increment a
counter that will be used to generate a pulse every 5 minutes.

2. Cars-on-road counter. To determine whether cars remain on the road
prior to activating a green light, a counter will be used to compute the
difference between the number of cars entering the road, NE , and the
number of cars leaving the road, Nt . The road is assumed to be all
clear whenever N£ — Nj = 0. The number of cars entering the road is
determined by counting pulses from one sensor, and the number of cars
leaving is determined by counting pulses from the other sensor. Since the
only condition of interest is whether NE — NL = 0, the actual counts are
not needed. Therefore, an up/down counter will be used that will be incre-
mented by pulses from sensor and decremented by pulses from sensor
Sy A counter output signal will indicate the condition NE — N{ = 0.

Traffic
signal“ Y {

1RControl unit
state machine

l
Reset
button Gi* Traffic

Yi i* signal

, i

t " ' M r

CLEAR T T1 \ 1 2 ClkSi Time-base
oscillator
(T = 10 s)

5 minutes

Sensors «

Cars-on-road
detector

Green time
allocation

S2 *

Figure 13.22 Traffic controller block diagram.
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Section 13.3 One-lane Traffic Controller 815

3. Traffic counter. To determine the relative amount of green light time al-
located to each direction, a counter will be used to compute the difference
between the numbers of cars traversing the road in each direction. As with
the cars-on-road counter, the traffic counter will be incremented by cars
moving in one direction and decremented by cars moving in the opposite
direction. Pulses from S', will be used in both cases. The count will be sam-

pled every 5 minutes, signaled by a pulse from the time-base oscillator, af-
ter which the counter will be reset to zero to begin the next 5-minute period.

4. Green time allocation. This module will recompute the green light
durations 7j and T2 at the end of each 5-minute period based on the output
of the traffic counter. Assuming D, to be the traffic count in direction 1
and D2 to be the count in direction 2, T, will be increased if D, — D2 > 0
and decreased if D, — D2 < 0. T2 will be computed as 7|ot — Tx . Limit
values will be used to ensure that neither T, nor T2 drop below a minimum
period of 40 seconds to prevent stalling traffic flow in either direction.

5. State machine control unit. The state machine control unit will coordi-
nate the operation of the traffic light controller and generate the ON/OFF
signals for the six lamps, cycling through them according to the timing
diagram in Fig. 13.21, with switching times based on the outputs of the
cars-on-road detector and the green time allocation module.

13.3.2 Logic Design
In this section, the designs of the individual modules described will be devel-
oped. Then these modules will be interconnected tocomplete the system design.

Time-base Generator
A clock signal with a period of 10 seconds will provide the time base for
the controller. This clock signal will be generated by a 555 timer operating in
astable multivibrator mode, as presented earlier in Fig. 13.6 for the slot machine
example. From Eq. 13.2, a period of 10 seconds can be obtained by selecting
the following resistor and capacitor values:

RA = 200m
Rn = 200mB

C = 2\[iF
The oscillator circuit output is signal CLK shown in Fig. 13.23.

A short pfilse at the end of every 5-minute period is required to signal that
it is time to sample the traffic counter and recompute the green time allocations.
This pulse will be derived by a simple binary counter incremented by the clock
generator. Since

5 min — 5 x 60 s

= 30 x 10 s
a modulo-30 counter will be used. The 74LS390 is a dual, 4-bit decade asyn-
chronous counter that can be used for this purpose, as shown in Fig. 13.23a. In
this example, counter 1 is incremented once every 10 seconds, and counter 2 is
incremented when counter 1 changes from 9 —^ 0. Referring to the K-map in
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— C L K
Clock output

(10-second period)Counter 1
vcc

31
C > \A >i

1QA
4 50.01 RL IQB1BRA

65 8 10C
2 7CONT Vcc Clear 1QD

4 SE 555RESET 1/2 74LS39037
OUTDISCH
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THRESRB

2
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l1 15 13Oscillator 4 C > 2A 2QA 5 minutes
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1/2 74LS390

(a)

00 01 11 10 01 11 10

00 d0 0 d 0 d d

01 001 0 0 d d d

11 0

10 0 d0 d

(b)

Figure 13.23 Time-base generator circuit design, (a) Logic diagram,

(b) Counter 1 = 9. (c) Counter 2 = 3.

Fig. 13.23b and realizing that counter 1 will never exceed 9, counter 2 should
be incremented for the condition

Q A Q D = 1
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Likewise, counter 2 will never exceed a count of 3. Therefore, from the K-map
in Fig. 13.23c, both counters should be reset for the counter 2 condition

Q A - Q = 1B
In addition, both counters are also reset by the master RESET signal. The
complete time-base generator circuit is shown in Fig. 13.23a.

Cars-on-Road Counter
As described previously, the road will be considered clear whenever the number
of cars that leave the road, NL , is equal to the number of cars that enter the road,

Ne. TO detect this condition, a binary up/down counter will be used as follows.
Pulses from sensors Sl and S2 will be generated each time a car enters or leaves
the road. For traffic in direction 1, pulses from indicate cars entering the
road, while for direction 2 they indicate cars leaving the road, and vice versa
for sensor S2. Since only the difference between cars entering and leaving is
significant, pulses from 5, will be used to increment the counter, and pulses
from S2 will decrement the counter. Any time the count is zero, the counter
will have been incremented and decremented an equal number of times; that
is, NL NE = 0, signaling that the road is clear.

The binary up/down counter used for this module must have a sufficient
number of bits to count the largest number of cars that can enter the road without
having left, that is, to compute the largest expected value of NL — NE. In this
example it will be assumed that a 4-bit binary counter is sufficient, that is, that
no more than 15 cars will ever be on the road at any one time. The 74LS193 is
a 4-bit binary up/down counter with separate clock inputs for counting up and
down. It will be configured as shown in Fig. 13.24, with the UP clock input
controlled by pulses from sensor Sj and the DOWN clock input controlled by
S2. A 4-input NOR gate detects a count of zero by producing an output of logic
1, indicating that NE = NL , thus indicating that all cars that entered the road
have left.

74LS193
15

A
Vcc 1

B+
10 3

C QA*
9

Q BD> Road
clear

{ N E - N L= 0)

-=F 11
Load Qc

14
RESET Clear QD*

5Pulses
from

sensors

C > Count up
4

> Count down

Figure 13.24 Cars-on-road counter logic diagram.
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Traffic Counter
The operation of the traffic counter is similar to that of the cars-on-road counter
in that it is to measure the difference between the number of cars traversing the
road in each direction. An up/down counter can again be used, incremented by
cars moving in one direction and decremented by cars moving in the opposite
direction. In this case, only pulses from one sensor, 5p will be used, with
a signal from the control unit indicating the traffic direction. To minimize
complexity, it will be assumed that the difference between the numbers of cars
traversing the road in the two directions will be no more than 15, so a 4-bit
counter will be sufficient.

Again the 74LS193 4-bit binary up/down counter will be used, as shown
in Fig. 13.25. It will be incremented for each pulse on 51 while G 1 is active,
and decremented for each pulse on 51 while G2 is active. The counter will be
reset every 5 minutes.

GREEN Time Allocation
The total amount of time allocated to green lights in one complete traffic cycle is

rtot = T\ + T2
where T} is the amount of time allocated to green light G 1 in direction 1 and
T1 the amount of time for light G2 in direction 2. If the traffic over a 5-minute
period is greater in direction 1 than in direction 2, T, will be increased by one
time unit and T? reduced by one time unit, keeping 7jot constant. To prevent
traffic from being stalled in either direction, neither time will be reduced below
a specified minimum value.

In this design, we shall assign 7|ot = 160 s, which corresponds to 16
periods of clock signal CLK . This time will be split between Tx and Tv
The circuit is shown in Fig. 13.25. The 74LS93 GREEN timer counter is
incremented every 10 seconds while either light is green, that is, while G1 = 1
or G2 = 1. The clock signal is disabled when G1 = G2 = 0. G1 is assumed
to be turned on at a count of 0. A 74LS85 comparator will detect the condition
t = T ] , at which time G 1 will be turned off and the counter will be stopped
until G2 turns on. Then it will count to 15 { QDQCQBQA = 1111), at which
time r9 will be set to 1 to make the control unit turn off G2.

The allocation of time for 7j will be determined by a second counter.
This counter will be initialized to a value of 7 at reset time, setting Tx =

= 80 s. The counter will then be incremented or decremented after each
5-minute time period, according to the traffic counter, to adjust 7j . A minimum
time of 40 seconds will be used for 7j and T7. Therefore, the counter will
not be decremented if T} = 3 and will not be incremented if T} = 12. The
conditions for inhibiting the decrementing and incrementing of the counter are
derived from the K-maps of Fig. 13.26. Note that both maps contain don’t-care
conditions since the count will never be allowed to go below 3 or above 12.
The logic expression used to inhibit the counter is the following:

INHIBIT = DN • ( QD Qc ) +
~
DN • ( QD Qc )
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Figure 13.25 GREEN timer logic diagram.

where D N is the signal from the traffic counter controlling the D N / U P input
of the T ] counter. The INHIBIT signal is applied to the C T E N input of the
T, counter, disabling the counter when INHIBIT = 1 and enabling the counter
when INHIBIT = 0. The logic circuit is shown in Fig. 13.25.

Control Unit
The control unit requires six states, corresponding to the times during which
the light is green and yellow in each direction and during which both lights are
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00 01 11 10 01 11 10

oo ood 0 0 0 0 0 1 0

01 01d 0 0 0 0 0 d 0

11 1 0 0 0 11 0 0 d 0

10 10d 0 0 0 0 0 d 0

(a) (b)

Figure 13.26 K-maps for logic to enforce green time limits, (a) Inhibit down count
K-map. (b) Inhibit up count K-map.

red. The timing of these states was shown earlier in Fig. 13.21. The six states
are defined as follows:

Light 2State Light 1
Green RedA

RedB Yellow
C Red Red

Red GreenD
Red YellowE
Red RedF

The desired state diagram is given in Fig. 13.27. Note that the control unit
leaves states A and D after times Tx and Tv respectively, as defined previously.
States B and E are each exited after a single clock period. States C and F are
exited as soon as the number of cars exiting the road is equal to the number
of cars that entered the road, that is, as soon as the output of the cars-on-road
counter is zero, signaling the all-clear condition.

In this state machine, the state transitions occur in a fixed sequence, as in
a simple modulo-6 counter; that is, the machine simply cycles through states
A-B-C-D-E-F-A, and so on. The times of the state changes depend on the
three inputs Tv Tv and All clear.

Several approaches can be used to design this state machine. One method
would be to design a modulo-6 counter with a decoder to derive the six outputs.
The counter would be incremented for each state change. Alternatively, a state
machine design can be developed from a state table of six rows and eight
columns, corresponding to the six states and three inputs. This implementation
would require three flip-flops and assorted combinational logic.

For this example, let us use a one-hot state assignment, as defined in
Chapter 8, and realize the state machine with a 6-bit shift register, as shown in
Fig. 13.28. Each shift register output corresponds to one state of the machine.
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All-clear All-clear

Figure 13.27 Traffic controller state diagram.

Outputs A and B control lights G1 and Y 1, respectively, while outputs D and
E control lights G2 and Y 2. Light /?1 is on whenever G1 and Y 1 are both
off, and likewise R2 is on whenever G2 and Y 2 are both off. These output
conditions are the following:

Cl Q A Q DC2
Y Q B *2 Q E1

(GJ + FJ ) = (G2 + Y2 )

When the RESET button is pressed, bit 0 of the shift register will be
initialized to 1 and the other bits to 0 to start the machine in state A. The shift
enable input will then be activated and the register shifted one time for each
condition indicated in the state diagram. These conditions are combined into
the following shift-enable signal:

S H I F T M E N = (A • T x ) + B + (C • C L R ) + ( D • T2 ) + E + ( F • C L R )
As shown in Fig. 13.28, the SHIFT_EN signal is ANDed with CLK to drive
the two 74LS95 C K\ inputs, which provides the clock signal during shift
operations. CLK also drives the 74LS95 C K 2 inputs, which clocks the register
during load operations.

R l

•13.4 Grocery Store Cash Register
Most retail establishments, including grocery stores, utilize electronic cash
registers at their customer check-out stations. The basic functions of a cash
register in a grocery store are to enter and display the prices of individual
items being purchased and then compute and display the total bill. Many
modem electronic point-of-sale terminals also compute discounts, keep track of
inventories, compute change, and perform a variety of other functions. Magnetic
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Figure 13.28 Traffic signal control unit logic diagram.

Acme grocery bar-code scanners and/or keyboards are used to enter prices, inventory numbers,
discounts, and other information.

For this exercise, we shall design the control circuit for a minimum-
function cash register that simply computes bills for lists of items. All item
prices will be entered from a keyboard. The front would look something like
the diagram in Fig. 13.29, with 14 buttons and a numeric display. The 14 buttons
include the digits 0 to 9, and the following special functions:

ENTER: Pressed after each price has been keyed in.
TOTAL: Pressed after all prices have been entered to display the
total bill.
CLEAR ENTRY: Pressed to clear the display if an error is made while
keying in the price of an item.
CLEAR TOTAL: Pressed to clear the total out of the cash register
prior to entering items for a new customer.

To keep the project manageable, we shall restrict all numbers to four
decimal digits, with all prices and totals assumed to be in the range [$00.01 . . .
$99.99]. All numbers will be displayed as decimal values on seven-segment
LED displays.

sEHB.lHIHl
© © © CLEAR

TOTAL
(4) (5) (T) [CLEAR

ENTRY

|TOTAL

[ENTER

© ® ®
©

Figure 13.29 Grocery
store cash register.

www.youseficlass.ir



Section 13.4 Grocery Store Cash Register 823

13.4.1 System Requirements
The main components of the cash register control circuit include a keypad and
encoder for the 14 keys on the cash register, a four-digit display, an input register
into which 4-bit BCD codes are shifted from the keypad encoder and sent to the
display, and an accumulator, which computes the running total. All elements are
controlled by signals from the keyboard. A block diagram of the cash register
control circuit is shown in Fig. 13.30. The components are the following:

1. Keypad. The keypad comprises 14 push-button keys as described previ-
ously. Debounced push-button switches will be used. An encoder circuit
will generate a BCD value corresponding to each numeric digit entered,
along with a pulse to indicate that a DIGIT key has been pressed. Individ-
ual signals from the TOTAL, ENTER, CLEAR TOTAL, and CLEAR EN-
TRY buttons will be sent directly to the input and accumulator registers.

2. Display. Decimal digits will be displayed on four 7-segment LED
elements. Since all numbers are to be in decimal, BCD-to-7 segment
decoders will be used to drive the display. During price entry, digits
will shift from right to left across the display as they are entered. For
any number requiring less than four digits, leading zeros will not be
displayed; that is, these digits will be blanked on the display to improve
the readability of the displayed number.

3. Input Register. The input register will be loaded with numbers entered
from the keypad and shifted from right to left until the ENTER key is
pressed. The input register outputs will be sent to the display and to the
accumulator, where the bill will be computed. If more than four digits are
entered, only the last four will be kept. After the ENTER key has been
pressed, the value will be kept in the input register so that another item of
the same price may be added to the bill by simply pressing the ENTER

4-Digit
display

Key
encoder

_ Numeric
keys

Input register

I
Digit

TOTAL
CLEAR ENTRY
CLEAR TOTAL
ENTER

Accumulator
adder and register

Function keys

Figure 13.30 Cash register block diagram.
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key again. When the TOTAL key is pressed, the input register will be
loaded with the total bill from the accumulator. If an error is made while
entering a price, the input register can be cleared by pressing the CLEAR
ENTRY key. The input register is also cleared when the CLEAR TOTAL
key is pressed to prepare for the next customer.

4. Accumulator. The accumulator maintains a running total of the current
sale. To start a new customer transaction, the accumulator is cleared by
pressing the CLEAR TOTAL key. Subsequently, each time the ENTER
key is pressed, the price in the input register is added to the current total
in the accumulator. Since all numbers are in decimal, a four-digit BCD
adder will be used to compute the totals.

13.4.2 Logic Design
L--*--'. Ill 'U'ttt"/'•'

As with our previous examples, we will proceed with the cash register circuit
design by first designing and testing separately each module described previ-
ously. Then these modules will be interconnected and tested until the entire
system is operational. The following paragraphs present the designs of the
individual modules.

Keypad
Each of the 14 buttons on the keypad will be a debounced, push-button switch
as shown earlier in Fig. 13.3. The signals produced by the 10 numeric digit
keys (0 to 9) will be encoded into a 4-bit BCD value and a signal DIGIT sent to
the input register to indicate that a digit key has been pressed. The signals from
the four special function keys will be sent directly to the input and accumulator
registers to initiate the corresponding operations.

The BCD digit codes will be produced by a 10-to-4 priority encoder,
constructed as illustrated in Fig. 13.31. The 10-to-4 encoder is constructed
from two 74LS148 8-to-3 priority encoders. Buttons 0 to 7 drive the inputs of
the first encoder, and buttons 8 and 9 drive the first two inputs of the second
encoder. Since the 74LS148 inputs are active low, buttons 0 to 9 must produce
a low signal when pressed. Consequently, the signals for each of buttons 0 to
9 will be taken from the upper NAND gate output (NAND gate output pin 3)
of the debounce circuit of Fig. 13.3, which corresponds to the Q latch output.
This output will be low when a button is pressed to set the debounce latch and
return high when the button is released to reset the latch. Encoder outputs A2
to AO provide the lowest 3 bits of the key number. The most significant bit is
0 for keys 0 to 7, and 1 for keys 8 and 9. When a digit key is pressed, the GS
output of the affected encoder goes low. Therefore, the GS output of the first
encoder can be used as the most significant bit of the BCD code, since it is 0
when one of keys 0 to 7 are pressed, and 1 otherwise. Note that the AO outputs
of the two encoders are ORed to produce the least significant bit of the BCD
code as are the A 1 and A 2 outputs to produce the other two BCD code bits.
The two GS outputs are likewise ORed to produce a pulse signal, DIGIT, that
is sent to the input register to force it to capture the new digit.
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VccDigit keys
(from active-low debounce circuit outputs)
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CLEAR CLEAR TOTAL ENTER
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Digit
k -> hk( ) *1

To registers

Figure 13.31 Cash register keypad encoder.

Input Register
The input register must store up to four digits for display, and these digits are
also sent to the accumulator to compute price totals. To create the effect of digits
shifting from right to left across the display during price entry, the register must
be loaded serially with BCD digits from the keypad encoder when a pulse is
received on the DIGIT line. When the TOTAL key is pressed, the register must
be parallel loaded with the value from the accumulator to send the total price
to the display. Finally, when either the CLEAR ENTRY or CLEAR TOTAL
button is pressed, the input register should be cleared to all zeros.

The preceding functions require a 16-bit shift register supporting left-
shift, parallel-load, and clear functions. The 74LS195A module is a 4-bit shift
register with synchronous shift and parallel-load and asynchronous clear con-
trol inputs. We will use four of these modules for the input register, as shown
in Fig. 13.32.

Each BCD digit is a 4-bit value. Rather than shifting a new digit into
the input register 1 bit at a time, we will organize the register modules so that
the entire digit can be shifted into the register in a single step. As shown in
Fig. 13.32, the rightmost 74LS195A will contain the least significant bits of all
four displayed digits, the next 74LS195A to the left will contain the next bit of
each of the four digits, and so on. Thus, on a left shift the 4 bits corresponding
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to the leftmost digit on the display are shifted out of the register modules, while
the bits for the new digit are shifted into them, one into each module.

The control signals for the input register are derived from the control
signals generated by the keypad encoder. The register is to be cleared when
either the CLEAR ENTRY or CLEAR TOTAL button is pressed. Hence, these
signals are simply ORed to drive the input register asynchronous clear signal.

The register is to be parallel loaded with the current total from the accu-
mulator when the TOTAL key is pressed and shifted left 1 bit when a DIGIT
key is pressed. The 74LS195A is parallel loaded by setting the SHIFT/LOAD
control input to 0 and pulsing the CLOCK input. A shift is performed by setting
SHIFT/LOAD to 1 and pulsing the CLOCK input. Since the DIGIT signal will
be 1 when a digit is entered, and therefore 0 when the TOTAL key is pressed,
the DIGIT signal will be used to control the 74LS195A SHIFT/LOAD control
input.

To supply the 74LS195A CLOCK input, the DIGIT and TOTAL signals
should be ORed so that a pulse is generated whenever a digit key or the TOTAL
key is pressed. Unfortunately, the DIGIT signal cannot be used directly, since
it is activated in the keypad controller at the same time the 4-bit key code
is being produced, as illustrated in Fig. 13.33. From the TTL data book, the
minimum setup time for the 74LS195A serial input is 15 ns prior to the clock
transition. In addition, the minimum setup time for the SHIFT/LOAD control
input is 25 ns prior to the clock transition. To satisfy these requirements, it
will be necessary to delay the pulse on the DIGIT signal. This delay will be
produced by running the DIGIT signal through a string of inverters, as shown in

From
accumulator

Bit 3 of
each digit

Bit 1 of
each digit

Bit 2 of
each digit

Bit 0 of
each digit

« I 4 « I 0 «6 «2«15 «1 I "7 «3 *13 «9 «5 "I «12 «8 «4 «0

7 6 4 7 6 5 4 7 6 5 4 7 6 55 4
Digit

(delayed)

Total

n n n nn n n n n o o n n o o n
10 10 10 10D C B AD C B A D C B A D C B ACLOCK <

SHIFT/LOAD
SERIAL{l
INPUTS [ K

QD QC QB QA CLEAR

CLOCK <
SHIFT/LOAD

SERIAL jI
INPUTS [ K

QDQCQBQA CLEAR

CLOCK <
SHIFT/LOAD

SERIAL U
INPUTS K

QD QC QB QA CLEAR

CLOCK <
SHIFT/LOAD

SERIAL l
INPUTS K

QnQC QB QA CLEAR

99 9 9
2 2 2 274LSI95A 74LS195A 74LS195A 74LS195A
3 3 3 3 CLEAR

TOTAL
CLEAR
ENTRY

1I I <3=>-
12 14 15 12 14 15 12 13 14 12 1513 13 15 13 14

From
k\ keypad
" encoderh

mtii [ iTm
*15 *14 '13 '12 * 11 '10 '9 '8 '7 *6 '5 *4 *3 '2 * 1 '0

To display and accumlator

Figure 13.32 Input register.
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Serial
inputs < >Numeric code

Digit

Clock
T1 su

Delay

Figure 13.33 Input register shift timing.

Fig. 13.32, producing the CLOCK signal shown in the timing diagram of Fig.
13.33. Typical propagation delays of the 74LS04 inverter are T}

= 10 ns. Therefore, four inverters will delay the clock signal by a typical
value of 38 to 40 ns after the DIGIT pulse goes high, satisfying the setup time
requirements for both the CLOCK and SHIFT/LOAD control inputs. It will be
assumed that the accumulator output is stable well in advance of the TOTAL
key being pressed, allowing the TOTAL signal to be used for the load clock.

= 9 ns andPLH
T,PHL

Accumulator
The accumulator comprises a 16-bit parallel-load register and a four-digit BCD
adder. The accumulator is to be cleared when the CLEAR TOTAL button is
pressed and loaded with the sum of its contents and the number in the input
register when the ENTER key is pressed.

The accumulator register will be implemented with two 74LS273 octal
D flip-flop modules, as shown in Fig. 13.35. The clock inputs will be controlled
by the ENTER signal from the keypad, and the clear inputs will be controlled
by the CLEAR TOTAL signal from the keypad.

Binary-coded decimal adders are not available as standard TTL modules.
Therefore, we must create one from binary adders. Consider the addition of
two BCD digits with a 4-bit binary adder. The sum of two decimal digits
will be a number in the range [0 . . . 18]. Table 13.4 lists the sum and carry
outputs produced by a binary adder when its inputs are BCD digits, along with
the corresponding sum and carry outputs desired from the BCD adder. Three
unique cases can be identified in this table.

Case 1: 0 < sum < 9. In this case the results produced by the bi-
nary adder are identical to those required from the BCD adder.
Therefore, the results can be used with no adjustments.
Case 2: 10 < sum < 15. In this case the binary adder produces
sums in the range (1010)2 .. . (1111)2, with no carry output. The
corresponding decimal results can be obtained by adding 610 =
(0110)2 to the output of the binary adder. This operation produces a
carry output and a sum in the range [(0000)2 ... (0101)2], as desired.
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828 Chapter 13 Design Examples

TABLE 13.4 BINARY VERSUS BCD ADDITION

Binary-to-BCD
Adjustment

+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0110
+0110
+0110
+0110
+0110
+0110
+0110
+0110
+0110

Decimal
Sum

Binary Adder
Sum
0000

BCD Adder
Cv Sumoutcout

0 0 00000
0 00011 0 0001

2 0 00100 0010
3 0 0011 0 0011
4 0 0100 0 0100

01015 0 0101 0
06 0110 0 0110
0 0111 0 01117

8 0 1000 0 1000
9 0 1001 0 1001

10 0 1010 1 0000
1011 1 00011 1 0

12 0 1100 1 0010
13 0 1101 1 0011
14 0 1110 1 0100
15 01010 mi l
16 1 0000 1 0110
17 1 0001 1 0111
18 1 0010 1 1000

Case 3: 16 < sum < 18. In this case the binary and BCD adders both
produce a carry-out, with the binary sum 6 less than the desired
BCD result. The correct decimal results are again obtained by
adding 610 = (0110)2 to the output of the binary adder, as in case 2.

In cases 2 and 3, the decimal adder generates a carry-out for any sum
greater than or equal to 1010, whereas the binary adder generates a carry-out
only if the sum is greater than or equal to 1610. Consequently, adding 6 to the
output of the binary adder for sums greater than 9]0 will adjust the results to
the desired value.

Figure 13.34a shows a two-stage circuit that adds two BCD digits by
examining the output of the first binary adder and adjusting the result by
adding 6 to it if the sum is in the range [(1010)2 . . . (1111)2J (case 2) or if the
carry output is 1 (case 3). Using the K-map in Fig. 13.34b, which maps sum
values greater than 9, the condition indicating the need to adjust the result is

Adjust = Cout 4- E3 E2 4- E3 E
Two 74LS83 four-bit adder modules are used, one to compute the sum and
another to adjust the result. If Adjust = 1, then (0110)2 is added to the output

l
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From
accumulator

From
input register

-A,

8 10 161 3 4 7 11

A4 A3 A2 AI B4 B3 B2 B\
14 13

74LS83 CO CjnC4 4

14 13 12 II

15 2 6 9

Cout
Adjust

X 163 8 10 4 7 111

A4 A3 A2 A1 fl4 53 B2 B\
14 13

74LS83 COC4 4- X
14 13 12 II

15 2 6 9

’

To accumulator

Figure 13.34 One-digit binary-coded decimal adder, (a) Logic
diagram, (b) K-mapof sum > 10.

of the first adder; otherwise (0000)2 is added. The complete 16-bit accumulator
circuit is presented in Fig. 13.35.

Display
The four-digit cash register display is similar to the two three-digit displays
designed earlier for the slot machine game. For the cash register display, each
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From input register

l\s h-\ hi hi ^|| /|Q I9 h h I f, /5 h h h 11 '(>

«15 ”14 «13 «12 "11 «10 "9 «8 a7 "6 «5 «4 fl3 «2 a\ «0

I1 )3 )8]10 161 3 8 10 16 4 7 II 4 7 11 1 3 8 10 16 4 7 11 1 3 8 10 16 7 1 14

/14 /13 /12 /11 B4 B3 B2 B\ A4 A3 A2 A\ B4 B3 B2 B 1 A4 A3 A2 A\ B4 B3 B2 B 1 /14 /13 /12 /11 #4 S3 B2 B\
14 1414 14 13

CO74LS83 C4 74LS83 C4 74I.S83 C4 741̂ 83C4

14 13 12 II 14 1312 II 14 13 12 II 14 13 12 II
215 2 6 9 15 6 9 15 2 6 9 15 2 6 9

Adjust̂ Adjust Adjust̂

V , 3 r, 3 r , 3 r, ^n8 10 16 4 7 8 10 16 4 7 11 8 10 16 4 7 1 1 8 10 16 4 7 1 1

A4 A3 A 2 A 1 B4 B3 B2 B\ A4 A 3 A2 A 1 B4 B3 B2 B\ A4 A3 A2 A 1 B4 B3 B2 B 1 A4 A3 A2 A 1 B4 B3 B2 B\
14 13 14 13 14 1 1 14 13

C4 74LS83 CO C4 74LS83 co -+2_ C4 74LS83 co ~+2_ 74LS83 COC4

14 13 12 II 14 13 12 II14 13 12 II 14 13 12 II

2 6 9 2 915 15 2 6 9 15 6 15 2 6 9

18 17 14 13 8 7 4 3 18 17 14 13 8 7 4 3

8D 7D6D 5D 4D 3D 2D ID
CLOCK <

8D 7D6D 5D 4D 3D 2D ID
CLOCK <

11 11
ENTER

741̂ 273 74LS2731
> -KKFCLEAR

82706(2 5040 302010
>-*- CLEAR

8(2 7060 50403020 10
CLEAR
TOTAL

19 16 15 12 9 6 5 2 19 16 15 12 9 6 5 2
/ // / \

«15 «14 «13« I 2 «1! «10 «) "X «7 £M fl4 flj «2 «I £7( )

To input register To input register

Figure 13.35 Binary-coded decimal accumulator.

of four BCD digits must be converted from BCD code to seven-segment code
for display on a seven-segment LED element. As with the earlier designs, a
74LS48 code converter module can be used for this purpose.

For the cash register display, it is also required that any digits correspond-
ing to leading zeros be blank on the display, that is, if a number begins with
one or more zeros, these elements should be blank in the display. The 74LS48
includes a blanking control input, BI/RBO, that, when 0, forces all seven LED
segments to be off.

For this application, whenever bits 15 to 12 of the input register are 0000,
the BI/RBO input of the most significant 74LS48 will be forced to 0 to blank
the most significant display element. The next digit, corresponding to bits 11
to 8 of the input register, will be blanked if and only if bits 11 to 8 are 0000
and the most significant digit is also blank. Likewise, the elements driven by
bits 7 to 4 and bits 3 to 0 of the input register will be blanked if and only if all
the upper digits are also zeros.

The final circuit for the display is given in Fig. 13.36.
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74LS48

137 a aA 12* 15 b1From
input ^register

B 1 1*14 2 c f bC 10*13 6
D 9'12 8e Digit 4154rc BI/RBO 14 e c8-M: RBI

4RBO3 dLT
Seven-segment

LED display74LS48
137 a aA* 12'll b1From ,

* 10mput <
register U)

B* 1 12 c f b106
D 9*8 8e Digit 3

ic BI/RBO
5 8RBI

RBO3
LT

Seven-segment
LED display74LS48

137 a aA* 12b1From
input <

register

B 1 1*6 2 c bf10*5 d6
D 9*4 8e Digit 215to BI/RBO 145 ce8RBI

4RBO3 dLT
Seven-segment

LED display
74LS48

137 a aA 12b1From *2
input

register

B 1 12 c bf10d6
D 9*o e Digit 1154
BI/RBO 145 e c8RBI

4RBO3 dLT
Seven-segment

LED display

Vcc

Figure 13.36 Cash register display with blanking control.
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555 timer, 418-21
astable operation, 419-20, 795, 815-16
one-shot operation, 420-21, 807-9

7400/74LS00, 107, 792
7402, 107
7404/74LS04, 107, 826-27
7408, 107
7410, 108
7420, 108
7430, 109
7432, 109
7446, 796
7447, 796
7448/74LS48, 796-97, 830-31
7449, 796
7454, 133-34
74LS73A, 389, 413-14, 812
7474/74LS74, 389, 410-12, 429, 798
74LS75, 389, 400-102
7476, 389, 409, 427, 429
7482, 285-87, 326
7483, 287-89, 295, 325, 326, 828-30
7485/74LS85, 298, 300-302, 327, 798-99,

807-8, 818-19

74175, 389, 412-13
74176, 450, 467-70
74177, 450, 458-59
74179, 436, 444 1̂6
74182, 291-93
74191/74LS191, 450, 460-63, 819
74LS193, 817-19
74194, 436, 446-47
74LS195A, 825-26
74198, 497-98
74273/74LS273, 389, 412-13, 827, 830
74276, 389, 413-14
74279/74LS279, 389, 395-96, 795-96
74293, 450, 457-58, 475-76, 483
74LS390, 815-16
82LS192A, 800, 802
82LS135, 800, 802
A1010/A1020/A1225/A1280, 715
Abacus, 1
ABEL, 371
Absorbed union, 230
Absorption, 85, 230
Abstraction, design, 141^42, 243
Accumulator:

parallel, 450, 827-30
serial, 448-50

Actel, 713
ACT-1, 713-15
ACT-2, 715
Active high signal, 105, 111-18
Active low signal, 105, 111-18
Adder circuits:

BCD, 827-30
carry completion detection, 291-93
carry lookahead, 290-93, 325
carry save, 293
delay parameters, 286, 288-89, 290
full, 142-47, 150-51, 154, 156-58,

283-84, 308-9, 323, 355-56,
373-75, 378-79

fully parallel, 289-90
half, 283-84
MSI modules:

7482, 285-87, 326
7483, 287-89, 295, 325, 326, 828-30
74182, 291-93

ripple carry (pseudo carry), 284-89, 325,
344-45

serial, 446-48, 536-37
two-bit, 138-39, 285-87, 324, 344-45

Adder-subtracter, 294-95, 308-11

Addition, see Arithmetic, 23-25
Addition tables, 24, 28, 29
Address:

decoder, 253-56
memory, 255

Adjacency, logical, 185-87
Adjacency, state, 608-14
Adjacency map, 667, 670
Advanced Micro Devices (AMD), 371,

368-70, 699, 701, 703, 722
Aiken, Howard, 2
ALFSR, see Autonomous linear feedback

shift register
Algebra, see Boolean algebra
Algebraic forms, switching function, 94-104
Algebraic method, 120-22
Algorithmic state machine (ASM) diagrams,

547-565
state diagram equivalents, 5484^9

Algorithms:
base conversion:

general conversion, 35-36
radix divide, 32
radix multiply, 33-34
series substitution, 31

combinational logic minimization:
K-map, POS form, 197-99
K-map, SOP form, 189
Petrick’s algorithm, 222-23
Quine-McCluskey method, 211-12

state reduction:
implication table procedure, 585-87
partitioning method, 581

two’s complement determination, 41-43
Alias, 772
Aliasing, 772
Altera, 371, 700, 702, 704-6
ALU, see Arithmetic logic unit
AMAZE, 371
Ambiguity, state, 762
Ambiguity region, 163
AMD, see Advanced Micro Devices
Analog signals, 4
Analysis:

combinational logic circuits, 120-28
Algebraic method, 120-22
Truth table method, 122-23

fundamental-mode circuits, 64148
pulse-mode circuits, 627-33
synchronous sequential circuits, 507-18

procedure, 511-12

7486, 109
7491A, 436-37
7492A/74LS92, 450, 471-74, 795
74LS93, 795-96, 807-8, 818-19
74LS95, 821-22
7496, 436, 43941, 478, 480, 483, 485
7497, 491-93, 496-97
74111, 389, 413-15
74116, 389, 402-3, 429
74121.418
74122.418
74123, 418
74138, 252-53
74147, 264, 266, 320
74148/74LS148, 266-67, 824-25
74150, 270, 273-74, 282, 321
74151A/74LS151, 270, 272, 278, 279-80,

319-21, 807-8
74153, 270, 275, 350, 352-53
74154, 252, 254-57, 281-82, 319-20,

482-83
74157/74LS157, 274-77, 295, 798-99
74160, 450, 464-67
74163/74LS163A, 450, 452-55, 477, 793
74164, 436, 437-39, 486, 488
74165, 436, 442-44
74167, 491, 493-97
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SR latch, 394-95
Summary table, 417
T flip-flop, 416

Characteristic, floating point, see Mantissa
Check bits, 68-73
Checkpoints, 754-55
Clear control signal, 410, 412-13, 434,

437—41, 444, 450, 452-56, 458,
464, 467-70, 477, 486, 493, 700,
see also Reset control signal

timing diagrams, 123-28, 566-68
AND array, 332, 33940
AND gate, 108, 110

operator, 79, 108, 110
truth table, 108, 110
symbols, 106-7, 108, 110

negative logic, 111-12
AND-OR array, 333—41
AND-OR-Invert circuits (AOI), 133-34
AND-OR networks, 128-29, 131-33, 134-36

synthesis procedure, 131-32
ANSI, see IEEE/ANSI Std. 91-1984
AOI, see AND-OR-Invert circuits
Apple McIntosh, 3
Applicable input sequence, 590
Application equation method, 524-25,

531-33, 54041, 543-45
Application-specific integrated circuits

(ASICs), 9
Architecture, VHDL, 143-17
Arithmetic:

binary, 23-27
circuits, 283-311
decimal, 22-24, 827-30
diminished radix complement, 54
hexadecimal, 28-30
octal, 27-28
overflow detection, 45-47, 49-50,

295-97, 325
radix complement, 45-52
two’s complement, 45-51, 294-97, 308-11

Arithmetic logic unit (ALU), 12, 15, 302—1design example, 302-11
Arithmetic registered devices, 697-98
ASCII, 14, 62-63
ASM, see Algorithmic state machine
Asserted signal, 105
Assignment, see State assignment
Assignment table, 668-69
Associativity, 80
Astable operation, 419-20, 795, 815-16
Asynchronous sequential circuit, 503,

624-85
fundamental-mode, see Fundamental-

mode circuits
PLD realization, 691, 697
pulse-mode, see Pulse-mode circuits

ATE, see Automatic test equipment
Auto entry system, keyless, 801-12
Autologic synthesis tool, 563-64
Automatic test equipment (ATE), 739—10,

777-79
Autonomous linear feedback shift register

(ALFSR), 769-72, 775-77
Babbage, Charles, 2
Back annotation, 149
Bardeen, John, 2
Base conversions, 30-37

general conversion algorithms, 35-37
radix divide method, 32-33, 35-36
radix multiply method, 33-35
series substitution method, 31-32, 35

Batch processing, 18

BCD, see Binary coded decimal
Behavioral model, 141-44, 560-63

VHDL representation, 142^44, 561-63
Bidirectional signals, 34344
BILBO, see Built-in logic block observer
Binary addition, 23-25, see also Arithmetic
Binary coded decimal (BCD):

code, 61-62, 103
counters, 467-70, 540-43, 815-16
decoder, 256-58

Binary division, 27
Binary multiplication, 26
Binary subtraction, 25-26, see also

Arithmetic
BIST, see Built-in self test
Bistable circuits, 387
Bit, 23
Block bit, 616
Blocks, state, 581
Block transition diagram/table, 618-19
Boole, George, 79
Boolean algebra:

postulates, 79-84
summary table, 91
theorems, 84-91, 101

Boolean functions, see Switching functions
Bottom-up design, 243, 312
Boundary scan, 777-81
Brattain, Walter H., 2
Bubble, negation, 105, 111
Buffer:

foldback, 694, 696, 719
tristate, see Tristate driver

Built-in logic block observer (BILBO),
775-77

Built-in self test (BIST), 763, 768-77
built-in logic block observer, 775-77
pseudo-random test vector generation,

769-72
signature analysis, 772-75

Burglar alarm circuit, 137
Buried register, 689-91, 692
Buses, 315-17
Bus ripper, 316-17
Bypass register, 778-79
CAD, see Computer-aided design
Canonical forms, 94-104

derivation, 101-3
incompletely-specified functions, 1034
product of sums (POS), 97-101
sum of products (SOP), 94—97

Capacitors, 8
in timer circuits, 419-21, 795, 808-9, 815

Carry, see Adder circuits
Carry-lookahead, 290-93, 325
Cathode, LED, 258-59
CDROM, 16
Characteristic equation, 395

D flip-flop, 406
D latch, 399
Gated SR latch, 397
JK flip-flop, 408, 524
SR flip-flop, 406

Clock, 388, 503
in logic simulation, 565-68
pulse width, 400, 404-5, 411, 566-67
skew, 415

Clock frequency determination, 566-67
Clocked D flip-flop, see D flip-flop
Clocked JK flip-flop, see JK flip-flop
Clocked SR flip-flop, see SR flip-flop
Clocked T flip-flop, see T flip-flop
Closed cover, minimal, 650
Closed partition, 616-17
Closure table, 596-601
Codes:

alphanumeric, 61-64
ASCII, 14, 62-63
binary coded decimal (BCD), 61-62, 103,

256-59, 796, 800, 827-30
biased, 57-58
character, 61-64
conversion circuits, 256-59, 355, 357
EBCDIC, 62
error detection and correction, 65-73, 772
excess-k, 56-57
fixed point numbers, 55-56
floating point numbers, 56-61
Gray, 63-64, 563
Hamming, 68-73

Code 1, 69-71
Code 2, 71-73

instruction, 15
odd-weight column, 72
parity, 66-68
two-out-of-five, 68

Coding, 13-15
Coincidence, see Exclusive-NOR
Combination lock, digital, 63941
Combinational logic, see Logic circuits, 7
Combinational output, see Outputs
Common anode/cathode, 258-59
Commutativity, 79
Comparators, 289-303, 367, 370

7485/74LS85 module, 298, 300-302,
327, 798-99, 807-8, 818-19

Compatible, maximal, 590
determining, 590-94
in state reduction, 594-602

Compatible pairs, 591, 594, 597, 598
Compatible states, 590, 650
Compatibility class, 579, 590-91, 594-95,

600
maximal, see Maximal compatible

Compatibility relation, 579
Compiler, 17
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Complement, 80
Complementary arithmetic, see Arithmetic
Completely-specified circuit, see Sequential

circuit
Completeness, compatibility class, 594-95
Complexity, sequential circuit, 577
Component, VHDL, 146
Computer, see Digital computers
Computer-aided design (CAD):

combinational logic, 140-65
design capture, 141, 148-52, 312-17,

559-63
design cycle, 140-41
design library, 150, 312-14, 329, 560
design synthesis process, 148-52, 559-64
finite state machine description, 560-63
minimization algorithms:

combinational, 224-34
sequential, 620

modeling, 140-48, 560-63
modular systems, 312-19
PLD design tools, 371-80, 723-33
schematic capture, 148-52, 314-17, 560
sequential circuits, 558-68
simulation, logic, 317-19, 565-68
synthesis, automated, 563-64

Conditional output box, ASM, 547, 553
Configurable logic block, 707-12
Connectors, hierarchical, 315
Consensus theorem, 90, 228-30
Consistency, compatibility class, 594-95
Constraints, timing:

clock width (tw), 400, 404-5, 411, 566-67
hold time (t^, 399-100, 404-5, 411-12,

567-68
sequential circuit, 567-68
setup time (tsu), 399 1̂00, 404-5, 411-12,

567-68
Control line, asynchronous, 403

clear, see Clear control signal
preset, see Preset control signal
reset, see Reset control signal

Control unit:
candy machine, 546-47
computer, 15, 542
keyless auto entry system, 801-12
multiplier, 551-53
robot, 543—15
traffic controller, 810-22

Controllability, signal line, 763
Controller, finite state, 541-55, see also

Control unit
Core, magnetic, 2, 16
Cost, see also Cover:

combinational circuits, 173-74
sequential circuits, 576-77

Counters, 383, 450-89
backward, see down
BCD:

asynchronous, 467-70
74176 module, 450, 467-70
74LS390 module, 815-16
circuit structure, 467-68

synchronous, 464-67, 540-43

74160 module, 450, 464-67 74175 module, 389, 412-13
74273/74LS273 module, 389, 412-13,

827, 830
input table, 522
in LCAs, 707-12
master-slave, 406-7

characteristic equation, 406
circuit structure, 406-7
excitation table, 407
logic symbol, 407
state diagram, 407
timing characteristics, 406-7

in scan path design, 765-67
D latch, 398—103

characteristic equation, 399
circuit structure, 398-99
excitation table, 398
hazard-free, 402-3
in LCAs, 708
logic symbol, 398
modules:

74LS75, 389, 400-402
74116, 389, 402-3, 429

in pulse-mode circuits, 630-33
state diagram, 398
timing diagram, 399—100
timing parameters (t

Data compression, 722
Data distributor, see Demultiplexers
DATA I/O Corporation, 371
Data lockout, 413-15
Data path:

computer, 542—13
multiplier, 551-52

Data selector, see Multiplexers
Deasserted signal, 105
Debounced switch, 656-58, 792, 824
Decade counter, see Counters, BCD
Decimal, 22-24, see also Binary coded dec-

imal
Decision Box, ASM, 547, 553
Decoders, 245-60

address, 253-56
BCD to decimal, 256-58
cascaded, 249, 251-52
display, 258-60
dual tree, 247—18
enable control input, 249-50
logic function realization with, 227,

249-50
minterm generation, 256-57
MSI modules:

74138, 252-53
74154, 252, 254-57, 281-82, 319-20,

482-83
n-to-2n, 245-56, 350, 360
parallel, 246-48
tree, 246-48

Delay:
fall time, 162-63
flip-flop, 566-68
in fundamental-mode circuits, 659, 671-72
inertial, 164-65, 659-60
maximum, 163-64

binary:
asynchronous, 455-58

74177 module, 450, 458-59
74293 module, 450, 457-58,

475-76, 483
circuit structure, 455-56

synchronous, 451-55, 792-93
74163/74LS163A module, 450,

452-55, 477, 793
74LS93 module, 795-96, 807-8,

818-19
circuit structure, 451-52

binary coded decimal, see BCD
decade, see BCD
down, 458, 460
forward, see up
Johnson, 482-89
modulo-6, 470-74, 820
modulo-12, 470-74, 795

7492A/74LS92 module, 450, 471-74,
795

modulo-N, 464-77
asynchronously resetting, 474-76
synchronously resetting, 477

multiple sequence, 489
ring, 478-82
twisted ring, 482-89
up, 458, 725-28
up/down, 460-63, 537 1̂0

74191/74LS191 module, 450, 460-63,

PHL 1PLH lh’ O’t

819
74LS193 module, 817-19
circuit structure, 460-61
design, 537^0, 720-23

Cover:
switching functions, 187-88, 197, 212,

215
minimal cover determination, 189,

197-99, 215-18, 222-24, 231-34
cost, 233

minimal closed, states, 650, 654
Covering problem, 215
CPU (central processing unit), 12
Critical path analysis, 164
Critical race, see Race conditions
Critical transition diagram, 664, 666-67, 670
Cross dependency, 618-19
Cube notation, 227-28
CUPL, 371
Cycles:

in fundamental-mode circuits, 662, 664-68
in prime implicant charts, 216-18

D algorithm, 753
D flip-flop:

analysis of circuits containing:
pulse-mode circuits, 630-33
synchronous circuits, 508-11

ASM realization with, 553-56
circuit realization with, 520-21, 536-37,

558-59, 564, 606-8, 612-13, 615
edge-triggered:

7474/74LS74 module, 389, 410-12,
429, 798
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Display decoder, 258-60
Distributivity, 80, 134
Division:

arithmetic, 27, 28, 30
polynomial, 772-73

Don’t-care terms:
in combinational logic, 103-4, 203-6,

218-19, 378
in flow tables, 649
in sequential circuits, 555-58, 588-602

Dual expression, 81, 83-84
Dual In-Line Package (DIP), 107
Duality, 81, 83-84
Dynamic hazard, 210-11
EBCDIC, 62
Eckert, J. Presper, 2
Edge-triggered flip-flops, 409-16
EEPROM, see Programmable read-only

memory
Electron tubes, 2
Electronic slot machine, 789-802
Elevator controller, 383
Enable control signal:

decoder, 249-52
multiplexer, 270, 274
PROM, 352
tri-state driver, 344

Enabled mode, see Gated mode
Encoders, 259-67

keypad, 805-6, 824-25
MSI modules:

74147, 264, 266, 320
74148/74LS148, 266-67, 824-25

mutually-exclusive inputs, 260-63
priority, 264-67, 805-6, 824-25

End-around-carry, 54
ENIAC, 2
Entity, VHDL, 142-44, 145-46, 561-62
EP910, 702, 704-6
EPLD, 702
EPROM, see Programmable read-only

memory
Equivalence classes, 579
Equivalence partition, 581, 586-87
Equivalence relation, 579
Equivalent faults, 753, 757
Equivalent states, 577-79, 581, 586
Error detection codes, 65-73, 772
Espresso, 234, 350, 379, 730
Essential hazard, 671-73
Essential prime implicant, 188-89
Essential prime implicate, 197
Even parity, 66-68
Event, simulation, 155-58
Excitation inputs, 387-88
Excitation maps:

fundamental-mode circuits, 647, 651-52,

D flip-flop, 520-21, 559
JK flip-flop, 523, 525, 529-30, 533,

538, 541, 545, 559
SR flip-flop, 527-28, 532
SR latch, 637-38, 639-41
T flip-flop, 529-30, 533, 557, 559, 635

Excitation state, 643, 645
Excitation table, 395

7474 module, 410
D flip-flop, 407
D latch, 398
fundamental-mode circuits, 645-48, 651,

655, 657, 661, 665-66, 668, 671,

minimum, 163-64
models, 161-65
nominal, 162
pin-to-pin, 153
propagation (tplU , tpLH), 125-28, 153,

394, 411, 567-68
rise time, 162-63
transport, 161, 164-65
unit, 161-62
worst case, 163-64
zero, 162

Delay element, 626
inertial, 659-63

Delay flip-flop, see D flip-flop
Delay latch, see D latch
Delay line memory element, 626, 641-42
DeMorgan’s theorem, 88-89, 111, 114, 117,

129-30, 199-201
Demultiplexers, 268, 280-82
Dependency, state variable:

cross, 618-19
reduced, 618-19

Design architect, 372, 723
Design library, 150, 312-14, 329, 560
Design rule errors, 149-50
Design for testability, 763-81
Design tree, 243-45
Detector, sequence, see Sequence recognizers
Deterministic test methods, 758
Detonator circuit, 555-57
Difference engine, 1
Digital audio tape (DAT), 4
Digital combination lock, 639-41
Digital computer:

defined, 1
ENIAC, 2
hardware, 15-16
history, 1-4
information representation, 13-15
instruction cycle, 12-13
instructions, 12-13, 15
programs, 12

application, 17
system, 17-19

Digital fractional rate multiplier, 489-97
cascading, 495-97
circuit structure, 489-91
MSI modules:

74167, 491, 493-97
7497, 491-93, 496-97

Digital System, defined, 4-5
Digital timer, 470-71
Diminished radix complement:

arithmetic, 54
number system, 52-54

Diode, PN:
biasing, 330
in logic arrays, 330-35

DIP (dual in-line package), 107
DIP switch, 796, 804-7
Direct interconnects, LCA, 709-10
Disk, magnetic, 16
Display, seven-segment, 258-60, 796-97,

830-31

672
gated SR latch, 397
JK flip-flop, 408
SR flip-flop, 406
SR latch, 395
T flip-flop:

clocked, 416
edge-triggered, 416

Exclusive-NOR (XNOR):
function, 119-20
properties, 119-20
symbol, 119
truth table, 119

Exclusive-OR (XOR):
function, 118-19
in linear feedback shift registers, 769-72,

774, 776
properties, 118-19
symbol, 106, 109, 118
truth table, 118

Exclusive-OR method, test generation,
743-45, 751-52

Exhaustive testing, 154, 741-42, see also
Testing

Exponent, floating point, 56-61
Factoring, for multilevel design, 134-36
Failure analysis, 577
Falcon Framework, 379
Fall time, 162-63
False value, 93, 105
Families, integrated circuit, 8-9
Fan-in, 105, 173

limited, 134
Fan-out, 105, 173, 754

branch, 754
stem, 754
testing networks containing, 748-50,

754-57
Fault:

bridging, 741
crosspoint, 741
defined, 739-̂ 41
distinguishable, 757
dominant, 754
equivalent, 753, 757
indistinguishable, 757
intermittent, 740
logical, 740
multiple, 741
nonlogical, 740-41
permanent, 740

655
from logic diagrams, 511-12

D flip-flop, 630-33
JK flip-flop, 516, 518
SR latch, 627-29
T flip-flop, 515

from transition tables, 521
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Generating function, 769-72
Generations, computer, 2-4
Glitch, 570, 669, see also Hazard
Gray code, 63-64, 563
Grocery store cash register, 821-31
Half adder, 283-84, see also Adder cir-

cuits
Hard macro, 713
Hardware description language (HDL),

141—42, 560
VHDL, 142^48, 561-63
Verilog, 142, 561

Hazard, 153, 157-58, 173, 206-11, 671
dynamic, 210-11
essential, 671-73
in latches, 402-3
static, 157-58, 206-10

Hazard-free latch, 402-3
Heuristic minimization methods, 174, 234
Hexadecimal arithmetic, 28-30
Hierarchical design, 242-̂ 45, 304-5, 312-19
Higher-level forms, 134-36
Hold mode, latch, 399, 401, 402-3, 404-5
Hold time (th):

74LS75 module, 402
in flip-flops, 404-5, 411, 567-68
in latches, 400

Homing sequence, 761-63
IBM, 3
Idempotency, 84, 230
Identity element, 79
IEEE Std. 1149.1, Testability Bus, 777-81
IEEE Std. 754-1985, floating-point num-

bers, 59-60
IEEE/ANSI Std. 91-1984, logic symbols:

counters, 464, 469, 472
decoders, 253, 255
flip-flops, 409, 410, 414
fractional rate multipliers, 492, 494
logic gates, 106, 110, 115, 116, 118, 119
multiplexers, 272, 274, 275, 276

Implicant, 188, 228
essential prime, 188, 225-26, 230-31
prime, 188, 225-26, 228-30

Implicate, 197
essential prime, 197
prime, 197

Implication graph, 609-14, 617
closed subgraph of, 610-11
complete, 610
in state assignment, 609-14, 640

Implication table, 584-85
Implication table procedure:

compatible states, 591-92, 597-98,
598-99, 650, 654

equivalent states, 585-88
incompatible states, 591-92, 597-98,

598-99
Implied pair, 586, 609, 616-17
Inclusive-OR, see OR
Incompatible, maximal:

defined, 590
determining, 591-94

expanded, 668-69
modified, 666-67
primitive, 648-50, 653, 669
in race condition analysis, 660
reduced, 650, 653-54, 657-58, 665, 670

Foldback buffer, 694, 696, 719
Forcing signal strength, 160-61
Forrester, J.W., 2
FPGA, see Field-programmable gate array
FPLA, see Field-programmable logic array
FPLS, see Field-programmable logic se-

quencer
Fractional rate multipliers, see Digital frac-

tional rate multipliers
Fractions, base conversion, 31-32, 33-37
Full adder, 142-47, 150-51, 154, 156-58,

283-84, 308-9, 323, 355-56,
373-75, 378-79, see also Adder
circuits

Full custom IC design, 329
Full subtracter, 294, 325
Function, see Switching functions
Functional analysis, 565-66, see also Logic

simulation
Functionally-complete gates:

NAND, 115-16, 118
NOR, 117-18

Fundamental-mode circuits, 626-27,
641-73

analysis, 641^48
defined, 626-27
essential hazards in, 671-73
generic model, 643-44
races in, 659-71
synthesis, 648-58
timing diagrams, 642, 644, 647, 656-57

essential hazards, 671-72
races, 659, 662-63

Fuse maps, 340-41, 371, 380
Fuses, in PLDs, 338 1̂1
Gate, SR latch control, 419
Gate array, 329

programmable, see Programmable gate
array

Gate delays, see Delays
Gate-level design, 7-8
Gated mode, latch, 399, 401, 402-3, 404-5
Gated SR latch, 396-97

characteristic equation, 397
circuit structure, 396
excitation table, 397
logic symbol, 397
state diagram, 397

Gates, logic, 104-8
AND, 106, 107, 108, 110, 112
Inverter, 106, 107, 110-11
NAND, 106, 107-9, 114-16
NOR, 106, 107, 116-18
NOT, 106, 107, 110-11
OR, 106, 108-10, 112-13
XNOR (Exclusive-NOR), 119-20
XOR (Exclusive-OR), 106, 109, 118-19

Generalized consensus algorithm, 230, 231

Fault: (cont.)
random-pattern resistant, 759-60
single, 741
solid, 740
stuck-at, 740-41
testable, 751-52
untestable, 751-52

Fault coverage, 739, 758-59
Fault detection, 739
Fault detection test set (FDTS), 739, 741 -̂2
Fault dictionary, 758
Fault dominance, 753-54
Fault equivalence, 753-54
Fault injection, 154
Fault location, 739
Fault location test set (FLTS), 739, 753-57
Fault models, 740^41
Fault resolution, 758
Fault simulation, 154
Fault table, 743, 753-57
Fault testing, 739, see also Testing
Feedback:

in fundamental-mode circuits, 642-44,
659-63

in latches, 389-90
in linear feedback shift registers, 769-72
in logic arrays, 341^45, 366-69, 689-91,

692, 694, 700
Feedback multiplexers, 700-702
Field-programmable gate array (FPGA),

686, 705, 713-15
Field-programmable logic array (FPLA),

338, 345-46, 347-52
circuit structure, 347
commercial devices:

PLS100, 346, 347-48, 350-51
PLS153A, 346, 347, 349

logic function realization with, 347,
350-53

with registered outputs, 686
Field-programmable logic sequencers

(FPLS), 686, 691-96
circuit realization with, 715-17, 719-21
circuit structure, 691-92
commercial devices:

PLS105, 692-94
PLS155, 692, 694-96

Finite state controllers, 541-55
Finite state machines, 560-63
Fixed-point numbers, 55-56
Flattening, netlist, 152-53
Flip-flops, 388, 403-18

D, see D flip-flop
edge-triggered, 409-16, 523
input tables, 522-23
JK, see JK flip-flop
master-slave, 404-9
pulse-triggered, 405, 503
SR, see SR flip-flop
T, see T flip-flop

Floating-point number formats, 56-61
Floating signal strength, 161
Flow table, 645-48
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Linear feedback shift register (LFSR),
768-77

autonomous, 768-72, 775-77
in signature analysis, 772-77

Literal, 94, 173-74
Lock, digital combination, 639^1
Logic Aid, 620
Logic arrays:

AND, 332
AND-OR, 333^1
bidirectional pins, 343^6
feedback signals, 341, 343 1̂6
field-programmable, 338, 345 1̂6,

347-53

in state reduction, 594-602
Incompatible pairs, 591-92, 598, 600
Incompatible states, 590
Incompatibility class, 590-92
Incompletely specified function:

combinational, 103 1̂
minimization, 203-6, 218-21

sequential, 555-59
state reduction, 588-602

Indistinguishable faults, 753, 757
Indistinguishable states, 577-79, 581, 586
Inertial delay, 164-65, 659-60
Initialization sequence, 760-63
Inputs, asynchronous circuit:

level, 626-27, 642-13
pulse, 625-26, 627

Input/Output:
codes, 14
equipment, 16

Input sequence, 526
applicable, 590

Input tables, flip-flop, 522-23
Inspection method, state reduction, 579-81
Instruction cycle, 12-13
Instructions:

digital computer, 12-13, 15
test, 779-80

Integrated circuits, 2, 8-9
Intel, 3
Interconnects:

in FPGAs, 713-15
in LCAs, 707-12

Inverter, see NOT
Involution, 84-85, 111
I/O blocks, 707-13
Iterative Consensus Algorithm, 230, 231
JK flip-flop:

analysis of circuits containing, 516-18
application equation method, 524—25,

531-33, 540-41, 543-45
circuit realization with, 523-25, 529-30,

531, 533-34, 537-39, 540 1̂2,
544-45, 558-59, 719-20, 812

edge-triggered, 413-15
74111 module, 389, 413-15
74276 module, 389, 413-14
74LS73A module, 389, 413-14

in FLPS devices, 694-96
input table, 522
in LCAs, 706
master-slave, 407-9

7476 module, 389, 409, 427, 429
characteristic equation, 408, 524
circuit structure, 407-8
excitation K-map, 408
excitation table, 408
logic symbol, 408
state diagram, 408

optimal state assignment for, 619
pulse-triggered, see master-slave

Johnson counter, 482-89, see also Counters,
twisted ring

Joint test advisory group (JTAG), 111

JTAG testability bus, 777-81
Karnaugh map (K-map), 175-211

adjacencies, 177, 185-87
combining cells, 185-87
cover, 188, 197
D latch, 403
derivation of minterm/maxterm lists,

182-85
don’t-care terms, 203-6
essential prime implicants, 188
essential prime implicates, 197
excitation, see Excitation maps
five variable, 178-79
four variable, 177-78
hazard detection with, 208-10
implicants, 188
implicates, 197
JK flip-flop, 408
minimization algorithms:

guidelines, 187
product of sums (POS), 197-203
sum of products (SOP), 188-96

next state, 511-12, 515-18
output, see Output maps
plotting functions on, 179-85

maxterms, 179-81
minterms, 176-77, 179-81
product terms, 182
sum terms, 183-85

prime implicants, 188
prime implicates, 197
six variable, 178-79
SR latch, 395
state assignment, 609, 614
state table derivation from:

OR, 333
output polarity options, 341—13, 366-67
programmable, 335 1̂1
in VLSI circuits, 338

Logic cell array (LCA), 705, 707-12
Logic circuits, see Switching networks;

Sequential circuits
Logic functions, see Switching functions
Logic networks, see Switching networks
Logic simulation, 152-65, 317-19, 379,

565-68, 731
Logic symbols, flip-flops and latches, see

also Gates; IEEE/ANSI
Std. 91-1984
74279, 396
74LS73A, 414
7476, 409
D flip-flop:

edge-triggered, 410
master-slave, 407

D latch, 398
Gated SR latch, 397
JK flip-flop, 408, 414
SR flip-flop, 404
SR latch, 391, 392
T flip-flop:

clocked, 416-17
edge-triggered, 415

Logic synthesis, automated, 563-64
Logical adjacency, 185-87, 608
Logical Devices, Inc., 371
Logical faults, 740
Logically adjacent assignments, 608
Long lines, in LCAs, 709-12
Lookup table, 358-60
Lower bound, number of states:

defined, 595
determining, 596, 598, 600, 601

LSI, see Large scale integration
McCluskey, EJ., see Quine-McCluskey

(Q-M) Method

pulse-mode circuits, 628-29, 632-33
synchronous circuits, 511-12, 515-16,

518
truth table relationship, 176-77
Venn diagram relationship, 176-77, 179-80

Keyless auto entry system, 801-12
Keypad, 803, 805-6, 824-25
Large scale integration (LSI), 329
LASAR, 753
Latch, 387-88, 389^03, 418-19

D, see D latch
Delay, see D latch
Gated SR, see Gated SR latch
Reset, 389-90
Set, 389
Set-Reset, see SR latch
SR, see SR latch

LCA, see Logic cell array
LED, see Light-emitting diode
Level asynchronous circuits, see

Fundamental-mode circuits
Level inputs, 626-27, 642 1̂3
Levels:

design abstraction, 141 1̂2
logic, 131-36

Library, see Design library
Light-emitting diode (LED), 258-59, see

also Seven-segment display

Macro:
FPGA, 713
PDL, 377-78

Macrocell, programmable, 700-706
Magnetic core memory, 2, 16
Magnitude comparators, see Comparators
Mainframe 'Computer, 2
Majority voter, see Voting circuit
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Mantissa, floating point, 56-61
Maps, see Excitation maps; Karnaugh maps;

Output maps
Master-slave flip-flop, see also Flip-flops

D, 406-7
JK, 407-9
SR, 404-6

Mauchly, John, 2
MAX+PLUS II, 371
Maximal compatible:

defined, 590
determining, 590-94
in state reduction, 594-602

Maximal incompatible:
defined, 590
determining, 591-94
in state reduction, 594-602

Maximum delay, 162-64
Maxterm, 97-101

code, 98
don’t-care, 103 1̂

Maxterm list, 98-103, 104
Mealy model:

analysis of, 566-67
ASM diagrams, 547-49, 550, 554-56
compared to Moore model, 506
defined, 504-5
delays in, 566-67
output response, 504-5
PDL models, 727-30
PLD implementation, 687-91
pulse-mode circuits, 634-36, 639^41
state diagram, 504, 548
state table, 504
timing diagram, 505
VHDL model, 561-63

Medium Scale Integration (MSI), 120, 245,
329-30

Memory, 16, 387-89, see also Flip-flops
and Latch

devices, 387-89
magnetic core, 2, 16
unclocked, 625-27, 630

Mentor Graphics, 371, 379, 564, 723, 731
Merger diagrams, 593-601, 650
Microprocessor, 3
Mine, Inc., 371, 723
MINI, 234
Minicomputer, 2
Minimal cover, see Cover
Minimal product of sums, see Product of

sums
Minimal sum of products, see Sum of prod-

ucts
Minimality, state table, 594
Minimization algorithms:

combinational circuits:
computer-aided, 224—34
K-maps, 175-211
Petrick’s algorithm, 222-24
Quine-McCluskey method, 211-22

sequential circuits:
computer-aided, 620

optimal state assignment, 602-19
state reduction, 579-602

Minimum delay, 162-64
Minterm, 94-97

code, 95
don’t-care, 1034-
generator, 256-57

Minterm list, 95-97, 104
in Quine-McCluskey Method, 211-13

Mixed logic, 114
Mixed-mode model, 146-48
Model:

behavioral , 14144, 560-63
digital circuit, 14048
gate, 142
layout, 142
mixed-mode, 14648
register transfer, 142
structural, 14446
transistor, 142

Modular design, 24345
computer-aided, 312-19
design example, 302-11

Modular sequential logic, 432-97
Modulo-N counters, see Counters, modulo-N
Monolithic Memories, Inc., 362
Moore model:

analysis of, 566-67
ASM diagrams, 547, 549, 551-54
compared to Mealy model, 506
defined, 505-6
delays in, 566-67
output response, 506
PDL models, 727-28, 731
PLD implementation, 687-91
pulse-mode circuit, 636-38
state diagram, 505, 549
state table, 505
timing diagram, 506
VHDL models, 561-63

Motorola, 3
MSI, see Medium Scale Integration
Multiple input signature register (MISR),

773-77
Multiple output network:

minimization, 219-22
testing, 752-53

Multiple-path sensitization, 748-50
Multiplexers:

cascaded, 270-71, 274, 277
circuit structures, 133-34, 268-70, 306
in FPGAs, 713
FPLA realization, 350, 352-53
in logic cell arrays, 708-9, 712
logic function realization with, 277-80
MSI modules:

74151A, 270, 272, 278, 279-80,
319-21, 807-8

74150, 270, 273-74, 282, 321
74153, 270, 275, 350, 352-53
74157/74LS157, 274-77, 295, 798-99

in programmable macrocells, 700-702,
705-6

in scan path design, 765-67
Multiplication, 26, 27, 30, see also

Multiplier circuits
Multiplication tables, 24, 28, 29
Multiplier circuits:

add and shift, 551-53
digital fractional rate, 489-97
high-speed, 358-60

n-cube, see Cube notation
NAND gate:

function, 114-16
symbol, 106, 107-9, 115
truth table, 115

NAND networks, 129, 131-33
Napier, John, 1
Negative-edge triggered flip-flop, 409,

413-16, 507, 516
Negative logic, 105, 111-14
Negative number representation, 37-54
Net, 144, 152
Netlist, 144-45, 149, 152-53

flattening, 152-53
Next state map, see Transition table
Noise, electrical , 656
Nominal delay, 162
Noncritical races, see Race
Nonredundant network, 752
NOR gate:

function, 116-17
symbol, 106, 107, 116, 117
truth table, 116

NOR networks, 130, 131-33
NOT gate:

function, 110-11
symbol, 106, 107, 110, 111
truth table, 110

Null element, 84
Number base conversions, see Base conver-

sions
Number systems:

binary, 22-27
complementary, 38-54
decimal, 22-24
diminished radix complement, 52-54
floating point, 56-61
hexadecimal, 23, 28-30
octal, 23, 27-28
one’s complement, 52-54
radix complement, 43-52
sign-magnitude, 37-39
two’s complement, 43-51

Observability, signal line, 763
Observation sequence, 760-61
Octal arithmetic, 27-28
Odd parity, 66-67
One-hot design method, 553-56, 820-22
One-hot state assignment, 553, 563, 820-22
One-lane traffic controller, 810-22
One-shot, 420-21, 807-9
One’s complement:

arithmetic, 53-54
number system, 52-54

Operating systems, 18-19
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Path sensitizing, 745-50, 753
backward trace, 747
forward trace, 747
multiple output networks, 753
networks with fan-out, 748-50

PDL, 372-80, 723-33
Permanent fault, 740
Petrick’s algorithm, 222-24
PGA, see programmable gate array
Philips, Inc., 347-49, 351, 371, 692-93, 695
Pin-to-pin delay, 153
PLD, see Programmable logic device
PLDesigner, 371-72, 723, 731-32
PLDsim, 379, 731
PLDsynthesis, 379-80, 731-32
PLS100, 346, 347-48, 350-51
PLS105, 692-94
PLS153A, 346, 347, 349
PLS155, 692, 694-96, 719-20
PODEM, 753
Polarity, signal, 105

matching, 111-14, 115, 117
Polynomial:

error sequence, 773
generator, 772-73, 775
output sequence, 769, 772-73
primitive, 769-71

Polynomial division, 772-73
Polynomial notation, 22
POS, see Product of sums
Positional notation, 21-22
Positive-edge triggered flip-flop, 409-13,

synthesis, 130, 131-33
Programmable array logic (PAL):

circuit structures, 362-64
commercial devices:

batch processing, 18
time sharing, 18-19

Optimal state assignments, 619-20
OR array, 333, 340
OR gate:

function, 108-10
in negative logic systems, 112-13
operator, 79
symbol, 106, 109, 110, 113
truth table, 110

OR-AND networks, 130
Output, PLD

combinational, 688-91, 692, 694-95,
698-99

registered, 688-91, 692-96, 696-99
registered asynchronous, 697
synchronous, 690

Output assignment, fundamental-mode cir-
cuits, 649

Output enable, 694, 698
Output logic, sequential circuits, 614
Output maps:

from logic diagrams, 511, 515-16,
516-18

from transition tables, 520-21, 528,
530-31, 544-45, 557, 559

Output polarity, 341-̂ 43, 366-67, see also
Logic arrays

Output register, 688-92
Output response, sequential circuit:

determining:
from logic diagram, 508-10, 516-17
from state diagram, 507, 515

Mealy model, 504-5
Moore model, 506

Output table, fundamental-mode circuits,
651-52, 655

Overflow, arithmetic:
detection, 45-47, 49-50
detection circuits, 295-97, 325

PAL, see Programmable array logic
PAL16A4, 697-98
PAL16L8, 346, 367-68
PAL16H4, 346
PAL160, 346
PAL16R4, 698, 720-22
PAL16R6, 697-99, 717-19
PAL16R8, 698, 720
PAL16RP8, 698
PAL16X4, 697-98
PAL18P8, 346, 367, 369-70
PAL22V10, 697-98, 700-703
PALASM, 371
Parallel accumulator, 449-50
Parity, 66-68
Partition, 581-84, 586-87, 614-19

closed, 616-17
equivalence, 581, 586-87
two block, 614

Partition pairs, 618-19
Partitioning procedure, equivalent states,

581-84
Pascal, Blaise, 1

EP910, 702, 704-6
PAL16A4, 697-98
PAL16L8, 346, 367-68
PAL16H4, 346
PAL160, 346
PAL16R4, 698, 720-22
PAL16R6, 697-99, 717-19
PAL16R8, 698, 720
PAL16RP8, 698
PAL16X4, 697-98
PAL18P8, 346, 367, 369-70
PAL22V10, 697-98, 700-703

defined, 345
feedback signals in, 366-69
logic functions realization with, 363-66,

367, 370
output options, 366-71
registered, 687-91, 696-99
sequential circuit realization with, 715-23

Programmable gate array (PGA), 702, 705,
see also Field-programmable gate
array; Logic cell array

Programmable logic array (PLA), 234,
335-41, see also Field-program-
mable logic array

faults in, 741
Programmable logic device (PLD), 120,

329-30, 345-46, see also Field-
programmable gate array; Field-
programmable logic array; Field-
programmable logic sequencer;
Logic cell array; Programmable
array logic

Programmable read-only memory:
computer-aided design of, 371-80,

723-33

508
Positive logic, 105, 111-14
Postulates, Boolean algebra, 79-83
Power dissipation, logic gates, 125-26
Preset control signal, 403, 409, 410, 434,

439-41, 458, 478, 691, 692-94
Preset homing sequence, 761-62
PRESTO, 234
Prime implicant, 188

determining:
algebraic methods, 228-31
K-map method, 188-96
Quine-McCluskey Method, 211-15, 218

essential , 188-89, 230-31
redundant, 233

Prime implicant chart, 211, 214-21
cyclic, 216-18

Prime implicate, 197
determining from K-maps, 197-203
essential, 197

Primitive component, 150
Primitive gate, see Functionally complete

gates
Primitive polynomial, 769-71
Priority encoders, see Encoders, priority
Process:

design synthesis, 148-52
VHDL, 143-44, 561-63

Product of sums (POS), 94
canonical form, 97-101
derivation of, 101-3

erasable, 702
Programmable read-only memory (PROM):

circuit structures, 350-54
defined, 345
erasable (EPROM, EEPROM), 361-62
implementing logic functions with,

352-57
implementing lookup tables with, 358-60
rapid prototyping with, 421-25
storage applications, 360
technologies, 361-62

Programming, see Digital computers
Propagation delay, 125-28, 153, 394, 411,

567-68
Prototyping, rapid, 421-25
Pseudo-parallel adder, 284-89, 325, see also

Adder circuits
Pulse inputs, 625-27
Pulse-mode circuits:

analysis, 627-33
state diagram derivation, 631
state table derivation, 627-33
timing diagrams, 628, 630-31
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pull-down, 331, 333, 334, 340
pull-up, 331-32, 334, 339

Ripple-carry adder, 284-89, 325, 344-45,
see also Adder circuits

Pulse-mode circuits: (cont.)
defined, 625-27
input pulse restrictions, 625-27
synthesis, 632, 634-41, 809-12

design procedure, 632, 634
Mealy circuits, 634-36, 639-41, 809-12
Moore circuits, 636-38

Pulse width (tw), 400, 404-5, 411, 566-68
QuickSim II, 379, 731
Quine-McCluskey (Q-M) Method, 211-22,

350, 379, 731, 755
covering procedure, 215-18
cyclic prime implicant chart, 216-18
incompletely-specified functions, 218-19,

220-21
minimizing table, 211-13, 218, 220
prime implicant derivation, 211-15, 218
multiple-output circuits, 219-22
in test generation, 755-57

Race conditions, 393, 660-71
avoiding, 663-71

Method 1, 665-68, 669-71
Method 2, 668-69

critical, 660-63
identifying, 660-63
non-critical, 660-63
timing diagrams, 662-63

Race-free assignment, see State assignment
Radix, 21-22
Radix complement, 38^43
Radix complement arithmetic, 45-52
Radix complement number system, 43-52
Radix divide algorithm, 32-33, 35-36
Radix multiply algorithm, 33-35
RAM, see Random access memory
Random access memory (RAM), 16
Random-pattern resistant faults, 759-60
Random testing, 758-60
Rapid prototyping, 421-25
Read only memory (ROM), 16, 361-62, see

also Programmable read-only

7491A, 436-37
74LS95, 821-22
7496, 436, 439-41, 478, 480, 483, 485
74164, 436, 437-39, 486, 488
74165, 436, 442 1̂6
74179, 436, 444-46
74194, 436, 446-47
74LS195A, 825-26
74198, 497-98

serial-in, serial-out, 433, 436-46
parallel in, 434, 439-47
parallel out, 434, 437-41, 444-47
preset control, 434-35

Shockley, William, 2
Sign-magnitude numbers, 37-39
Signal, logic

state, 159-60
strength, 159-61

floating, 161
forcing, 161
resistive, 161
unknown, 161

Signature, 739, 772-73
Signature analysis, 772-77
Signature register:

multiple input, 773-77
serial input, 773-74

Signetics Corporation, 347
Significand, see Exponent
Simplification, see also Minimization algo-

rithms
Boolean expressions, 85-90, 120-22
goals, 173-74
sequential circuits, 577-620
switching functions, 173-236

Simulation:
error detection, 157-58
event driven, 155-59
fault, 154
hazard detection, 157-59
logic, 152-65, 317-19, 379, 565-68, 731
results, 156-57

Single fault, 741
Slibitz, George, 2
Slot machine, 789-802
Small scale integration (SSI), 107, 328-30
Smoke Alarm Circuit, 113-14
Soft macros, 713
SOP, see Sum of products
SR flip-flop:

characteristic equation, 406
circuit realization with, 527-29, 530, 532
circuit structure, 404
excitation table, 406
input table, 522
logic symbol, 404
in programmable logic devices, 692-93
state diagram, 406
timing diagram, 404—5
timing parameters, 404-5

SR latch:
74279/74LS279 module, 389, 395-96,

795-96

Rise time, 162-63
Robot controller, 543^45
ROM, see Read only memory
Scan path design, 764-68, 775-77
Schematic capture, 149, 150-52, 312-17,

560, 723
Schematic diagram, 144-45, 725
Schematic editor, see Schematic capture
SCOAP, 759-60
Secondary memory, 16
Secondary state, 643 1̂4, 648
Secondary state assignment, see State as-

signment
Semicustom devices, 9, 329-30
Sensitizing, see Path-sensitizing method
Sequence detector, see Sequence recognizers
Sequence recognizers, 526-37, 717-20
Sequential circuit, 7-8, 383-87, see also

Fundamental-mode circuits; Pulse-
mode circuits; Synchronous circuits

general models, 383-87, 503-6, 687-91
Mealy model, see Mealy model
Moore model, see Moore model
PDL representation, 723-33
PLD realization, 715-23
rapid prototyping, 421-25
testing, 760-63, 763-77

Sequential machine, see Sequential circuits
Serial accumulator, 448-50
Serial binary adder, 446-48, 536-37
Serial input signature register (SISR),

773-74
Serial twos complementer, 550, 555-56
Series substitution, 31-32, 35
Set latch, 389
Set-reset flip-flop, see SR flip-flop
Set-reset latch, see SR latch
Setup time (tsu):

74LS75 module, 402
flip-flop, 404-5, 411, 567-68
latch, 400

Seven-segment display, 258-60, 796-97,
830-31

Shannon’s expansion theorem, 101-2
Sharp product, 230-33
Shift registers, 433^48

applications:
counters, 477-89
input register, 825-27
multiplier, 551-53
serial accumulator, 448-50
serial adder, 446-48, 536-37
state machine, 820-22

bidirectional, 446-48
circuit structure, 433-35
clear control, 434—35
generic, 434-35
linear feedback, 768-77
MSI modules:

memory
Reduced dependency, 618-19
Reduction, state, see State reduction
Redundancy, 751-52
Reflexive relation, 579
Register, 5-7, 22

applications, 446-50, 551-52
input, 825-27
output, 688-92
shift, see Shift registers

Register level design, 5-7, 142
Registered output, see Output, PLD
Registered PAL, see Programmable array

logic
Relations:

compatibility, 579
equivalence, 579

Relay, 2
Reset control signal, 402-3, 409, 410, 702-3,

see also Clear control signal
Resistive signal strength, 160-61
Resistor:
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DIP, 796, 804-7
push button, 792, 824-25

Switch bounce, 656-58
Switch debounce filter, 656-58, 792
Switching algebra, see Boolean algebra
Switching circuits, see Switching networks
Switching functions, 90-104

canonical forms, 94-103
incompletely-specified, 103^4
K-map representation, 179-85
maxterm list form, 98-103
minimization, see Minimization algo-

rithms
minterm list form, 95-97
modeling, 140-48
multiple-output, 219-22
PDL representation, 373-78
product of sums (POS) form, 94, 97-103

minimal, 173-75
sum of products (SOP) form, 94-97

minimal, 173-75
truth table form, 93-94

Switching networks:
analysis, 120-28

algebraic method, 120-22
timing diagrams, 123-28
truth table method, 122-23

computer-aided design of, 140-65
multi-level, 131-32, 134-36
multiple-output, 219-22
synthesis:

AND-OR-invert networks, 133-34
AND-OR networks, 128-29, 137-38
decoder realizations, 247, 249-50
FPLA realizations, 347, 350-53
multiplexer realizations, 277-80
NAND networks, 128-129, 131-33
NOR networks, 130, 131-33
OR-AND networks, 130
PAL realizations, 363-66, 367, 370
PROM realizations, 352-57

three-level, 131
two-level, 131-33

Symbolic gate and net names, 152
Symbols, see Logic symbols; Gates
Symmetric relation, 579
Synchronous circuits, 502-68

analysis, 507-18
logic diagram, 508
procedure, 511-12
state diagram, 507-8
timing diagram, 508-10

design examples, 526-56
general models, 383-87, 503-6, 687-91
input signals, 383-84, 504, 687-88
Mealy model, see Mealy model
Moore model, see Moore model
outputs, 383-84, 504-6, 687-91
PDL representation, 723-33
PLD realization, 715-23
rapid prototyping, 421-25
state diagram derivation, 510-11, 514
state reduction:

delay parameters, 394
excitation table, 395
gated, 396-97, see also Gated SR latch
logic symbol, 391-92
NAND structure, 391-92
NOR structure, 390-91
in pulse-mode circuits, 627-29, 637^41
state diagram, 395
in switch debounce filters, 656-58, 792
timing diagram, 392-94

SSI, see Small scale integration
Stable state, 644-48, 649, 653, 660-63
Standard cell, 329-30
States:

JK flip-flop, 408
Mealy model, 504, 548
Moore model, 505, 549
PDL description, 727-31
pulse-mode circuits, 631, 634, 637, 640
SR flip-flop, 406
SR latch, 395
T flip-flop, 416
VHDL models, 560-63

State equivalence:
compared to state compatibility, 591
defined, 577-79, 581, 586
determining:

implication table procedure, 584-88
by inspection, 579—81, 586
partitioning procedure, 581-84

State machine, PDL description, 727-32
State minimization, see State reduction
State partitioning, see Partitioning
State reduction:

completely specified circuits, 579-88
implication table procedure, 584-88
by inspection, 579-81, 586
partitioning procedure, 581-84

incompletely specified circuits, 588-602
procedure, 594-95

State tables, 385-87
binary, see Transition tables
completely-specified circuit, 519
derivation of:

from K-maps, 511, 515-16
from logic diagrams, 510-11, 514,

516-18
from state diagrams, 528, 531, 535,

538, 545
incompletely-specified circuit, 519, 557
Mealy model, 504
Moore model, 505
PDL description, 728-29, 732
pulse-mode circuits, 628-29, 631, 633,

634, 637, 640
reduced, see State reduction
VHDL models, 560-63

State transition table, see Transition table
Static hazard, 157-58, 206-10
Strength, signal (floating, forcing, resistive,

unknown), 159-61
Strongly connected machine, 760
Stuck-at faults:

model, 740-41
testing, 741-60

Structural model, 144- 1̂6, 149
Subgraph, see Implication graph
Suboptimal minimization, 174
Subtracter circuits, 294-95, 308-11

full, 294
half , 294

Sum-of-products (SOP), 94
canonical form, 94-97
derivation of, 101-3
synthesis, 128-29, 131-34

Switch:
debounced, 656-58, 792, 824-25

compatible, 590, 650
determining required number of, 527, 603
equivalent, 577-79, 581, 586
excitation, 643, 645
implied pairs, 586, 609, 616-17
incompatible, 590
input, 643
K-equivalent, 581-82
next, 383-84, 395, 504, 522
present, 383-84, 395, 504
redundant, 577
secondary, 643 1̂4, 648
stable, 644̂ 8, 649, 653, 660-63
total, 645, 660-63
unknown, 565
unstable, 644-48, 649, 653

State assignment, 520-21
adjacency map, 609, 614
in computer-aided synthesis, 563
examples, 510, 520, 527, 530, 537, 539,

544
guidelines, 605-19
one-hot, 553, 555-56, 563, 820-22
optimal methods, 619-20
possible number of, 603 1̂
in pulse-mode circuits, 635, 637, 639 1̂0
race-free, 663-65

Method 1, 665-68, 669-71
Method 2, 668-69

rules, 607-13
unique, 603-5

State box, ASM, 547
State compatibility:

defined, 589-90
determining, 591-602

State diagrams:
analysis, 507-8
completely-specified circuit, 519
D flip-flop, 407
D latch, 398
defined, 385-87
derivation of:

from K-maps, 511
from logic diagrams, 510-11, 514

design of, 526-27, 530-31, 533-35, 536,
537-38, 544 1̂5, 546

gated SR latch, 397
incompletely-specified circuit, 519,

555-56
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Synchronous circuits (cont.)
completely-specified circuits, 579-88
incompletely-specified circuits,

588-602
state table derivation, 510-11, 514-18
synthesis:

completely specified circuits, 519-58
incompletely specified circuits, 519,

555-59
procedure, 521, 715-17

testing, 760-63, 763-77
Synthesis:

automated, 563-64
combinational circuits, 136-49
computer-aided, 149-65
fundamental-mode circuits, 648-58
pulse-mode circuits, 632, 634-41
synchronous circuits, 519-58

T flip-flop, 415-17
analysis of circuits containing, 512-16
circuit realization with:

pulse-mode circuits, 635-36
synchronous circuits, 529-30, 531,

533. 555-59
clocked, 416-17

characteristic equation, 416
circuit structure, 416-17
excitation table, 416
logic symbol, 417
timing diagram, 417

edge-triggered, 415-16
characteristic equation, 415
circuit structure, 415
excitation table, 416
logic symbol, 416
state diagram, 416

input table, 522
tpD (propagation delay), 125-26
th, see Hold time
tpoi , tpiH, 125-27, 162-63

7474 module, 411
74LS75 module, 402
74279 module, 396
D flip-flop, 406-7
modeling, 162-63
sequential circuits, 567
SR latch, 394

t , see Setup time
tw (pulse width), 400, 404—5, 411, 566-68
Tape, magnetic, 4, 16
Test:

Test vectors, 153, 743
Testability, design for, see Design for testa-

bility
Testability bus, 777-81
Testing:

combinational logic, 153-54, 741-58
exclusive-OR method, 743-45
exhaustive, 154, 741
multiple-output networks, 752-53
path-sensitizing method, 745-50
pseudorandom, 769-72
random, 758-60
sequential circuits, 760-63

Three-level network, 131
Three-state driver, see Tristate driver
Time-base generator, 815-16
Time delay, see Delay
Time sharing, 18-19
Timer, see 555 timer
Timing analysis:

combinational circuits, 123-28, 161-65
sequential circuits, 566-68

Timing circuits, 418-21, 795, 807-9,

815-16
Timing constraints, see Constraints, timing
Timing diagrams:

combinational logic, 123-28
D flip-flop, 406-7, 411
D latch, 399-400
essential hazards, 671-72
fundamental-mode circuits, 642, 644,

647, 657
Mealy model circuits, 505
Moore model circuits, 506
pulse-mode circuits, 628, 631
race analysis, 662-63
SR flip-flop, 404-5
SR latch, 394
synchronous circuits, 507, 513, 517, 528
T flip-flop, 417

Toggle flip-flop, see T flip-flop
Toggle operation, JK flip-flop, 407-8
Top-down design, 243-45, 302-11, 312-13
Total state, 645, 660-63
Traffic controller, 810-22
Transfer sequence, 761-63
Transfer tree, 761
Transistor, 2, 8
Transition-assigned circuit, see Mealy

model
Transition diagram:

block, 618-19
critical, see Critical transition diagram

Transition table:

from state tables, 520, 528, 531, 538,

540, 545, 557
Transitive relation, 579, 586, 591
Transport delay, 161, 164-65
Tree decoder, 246-48
Trigger flip-flop, see T flip-flop
Tri-state driver, 343—44, 352
True value, 93, 105
Truth table, 93-94

AND gate/function, 110, 112
canonical forms, 96, 98, 99, 100
derived from timing diagram, 124
NAND gate/function, 115
NOR gate/function, 116
NOT gate function, 110
OR gate/function, 110, 113
PDL representation, 378
relationship to K-map, 176-77
XNOR gate/function, 119
XOR gate/function, 118

Truth table method, analysis, 122-23
TTL, 9, 738
Tube, vacuum, 2
Two-level network, 131-33
Two’s complement:

arithmetic, 45-51
definition, 38—43
number system, 43—45

Two’s complementer, serial, 550, 555-56
Unclocked memory, 625-27, 630
Unit delay, 161-62
Unknown signal strength, 161
Unstable state, 644-48, 649, 653
Untestable faults, 751-52
Upper bound, number of states:

defined, 595
determining, 596, 598, 599, 601

Vacuum I\ibe, 2
Vector notation, sequential circuit, 384-85,

504
Venn diagram, 80

K-map relationship, 176-77, 179-80, 182
verifying postulates with, 80-83

Verilog, 142, 561
Versatile logic macrocell, 697, 700-701
Very Large Scale Integration (VLSI), 3,

107, 140, 245, 329
VHDL, 142-148, 561-63
VLSI, see Very large scale integration
Von Neumann, John, 2
Voting circuit, 137-38, 337-38
Weight, input, 755-56
Wire-OR, 694, 696
XC2000/XC3000/XC4000 series LCAs,

705-12

defined, 739, 742-43
exhaustive, 154, 741
PLA, 338

Test access port (TAP), 778-80
Test generation:

combinational circuits, 741-58
random, 758-60
pseudorandom, 769-72
sequential circuits, 760-63

Test set, 154-58, 739. 753-58

application equation method, 524-25,
531-33, 540-41, 543-45 Xilinx, 705

XNOR, see Exclusive NOR
XOR, see Exclusive OR
XOR-registered devices, 697-98
Zero delay model, 162

block, 618-19
defined, 510-11
derivation:

from logic diagrams, 510-11, 514,
517-18
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