


Digital Logic
and 
Computer Design

M. MORRIS MANO
Professor of Engineering
California State University, Los Angeles

www.youseficlass.ir



Copyright © 2016 Pearson India Education Services Pvt. Ltd

Published by Pearson India Education Services Pvt. Ltd, CIN: U72200TN2005PTC057128,
formerly known as TutorVista Global Pvt. Ltd, licensee of  Pearson Education in South Asia.

No part of  this eBook may be used or reproduced in any manner whatsoever without the
publisher’s prior written consent.

This eBook may or may not include all assets that were part of  the print version. The publisher 
reserves the right to remove any material in this eBook at any time.

Head Office: A-8 (A), 7th Floor, Knowledge Boulevard, Sector 62, Noida 201 309, 
Uttar Pradesh, India.
Registered Office: 4th Floor, Software Block, Elnet Software City, TS-140, Block 2 & 9, 
Rajiv Gandhi Salai, Taramani, Chennai 600 113, Tamil Nadu, India.

www.pearson.co.in, Email: companysecretary.india@pearson.com

eISBN 978-93-325-8604-8 

Fax:  080-30461003, Phone: 080-30461060

4ISBN 978-93-325- 252-5

www.youseficlass.ir



Contents

Preface ix

1 Binary Systems 1

1.1 Digital Computers and Digital Systems 1
1.2 Binary Numbers 3
1.3 Number Base Conversions 6
1.4 Octal and Hexadecimal Numbers 8
1.5 Complements 9
1.6 Binary Codes 14
1.7 Binary Storage and Registers 20
1.8 Binary Logic 23
1.9 Integrated Circuits 26

2 Boolean Algebra and Logic Gates 31

2.1 Basic Definitions 31
2.2 Axiomatic Definition of Boolean Algebra 32
2.3 Basic Theorems and Properties of Boolean Algebra 35
2.4 Boolean Functions 39
2.5 Canonical and Standard Forms 43
2.6 Other Logic Operations 49
2.7 Digital Logic Gates 51
2.8 IC Digital Logic Families 54

3 Simplification of Boolean Functions 65

3.1 The Map Method 65
3.2 Two- and Three-variable Maps 65

www.youseficlass.ir



iv Contents

3.3  Four-variable Map 69
3.4 Five- and Six-Variable Maps 72
3.5 Product of Sums Simplification 75
3.6 NAND and NOR Implementation 77
3.7 Other Two-level Implementations 83
3.8 Don’t-care Conditions 87
3.9 The Tabulation Method 89
3.10 Determination of Prime-implicants 90
3.11 Selection of Prime-implicants 94
3.12 Concluding Remarks 96

4 Combinational Logic 103

4.1 Introduction 103
4.2 Design Procedure 104
4.3 Adders 105
4.4 Subtractors 109
4.5 Code Conversion 111
4.6 Analysis Procedure 113
4.7 Multilevel Nand Circuits 117
4.8 Multilevel NOR Circuits 124
4.9 Exclusive-OR and Equivalence Functions 127

5 Combinational Logic with MSI and LSI 137

5.1 Introduction 137
5.2 Binary Parallel Adder 138
5.3 Decimal Adder 143
5.4 Magnitude Comparator 145
5.5 Decoders 147
5.6 Multiplexers 156
5.7 Read-Only Memory (ROM) 161
5.8 Programmable Logic Array (PLA) 167
5.9 Concluding Remarks 173

6 Sequential Logic 179

6.1 Introduction 179
6.2 Flip-Flops 180

www.youseficlass.ir



Contents v 

6.3 Triggering of Flip-flops 185
6.4 Analysis of Clocked Sequential Circuits 193
6.5 State Reduction and Assignment 198
6.6 Flip-flop Excitation Tables 204
6.7 Design Procedure 206
6.8 Design of Counters 215
6.9 Design with State Equations 218

7 Registers, Counters, and the Memory Unit 229

7.1 Introduction 229
7.2 Registers 230
7.3 Shift Registers 235
7.4 Ripple Counters 242
7.5 Synchronous-counters 247
7.6 Timing Sequences 253
7.7 The Memory Unit 258
7.8 Examples of Random-access Memories 262

8 Register-Transfer Logic 271

8.1 Introduction 271
8.3 Arithmetic, Logic, and Shift Microoperations 281
8.4 Conditional Control Statements 284
8.5 Fixed-point Binary Data 285
8.6 Overflow 289
8.7 Arithmetic Shifts 291
8.8 Decimal Data 293
8.9 Floating-point Data 294
8.10 Nonnumeric Data 297
8.11 Instruction Codes 300
8.12 Design of a Simple Computer 304

9 Processor Logic Design 317

9.1 Introduction 317
9.2 Processor Organization 318
9.3 Arithmetic Logic Unit 325
9.4 Design of Arithmetic Circuit 326
9.5 Design of Logic Circuit 331

www.youseficlass.ir



vi Contents

9.6 Design of Arithmetic Logic Unit 335
9.7 Status Register 338
9.8 Design of Shifter 341
9.9 Processor Unit 342
9.10 Design of Accumulator 346

10 Control Logic Design 362

10.1 Introduction 362
10.2 Control Organization 364
10.3 Hard-wired Control — Example 1 369
10.4 Microprogram Control 376
10.5 Control of Processor Unit 382
10.6 Hard-wired Control—Example 2 386
10.7 PLA Control 393
10.8 Microprogram Sequencer 396

11 Computer Design 407

11.1 Introduction 407
11.2 System Configuration 408
11.3 Computer Instructions 411
11.4 Timing and Control 417
11.5 Execution of Instructions 419
11.6 Design of Computer Registers 424
11.7 Design of Control 429
11.8 Computer Console 438

12 Microcomputer System Design 443

12.1 Introduction 443
12.2 Microcomputer Organization 445
12.3 Microprocessor Organization 449
12.4 Instructions and Addressing Modes 456
12.5 Stack, Subroutines, and Interrupt 463
12.6 Memory Organization 471
12.7 Input-output Interface 474
12.8 Direct Memory Access 484

www.youseficlass.ir



Contents vii 

13 Digital Integrated Circuits 492

13.1 Introduction 492
13.2 Bipolar Transistor Characteristics 494
13.3 RTL and DTL Circuits 497
13.4 Integrated-injection Logic (I2L) 500
13.5 Transistor-Transistor Logic (TTL) 502
13.6 Emitter-coupled Logic (ECL) 511
13.7 Metal-Oxide Semiconductor (MOS) 513
13.8 Complementary MOS (CMOS) 515

Appendix 521

Index 537

www.youseficlass.ir



This page is intentionally left blank

www.youseficlass.ir



Preface

Digital logic is concerned with the interconnection among digital components and modules and 
is a term used to denote the design and analysis of digital systems. The best known example of 
a digital system is the general purpose digital computer. This book presents the basic concepts 
used in the design and analysis of digital systems and introduces the principles of digital com-
puter organization and design. It provides various methods and techniques suitable for a variety 
of digital system design applications. It covers all aspects of digital systems from the electronic 
gate circuits to the complex structure of microcomputer systems.

Chapters 1 through 6 present digital logic design techniques from the classical point of 
view. Boolean algebra and truth tables are used for the analysis and design of combinational 
circuits and state transition techniques for the analysis and design of sequential circuits. Chap-
ters 7 through 12 present digital system design methods from the register-transfer point of view. 
The digital system is decomposed into register subunits and the system is specified with a list of 
register-transfer statements that describe the operational transfers among the information stored 
in registers. The register-transfer method is used for the analysis and design of processor units, 
control units, a computer central processor, and for describing the internal operations of micro-
processors and microcomputers. Chapter 13 deals with the electronics of digital circuits and 
presents the most common integrated circuit digital logic families.

The components used to construct digital systems are manufactured in integrated circuit 
form. Integrated circuits contain a large amount of interconnected digital circuits within a single 
small package. Medium scale integration (MSI) devices provide digital functions and large scale 
integration (LSI) devices provide complete computer modules. It is very important for the logic 
designer to be familiar with the various digital components encountered in integrated circuit 
form. For this reason, many MSI and LSI circuits are introduced throughout the book and their 
logical function fully explained. The use of integrated circuits in the design of digital systems is 
illustrated by means of examples in the text and in problems at the end of the chapters.

This book was originally planned as a second edition to the author’s Computer Logic De-
sign (Prentice-Hall, 1972). Because of the amount of new material added and the extensive revi-
sions that have taken place, it seems more appropriate to adopt a new title for the present text. 
About one third of the text is material that appears in the previous book. The other two thirds 
constitutes new or revised information. The underlying factors for the revisions and additions 
arise from developments in the digital electronics technology. Great emphasis is given to MSI 
and LSI circuits and to design methods using integrated circuits. The book covers various LSI 
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components of the bit-slice and microcomputer variety. It presents applications of the read only 
memory (ROM) and programmable logic array (PLA). Moreover, further developments in the 
register transfer method of design mandated a complete rewriting of the second half of the book.

Chapter 1 presents various binary systems suitable for representing information in digital 
components. The binary number system is explained and binary codes are illustrated to show 
the representation of decimal and alphanumeric information. Binary logic is introduced from an 
intuitive point of view before proceeding with a formal definition of Boolean algebra.

The basic postulates and theorems of Boolean algebra are found in Chapter 2. The correla-
tion between a Boolean expression and its equivalent interwwwwconnection of gates is empha-
sized. All possible logic operations for two variables are investigated and from that, the most 
useful logic gates are derived. The characteristics of digital gates available in integrated circuit 
form are presented early in this chapter but a more detailed analysis describing the internal con-
struction of the gates is left for the last chapter.

Chapter 3 supplies the map and tabulation methods for simplifying Boolean functions. The 
map method is used to simplify digital circuits constructed with AND, OR, NAND, NOR, and 
wired-logic gates. The various simplification procedures are summarized in tabular form for easy 
reference.

Design and analysis procedures for combinational circuits are provided in Chapter 4. Some 
basic components used in the design of digital systems, such as adders and code converters, are 
introduced as design or analysis examples. The chapter investigates possible implementations 
using multilevel NAND and NOR combinational circuits.

Chapter 5 deals with combinational logic MSI and LSI components. Often used functions 
such as parallel adders, decoders, and multiplexers are explained, and their use in the design of 
combinational circuits is illustrated with examples. The read only memory (ROM) and program-
mable logic array (PLA) are introduced and their usefulness in the design of complex combina-
tional circuits is demonstrated.

Chapter 6 outlines various methods for the design and analysis of clocked sequential cir-
cuits. The chapter starts by presenting various types of flip-flops and the way they are triggered. 
The state diagram, state table, and state equations are shown to be convenient tools for analyz-
ing sequential circuits. The design methods presented transform the sequential circuit to a set of 
Boolean functions that specify the input logic to the circuit flip-flops. The input Boolean func-
tions are derived from the excitation table and are simplified by means of maps.

In Chapter 7, a variety of registers, shift-registers, and counters similar to those available in 
integrated circuit packages is presented. The operation of the random access memory (RAM) is 
also explained. The digital functions introduced in this chapter are the basic building blocks from 
which more complex digital systems are constructed.

Chapter 8 introduces the register-transfer method for describing digital systems. It shows 
how to express in symbolic form the operation sequence among the registers of a digital system. 
Symbols are defined for interregister transfer, arithmetic, logic, and shift microoperations. The 
different data types that are stored in computer registers are covered in detail. Some typical ex-
amples are used to show how computer instructions are represented in binary coded form and 
how the operations specified by instructions can be expressed with register-transfer statements. 
The chapter concludes with the design of a very simple computer to demonstrate the register-
transfer method of digital system design.

Chapter 9 is concerned with the processor unit of digital computers. It discusses alterna-
tives for organizing a processor unit with buses or scratchpad memory. A typical arithmetic logic 
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unit (ALU) is presented and a procedure is developed for the design of any other ALU configura-
tion. Other components commonly found in processors, such as shifters and status registers, are 
also presented. The design of a general purpose accumulator register is undertaken, starting from 
a specified set of register-transfer operations and culminating in a logic diagram.

Four methods of control logic design are introduced in Chapter 10. Two of the methods con-
stitute a hard-wired control. The other two introduce the concept of microprogramming and how 
to design a controller with the programmable logic array (PLA). The four methods are demon-
strated by means of examples that show the development of design algorithms and the procedure 
for obtaining the control circuits for the system. The last section introduces an LSI microprogram 
sequencer and shows how it can be used to design a microprogram control unit.

Chapter 11 is devoted to the design of a small digital computer. The registers in the com-
puter are defined and a set of computer instructions is specified. The computer description is 
formalized with register-transfer statements that specify the microoperations among the registers 
as well as the control functions that initiate these microoperations. It is then shown that the set 
of microoperations can be used to design the data processor part of the computer. The control 
functions in the list of register-transfer statements supply the information for the design of the 
control unit. The control unit for the computer is designed by three different methods: hard-wired 
control, PLA control, and microprogram control.

Chapter 12 focuses on various LSI components that form a microcomputer system. The 
organization of a typical microprocessor is described and its internal operation explained. A 
typical set of instructions for the microprocessor is presented and various addressing modes are 
explained. The operation of a stack and the handling of subroutines and interrupts is covered 
from the hardware point of view. The chapter also illustrates the connection of memory chips 
to a microprocessor bus system and the operation of various interface units that communicate 
with input-output devices. It concludes with a description of the direct memory access mode of 
transfer.

Chapter 13 details the electronic circuits of the basic gate in seven integrated circuit logic 
families. This final chapter should be considered as an appendix and can be omitted if desired. 
Chapter 13 assumes prior knowledge of basic electronics, but there is no specific prerequisite for 
the rest of the book.

Every chapter includes a set of problems and a list of references. Answers to selected prob-
lems appear m the Appendix to provide an aid for the student and to help the independent reader. 

The book is suitable for a course in digital logic and computer design in an electrical or 
computer engineering department. It can also be used in a computer science department for a 
course in computer organization. Parts of the book can be used in a variety of ways. (1) As a first 
course in digital logic or switching circuits by covering Chapters 1 through 7 and possibly Chap-
ter 13; (2) As a second course in digital computer logic with a prerequisite of a course in basic 
switching circuits by covering Chapter 5 and Chapters 7 through 12; (3) As an introduction to the 
hardware of microprocessors and microcomputers by covering Chapters 8 through 12.

In conclusion, I would like to explain the philosophy underlying the material presented in 
this book. The classical method has been predominant in the past for describing the operations 
of digital circuits. With the advent of integrated circuits, and especially the introduction of mi-
crocomputer LSI components, the classical method seems to be far removed from practical ap-
plications. Although the classical method for describing complex digital systems is not directly 
applicable, the basic concepts of Boolean algebra, combinational logic, and sequential logic pro-
cedures, are still important for understanding the internal construction of many digital functions. 
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On the other hand, the register-transfer method provides a better representation for describing the 
operations among the various modules in digital systems. It is concerned with the transfer of bit 
strings in parallel and may be considered to be one level higher in the hierarchy of digital system 
representation. The transition from the classical to the register-transfer method is made in the 
book by way of integrated circuit MSI functions. Chapters 5 and 7 cover many digital functions 
which are available in integrated circuits. Their operation is explained in terms of gates and flip-
flops that make up the particular digital circuit. Each MSI circuit is considered as a functional 
unit that performs a particular operation. This operation is then described in the register-transfer 
method of notation. Thus, the analysis and design of registers and other digital functions is done 
by means of the classical method but the use of these functions in describing the operations of a 
digital system is specified by means of register-transfer statements. The register-transfer method 
is then used to define computer instructions, to express digital operations in concise form, to 
demonstrate the organization of digital computers, and to specify the hardware components for 
the design of digital systems.

I wish to express my thanks to Dr. John L. Fike for reviewing the original manuscript and to 
Professor Victor Payse for pointing out corrections while teaching a course using the manuscript. 
Most of the typing was done by Mrs. Lucy Albert and her skilled help is gratefully appreciated. 
My greatest thanks go to my wife for all the suggestions she made for improving the readability 
of the text and for her encouragement and support during the preparation of this book.

M. Morris Mano

Publisher’s Acknowledgement

The publishers would like to thank Shivani Goel, Thapar University, Kolkata for his valuable suggestions and inputs 
for enchancing the content of this book to suit the requirement of Indian Universities.
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1C h a p t e r

Binary Systems

1.1  Digital Computers and Digital Systems

Digital computers have made possible many scientific, industrial, and commercial advances that 
would have been unattainable otherwise. Our space program would have been impossible without 
real-time, continuous computer monitoring, and many business enterprises function efficiently 
only with the aid of automatic data processing. Computers are used in scientific calculations, com-
mercial and business data processing, air traffic control, space guidance, the educational field, and 
many other areas. The most striking property of a digital computer is its generality. It can follow a 
sequence of instructions, called a program, that operates on given data. The user can specify and 
change programs and/or data according to the specific need. As a result of this flexibility, general-
purpose digital computers can perform a wide variety of information-processing tasks.

The general-purpose digital computer is the best-known example of a digital system. Other 
examples include telephone switching exchanges, digital voltmeters, frequency counters, calcu-
lating machines, and teletype machines. Characteristic of a digital system is its manipulation of 
discrete elements of information. Such discrete elements may be electric impulses, the decimal 
digits, the letters of an alphabet, arithmetic operations, punctuation marks, or any other set of 
meaningful symbols. The juxtaposition of discrete elements of information represents a quantity 
of information. For example, the letters d, o, and g form the word dog. The digits 237 form a 
number. Thus, a sequence of discrete elements forms a language, that is, a discipline that con-
veys information. Early digital computers were used mostly for numerical computations. In this 
case the discrete elements used are the digits. From this application, the term digital computer 
has emerged. A more appropriate name for a digital computer would be a “discrete information 
processing system.”

Discrete elements of information are represented in a digital system by physical quantities 
called signals. Electrical signals such as voltages and currents are the most common. The signals 
in all present-day electronic digital systems have only two discrete values and are said to be  
binary. The digital-system designer is restricted to the use of binary signals because of the lower 
reliability of many-valued electronic circuits. In other words, a circuit with ten states, using one 
discrete voltage value for each state, can be designed, but it would possess a very low reliability 
of operation. In contrast, a transistor circuit that is either on or off has two possible signal values 
and can be constructed to be extremely reliable. Because of this physical restriction of compo-
nents, and because human logic tends to be binary, digital systems that are constrained to take 
discrete values are further constrained to take binary values.

Discrete quantities of information emerge either from the nature of the process or may be 
purposely quantized from a continuous process. For example, a payroll schedule is an inherently 
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2 Chapter 1

discrete process that contains employee names, social security numbers, weekly salaries, income 
taxes, etc. An employee’s paycheck is processed using discrete data values such as letters of the 
alphabet (names), digits (salary), and special symbols such as $. On the other hand, a research 
scientist may observe a continuous process but record only specific quantities in tabular form. 
The scientist is thus quantizing his continuous data. Each number in his table is a discrete ele-
ment of information.

Many physical systems can be described mathematically by differential equations whose 
solutions as a function of time give the complete mathematical behavior of the process. An ana-
log computer performs a direct simulation of a physical system. Each section of the computer 
is the analog of some particular portion of the process under study. The variables in the analog 
computer are represented by continous signals, usually electric voltages that vary with time. The 
signal variables are considered analogous to those of the process and behave in the same manner. 
Thus measurements of the analog voltage can be substituted for variables of the process. The 
term analog signal is sometimes substituted for continuous signal because “analog computer” 
has come to mean a computer that manipulates continuous variables.

To simulate a physical process in a digital computer, the quantities must be quantized. 
When the variables of the process are presented by real-time continuous signals, the latter are 
quantized by an analog-to-digital conversion device. A physical system whose behavior is de-
scribed by mathematical equations is simulated in a digital computer by means of numerical 
methods. When the problem to be processed is inherently discrete, as in commercial applica-
tions, the digital computer manipulates the variables in their natural form.

A block diagram of the digital computer is shown in Fig. 1.1. The memory unit stores 
programs as well as input, output, and intermediate data. The processor unit performs arithmetic 
and other data-processing tasks as specified by a program. The control unit supervises the flow 
of information between the various units. The control unit retrieves the instructions, one by one, 
from the program which is stored in memory. For each instruction, the control unit informs the 
processor to execute the operation specified by the instruction. Both program and data are stored 
in memory. The control unit supervises the program instructions, and the processor manipulates 
the data as specified by the program.

Control 
Unit

Processor
or
Arithmetic Unit
 

Storage
or
Memory Unit
 

Input
Devices
and Control

Output
Devices
and Control

Figure 1.1 Block diagram of a digital computer
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The program and data prepared by the user are transferred into the memory unit by means 
of an input device such as punch-card reader or a teletypewriter. An output device, such as a 
printer, receives the result of the computations and the printed results are presented to the user. 
The input and output devices are special digital systems driven by electromechanical parts and 
controlled by electronic digital circuits.

An electronic calculator is a digital system similar to a digital computer, with the input 
device being a keyboard and the output device a numerical display. Instructions are entered in 
the calculator by means of the function keys, such as plus and minus. Data are entered through 
the numeric keys. Results are displayed directly in numeric form. Some calculators come close 
to resembling a digital computer by having printing capabilities and programmable facilities. A 
digital computer, however, is a more powerful device than a calculator. A digital computer can 
accommodate many other input and output devices; it can perform not only arithmetic computa-
tions but logical operations as well and can be programmed to make decisions based on internal 
and external conditions.

A digital computer is an interconnection of digital modules. To understand the operation of 
each digital module, it is necessary to have a basic knowledge of digital systems and their general 
behavior. The first half of this book deals with digital systems in general to provide the back-
ground necessary for their design. The second half of the book discusses the various modules of 
the digital computer, their operation and design. The operational characteristics of the memory 
unit are explained in Chapter 7. The organization and design of the processor unit is undertaken 
in Chapter 9. Various methods for designing the control unit are introduced in Chapter 10. The 
organization and design of a small, complete digital computer is presented in Chapter 11.

A processor, when combined with the control unit, forms a component referred to as a 
central processor unit or CPU. A CPU enclosed in small integrated-circuit package is called 
a microprocessor. The memory unit, as well as the part that controls the interface between the 
microprocessor and the input and output devices, may be enclosed within the microprocessor 
package or may be available in other small integrated-circuit packages. A CPU combined with 
memory and interface control to form a small-size computer is called a microcomputer. The 
availability of microcomputer components has revolutionized the digital system design technol-
ogy, giving the designer the freedom to create structures that were previously uneconomical. The 
various components of a microcomputer system are presented in Chapter 12.

It has already been mentioned that a digital computer manipulates discrete elements of 
information and that these elements are represented in the binary form. Operands used for cal-
culations may be expressed in the binary number system. Other discrete elements, including 
the decimal digits, are represented in binary codes. Data processing is carried out by means of 
binary logic elements using binary signals. Quantities are stored in binary storage elements. The 
purpose of this chapter is to introduce the various binary concepts as a frame of reference for 
further detailed study in the suceeding chapters.

1.2 Binary Numbers

A decimal number such as 7392 represents a quantity equal to 7 thousands plus 3 hundreds, plus 
9 tens, plus 2 units. The thousands, hundreds, etc., are powers of 10 implied by the position of 
the coefficients. To be more exact, 7392 should be written as:

7 × 103 + 3 × 102 + 9 × 101 + 2 × 100
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4 Chapter 1

However, the convention is to write only the coefficients and from their position deduce the 
necessary powers of 10. In general, a number with a decimal point is represented by a series of 
coefficients as follows:

a
5
 a

4
 a

3
 a

2
 a

1
 a

0
. a

–1
 a

–2
 a-3

The a
j
 coefficients are one of the ten digits (0, 1,2,...., 9), and the subscript value j gives the place 

value and, hence, the power of 10 by which the coefficient must be multiplied.

105a
5
 + 104a

4
 + 103a

3
 + 102a

2
 + 101a

1
 + 100a

0
 + 10-1 a-1

 + 10-2 a-2
 + 10-3 a-3

The decimal number system is said to be of base, or radix, 10 because it uses ten digits and the 
coefficients are multiplied by powers of 10. The binary system is a different number system. The 
coefficients of the binary numbers system have two possible values: 0 and 1. Each coefficient a

j
 

is multiplied by 2j. For example, the decimal equivalent of the binary number 11010.11 is 26.75, 
as shown from the multiplication of the coefficients by powers of 2:

1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 + 1 × 2–1

                                                                              + 1 × 2–2 = 26.75

In general, a number expressed in base-r system has coefficients multiplied by powers of r.

a
n
. rn + a

n-1
 .rn-1 + … + a

2
 . r2 + a

1
 . r + a

0

 + a-1
 . r-1 + a-2

 . r-2 + … + a-m
 .r-m

The coefficients a
j
 range in value from 0 to r – 1. To distinguish between numbers of different 

bases, we enclose the coefficients in parentheses and write a subscript equal to the base used 
(except sometimes for decimal numbers, where the content makes it obvious that it is decimal). 
An example of a base-5 number is:

(4021.2)
5
 = 4 × 53 + 0 × 52 + 2 × 51 + 1 × 50 + 2 × 5–l = (511.4)

10

Note that coefficient values for base 5 can be only 0, 1,2, 3, and 4.

It is customary to borrow the needed r digits for the coefficients from the decimal system 
when the base of the number is less than 10. The letters of the alphabet are used to supplement 
the ten decimal digits when the base of the number is greater than 10. For example, in the hexa-
decimal (base 16) number system, the first ten digits are borrowed from the decimal system. The 
letters A, B, C, D, E, and F are used for digits 10, 11, 12, 13, 14, and 15, respectively. An example 
of a hexadecimal number is:

(B65F)
I6
 = 11 × 163 + 6 × 162 + 5 × 16 + 15 = (46687)

l0

The first 16 numbers in the decimal, binary, octal, and hexadecimal systems are listed in  
Table 1-1.

Arithmetic operations with numbers in base r follow the same rules as for decimal numbers. 
When other than the familiar base 10 is used, one must be careful to use only the r allowable 
digits. Examples of addition, subtraction, and multiplication of two binary numbers are shown 
below:
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Divisor 

Quotient
Dividend

Reminder

1001

1100

1111
1100

11

1100  110111

augend:   101101 minuend:   101101 multiplicand:    1011

addend: +100111 subtrahend: –100111 multiplier:  × 101

sum: 1010100 difference:   000110    1011

 0000

1011   

product: 110111

The sum of two binary numbers is calculated by the same rules as in decimal, except 
that the digits of the sum in any significant position can be only 0 or 1. Any “carry” obtained 
in a given significant position is used by the pair of digits one significant position higher. The 
subtraction is slightly more complicated. The rules are still the same as in decimal, except that 
the “borrow” in a given significant position adds 2 to a minuend digit. (A borrow in the decimal  

Table 1-1 Numbers with different bases

Decimal Binary Octal Hexadecimal

(base 10) (base 2) (base 8) (base 16)

00 0000 00 0

01 0001 01 1

02 0010 02 2

03 0011 03 3

04 0100 04 4

05 0101 05 5

06 0110 06 6

07 0111 07 7

08 1000 10 8

09 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F
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6 Chapter 1

system adds 10 to a minuend digit.) Multiplication is very simple. The multiplier digits are 
always 1 or 0. Therefore, the partial products are equal either to the multiplicand or to 0.

1.3 Number Base Conversions

A binary number can be converted to decimal by forming the sum of the powers of 2 of those 
coefficients whose value is 1. For example:

(10l0.0ll)
2
 = 23 + 21 + 2–2 + 2–3 = (10.375)

10

The binary number has four l’s and the decimal equivalent is found from the sum of four pow-
ers of 2. Similarly, a number expressed in base r can be converted to its decimal equivalent by 
multiplying each coefficient with the corresponding power of r and adding. The following is an 
example of octal-to-decimal conversion:

(630.4)
8
 = 6 × 82 + 3 × 8 + 4 × 8–1 = (408.5)

10

The conversion from decimal to binary or to any other base-r system is more convenient if the 
number is separated into an integer part and a fraction part and the conversion of each part done 
separately. The conversion of an integer from decimal to binary is best explained by example.

EXAMPLE 1-1: Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer 

quotient of 20 and a remainder of 1

2
. The quotient is again divided by 2 to give a new quo-

tient and remainder. This process is continued until the integer quotient becomes 0. The coef-
ficients of the desired binary number are obtained from the remainders as follows:

integer quotient remainder coefficient

=
41

20
2

 + 
1

2
a

0
 = 1

=
20

10
2

 + 0 a
1
 = 0

=
10

5
2

 + 0 a
2
 = 0

=
5

2
2

 + 
1

2
a

3
 = 1

=
2

1
2

 + 0 a
4
 = 0

=
1

0
2

 + 
1

2
a

5
 = 1

answer: (41)
l0
 = (a

5
a

4
a

3
a

2
a

1
a

0
)

2
 = (101001)

2
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The arithmetic process can be manipulated more conveniently as follows:

integer remainder

41

20 1

10 0

5 0

2 1

1 0

0 1 101001 = answer

The conversion from decimal integers to any base-r system is similar to the above example, 
except that division is done by r instead of 2.

EXAMPLE 1-2: Convert decimal 153 to octal. The required base r is 8. First, 153 is divided 
by 8 to give an integer quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an 
integer quotient of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and 
a remainder of 2. This process can be conveniently manipulated as follows:

153

19 1

2 3

0 2    = (231)
8

The conversion of a decimal fraction to binary is accomplished by a method similar to that 
used for integers. However, multiplication is used instead of division, and integers are accumu-
lated instead of remainders. Again, the method is best explained by example.

EXAMPLE 1-3: Convert (0.6875)
l0
 to binary. First, 0.6875 is multiplied by 2 to give an 

integer and a fraction. The new fraction is multiplied by 2 to give a new integer and a new 
fraction. This process is continued until the fraction becomes 0 or until the number of digits 
have sufficient accuracy. The coefficients of the binary number are obtained from the integers 
as follows:

integer fraction coefficient

0.6875 × 2 = 1 + 0.3750 a
–1

 = 1
0.3750 × 2 = 0 + 0.7500 a

–2
 = 0

0.7500 × 2 = 1 + 0.5000 a
–3

 = 1
0.5000 × 2 = 1 + 0.0000 a

–4
 = 1

answer: (0.6875)
l0
 = (0.a

–1
 a

–2 
a

–3
 a

–4
)

2
 = (0.1011)

2
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To convert a decimal fraction to a number expressed in base r, a similar procedure is used. 
Multiplication is by r instead of 2, and the coefficients found from the integers may range in value 
from 0 to r – 1 instead of 0 and 1.

EXAMPLE 1-4: Convert (0.513)
10

 to octal.

0.513 × 8 = 4.104
0.104 × 8 = 0.832
0.832 × 8 = 6.656
0.656 × 8 = 5,248
0.248 × 8 = 1.984
0.984 × 8 = 7.872

The answer, to seven significant figures, is obtained from the integer part of the products:

(0.513)
10

 = (0.406517 …)
8

The conversion of decimal numbers with both integer and fraction parts is done by convert-
ing the integer and fraction separately and then combining the two answers together. Using the 
results of Examples 1-1 and 1-3, we obtain:

(41.6875)
10

- (101001.1011)
2

From Examples 1-2 and 1-4, we have:

(153.513)
l0
 = (231.406517)

8

1.4 Octal and Hexadecimal Numbers

The conversion from and to binary, octal, and hexadecimal plays an important part in digital 
computers. Since 23 = 8 and 24 = 16, each octal digit corresponds to three binary digits and each 
hexadecimal digit corresponds to four binary digits. The conversion from binary to octal is easily 
accomplished by partitioning the binary number into groups of three digits each, starting from 
the binary point and proceeding to the left and to the right. The corresponding octal digit is then 
assigned to each group. The following example illustrates the procedure:

8
72 6 1 5 3 4 0 6 2

10 110 001101 011 111100 000 110 (26153.7406)
 

=  


       

Conversion from binary to hexadecimal is similar, except that the binary number is divided into 
groups of four digits:

16
F2 C 6 B 2 2

10 1100 0110 1011 1111 0010 (2C6B.F2)
 

=  


    

The corresponding hexadecimal (or octal) digit for each group of binary digits is easily remem-
bered after studying the values listed in Table 1-1.
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Conversion from octal or hexadecimal to binary is done by a procedure reverse to the above. 
Each octal digit is converted to its three-digit binary equivalent. Similarly, each hexadecimal 
digit is converted to its four-digit binary equivalent. This is illustrated in the following examples:

(673.124)
8
 = 

76 3 1 2 4 2

110 111 011 001 010 100
 
  



    

                              (306. D)
l6
 = 

3 0 6 D 2

0011 0000 0110 1101
 
  



   

Binary numbers are difficult to work with because they require three or four times as many 
digits as their decimal equivalent. For example, the binary number 111111111111 is equivalent 
to decimal 4095. However, digital computers use binary numbers and it is sometimes necessary 
for the human operator or user to communicate directly with the machine by means of binary 
numbers. One scheme that retains the binary system in the computer but reduces the number of 
digits the human must consider utilizes the relationship between the binary number system and 
the octal or hexadecimal system. By this method, the human thinks in terms of octal or hexadeci-
mal numbers and performs the required conversion by inspection when direct communication 
with the machine is necessary. Thus the binary number 111111111111 has 12 digits and is ex-
pressed in octal as 7777 (four digits) or in hexadecimal as FFF (three digits). During communica-
tion between people (about binary numbers in the computer), the octal or hexadecimal represen-
tation is more desirable because it can be expressed more compactly with a third or a quarter of 
the number of digits required for the equivalent binary number. When the human communicates 
with the machine (through console switches or indicator lights or by means of programs written 
in machine language), the conversion from octal or hexadecimal to binary and vice versa is done 
by inspection by the human user.

1.5 Complements

Complements are used in digital computers for simplifying the subtraction operation and for 
logical manipulations. There are two types of complements for each base-r system: (1) the r’s 
complement and (2) the (r – 1)’s complement. When the value of the base is substituted, the two 
types receive the names 2’s and l’s complement for binary numbers, or 10’s and 9’s complement 
for decimal numbers.

1.5.1 The r’s Complement

Given a positive number N in base r with an integer part of n digits, the r’s complement of N is 
defined as rn – N for N ≠ 0 and 0 for N = 0. The following numerical example will help clarify 
the definition.

The 10’s complement of (52520)
10

 is 105 – 52520 = 47480.

The number of digits in the number is n = 5.

The 10’s complement or (0.3267)
10

 is 1 - 0.3267 = 0.6733.
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No integer part, so 10n = 100 = 1.

The 10’s complement of (25.639)
10

 is 102 – 25.639 = 74.361.

The 2’s complement of (101100)
2
 is (26)

10
 – (101100)

2
 = (1000000 - 101100)

2
 = 010100.

The 2’s complement of (0.0110)
2
 is (1 – 0.0110)

2
 = 0.1010.

The 16’s complement of (4B7)
16

 is (163 - 4B7)
10  

= (1000 - 4B7)
16

 = (B49)
16

From the definition and the examples, it is clear that the 10’s complement of a decimal 
number can be formed by leaving all least significant zeros unchanged, subtracting the first non-
zero least significant digit from 10, and then subtracting all other higher significant digits from 
9. The 2’s complement can be formed by leaving all least significant zeros and the first nonzero 
digit unchanged, and then replacing l’s by 0’s and 0’s by l’s in all other higher significant digits. A 
third, simpler method for obtaining the r’s complement is given after the definition of the (r – l)’s 
complement.

The r’s complement of a number exists for any base r (r greater than but not equal to 1) 
and may be obtained from the definition given above. The examples listed here use numbers 
with r = 10 (decimal) and r = 2 (binary) because these are the two bases of most interest to 
us. The name of the complement is related to the base of the number used. For example, the  
(r - l)’s complement of a number in base 11 is named the 10’s complement, since r - 1 = 10 for 
r = 11.

1.5.2 The (r – 1)’s Complement

Given a positive number N in base r with an integer part of n digits and a fraction part of m digits, 
the (r – l)’s complement of N is defined as rn - r–m – N. Some numerical examples follow:

The 9’s complement of (52520)
10

 is (105 – 1 – 52520) = 99999 - 52520 = 47479.

No fraction part, so 10–m = 100 = 1.

The 9’s complement of (0.3267)
10

 is (1 - 10–4 0.3267) = 0.9999 – 0.3267 = 0.6732.

No integer part, so 10n = 100 - 1.

The 9’s complement of (25.639)
l0
 is (102 – 10–3 – 25.639) = 99.999 - 25.639 = 74.360.

The l’s complement of (101100)
2
 is (26 – 1) – (101100) = (111111 –101100)

2
 = 010011.

The l’s complement of (0.0110)
2
 is (1 – 2–4)

l0
 – (0.0110)

2
 = (0.1111 – 0.0110)

2
 = 0.1001.

The 7’s complement of (76)
8
 is (82 - 80)

10 
- 76

8
 = (63)

10 
- 76

8
 = (77 - 76)

8 
= 1

8

From the examples, we see that the 9’s complement of a decimal number is formed simply 
by subtracting every digit from 9. The l’s complement of a binary number is even simpler to 
form: the l’s are changed to 0’s and the 0’s to l’s. Since the (r – t)’s complement is very easily 
obtained, it is sometimes convenient to use it when the r’s complement is desired. From the 
definitions and from a comparison of the results obtained in the examples, it follows that the r’s 
complement can be obtained from the (r – l)’s complement after the addition of r–m to the least 
significant digit. For example, the 2’s complement of 10110100 is obtained from the l’s comple-
ment 01001011 by adding 1 to give 01001100.
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It is worth mentioning that the complement of the complement restores the number to its 
original value. The r’s complement of N is rn – N and the complement of (rn – N) is rn – (rn – N) 
= N; and similarly for the l’s complement.

1.5.3 Subtraction with r’s Complements

The direct method of subtraction taught in elementary schools uses the borrow concept. In this 
method, we borrow a 1 from a higher significant position when the minuend digit is smaller than 
the corresponding subtrahend digit. This seems to be easiest when people perform subtraction 
with paper and pencil. When subtraction is implemented by means of digital components, this 
method is found to be less efficient than the method that uses complements and addition as stated 
below.

The subtraction of two positive numbers (M — N), both of base r, may be done as follows:

1. Add the minuend M to the r’s complement of the subtrahend N.

2. Inspect the result obtained in step 1 for an end carry:

(a) If an end carry occurs, discard it.

(b) If an end carry does not occur, take the r’s complement of the number obtained in 
step 1 and place a negative sign in front.

The following examples illustrate the procedure:

EXAMPLE 1-5: Using 10’s complement, subtract 72532 – 3250.

               M = 72532                     72532
               N  = 03250

                + 
10’s complement of N  = 96750   96750

      end carry → 1 69282
answer: 69282

EXAMPLE 1-6: Subtract: (3250 – 72532)
l0
.

               M = 03250                     03250
               N  = 72532

                + 
10’s complement of N = 27468   27468

            no carry 30718

answer: – 69282 = – (10’s complement of 30718)
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EXAMPLE 1-7: Use 2’s complement to perform M - N with the given binary numbers.

  (a)           M = 1010100   1010100
             N = 1000100

                  + 
2’s complement of N = 0111100   0111100

      end carry → 1 0010000
answer: 10000

  (b)           M = 1000100                1000100
             N  = 1010100
                  +

2’s complement of N = 0101100   0101100

      no carry           1110000

answer: – 10000 = – (2’s complement of 1110000)

The proof of the procedure is: The addition of M to the r’s complement of N gives  
(M + rn – N). For numbers having an integer part of n digits, rn is equal to a 1 in the (n + l)th posi-
tion (what has been called the “end carry”). Since both M and N are assumed to be positive, then:

(a)    (M + rn – N)  rn if M ≥ N, or

(b)    (M + rn – N) < rn if M < N, 

In case (a) the answer is positive and equal to M – N, which is directly obtained by discarding the 
end carry rn. In case (b) the answer is negative and equal to -(N – M). This case is detected from 
the absence of an end carry. The answer is obtained by taking a second complement and adding 
a negative sign:

–[rn – (M + rn – N)] = – (N – M).

1.5.4 Subtraction with (r – 1)’s Complement

The procedure for subtraction with the (r - l)”s complement is exactly the same as the one used 
with the r’s complement except for one variation, called “end-around carry,” as shown below. The 
subtraction of M – N, both positive numbers in base r, may be calculated in the following manner:

1. Add the minuend M to the (r – l)’s complement of the subtrahend N.

2. Inspect the result obtained in step 1 for an end carry.

(a)  If an end carry occurs, add 1 to the least significant digit (end-around carry).

(b) If an end carry does not occur, take the (r – l)’s complement of the number ob-
tained in step 1 and place a negative sign in front.

The proof of this procedure is very similar to the one given for the r’s complement case and 
is left as an exercise. The following examples illustrate the procedure.
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EXAMPLE 1-8: Repeat Examples 1-5 and 1-6 using 9’s complements.

  (a)           M = 72532    72532
            N = 03250
9’s complement of N = 96749           + 96749

               1 69281
     end-around carry     +
                1

        69282

answer: 69282

  (b)           M = 03250    03250
              N = 72532

9’s complement of N = 27467          +  27467

      no carry  30717

answer: – 69282 = – (9’s complement of 30717)

EXAMPLE 1-9: Repeat Example 1 = 7 using l’s complement.

  (a)           M = 1010100   1010100
              N = 1000100

 l’s complement of N = 0111011          + 0111011

          end-around carry            1 0001111
             + 
                    1
        0010000

answer: 10000

  (b)            M = 1000100   1000100
             N = 1010100         + 

 l’s complement of N = 0101011   0101011

      no carry  1101111

answer: – 10000 = – (l’s complement of 1101111)

1.5.5 Comparison between 1’s and 2’s Complements

A comparison between l’s and 2’s complements reveals the advantages and disadvantages of 
each. The l’s complement has the advantage of being easier to implement by digital components 
since the only thing that must be done is to change 0’s into l’s and l’s into 0’s. The implementation 
of the 2’s complement may be obtained in two ways: (1) by adding 1 to the least significant digit 
of the l’s complement, and (2) by leaving all leading 0’s in the least significant positions and the 
first 1 unchanged, and only then changing all l’s into 0’s and all 0’s into l’s. During subtraction of 
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two numbers by complements, the 2’s complement is advantageous in that only one arithmetic 
addition operation is required. The l’s complement requires two arithmetic additions when an 
end-around carry occurs. The l’s complement has the additional disadvantage of possessing two 
arithmetic zeros: one with all 0’s and one with all l’s. To illustrate this fact, consider the subtrac-
tion of the two equal binary numbers 1100 - 1100 = 0.

Using l’s complement:

     1100 
+ 
     0011
+  1111

Complement again to obtain -0000. 
Using 2’s complement:

    1100 
+ 
    0100
+  0000

While the 2’s complement has only one arithmetic zero, the l’s complement zero can be positive 
or negative, which may complicate matters.

Complements, very useful for arithmetic manipulations in digital computers, are discussed 
more in Chapters 8 and 9. However, the l’s complement is also useful in logical manipulations 
(as will be shown later), since the change of l’s to 0’s and vice versa is equivalent to a logical in-
version operation. The 2’s complement is used only in conjunction with arithmetic applications. 
Consequently, it is convenient to adopt the following convention: When the word complement, 
without mention of the type, is used in conjunction with a nonarithmetie application, the type is 
assumed to be the l’s complement.

1.6 Binary Codes

Electronic digital systems use signals that have two distinct values and circuit elements that have 
two stable states. There is a direct analogy among binary signals, binary circuit elements, and 
binary digits. A binary number of n digits, for example, may be represented by n binary circuit 
elements, each having an output signal equivalent to a 0 or a 1. Digital systems represent and 
manipulate not only binary numbers, but also many other discrete elements of information. Any 
discrete element of information distinct among a group of quantities can be represented by a 
binary code. For example, red is one distinct color of the spectrum. The letter A is one distinct 
letter of the alphabet.

A bit, by definition, is a binary digit. When used in conjunction with a binary code, it is bet-
ter to think of it as denoting a binary quantity equal to 0 or 1. To represent a group of 2n distinct 
elements in a binary code requires a minimum of n bits. This is because it is possible to arrange 
n bits in 2n distinct ways. For example, a group of four distinct quantities can be represented by 
a two-bit code, with each quantity assigned one of the following bit combinations: 00, 01, 10, 
11. A group of eight elements requires a three-bit code, with each element assigned to one and 
only one of the following: 000, 001, 010, 011, 100, 101, 110, 111. The examples show that the 
distinct bit combinations of an n-bit code can be found by counting in binary from 0 to (2n - 1). 
Some bit combinations are unassigned when the number of elements of the group to be coded 
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is not a multiple of the power of 2. The ten decimal digits 0, 1, 2, ... , 9 are an example of such a 
group. A binary code that distinguishes among ten elements must contain at least four bits; three 
bits can distinguish a maximum of eight elements. Four bits can form 16 distinct combinations, 
but since only ten digits are coded, the remaining six combinations are unassigned and not used.

Although the minimum number of bits required to code 2n distinct quantities is n, there is no 
maximum number of bits that may be used for a binary code. For example, the ten decimal digits 
can be coded with ten bits, and each decimal digit assigned a bit combination of nine 0’s and a 1. 
In this particular binary code, the digit 6 is assigned the bit combination 0001000000.

1.6.1 Decimal Codes

Binary codes for decimal digits require a minimum of four bits. Numerous different codes can be 
obtained by arranging four or more bits in ten distinct possible combinations. A few possibilities 
are shown in Table 1-2.

The BCD (binary-coded decimal) is a straight assignment of the binary equivalent. It is 
possible to assign weights to the binary bits according to their positions. The weights in the BCD 
code are 8, 4, 2, 1. The bit assignment 0110, for example, can be interpreted by the weights to 
represent the decimal digit 6 because 0 × 8 + 1 × 4 + 1 × 2 + 0 × 1 = 6. It is also possible to assign 
negative weights to a decimal code, as shown by the 8, 4, - 2, - 1 code. In this case the bit com-
bination 0110 is interpreted as the decimal digit 2, as obtained from 0 × 8 + 1 × 4 + 1 × (-2) + 0 
× (-l) = 2. Two other weighted codes shown in the table are the 2421 and the 5043210. A decimal 
code that has been used in some old computers is the excess-3 code. This is an unweighted code; 
its code assignment is obtained from the corresponding value of BCD after the addition of 3.

Numbers are represented in digital computers either in binary or in decimal through a bi-
nary code. When specifying data, the user likes to give the data in decimal form. The input deci-
mal numbers are stored internally in the computer by means of a decimal code. Each decimal 
digit requires at least four binary storage elements. The decimal numbers are converted to binary 
when arithmetic operations are done internally with numbers represented in binary. It is also 
possible to perform the arithmetic operations directly in decimal with all numbers left in a coded 

Table 1-2 Binary codes for the decimal digits

Decimal 
digit

(BCD)
8421 Excess-3 84-2-1 2421

(Biquinary) 
5043210

0 0000 0011 0000 0000 0100001

1 0001 0100 0111 0001 0100010

2 0010 0101 0110 0010 0100100

3 0011 0110 0101 0011 0101000

4 0100 0111 0100 0100 0110000

5 0101 1000 1011 1011 1000001

6 0110 1001 1010 1100 1000010

7 0111 1010 1001 1101 1000100

8 1000 1011 1000 1110 1001000

9 1001 1100 1111 1111 1010000
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form throughout. For example, the decimal number 395, when converted to binary, is equal to 
110001011 and consists of nine binary digits. The same number, when represented internally in 
the BCD code, occupies four bits for each decimal digit, for a total of 12 bits: 001110010101. 
The first four bits represent a 3, the next four a 9, and the last four a 5.

It is very important to understand the difference between conversion of a decimal number to 
binary and the binary coding of a decimal number. In each case the final result is a series of bits. 
The bits obtained from conveision are binary digits. Bits obtained from coding are combinations 
of l’s and 0’s arranged according to the rules of the code used. Therefore, it is extremely impor-
tant to realize that a series of l’s and 0’s in a digital system may sometimes represent a binary 
number and at other times represent some other discrete quantity of information as specified by 
a given binary code. The BCD code, for example, has been chosen to be both a code and a direct 
binary conversion, as long as the decimal numbers are integers from 0 to 9. For numbers greater 
than 9, the conversion and the coding are completely different. This concept is so important that 
it is worth repeating with another example. The binary conversion of decimal 13 is 1101; the 
coding of decimal 13 with BCD is 00010011.

From the five binary codes listed in Table 1-2, the BCD seems the most natural to use and 
is indeed the one most commonly encountered. The other four-bit codes listed have one charac-
teristic in common that is not found in BCD. The excess-3, the 2, 4, 2, 1, and the 8, 4, – 2, – 1 are 
self-complementary codes, that is, the 9’s complement of the decimal number is easily obtained 
by changing l’s to 0’s and 0’s to l’s. For example, the decimal 395 is represented in the 2, 4, 2, 1 
code by 001111111011. Its 9’s complement 604 is represented by 110000000100, which is easily 
obtained from the replacement of l’s by 0’s and 0’s by l’s. This property is useful when arithmetic 
operations are internally done with decimal numbers (in a binary code) and subtraction is calcu-
lated by means of 9’s complement.

The biquinary code shown in Table 1-2 is an example of a seven-bit code with error-detec-
tion properties. Each decimal digit consists of five 0’s and two l’s placed in the corresponding 
weighted columns. The error-detection property of this code may be understood if one realizes 
that digital systems represent binary 1 by one distinct signal and binary 0 by a second distinct 
signal. During transmission of signals from one location to another, an error may occur. One or 
more bits may change value. A circuit in the receiving side can detect the presence of more (or 
less) than two l’s and, if the received combination of bits does not agree with the allowable com-
bination, an error is detected.

1.6.2 Error-Detection Codes

Binary information, be it pulse-modulated signals or digital computer input or output, may be 
transmitted through some form of communication medium such as wires or radio waves. Any 
external noise introduced into a physical communication medium changes bit values from 0 
to 1 or vice versa. An error-detection code can be used to detect errors during transmission. 
The detected error cannot be corrected, but its presence is indicated. The usual procedure is to 
observe the frequency of errors. If errors occur only once in a while, at random, and without a 
pronounced effect on the overall information transmitted, then either nothing is done or the par-
ticular erroneous message is transmitted again. If errors occur so often as to distort the meaning 
of the received information, the system is checked for malfunction.

A parity bit is an extra bit included with a message to make the total number of l’s either odd 
or even. A message of four bits and a parity bit, P, are shown in Table 1-3. In (a), P is chosen so 
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that the sum of all l’s is odd (in all five bits). In (b), P is chosen so that the sum of all l’s is even. 
During transfer of information from one location to another, the parity bit is handled as follows. 
In the sending end, the message (in this case the first four bits) is applied to a “parity-generation’ 
network where the required P bit is generated. The message, including the parity bit, is transfer-
red to its destination. In the receiving end, all the incoming bits (in this case five) are applied to 
a “parity-check” network to check the proper parity adopted. An error is detected if the checked 
parity does not correspond to the adopted one. The parity method detects the presence of one, 
three, or any odd combination of errors. An even combination of errors is undetectable. Further 
discussion of parity generation and checking can be found in Sec. 4-9.

1.6.3 The Reflected Code

Digital systems can be designed to process data in discrete form only. Many physical systems 
supply continous output data. These data must be converted into digital or discrete form before 
they are applied to a digital system. Continuous or analog information is convened into digital 
form by means of an analog-to-digital converter. It is sometimes convenient to use the reflected 
code shown in Table 1-4 to represent the digital data converted from the analog data. The advan-
tage of the reflected code over pure binary numbers is that a number in the reflected code changes 
by only one bit as it proceeds from one number to the next. A typical application of the reflected 
code occurs when the analog data are represented by a continouous change of a shaft position. 
The shaft is partitioned into segments, and each segment is assigned a number. If adjacent seg-
ments are made to correspond to adjacent reflected-code numbers, ambiguity is reduced when 

Table 1-3 Parity-bit generation

(a) Message P(odd) (b) Message P (even)

0000 1 0000 0

0001 0 0001 1

0010 0 0010 1

0011 1 0011 0

0100 0 0100 1

0101 1 0101 0

0110 1 0110 0

0111 0 0111 1

1000 0 1000 1

1001 1 1001 0

1010 1 1010 0

1011 0 1011 1

1100 1 1100 0

1101 0 1101 1

1110 0 1110 1

1111 1 1111 0
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detection is sensed in the line that separates any two segments. The reflected code shown in Table 
1-4 is only one of many possible such codes. To obtain a different reflected code, one can start 
with any bit combination and proceed to obtain the next bit combination by changing only one bit 
from 0 to 1 or 1 to 0 in any desired random fashion, as long as two numbers do not have identical 
code assignments. The reflected code is also known as the Gray code.

1.6.4 Alphanumeric Codes

Many applications of digital computers require the handling of data that consist not only of num-
bers, but also of letters. For instance, an insurance company with millions of policy holders may 
use a digital computer to process its files. To represent the policy holder’s name in binary form, 
it is necessary to have a binary code for the alphabet. In addition, the same binary code must 
represent decimal numbers and some other special characters. An alphanumeric (sometimes ab-
breviated alphameric) code is a binary code of a group of elements consisting of the ten decimal 
digits, the 26 letters of the alphabet, and a certain number of special symbols such as $. The total 
number of elements in an alphanumeric group is greater than 36. Therefore, it must be coded 
with a minimum of six bits (26 = 64, but 25 = 32 is insufficient).

One possible arrangement of a six-bit alphanumeric code is shown in Table 1-5 under the 
name “internal code.” With a few variations, it is used in many computers to represent alphanu-
meric characters internally. The need to represent more than 64 characters (the lowercase letters 
and special control characters for the transmission of digital information) gave rise to seven- and 
eight-bit alphanumeric codes. One such code is known as ASCII (American Standard Code for 

Table 1-4 Four-bit reflected code

Reflected code Decimal equivalent

0000 0

0001 1

0011 2

0010 3

0110 4

0111 5

0101 6

0100 7

1100 8

1101 9

1111 10

1110 11

1010 12

1011 13

1001 14

1000 15
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Table 1-5 Alphanumeric character codes

6-Bit 7-Bit 8-Bit 12-Bit

Character internal code ASCII code EBCDIC code card code

A 010 001 100 0001 1100 0001 12,1

B 010 010 100 0010 1100  0010 12,2

C 010 011 100 0011 1100 0011 12,3

D 010 100 100 0100 1100  0100 12,4

E 010 101 100 0101 1100 0101 12,5

F 010 110 100 0110 1100 0110 12,6

G 010 111 100 0111 1100 0111 12,7

H 011 000 100 1000 1100  1000 12,8

I 011 001 100 1001 1100 1001 12,9

J 100 001 100 1010 1101 0001 11,1

K 100 010 100 1011 1101 0010 11,2

L 100 011 100 1100 1101 0011 11.3

M 100 100 100  1101 1101 0100 11,4

N 100 101 100  1110 1101 0101 11.5

O 100 110 100 1111 1101 0110 11,6

P 100 111 101 0000 1101 0111 11,7

Q 101 000 101 0001 1101 1000 11,8

R 101 001 101 0010 1101 1001 11,9

S 110 010 101 0011 1110 0010 0,2

T 110 011 101 0100 1110 0011 0,3

U 110 100 101 0101 1110 0100 0,4

V 110 101 101 0110 1110 0101 0,5

W 110 110 101 0111 1110 0110 0,6

X 110 111 101 1000 1110 0111 0,7

Y 111 000 101 1001 1110 1000 0,8

Z 111 001 101 1010 1110 1001 0,9

0 000 000 011 0000 1111 0000 0

1 000 001 011 0001 1111 0001 1

2 000 010 011 0010 1111 0010 2

3 000 011 011 0011 1111 0011 3

4 000 100 011 0100 1111 0100 4

5 000 101 011 0101 1111 0101 5

6 000 110 011 0110 1111 0110 6
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Information Interchange); another is known as EBCDIC (Extended BCD Interchange Code). 
The ASCII code listed in Table 1-5 consists of seven bits but is, for all practical purposes, an 
eight-bit code because an eighth bit is invariably added for parity. When discrete information is 
transferred through punch cards, the alphanumeric characters use a 12-bit binary code. A punch 
card consists of 80 columns and 12 rows. In each column, an alphanumeric character is repre-
sented by holes punched in the appropriate rows. A hole is sensed as a 1 and the absence of a hole 
is sensed as a 0. The 12 rows are marked, starting from the top, as the 12, 11, 0, 1, 2,..., 9 punch. 
The first three are called the zone punch and the last nine are called the numeric punch. The 
12-bit card code shown in Table 1-5 lists the rows where a hole is punched (giving the l’s). The 
remaining unlisted rows are assumed to be 0’s. The 12-bit card code is inefficient with respect to 
the number of bits used. Most computers translate the input code into an internal six-bit code. As 
an example, the internal code representation of the name “John Doe” is:

       

100001100110 011000 100101110000 010100 100110 010101
J O H N blank D O E

1.7 Binary Storage and Registers

The discrete elements of information in a digital computer must have a physical existence in 
some information storage medium. Furthermore, when discrete elements of information are rep-
resented in binary form, the information storage medium must contain binary storage elements 
for storing individual bits. A binary cell is a device that possesses two stable states and is capable 
of storing one bit of information. The input to the cell receives excitation signals that set it to one 
of the two states. The output of the cell is a physical quantity that distinguishes between the two 
states. The information stored in a cell is a 1 when it is in one stable state and a 0 when in the 
other stable state. Examples of binary cells are electronic flip-flop circuits, ferrite cores used in 
memories, and positions punched with a hole or not punched in a card.

7 000 111 011 0111 1111 0111 7

8 001 000 011 1000 1111 1000 8

9 001 001 011 1001 1111 1001 9

blank 110 000 010 0000 0100 0000 no punch

011 011 010 1110 0100 1011 12,8,3

( 111 100 010 1000 0100 1101 12,8,5

 + 010 000 010 1011 0100 1110 12,8,6

$ 101 011 010 0100 0101 1011 11,8,3

* 101 100 010 1010 0101 1100 11,8,4

) 011 100 010 1001 0101 1101 11,8,5

– 100 000 010 1101 0110 0000 11

/ 110 001 010 1111 0110 0001 0,1

, 111 011 010 1100 0110 1011 0,8,3

 = 001 011 011 1101 0111 1110 8,6
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1.7.1 Registers

A register is a group of binary cells. Since a cell stores one bit of information, it follows that a 
register with n cells can store any discrete quantity of information that contains n bits. The state 
of a register is an n-tuple number of l’s and 0’s, with each bit designating the state of one cell in 
the register. The content of a register is a function of the interpretation given to the information 
stored in it. Consider, for example, the following 16-cell register:

1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Physically, one may think of the register as composed of 16 binary cells, with each cell 
storing either a 1 or a 0. Suppose that the bit configuration stored in the register is as shown. The 
state of the register is the 16-tuple number 1100001111001001. Clearly, a register with n cells 
can be in one of 2n possible states. Now, if one assumes that the content of the register represents 
a binary integer, then obviously the register can store any binary number from 0 to 216- 1. For 
the particular example shown, the content of the register is the binary equivalent of the decimal 
number 50121. If it is assumed that the register stores alphanumeric characters of an eight-bit 
code, the content of the register is any two meaningful characters (unassigned bit combinations 
do not represent meaningful information). In the EBCDIC code, the above example represents 
the two characters C (left eight bits) and I (right eight bits). On the other hand, if one interprets 
the content of the register to be four decimal digits represented by a four-bit code, the content 
of the register is a four-digit decimal number. In the excess-3 code, the above example is the 
decimal number 9096. The content of the register is meaningless in BCD since the bit combina-
tion 1100 is not assigned to any decimal digit. From this example, it is clear that a register can 
store one or more discrete elements of information and that the same bit configuration may be 
interpreted differently for different types of elements of information. It is important that the user 
store meaningful information in registers and that the computer be programmed to process this 
information according to the type of information stored.

1.7.2 Register Transfer

A digital computer is characterized by its registers. The memory unit (Fig. 1-1) is merely a col-
lection of thousands of registers for storing digital information. The processor unit is composed 
of various registers that store operands upon which operations are performed. The control unit 
uses registers to keep track of various computer sequences, and every input or output device 
must have at least one register to store the information transferred to or from the device. An 
inter-register transfer operation, a basic operation in digital systems, consists of a transfer of the 
information stored in one register into another. Figure 1-2 illustrates the transfer of information 
among registers and demonstrates pictorially the transfer of binary information from a teletype 
keyboard into a register in the memory unit. The input teletype unit is assumed to have a key-
board, a control circuit, and an input register. Each time a key is struck, the control enters into the 
input register an equivalent eight-bit alphanumeric character code. We shall assume that the code 
used is the ASCII code with an odd-parity eighth bit. The information from the input register is 
transferred into the eight least significant cells of a processor register. After every transfer, the 
input register is cleared to enable the control to insert a new eight-bit code when the keyboard is 
struck again. Each eight-bit character transferred to the processor register is preceded by a shift 
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of the previous character to the next eight cells on its left. When a transfer of four characters is 
completed, the processor register is full, and its contents are transferred into a memory register. 
The content stored in the memory register shown in Fig. 1-2 came from the transfer of the cha-
racters JOHN after the four appropirate keys were struck.

To process discrete quantities of information in binary form, a computer must be provided 
with (1) devices that hold the data to be processed and (2) circuit elements that manipulate 
individual bits of information. The device most commonly used for holding data is a register. 
Manipulation of binary variables is done by means of digital logic circuits. Figure 1-3 illustrates 
the process of adding two 10-bit binary numbers. The memory unit, which normally consists 
of thousands of registers, is shown in the diagram with only three of its registers. The part of 
the processor unit shown consists of three registers, Rl, R2, and R3, together with digital logic 
circuits that manipulate the bits of Rl and R2 and transfer into R3 a binary number equal to their 
arithmetic sum. Memory registers store information and are incapable of processing the two 
operands. However, the information stored in memory can be transferred to processor registers. 
Results obtained in processor registers can be transferred back into a memory register for stor-
age until needed again. The diagram shows the contents of two operands transferred from two 
memory registers into Rl and R2. The digital logic circuits produce the sum, which is transferred 
to register R3. The contents of R3 can now be transferred back to one of the memory registers.

The last two examples demonstrated the information flow capabilities of a digital system in 
a very simple manner. The registers of the system are the basic elements for storing and holding 
the binary information. The digital logic circuits process the information. Digital logic circuits 
and their manipulative capabilities are introduced in the next section. The subject of registers and 
register transfer operations is taken up again in Chapter 8.

MEMORY UNIT

Memory 
Register

J O H N

01001010010011111100100011001110

PROCESSOR UNIT

8 cells 8 cells 8 cells 8 cells
Processor 
Register

INPUT TELETYPE UNIT

J

O

H

N

Input 
Register

CONTROL
Keyboard

8 cells

Figure 1.2 Transfer of information with registers
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1.8 Binary Logic

Binary logic deals with variables that take on two discrete values and with operations that assume 
logical meaning. The two values the variables take may be called by different names (e.g., true 
and false, yes and no, etc.), but for our purpose it is convenient to think in terms of bits and assign 
the values of 1 and 0. Binary logic is used to describe, in a mathematical way, the manipulation 
and processing of binary information. It is particularly suited for the analysis and design of digi-
tal systems. For example, the digital logic circuiis of Fig. 1-3 that perform the binary arithmetic 
are circuits whose behavior is most conveniently expressed by means of binary variables and 
logical operations. The binary logic to be introduced in this section is equivalent to an algebra 
called Boolean algebra. The formal presentation of a two-valued Boolean algebra is covered in 
more detail in Chapter 2. The purpose of this section is to introduce Boolean algebra in a heuris-
tic manner and relate it to digital logic circuits and binary signals.

1.8.1 Definition of Binary Logic

Binary logic consists of binary variables and logical operations. The variables are designated by 
letters of the alphabet such as A, B, C, x. y. z, etc., with each variable having two and only two 
distinct possible values: 1 and 0. There are three basic logical operations: AND, OR, and NOT.

1. AND: This operation is represented by a dot or by the absence of an operator. For ex-
ample, x • y = z or xy = z is read “x AND y is equal to z.” The logical operation AND is 
interpreted to mean that z = 1 if and only if x = 1 and y = 1; otherwise z = 0. (Remember 
that x,y, and z are binary variables and can be equal either to I or 0, and nothing else.)

0 0 0 0 0 0 0 0 0 0

MEMORY UNIT
Sum

0 0 1 1 1 0 0 0 0 1
Operand 1

Operand 2
0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0

0 0 1 1 1 0 0 0 0 1

0 1 0 0 1 0 0 0 1 1

PROCESSOR UNIT

R1

R2

R3
Digital logic
ciruits for
binary addition

Figure 1.3 Example of binary information processing
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2. OR: This operation is represented by a plus sign. For example, x + y = z is read “x OR 
y is equal to z.” meaning that z = 1 if x = 1 or if y = 1 or if both x = 1 and y = 1. If both  
x = 0 and y = 0, then z = 0.

3. NOT: This operation is represented by a prime (sometimes by a bar). For example, x′ = z 
(or x  = z) is read “x not is equal to z,” meaining that z is what x is not. In other words, if 
x = 1, then z = 0 but if x = 0, then z = 1.

Binary logic resembles binary arithmetic, and the operations AND and OR have some simi-
larities to multiplication and addition, respectively. In fact, the symbols used for AND and OR 
are the same as those used for multiplication and addition. However, binary logic should not 
be confused with binary arithmetic. One should realize that an arithmetic variable designaies a 
number that may consist of many digits. A logic variable is always either a 1 or a 0. For example, 
in binary arithmetic we have 1 + 1 = 10 (read: “one plus one is equal to 2”), while in binary logic 
we have 1 + 1 = 1 (read: “one OR one is equal to one”).

For each combination of the values of x and y, there is a value of z specificed by the defini-
tion of the logical operation. These definitions may be listed in a compact form using truth tables. 
A truth table is a table of all possible combinations of the variables showing the relation between 
the values that the variables may take and the result of the operation. For example, the truth tables 
for the operations AND and OR with variables x and y are obtained by listing all possible values 
that the variables may have when combined in pairs. The result of the operation for each combi-
nation is then listed in a separate row. The truth tables for AND, OR, and NOT are listed in Table 
1-6. These tables clearly demonstrate the definitions of the operations.

1.8.2 Switching Circuits and Binary Signals

The use of binary variables and the application of binary logic are demonstrated by the simple 
switching circuits of Fig, 1-4. Let the manual switches A and B represent two binary variables 
with values equal to 0 when the switch is open and 1 when the switch is closed. Similarly, let the 
lamp L represent a third binary variable equal to 1 when the light is on and 0 when off. For the 
switches in series, the light turns on if A and B are closed. For the switches in parallel, the light 
turns on if A or B is closed. It is obvious that the two circuits can be expressed by means of binary 
logic with the AND and OR operations, respectively:

L = A . B      for the circuit of Fig. l-4(a) 

L = A + B      for the circuit of Fig. l-4(b)

Table 1-6 Truth tables of logical operations

AND OR NOT

x y x ⋅ y x y x + y x x’

0 0 0 0 0 0 0 1

0 1 0 0 1 1 1 0

1 0 0 1 0 1

1 1 1 1 1 1
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Electronic digital circuits are sometimes called switching circuits because they behave like 
a switch, with the active element such as a transistor either conducting (switch closed) or not 
conducting (switch open). Instead of changing the switch manually, an electronic switching cir-
cuit uses binary signals to control the conduction or nonconduction state of the active element. 
Electrical signals such as voltages or currents exist throughout a digital system in either one of 
two recognizable values (except during transition). Voltage-operated circuits, for example, re-
spond to two separate voltage levels which represent a binary variable equal to logic-1 or logic-0. 
For example, a particular digital system may define logic-1 as a signal with a nominal value of 3 
volts, and logic-0 as a signal with a nominal value of 0 volt. As shown in Fig. 1-5, each voltage 
level has an acceptable deviation from the nominal. The intermediate region between the allowed 
regions is crossed only during stale transitions. The input terminals of digital circuits accept 
binary signals within the allowable tolerances and respond at the output terminal with binary 
signals that fall within the specified tolerances.

1.8.3 Logic Gates

Electronic digital circuits are also called logic circuits because, with the proper input, they es-
tablish logical manipulation paths. Any desired information for computing or control can be  

4

Volts

Nominal logic-1

Nominal logic-0

Transition occurs
between these limits

Tolerance
allowed
for logic-1

Tolerance
allowed
for logic-0

3

2

1

0.5

–0.5

0

Figure 1.5 Example of binary signals
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B

     (a) Switches in series - logic AND             (b) Switches in parallel - Logic OR

Figure 1.4 Switching circuits that demonstrate binary logic
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operated upon by passing binary signals through various combinations of logic circuits, each 
signal representing a variable and carrying one bit of information. Logic circuits that perform the 
logical operations of AND, OR, and NOT are shown with their symbols in Fig. 1-6. These cir-
cuits, called gates, are blocks of hardware that produce a logic-1 or logic-0 output signal if input 
logic requirements are satisfied. Note that four different names have been used for the same type 
of circuits, digital circuits, switching circuits, logic circuits, and gates. All four names are widely 
used, but we shall refer to the circuits as AND, OR, and NOT gates. The NOT gate is sometimes 
called an inverter circuit since it inverts a binary signal.

The input signals x and y in the two-input gates of Fig. 1-6 may exist in one of four possible 
states: 00, 10, 11, or 01. These input signals are shown in Fig. 1-7, together with the output sig-
nals for the AND and OR gates. The timing diagrams in Fig. 1-7 illustrate the response of each 
circuit to each of the four possible input binary combinations. The reason for the name “inverter” 
for the NOT gate is apparent from a comparison of the signal x (input of inverter) and that of x’ 
(output of inverter).

AND and OR gates may have more than two inputs. An AND gate with three inputs and 
an OR gate with four inputs are shown in Fig. 1-6. The three-input AND gate responds with a 
logic-1 output if all three input signals are logic-1. The output produces a logic-0 signal if any 
input is logic 0. The four input OR gate responds with a logic-1 when any input is a logic-1. Its 
output becomes logic-0 if all input signals are logic-0.

The mathematical system of binary logic is better known as Boolean, or switching, alge-
bra. This algebra is conveniently used to describe the operation of complex networks of digital 
circuits. Designers of digital systems use Boolean algebra to transform circuit diagrams to alge-
braic expressions and vice versa. Chapters 2 and 3 are devoted to the study of Boolean algebra, 
its properties, and manipulative capabilities. Chapter 4 shows how Boolean algebra may be used 
to express mathematically the interconnections among networks of gates.

1.9 Integrated Circuits

Digital circuits are invariably constructed with integrated circuits. An integrated circuit (abbrevi-
ated IC) is a small silicon semiconductor crystal, called a chip, containing electrical components 
such as transistors, diodes, resistors, and capacitors. The various components are interconnected 
inside the chip to form an electronic circuit. The chip is mounted on a metal or plastic package, 
and connections are welded to external pins to form the IC. Integrated circuits differ from other 
electronic circuits composed of detachable components in that individual components in the IC 

               

x z = x · y

y              

z = x + yx
y               

x x´

(a) Two-input AND gate         (b) Two-input OR gate        (c) NOT gate or inverter

 

F = ABC

C
B
A

 

G =  A + B + C + DB
A

D
C

           (d) Three-input AND gate (e) Four-input OR gate

Figure 1.6 Symbols for digital logic circuits
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cannot be separated or disconnected and the circuit inside the package is accessible only through 
the external pins.

Integrated circuits come in two types of packages, the flat package and the dual-in-line 
(DIP) package, as shown in Fig. 1-8. The dual-in-line package is the most widely used type be-
cause of the low price and easy installation on circuit boards. The envelope of the IC package is 
made of plastic or ceramic. Most packages have standard sizes, and the number of pins ranges 
from 8 to 64. Each IC has a numeric designation printed on the surface of the package for iden-
tification. Each vendor publishes a data book or catalog that provides the necessary information 
concerning the various products.

The size of IC packages is very small. For example, four AND gates are enclosed inside a 
14-pin dual-in-line package with dimensions of 20 × 8 × 3 millimeters. An entire microproces-
sor is enclosed within a 40-pin dual-in-line package with dimensions of 50 × 15 × 4 millimeters.

Besides a substantial reduction in size, ICs offer other advantages and benefits compared 
to electronic circuits with discrete components. The cost of ICs is very low, which makes them 
economical to use. Their reduced power consumption makes the digital system more economical 
to operate. They have a high reliability against failure, so the digital system needs less repairs. 
The operating speed is higher, which makes them suitable for high-speed operations. The use 
of ICs reduces the number of external wiring connections because many of the connections are 
internal to the package. Because of all these advantages, digital systems are always constructed 
with integrated circuits.

Integrated circuits are classified in two general categories, linear and digital. Linear ICs 
operate with continuous signals to provide electronic functions such as amplifiers and voltage 

x

y

AND: x · y

OR: x + y

NOT: x´

0 0 01 1

0 0 01 1

0 0 0 01

0 0

0 0

1

1 1 1

11

Figure 1.7 Input-output signals for gates (a), (b), and (c) of Fig. 1.6

Flat package Dual-in-line package

Figure 1.8 Integrated-circuit packages
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comparators. Digital integrated circuits operate with binary signals and are made up of intercon-
nected digital gates. Here we are concerned only with digital integrated circuits.

As the technology of ICs has improved, the number of gates that can be put on a single 
silicon chip has increased considerably. The differentiation between those ICs that have a few 
internal gates and those having tens or hundreds of gates is made by a customary reference to a 
package as being either a small-, medium-, or large-scale integration device. Several logic gates 
in a single package make it a small-scale integration (SSI) device. To qualify as a medium-scale 
integration (MSI) device, the IC must perform a complete logic function and have a complexity 
of 10 to 100 gates. A large-scale integration (LSI) device performs a logic function with more 
than 100 gates. There are also very-large-scale integration (VLSI) devices that contain thousands 
of gates in a single chip.

Many diagrams of digital circuits considered throughout this book arc shown in detail up to 
the individual gates and their interconnections. Such diagrams are useful for demonstrating the 
logical construction of a particular function. However, it must be realized that, in practice, the 
function may be obtained from an MSI or LSI device, and the user has access only to external 
inputs and outputs but not to inputs and outputs of intermediate gates. For example, a designer 
who wants to incorporate a register in his system is more likely to choose such a function from 
an available MSI circuit instead of designing it with individual digital circuits as may be shown 
in a diagram.
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PROBLEMS

1-1. Write the first 20 decimal digits in base 3.

1-2. Add and multiply the following numbers in the given base without convening to decimal.

(a) (1230)
4
 and (23)

4

(b) (135.4)
6
 and (43.2)

6

(c) (367)
8 
and (715)

8

(d) (296)
12

 and (57)
12

1-3. Convert the decimal number 250.5 to base 3, base 4, base 7, base 8, and base 16.

1-4. Convert the following decimal numbers to binary: 12.0625, 104, 673.23, and 1998.

1-5.  Convert the following binary numbers to decimal: 10.10001, 101110.0101, 1110101.110,  
1101101.111.
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1-6. Convert the following numbers from the given base to the bases indicated:

(a) decimal 225.225 to binary, octal, and hexadecimal

(b) binary 11010111.110 to decimal, octal, and hexadecimal

(c) octal 623.77 to decimal, binary, and hexadecimal

(d) hexadecimal 2AC5.D to decimal, octal, and binary

1-7. Convert the following numbers to decimal:

(a) (1001001.01l)
2 

 (e)    (0.342)
6

(b) (12121)
3
  (f)    (50)

7

(c) (1032.2)
4
  (g)    (8.3)

9

(d) (4310)
5 

  (h)    (198)
12

1-8. Obtain the l’s and 2’s complement of the following binary numbers: 1010101, 0111000, 0000001, 
10000, 00000.

1-9. Obtain the 9’s and 10’s complement of the following decimal numbers: 13579, 09900, 90090, 10000, 
00000.

1-10.  Find the 10’s complement of (935)
11

1-11.  Perform the subtraction with the following decimal numbers using (1) 10’s complement and (2) 9’s 
complement. Check the answer by straight subtraction.

(e) 5250 - 321  (c)    753 - 864

(f) 3570 - 2100  (d)    20 - 1000

1-12. Perform the subtraction with the following binary numbers using (1) 2’s complement 
and (2) l’s complement. Check the answer by straight subtraction.

(a)  11010- 1101  (c)    10010- 10011

(b) 11010-10000  (d)    100 - 110000

1-13.  Prove the procedure stated in Sec. 1-5 for the subtraction of two numbers with (r - l)’s complement.

1-14.  For the weighted codes (a) 3, 3, 2, 1 and (b) 4, 4, 3, - 2 for the decimal digits, determine all possible 
tables so that the 9’s complement of each decimal digit is obtained by changing l’s to 0’s and 0’s  
to l’s.

1-15.  Represent the decimal number 8620 (a) in BCD, (b) in excess-3 code, (c) in 2, 4, 2, 1 code, and (d) 
as a binary number.

1-16.  A binary code uses ten bits to represent each of the ten decimal digits. Each digit is assigned a code 
of nine 0’s and a 1. The code for digit 6, for example, is 0001000000, Determine the binary code for 
the remaining decimal digits.

1-17.  Obtain the weighted binary code for the base-12 digits using weights of 5421.

1-18.  Determine the odd-parity bit generated when the message consists of the ten decimal digits in the 8, 
4, - 2, - 1 code.

1-19.  Determine two other combinations for a reflected code other than the one shown in Table 1-4.

1-20.  Obtain a binary code to represent all base-6 digits so that the 5’s complement is obtained by repla-
cing l’s by 0’s and 0’s by 1’s in the bits of the code.

1-21.  Assign a binary code in some orderly manner to the 52 playing cards. Use the minimum number of 
bits.

1-22.  Write your first name, middle initial, and last name in an eight-bit code made up of the seven ASCII 
bits of Table 1-5 and an even parity bit in the most significant position. Include blanks between 
names and a period after the middle initial.
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1-23.  Show the bit configuration of a 24-cell register when its content represents (a) the number (295)
10

 in 
binary, (b) the decimal number 295 in BCD, and (c) the characters XY5 in EBCDIC.

1-24.  The state of a 12-cell register is 010110010111. What is its content if it represents (a) three decimal 
digits in BCD, (b) three decimal digits in excess-3 code, (c) three decimal digits in 2, 4, 2, I code, 
and (d) two characters in the internal code of Table 1-5?

1-25.  Show the contents of all registers in Fig. 1-3 if the two binary numbers added have the decimal equi-
valent of 257 and 1050. (Assume registers with 11 cells.)

1-26.  Express the following switching circuit in binary logic notation.

s
L

Voltage
source

A

C
B

1-27.  Show the signals (by means of a diagram similar to Fig. 1-7) of the outputs F and G in Fig. 1-6, Use 
arbitrary binary signals for the inputs A, B, C, and D.

1-28. Explain switch equivalent circuits of NOT, NAND, NOR, X-OR, AND X-NOR.

1-29. Convert following into Octal

 (BC5A)
16

, (10101011.1101)
2
, (765.54)

10

1-30. Write short notes on Digital Computer, Number System, Complements, Error Detection Code,  
Reflected code, register transfer, integrated circuits.

1-31. Perform (-44)
10

 - (67)
10

 using 10’s complement method.
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2C h a p t e r

Boolean algebra and Logic Gates

2.1 Basic Definitions

Boolean algebra, like any other deductive mathematical system, may be defined with a set of ele-
ments, a set of operators, and a number of unproved axioms or postulates. A set of elements is any 
collection of objects having a common property. If S is a set, and x and y are certain objects, then 
x  ∈ S denotes that x is a member of the set S, and y ∉ S denotes that y is not an element of S. A set 
with a denumerable number of elements is specified by braces: A = {1, 2, 3, 4}, i.e., the elements 
of set A are the numbers 1, 2, 3, and 4. A binary operator defined on a set S of elements is a rule 
that assigns to each pair of elements from S a unique element from S. As an example, consider the 
relation a*b = c. We say that * is a binary operator if it specifies a rule for finding c from the pair  
(a, b) and also if a, b, c  ∈ S. However, * is not a binary operator if a, b  ∈ S, while the rule  
finds c ∉ S.

The postulates of a mathematical system form the basic assumptions from which it is pos-
sible to deduce the rules, theorems, and properties of the system. The most common postulates 
used to formulate various algebraic structures are:

1. Closure. A set S is closed with respect to a binary operator if, for every pair of elements 
of S, the binary operator specifies a rule for obtaining a unique element of S. For example, 
the set of natural numbers N = {1, 2, 3, 4,...} is closed with respect to the binary opera-
tor plus (+) by the rules of arithmetic addition, since for any a, b ∈ N we obtain a unique  
c ∈ N by the operation a + b = c. The set of natural numbers is not closed with respect to 
the binary operator minus (-) by the rules of arithmetic subtraction because 2 − 3 = − 1 
and 2, 3 ∈ N, while (−1) ∉ N.

2. Associative law. A binary operator * on a set S is said to be associative whenever:

 (x* y)*z = x*(y*z)          for all x, y, z ∈ S

3. Commutative law. A binary operator * on a set S is said to be commutative whenever:

 x* y = y* x          for all x, y ∈ S

4. Identity element. A set S is said to have an identity element with respect to a binary opera-
tion * on S if there exists an element e ∈ S with the property:

 e* x = x* e = x          for every x ∈ S
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 Example: The element 0 is an identity element with respect to operation + on the set of 
integers I = {... ,−3, −2, −1, 0, 1, 2, 3, ... } since:

 x + 0 = 0 + x = x          for any x ∈ I

 The set of natural numbers N has no identity element since 0 is excluded from the set.

5. Inverse. A set S having the identity element e with respect to a binary operator * is said to 
have an inverse whenever, for every x ∈ S, there exists an element y ∈ S such that:

x* y = e

 Example: In the set of integers I with e = 0, the inverse of an element a is (-a) since  
a + (-a) = 0.

6. Distributive law. If * and • are two binary operators on a set S, * is said to be distributive 
over • whenever:

x*(y • z) = (x*y) • (x*z)

An example of an algebraic structure is a field. A field is a set of elements, together with two 
binary operators, each having properties 1 to 5 and both operators combined to give property 6. 
The set of real numbers together with the binary operators + and • form the field of real numbers. 
The field of real numbers is the basis for arithmetic and ordinary algebra. The operators and 
postulates have the following meanings:

The binary operator + defines addition.

The additive identity is 0.

The additive inverse defines subtraction.

The binary operator • defines multiplication.

The multiplicative identity is 1.

The multiplicative inverse of a = 1/a defines division, i.e., a • 1/a = 1.

The only distributive law applicable is that of • over +:

a • (b + c) = (a • b) + (a • c)

2.2 Axiomatic Definition of Boolean Algebra

In 1854 George Boole (1) introduced a systematic treatment of logic and developed for this 
purpose an algebraic system now called Boolean algebra. In 1938 C. E. Shannon (2) introduced 
a two-valued Boolean algebra called switching algebra, in which he demonstrated that the prop-
erties of bistable electrical switching circuits can be represented by this algebra. For the formal 
definition of Boolean algebra, we shall employ the postulates formulated by E. V. Huntington (3) 
in 1904. These postulates or axioms are not unique for defining Boolean algebra. Other sets of 
postulates have been used.* Boolean algebra is an algebraic structure defined on a set of elements 

*See, for example, Birkoff and Bartee (4), Chapter 5.
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B together with two binary operators + and • provided the following (Huntington) postulates are 
satisfied:

1. (a) Closure with respect to the operator +.

 (b) Closure with respect to the operator.

2. (a) An identity element with respect to +, designated by 0: x + 0 = 0 + x = x.

 (b) An identity element with respect to •, designated by 1: x 1 = 1 • x = x.

3. (a) Commutative with respect to +: x + y = y + x.

 (b) Commutative with respect to : x y = y • x.

4. (a) • is distributive over + : x • (y + z) = (x • y) + (x • z).

 (b) + is distributive over: x + (y • z) = (x + y) • (x + z).

5. For every element x ∈ B, there exists an element x′ ∈ B (called the complement of x) such 
that: (a) x + x′= 1 and (b) x • x′ = 0.

6. There exists at least two elements x, y ∈ B such that x ¹ y.

Comparing Boolean algebra with arithmetic and ordinary algebra (the field of real num-
bers), we note the following differences:

1. Huntington postulates do not include the associative law. However, this law holds for Bool-
ean algebra and can be derived (for both operators) from the other postulates.

2. The distributive law of + over •, i.e., x + (y • z) = (x + y) • (x + z), is valid for Boolean alge-
bra, but not for ordinary algebra.

3. Boolean algebra does not have additive or multiplicative inverses; therefore, there are no 
subtraction or division operations.

4. Postulate 5 defines an operator called complement which is not available in ordinary  
algebra.

5. Ordinary algebra deals with the real numbers, which constitute an infinite set of elements. 
Boolean algebra deals with the as yet undefined set of elements B, but in the two-valued 
Boolean algebra defined below (and of interest in our subsequent use of this algebra), B is 
defined as a set with only two elements, 0 and 1.

Boolean algebra resembles ordinary algebra in some respects. The choice of symbols + and 
• is intentional to facilitate Boolean algebraic manipulations by persons already familiar with 
ordinary algebra. Although one can use some knowledge from ordinary algebra to deal with 
Boolean algebra, the beginner must be careful not to substitute the rules of ordinary algebra 
where they are not applicable.

It is important to distinguish between the elements of the set of an algebraic structure and 
the variables of an algebraic system. For example, the elements of the field of real numbers are 
numbers, whereas variables such as a, b, c, etc., used in ordinary algebra, are symbols that stand 
for real numbers. Similarly in Boolean algebra, one defines the elements of the set B, and vari-
ables such as x, y. z are merely symbols that represent the elements. At this point, it is important 
to realize that in order to have a Boolean algebra, one must show:
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1. the elements of the set B,

2. the rules of operation for the two binary operators, and

3. that the set of elements B, together with the two operators, satisfies the six Huntington 
postulates.

One can formulate many Boolean algebras, depending on the choice of elements of B and 
the rules of operation.* In our subsequent work, we deal only with a two-valued Boolean algebra, 
i.e., one with only two elements. Two-valued Boolean algebra has applications in set theory (the 
algebra of classes) and in propositional logic. Our interest here is with the application of Boolean 
algebra to gate-type circuits.

2.2.2 Two-Valued Boolean Algebra

A two-valued Boolean algebra is defined on a set of two elements, B = {0, 1}, with rules for the 
two binary operators + and • as shown in the following operator tables (the rule for the comple-
ment operator is for verification of postulate 5):

x   y x • y
0   0 0

0   1 0

1   0 0

1   1 1
  

x   y x + y

0   0 0

0   1 1

1   0 1

1   1 1
  

x x'

0 1

1 0

These rules are exactly the same as the AND, OR, and NOT operations, respectively, 
defined in Table 1-6. We must now show that the Huntington postulates are valid for the set  
B = {0, 1} and the two binary operators defined above.

1. Closure is obvious from the tables since the result of each operation is either 1 or 0 and 1, 
0 ∈ B.

2. From the tables we see that:

(a) 0 + 0 = 0    0 + 1 − 1 + 0 = 1
(b) 1 • 1 = 1    1 • 0 = 0 • 1 = 0

 which establishes the two identity elements 0 for + and 1 for • as defined by postulate 2.

3. The commutative laws are obvious from the symmetry of the binary operator tables.

4. (a)   The distribute law x • (y + z) = (x • y) + (x • z) can be shown to hold true from the 
operator tables by forming a truth table of all possible values of x, y, and z. For each 
combination, we derive x • (y + z) and show that the value is the same as (x • y)  
+ (x • z).

*See, for example, Hohn (6), Whitesitt (7), or Birkhoff and Bartee (4).
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x   y   z y + z x • (y + z) x • y x • z (x • y) + (x • z)

0   0   0 0 0 0 0 0

0   0   1 1 0 0 0 0

0   1   0 1 0 0 0 0

0   1   1 1 0 0 0 0

1   0   0 0 0 0 0 0

1   0   1 1 1 0 1 1

1   1   0 1 1 1 0 1

1   1   1 1 1 1 1 1

(b) The distributive law of + over • can be shown to hold true by means of a truth table 
similar to the one above.

5. From the complement table it is easily shown that:

(a) x + x′ = 1, since 0 + 0′ = 0 + 1 = 1 and 1 + 1′ = 1 + 0 = 1

(b) x • x′ = 0, since 0 • 0′ = 0 • 1 = 0 and 1 • 1′ = 1 • 0 = 0 which verifies postulate 5.

6. Postulate 6 is satisfied because the two-valued Boolean algebra has two distinct elements 
1 and 0 with 1 ¹ 0.

We have just established a two-valued Boolean algebra having a set of two elements, 1 and 
0, two binary operators with operation rules equivalent to the AND and OR operations, and a 
complement operator equivalent to the NOT operator. Thus, Boolean algebra has been defined in 
a formal mathematical manner and has been shown to be equivalent to the binary logic presented 
heuristically in Section 1-8. The heuristic presentation is helpful in understanding the application 
of Boolean algebra to gate-type circuits. The formal presentation is necessary for developing the 
theorems and properties of the algebraic system. The two-valued Boolean algebra defined in this 
section is also called “switching algebra” by engineers. To emphasize the similarities between 
two-valued Boolean algebra and other binary systems, this algebra was called “binary logic” in 
Section 1-8. From here on, we shall drop the adjective “two-valued” from Boolean algebra in 
subsequent discussions.

2.3 Basic Theorems and Properties of Boolean Algebra

2.3.1 Duality

The Huntington postulates have been listed in pairs and designated by part (a) and part (b). One 
part may be obtained from the other if the binary operators and the identity elements are inter-
changed. This important property of Boolean algebra is called the duality principle. It states that 
every algebraic expression deducible from the postulates of Boolean algebra remains valid if the 
operators and identity elements are interchanged. In a two-valued Boolean algebra, the identity 
elements and the elements of the set B are the same: 1 and 0. The duality principle has many ap-
plications. If the dual of an algebraic expression is desired, we simply interchange OR and AND 
operators and replace 1’s by 0’s and 0’s by 1’s.
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2.3.2 Basic Theorems

Table 2-1 lists six theorems of Boolean algebra and four of its postulates. The notation is sim-
plified by omitting the • whenever this does not lead to confusion. The theorems and postulates 
listed are the most basic relationships in Boolean algebra. The reader is advised to become fa-
miliar with them as soon as possible. The theorems, like the postulates, are listed in pairs; each 
relation is the dual of the one paired with it. The postulates are basic axioms of the algebraic 
structure and need no proof. The theorems must be proven from the postulates. The proofs of the 
theorems with one variable are presented below. At the right is listed the number of the postulate 
which justifies each step of the proof.

THEOREM 1(a): x + x = x.

  x + x = (x + x) • 1 by postulate: 2(b)

           = (x + x)(x + x′) 5(a)

           = x + xx′ 4(b)

           = x + 0 5(b)

           = x 2(a)

THEOREM 1(b): x • x = x.

  x • x = xx + 0 by postulate: 2(a)

          = xx + xx′ 5(b)

          = x(x + x′) 4(a)

          = x • 1 5(a)

          = x 2(b)

Note that theorem 1(b) is the dual of theorem 1(a) and that each step of the proof in part 
(b) is the dual of part (a). Any dual theorem can be similarly derived from the proof of its cor-
responding pair.

Table 2–1 Postulates and theorems of Boolean algebra

Postulate 2 (a) x + 0 = x (b) x • 1 = x

Postulate 5 (a) x + x′ = 1 (b) x • x′ = 0

Theorem 1 (a) x + x = x (b) x • x = x

Theorem 2 (a) x + 1 = 1 (b) x • 0 = 0

Theorem 3, involution      (x′)′ = x

Postulate 3, commutative (a) x + y = y + x (b) xy = yx

Theorem 4, associative (a) x + (y + z) = (x + y) + z (b) x(yz) = (xy) z

Postulate 4, distributive (a) x (y + z) = xy + xz (b) x + yz = (x + y) (x + z)

Theorem 5, DeMorgan (a) (x + y)′ = x′ y′ (b) (xy)′ = x′ + y′
Theorem 6, absorption (a) x + xy = x (b) x(x + y) = x
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THEOREM 2(a): x + 1 = 1.

x + 1  = 1 • (x + 1) 
= (x + x′) (x + 1) 
= x + x′ • 1 
= x + x′ 
= 1

by postulate: 2(b)
5(a)
4(b)
2(b) 
5(a)

THEOREM 2 (b): x • 0 = 0 by duality.

THEOREM 3: (x′)′ = x. From postulate 5, we have x + x′ = 1 and x • x′ = 0, which defines the 
complement of x. The complement of x′ is x and is also (x′)′. Therefore, since the complement is 
unique, we have that (x′)′ = x.

The theorems involving two or three variables may be proven algebraically from the pos-
tulates and the theorems which have already been proven. Take, for example, the absorption 
theorem.

THEOREM 6(a): x + xy − x.

x + xy  = x • 1 + xy 
= x (1 + y) 
= x (y + 1) 
= x • 1  
= x

by postulate 2(b)
by postulate 4(a)
by postulate 3(a)
by theorem 2(a) 
by postulate 2(b)

THEOREM 6(b): x(x + y) = x by duality.

The theorems of Boolean algebra can be shown to hold true by means of truth tables. In 
truth tables, both sides of the relation are checked to yield identical results for all possible com-
binations of variables involved. The following truth table verifies the first absorption theorem.

x y xy x + xy

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 1

=

The algebraic proofs of the associative law and De Morgan’s theorem are long and will not be 
shown here. However, their validity is easily shown with truth tables. For example, the truth table 
for the first De Morgan’s theorem (x + y)′ = x′ y′ is shown below.

x y x + y (x + y)′ x′ y′ x′ y′
0 0 0 1 1 1 [

0 1 1 0 1 0 0

1 0 1 0 0 1 0

1 1 1 0 0 0 0
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2.3.3 Operator Precedence

The operator precedence for evaluating Boolean expressions is (1) parentheses, (2) NOT, (3) 
AND, and (4) OR. In other words, the expression inside the parentheses must be evaluated before 
all other operations. The next operation that holds precedence is the complement, then follows 
the AND, and finally the OR. As an example, consider the truth table for De Morgan’s theorem. 
The left side of the expression is (x + y)′. Therefore, the expression inside the parentheses is 
evaluated first and the result then complemented. The right side of the expression is x′ y′. There-
fore, the complement of x and the complement of y are both evaluated first and the result is then 
ANDed. Note that in ordinary arithmetic the same precedence holds (except for the complement) 
when multiplication and addition are replaced by AND and OR, respectively.

EXAMPLE 2-1: Using basic Boolean theorem prove:

(a) (x + y)(x + z) = x + yz

 Soln:  (x + y) (x + z)

         = x ⋅ x + x ⋅ z + y ⋅ x + y ⋅ z    since  x.x = x

         = x + xz + yx + yz

         = x (1 + z) + yx + yz    since (1 + z) = 1

         = x + yx + yz

         = x (1 + y) + yz     since (1 + y) = 1

         = x + yz (Proved)

(b) xy + xz + yz′ = xz + yz′

 Soln:  xy + xz + yz′
         = xy(z + z′) + xz(y + y′) + yz′(x + x′)   since  x + x′ = 1

         = xyz + xyz′ + xyz + xy′z + xyz′ + x′yz′
         = xyz + xyz′ +xy′z + x′yz′    since xyz + xyz = xyz

         = xyz + xy′z + xyz′ + x′yz′    rearranging

         = xz(y + y′) + yz′(x + x′)    since y + y′ = 1 and x + x′ = 1

         = xz + yz′ (Proved)

2.3.4 Venn Diagram
A helpful illustration that may be used to visualize the relationships among the variables of a 
Boolean expression is the Venn diagram. This diagram consists of a rectangle such as shown 

 x′y

 x′y′

 xy′  xy

 x  y

Figure 2.1 Venn diagram for two variables
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in Fig. 2-1, inside of which are drawn overlapping circles, one for each variable. Each circle is  
labeled by a variable. We designate all points inside a circle as belonging to the named variable 
and all points outside a circle as not belonging to the variable. Take, for example, the circle la-
beled x. If we are inside the circle, we say that x = 1; when outside, we say x = 0. Now, with two 
overlapping circles, there are four distinct areas inside the rectangle: the area not belonging to 
either x or y (x′ y′), the area inside circle y but outside x (x′ y), the area inside circle x but outside 
y (xy′), and the area inside both circles (xy).

Venn diagrams may be used to illustrate the postulates of Boolean algebra or to show the 
validity of theorems. Figure 2-2, for example, illustrates that the area belonging to xy is inside 
the circle x and therefore x + xy = x. Figure 2-3 illustrates the distributive law x(y + z) = xy + xz. 
In this diagram we have three overlapping circles, one for each of the variables x, y, and z. It is 
possible to distinguish eight distinct areas in a three-variable Venn diagram. For this particular 
example, the distributive law is demonstrated by noting that the area intersecting the circle x with 
the area enclosing y or z is the same area belonging to xy or xz.

2.4 Boolean Functions

A binary variable can take the value of 0 or 1. A Boolean function is an expression formed with 
binary variables, the two binary operators OR and AND, the unary operator NOT, parentheses, 
and equal sign. For a given value of the variables, the function can be either 0 or 1. Consider, for 
example, the Boolean function:

F
1
 = xyz′

The function F
1
 is equal to 1 if x = 1 and y = 1 and z′ = 1; otherwise F

1
 = 0, The above is an 

example of a Boolean function represented as an algebraic expression. A Boolean function may 
also be represented in a truth table. To represent a function in a truth table, we need a list of the 
2n combinations of l’s and 0’s of the n binary variables, and a column showing the combinations 

 x  y

Figure 2.2 Venn diagram illustration x = xy + x

 x

 x(y + z)

 y

 z

 x

 xy + xz

 y

 z

Figure 2.3 Venn diagram illustration of the distributive law
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for which the function is equal to 1 or 0. As shown in Table 2-2, there are eight possible distinct 
combinations for assigning bits to three variables. The column labeled F

1
 contains either a 0 or 

a 1 for each of these combinations. The table shows that the function F
1
 is equal to 1 only when 

x = 1, y = 1, and z — 0. It is equal to 0 otherwise. (Note that the statement z′ = 1 is equivalent to 
saying that z = 0.) Consider now the function:

F
2
 - x + y′ z

F
2
 = 1 if x = 1 or if y = 0, while z = 1. In Table 2-2, x = 1 in the last four rows and yz = 01 in rows 

001 and 101. The latter combination applies also for x = 1. Therefore, there are five combinations 
that make F

2
 = 1. As a third example, consider the function:

F
3
 = x′ y′ z + x′ y z + xy′

This is shown in Table 2-2 with four l’s and four 0’s. F
4
 is the same as F

3
 and is considered  

below.
Any Boolean function can be represented in a truth table. The number of rows in the table 

is 2n, where n is the number of binary variables in the function. The 1’s and 0’s combinations for 
each row is easily obtained from the binary numbers by counting from 0 to 2n - 1. For each row 
of the table, there is a value for the function equal to either 1 or 0. The question now arises, Is an 
algebraic expression of a given Boolean function unique? In other words, Is it possible to find 
two algebraic expressions that specify the same function? The answer to this question is yes. As 
a matter of fact, the manipulation of Boolean algebra is applied mostly to the problem of finding 
simpler expressions for the same function. Consider, for example, the function:

F
4
 = xy′ + x′ z

From Table 2-2, we find that F
4
 is the same as F

3
 since both have identical 1’s and 0’s for each 

combination of values of the three binary variables. In general, two functions of n binary vari-
ables are said to be equal if they have the same value for all possible 2n combinations of the n 
variables.

A Boolean function may be transformed from an algebraic expression into a logic diagram 
composed of AND, OR, and NOT gates. The implementation of the four functions introduced in 

Table 2-2 Truth tables for F1 = xyz′, F2 = x + y′ z,  
F3 = x′ y′ z + x′ yz + xy′, and F4 = xy′ + x′ z

x y z F
1

F
2

F
3

F
4

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 0 0 0 0

0 1 1 0 0 1 1

1 0 0 0 1 1 1

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 0
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the previous discussion is shown in Fig. 2-4. The logic diagram includes an inverter circuit for 
every variable present in its complement form. (The inverter is unnecessary if the complement of 
the variable is available.) There is an AND gate for each term in the expression, and an OR gate 
is used to combine two or more terms. From the diagrams, it is obvious that the implementation 
of F

4
 requires fewer gates and fewer inputs than F

3
. Since F

4
 and F

3
 are equal Boolean functions, 

it is more economical to implement the F
4
 form than the F

3 
form. To find simpler circuits, one 

must know how to manipulate Boolean functions to obtain equal and simpler expressions. What 
constitutes the best form of a Boolean function depends on the particular application. In this 
section, consideration is given to the criterion of equipment minimization.

2.4.1 Algebraic Manipulation

A literal is a primed or unprimed variable. When a Boolean function is implemented with logic 
gates, each literal in the function designates an input to a gate, and each term is implemented 
with a gate. The minimization of the number of literals and the number of terms results in a 
circuit with less equipment. It is not always possible to minimize both simultaneously; usually,  
further criteria must be available. At the moment, we shall narrow the minimization criterion to 
literal minimization. We shall discuss other criteria in Chapter 5. The number of literals in a Boo-
lean function can be minimized by algebraic manipulations. Unfortunately, there are no specific 
rules to follow that will guarantee the final answer. The only method available is a cut-and-try 

Figure 2.4 Implementation of Boolean function with gates

x
y

z
F2

(b) F2 = x + y′z

x
y

z

F1

(a) F1 = xyz′ 

(c) F3 = x′y′z + x′yz + xy′

x

y

z
F3

x

y

z

F4

(d) F4 = xy′ + x′z
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procedure employing the postulates, the basic theorems, and any other manipulation method 
which becomes familiar with use. The following examples illustrate this procedure.

EXAMPLE 2-2: Simplify the following Boolean functions to a minimum number of literals.

1. x + x′ y – (x + x′)(x + y) = 1 • (x + y) = x + y

2. x (x′ + y) = xx′ + xy = 0 + xy = xy

3. x′ y′ z + x′ yz + xy′ = x′ z(y′ + y) + xy′ = x′ z + xy′
4. xy + x′ z + yz = xy + x′ z + yz(x + x′)
         = xy + x′ z + xyz + x′ yz
         = xy (1 + z) + x′ z (1 + y)
         = xy + x′ z
5. (x + y) (x′ + z) (y + z) = (x + y) (x′ + z) by duality from function 4.

Functions 1 and 2 are the duals of each other and use dual expressions in corresponding steps. 
Function 3 shows the equality of the functions F

3
 and F

4
 discussed previously. The fourth il-

lustrates the fact that an increase in the number of literals sometimes leads to a final simpler 
expression. Function 5 is not minimized directly but can be derived from the dual of the steps 
used to derive function 4.

2.4.2 Complement of a Function

The complement of a function F is F′ and is obtained from an interchange of 0’s for 1’s and l’s 
for 0’s in the value of F. The complement of a function may be derived algebraically through 
De Morgan’s theorem. This pair of theorems is listed in Table 2-1 for two variables. De Mor-
gan’s theorems can be extended to three or more variables. The three-variable form of the 
first De Morgan’s theorem is derived below. The postulates and theorems are those listed in  
Table 2-1.

(A + B + C)′ = (A + X)′ let B + C = X

                     = A′ X′ by theorem 5(a) (De Morgan)
                     = A′ • (B + C)′ substitute B + C = X
                     = A′ • (B′ C′) by theorem 5(a) (De Morgan)
                     = A′ B′ C′ by theorem 4(b) (associative)

De Morgan’s theorems for any number of variables resemble in form the two-variable case and 
can be derived by successive substitutions similar to the method used in the above derivation. 
These theorems can be generalized as follows:

(A + B + C + D + … + F)′ = A′B′C′D′ … F′
(ABCD … F)′ = A′ + B′ + C′ + D′ + … + F′
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The generalized form of De Morgan’s theorem states that the complement of a function is 
obtained by interchanging AND and OR operators and complementing each literal.

EXAMPLE 2-3: Find the complement of the functions F
1
 = x′ yz′ + x′ y′ z and F

2
 = x  

(y’z’ + yz). Applying De Morgan’s theorem as many times as necessary, the complements are 
obtained as follows:

F′
1
 = (x′ yz′ + x′ y′ z)′ = (x′ yz′)′(x′ y′ z)′ = (x + y′ + z)(x + y + z′)

F′
2
 = [x (y′ z′ + yz)]′ = x′ + (y′ z′ + yz)′ = x′ + (y′ z′)′ • (yz) ′

      = x′ + (y + z)(y′ + z′)

A simpler procedure for deriving the complement of a function is to take the dual of the 
function and complement each literal. This method follows from the generalized De Morgan’s 
theorem. Remember that the dual of a function is obtained from the interchange of AND and OR 
operators and 1’s and 0’s.

EXAMPLE 2-4: Find the complement of the functions F
1
 and F

2
 of Example 2-3 by taking 

their duals and complementing each literal.

1. F
1
 = x′ yz′ + x′ y′ z.

 The dual of F
1
 is (x′ + y + z′) (x′ + y′ + z).

 Complement each literal: (x + y′ + z)(x + y + z′) = F
1
′.

2. F
2
 – x (y′ z′ + yz).

 The dual of F
2
 is x + (y′ + z′) (y + z).

 Complement each literal: x′ + (y + z)(y′ + z′) = F
2
′.

2.5 Canonical and Standard Forms

2.5.1 Minterms and Maxterms

A binary variable may appear either in its normal form (x) or in its complement form (x′). Now 
consider two binary variables x and y combined with an AND operation. Since each variable 
may appear in either form, there are four possible combinations: x′y′, x′y, xy′, and xy. Each of 
these four AND terms represents one of the distinct areas in the Venn diagram of Fig. 2-1 and 
is called a minterm or a standard product. In a similar manner, n variables can he combined to 
form 2n minterms. The 2n different minterms may be determined by a method similar to the one 
shown in Table 2-3 for three variables. The binary numbers from 0 to 2n - 1 are listed under the 
n variables. Each minterm is obtained from an AND term of the n variables, with each variable 
being primed if the corresponding bit of the binary number is a 0 and imprinted if a 1. A symbol 
for each mineterns is also shown in the table and is of the form m

j
, where j denotes the decimal 

equivalent of the binary number of the minterm designated.
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In a similar fashion, n variables forming an OR term, with each variable being primed or 
unprimed, provide 1, 2n possible combinations, called maxterms or standard sums. The eight 
maxterms for three variables, together with their symbolic designation, are listed in Table 2-3. 
Any 2 n maxterms for n variables may be determined similarly. Each maxterm is obtained from 
an OR term of the n variables, with each variable being unprimed if the corresponding bit is a 
0 and primed if a 1.* Note that each maxterm is the complement of its corresponding minterm, 
and vice versa.

A Boolean function may be expressed algebraically from a given truth table by forming a 
minterm for each combination of the variables which produces a 1 in the function, and then tak-
ing the OR of all those terms. For example, the function f

1
 in Table 2-4 is determined by express-

ing the combinations 001, 100, and 111 as x′y′z, xy′z′, and xyz, respectively. Since each one of 
these minterms results in f

1
 = 1, we should have:

f
1
 = x′y′z + xy′z′ + xyz = m

1
 + m

4
 + m

7

Similarly, it may be easily verified that:

f
2
 = x′yz + xy′z + xyz′ + xyz = m

3
 + m

5
 + m

6
 + m

7

These examples demonstrate an important property of Boolean algebra: Any Boolean function 
can be expressed as a sum of mjnterms (by “sum” is meant the ORing of terms).

Now consider the complement of a Boolean function. It may be read from the truth table by 
forming a minterm for each combination that produces a 0 in the function and then ORing those 
terms. The complement of f

1
 is read as:

f
1
′
 
= x′y′z′ + x′yz′ + x′yz + xy′z + xyz′

*Some books define a maxterm as an OR term of the n variables, with each variable being unprimed if the bit 
is a 1 and primed if a 0. The definition adopted in this book is preferable as it leads to simpler conversions 
between maxterm- and minterm-type functions.

Table 2-3 Minterms and maxterms for three binary variables

                 Minterms                                                                      Maxterms

x y z Term Designation Term Designation

0 0 0 x′y′z′ m
0

x + y + z M
0

0 0 1 x′y′z m
1 x + y + z′ M

1

0 1 0 x′yz′ m
2 x + y′ + z M

2

0 1 1 x′yz m
3 x + y′ + z′ M

3

1 0 0 xy′z′ m
4 x′ + y + z M

4

1 0 1 xy′z m
5 x′ + y + z′ M

5

1 1 0 xyz′ m
6 x′ + y′ + z M

6

1 1 1 xyz m
7 x′ + y′ + z′ M

7
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If we take the complement of f
1
′, we obtain the function f

1
:

f
1 
= (x + y + z)(x + y′+ z)(x + y′ + z′)(x′ + y + z′)(x′ + y′ + z)

       = M
0
⋅M

2
⋅M

3
⋅M

5
⋅M

6

Similarly, it is possible to read the expression for f
2
 from the table;

f
2 
= (x + y + z)(x + y +z′)(x + y′ + z)(x′ + y + z) = M

0
M

1
M

2
M

4

These examples demonstrate a second important property of Boolean algebra: Any Boolean 
function can be expressed as a product of maxterms (by “product” is meant the ANDing of 
terms). The procedure for obtaining the product of maxterms directly from the truth table is as 
follows. Form a maxterm for each combination of the variables which produces a 0 in the func-
tion, and then form the AND of all those maxterms. Boolean functions expressed as a sum of 
minterms or product of maxterms are said to be in canonical form.

2.5.2 Sum of Minterms

It was previously stated that for n binary variables, one can obtain 2n distinct minterms. and that 
any Boolean function can be expressed as a sum of minterms. The minterms whose sum defines 
the Boolean function are those that give the l’s of the function in a truth table. Since the func-
tion can be either 1 or 0 for each minterm. and since there are 2n minterms, one can calculate 
the possible functions that can be formed with n variables to be 2n. It is sometimes convenient 
to express the Boolean function in its sum-of-minterms form. If not in this form, it can be made 
so by first expanding the expression into a sum of AND terms. Each term is then inspected to 
see if it contains all the variables. If it misses one or more variables, it is ANDed with an expres-
sion such as x + x′, where x is one of the missing variables. The following example clarifies this  
procedure.

Table 2-4 Functions of three variables

x y z Function f
1

Function f
2

0 0 0 0 0

0 0 1 1 0

0 1 0 0 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 I 0 0 1

1 1 1 1 1
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EXAMPLE 2-5: Express the Boolean function F = A + B’C in a sum of minterms. The func-
tion has three variables A, B, and C. The first term A is missing two variables; therefore:

A = A(B + B′) = AB + AB’

This is still missing one variable:

A = AB(C + C′) + AB′(C + C′)
       = ABC + ABC′ + AB′C + AB′C ′

The second term B′C is missing one variable:

B′C = B′C (A + A′) = AB′C + A′B′C 

Combining all terms, we have:

                               F = A + B′C
= ABC + ABC ′ + AB′C + AB′C ′ + AB′C + A′B′C

But AB′C appears twice, and according to theorem 1 (x + x = x), it is possible to remove one 
of them. Rearranging the minterms in ascending order, we finally obtain:

F = A′B′C + AB′C ′ + AB′C + ABC ′ + ABC 

= m
1
 + m

4
 + m

5
 + m

6
 + m

7

It is sometimes convenient to express the Boolean function, when in its sum of minterms, 
in the following short notation:

F(A,B,C) = ∑ (1,4, 5,6,7)

The summation symbol ∑ stands for the ORing of terms; the numbers following it are the 
minterms of the function. The letters in parentheses following F form a list of the variables in the 
order taken when the minterm is converted to an AND term.

2.5.3 Product of Maxterms

Each of the 22n functions of n binary variables can be also expressed as a product of maxterms. 
To express the Boolean function as a product of maxterms, it must first be brought into a form 
of OR terms. This may be done by using the distributive law x + yz = (x + y)(x + z). Then any 
missing variable x in each OR term is ORed with xx′. This procedure is clarified by the following 
example.
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EXAMPLE 2-6: Express the Boolean function F = xy + x′z in a product of maxterm form. 
First convert the function into OR terms using the distributive law:

F = xy + x′z = (xy + x′)(xy + z)
= ( x + x′)(y + x′)(x + z)(y + z)
= (x′ + y)(x + z)(y + z)

The function has three variables: x, y, and z. Each OR term is missing one variable; therefore:

  x′ + y = x′ + y + zz′ = (x′ + y + z)(x′ + y + z′)
x + z = x + z + yy′ = (x + y + z)(x + y′ + z)
  y + z=y + z + xx′ = (x + y + z)(x′ + y + z)

Combining all the terms and removing those that appear more than once, we finally obtain:

F = (x + y + z)(x + y′ + z)(x′ + y + z)(x′ + y + z′)
= M

0
M

2
M

4
M

5

A convenient way to express this function is as follows:

F(x,y,z) = ∏(0,2, 4, 5)

The product symbol, ∏, denotes the ANDing of maxterms; the numbers, are the maxterms 
of the function.

2.5.4 Conversion between Canonical Forms

The complement of a function expressed as the sum of minterms equals the sum of minterms 
missing from the original function. This is because the original function is expressed by those 
minterms that make the function equal to I, while its complement is a 1 for those minterms that 
the function is a 0. As an example, consider the  function:

F(A,B, C) = ∑(1,4,5,6,7)

This has a complement that can be expressed as:

F′(A, B, C) = ∑ (0, 2, 3) = m
0
 + m

2
 + m

3

Now, if we take the complement of F′ by De Morgan’s theorem, we obtain F in a different form:

F = (m
0
 + m

2
 + m

3
)′ = m′

0
 .m′

2
 .m′

3
= M

0
M

2
M

3
 = ∏ (0, 2, 3)

The last conversion follows from the definition of minterms and maxterms as shown in Table 2-3. 
From the table, it is clear that the following relation holds true:

M′
j
 = M

j

That is, the maxterm with subscript j is a complement of the minterm with the same subscript j, 
and vice versa.
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The last example demonstrates the conversion between a function expressed in sum of min-
terms and its equivalent in product of maxterms. A similar argument will show that the conver-
sion between the product of maxterms and the sum of minterms is similar. We now state a general 
conversion procedure. To convert from one canonical form to another, interchange the symbols  
∑ and ∏ and list those numbers missing from the original form. As another example, the function:

F(x, y, z) = ∏ (0, 2, 4, 5)

is expressed in the product of maxterm form. Its conversion to sum of minterms is:

F(x, y, z) = ∑ (1,3,6,7)

Note that, in order to find the missing terms, one must realize that the total number of minterms 
or maxterms is 2n, where n is the number of binary variables in the function.

2.5.5 Standard Forms

The two canonical forms of Boolean algebra are basic forms that one obtains from reading a 
function from the truth table. These forms are very seldom the ones with the least number of 
literals, because each minterm or maxterm must contain, by definition, all the variables either 
complemented or uncomplemented.

Another way to express Boolean functions is in standard form. In this configuration, the 
terms that form the function may contain one, two or any number of literals. There are two types 
of standard forms: the sum of products and product of sums.

The sum of products is a Boolean expression containing AND terms, called product terms, 
of one or more literals each. The sum denotes the ORing of these terms. An example of a function 
expressed in sum of products is:

F
1
 = y′ + xy + x′yz′

The expression has three product terms of one, two, and three literals each, respectively. Their 
sum is in effect an OR operation.

A product of sums is a Boolean expression containing OR terms, called sum terms. Each 
term may have any number of literals. The product denotes the AN Ding of these terms. An ex-
ample of a function expressed in product of sums is:

F
2
 = x(y′ + z)(x′ + y + z′ + w)

This expression has three sum terms of one, two, and four literals each. The product is an AND 
operation. The use of the words product and sum stems from the similarity of the AND operation 
to the arithmetic product (multiplication) and the similarity of the OR operation to the arithmetic 
sum (addition).

A Boolean function may be expressed in a nonstandard form. For example, the function:

F
3
 = (AB + CD)(A′B′ + C′D′)

is neither in sum of products nor in product of sums. It can be changed to a standard form by 
using the distributive law to remove the parentheses:

F
3
 = A′B′CD + ABC′D′
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2.6 Other Logic Operations

When the binary operators AND and OR are placed between two variables x and y, they form two 
Boolean functions x ⋅ y and x + y, respectively. It was stated previously that there are 22n functions 
for n binary variables. For two variables, n = 2 and the number of possible Boolean functions is 
16. Therefore, the AND and OR functions are only two of a total of 16 possible functions formed 
with two binary variables. It would be instructive to find the other 14 functions and investigate 
their properties.

The truth tables for the 16 functions formed with two binary variables x and y are listed in 
Table 2-5. In this table, each of the 16 columns F

0
 to F

15
 represents a truth table of one possible 

function for the two given variables x and y. Note that the functions are determined from the 16 
binary combinations that can be assigned to F. Some of the functions are shown with an operator 
symbol. For example, F

1
 represents the truth table for AND and F

7
 represents the truth table for 

OR. The operator symbols for these functions are (⋅) and ( + ), respectively.
The 16 functions listed in truth table form can be expressed algebraically by means of Bool-

ean expressions. This is shown in the first column of Table 2-6. The Boolean expressions listed 
are simplified to their minimum number of literals.

Although each function can be expressed in terms of the Boolean operators AND, OR, and 
NOT, there is no reason one cannot assign special operator symbols for expressing the other func-
tions. Such operator symbols are listed in the second column of Table 2-6. However, all the new 
symbols shown, except for the exclusive-OR symbol ⊕, are not in common use by digital designers.

Each of the functions in Table 2-6 is listed with an accompanying name and a comment that 
explains the function in some way. The 16 functions listed can be subdivided into three categories:

1. Two functions that produce a constant 0 or 1.

2. Four functions with unary operations complement and transfer.

3. Ten functions with binary operators that define eight different operations AND, OR, 
NAND, NOR, exclusive-OR, equivalence, inhibition, and implication.

Any function can be equal to a constant, but a binary function can be equal to only 1 or 0. 
The complement function produces the complement of each of the binary variables. A function 
which is equal to an input variable has been given the name transfer, because the variable x or y 
is transferred through the gate that forms the function without changing its value. Of the eight 
binary operators, two (inhibition and implication) are used by logicians but are seldom used in 

Table 2-5 Truth tables for the 16 functions of two binary variables

   x y F
0

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

F
11

F
12

F
13

F
14

F
15

   0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

   0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

   1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

   1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Operator

Symbol / /  ⊕ + ↓  ⊂ ⊃  ↑
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computer logic. The AND and OR operators have been mentioned in conjunction with Boolean 
algebra. The other four functions are extensively used in the design of digital systems.

The NOR function is the complement of the OR function and its name is an abbreviation 
of not-OR. Similarly, NAND is the complement of AND and is an abbreviation of not-AND. The 
exclusive-OR, abbreviated XOR or EOR, is similar to OR but excludes the combination of both 
x and y being equal to 1. The equivalence is a function that is 1 when the two binary variables are 
equal, i.e., when both are 0 or both are 1. The exclusive-OR and equivalence functions are the 
complements of each other. This can be easily verified by inspecting Table 2-5. The truth table 
for the exclusive-OR is F

6
 and for the equivalence is F

9
, and these two functions are the comple-

ments of each other. For this reason, the equivalence function is often called exclusive-NOR, i.e., 
exclusive-OR-NOT.

Boolean algebra, as defined in Sections 2-2, has two binary operators, which we have called 
AND and OR, and a unary operator, NOT (complement). From the definitions, we have deduced 
a number of properties of these operators and now have defined other binary operators in terms 
of them. There is nothing unique about this procedure. We could have just as well started with the 
operator NOR (↓), for example, and later defined AND, OR, and NOT in terms of it. There are, 
nevertheless, good reasons for introducing Boolean algebra in the way it has been introduced. 
The concepts of “and,” “or,” and “not” are familiar and are used by people to express everyday 
logical ideas. Moreover, the Huntington postulates reflect the dual nature of the algebra, empha-
sizing the symmetry of + and · with respect to each other.

Table 2-6 Boolean expressions for the 16 functions of two variables

Boolean functions Operator symbol Name Comments

F
0
 = 0 Null Binary constant 0

F
1
 = xy x ⋅ y AND x and y

F
2
 = xy′ x/y Inhibition x but not y

F
3
 = x Transfer x

F
4
 = x′y y/x Inhibition y but not x

F
5 
= y Transfer y

F
6
 = xy′ + x′y x ⊕ y Exciusive-OR x or y but not both

F
7
 = x +y x + y OR x or y

F
8
 = (x + y)′ x ↓ y NOR Not-OR

F
9
 = xy + x′y′ x  y Equivalence* x equals y

F
10

 = y′ y′ Complement Not y

F
11

 = x + y′ x ⊂ y Implication If y then x

F
12

 = x′ x′ Complement Not x

F
13

 = x′ + y x ⊃ y Implication If x then y

F
14

 = (xy)′ x↑y NAND Not-AND

F
15

 = 1 Identity Binary constant 1

*Equivalence is also known as equality, coincidence, and exclusive-NOR.
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2.7 Digital Logic Gates

Since Boolean functions are expressed in terms of AND, OR, and NOT operations, it is easier 
to implement a Boolean function with these types of gates. The possibility of constructing gates 
for the other logic operations is of practical interest. Factors to be weighed when considering the 
construction of other types of logic gates are (1) the feasibility and economy of producing the 
gate with physical components, (2) the possibility of extending the gate to more than two inputs, 
(3) the basic properties of the binary operator such as commutativity and associativity, and (4) 
the ability of the gate to implement Boolean functions alone or in conjuction with other gates.

Of the 16 functions defined in Table 2-6, two are equal to a constant and four others are re-
peated twice. There are only ten functions left to be considered as candidates for logic gates. Two, 
inhibition and implication, are not commutative or associative and thus are impractical to use as 
standard logic gates. The other eight: complement, transfer, AND, OR, NAND, NOR, exclusive-
OR, and equivalence, are used as standard gates in digital design.

The graphic symbols and truth tables of the eight gates are shown in Fig. 2-5. Each gate has 
one or two binary input variables designated by x and y and one binary output variable designated 
by F. The AND, OR, and inverter circuits were defined in Fig. 1-6. The inverter circuit inverts the 
logic sense of a binary variable. It produces the NOT, or complement, function. The small circle 
in the output of the graphic symbol of an inverter designates the logic complement. The triangle 
symbol by itself designates a buffer circuit. A buffer produces the transfer function but does not 
produce any particular logic operation, since the binary value of the output is equal to the binary 
value of the input. This circuit is used merely for power amplification of the signal and is equiva-
lent to two inverters connected in cascade.

The NAND function is the complement of the AND function, as indicated by a graphic 
symbol which consists of an AND graphic symbol followed by a small circle. The NOR function 
is the complement of the OR function and uses an OR graphic symbol followed by a small circle. 
The NAND and NOR gates are extensively used as standard logic gates and are in fact far more 
popular than the AND and OR gates. This is because NAND and NOR gates are easily construct-
ed with transistor circuits and because Boolean functions can be easily implemented with them.

The exclusive-OR gate has a graphic symbol similar to that of the OR gate, except for the ad-
ditional curved line on the input side. The equivalence, or exclusive-NOR, gate is the complement 
of the exclusive-OR, as indicated by the small circle on the output side of the graphic symbol.

2.7.1 Extension to Multiple Inputs

The gates shown in Fig. 2-5, except for the inverter and buffer, can be extended to have more than 
two inputs. A gate can be extended to have multiple inputs if the binary operation it represents is 
commutative and associative. The AND and OR operations, defined in Boolean algebra, possess 
these two properties. For the OR function we have:

x + y = y + x         commutative

and

(x + y) + z = x + (y + z) = x + y + z         associative

which indicates that the gate inputs can be interchanged and that the OR function can be ex-
tended to three or more variables.
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F = xyAND

OR

Inverter

Buffer

NAND

NOR

Exclusive-OR
    (XOR)

Exclusive-NOR
           or
   equivalence

F = x + y

F = x′

F = x

F = (xy)′

F = (x + y)′

F = xy′ + x′y
   = x ⊕ y

F = xy + x′y′
   = x � y

x
y F

x
F

y

0
0
1
1

0
1
0
1

1
0
0
1

x Fy

0
0
1
1

0
1
0
1

0
1
1
0

x Fy

0
0
1
1

0
1
0
1

1
0
0
0

x Fy

0
0
1
1

0
1
0
1

1
1
1
0

x Fy

0
1

0
1

Fx

0
1

1
0

Fx

0
0
1
1

0
1
0
1

0
1
1
1

x Fy

0
0
1
1

0
1
0
1

0
0
0
1

x Fy

x F

x F

x
y F

x
F

y

x
F

y

x
F

y

Name Graphic Algebraic Truth

symbol function table

Figure 2.5 Digital logic gates
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The NAND and NOR functions are commutative and their gates can be extended to have 
more than two inputs, provided the definition of the operation is slightly modified. The difficulty 
is that the NAND and NOR operators are not associative, i.e., (x ↓ y) ↓z ≠ x ↓ (y ↓ z), as shown 
in Fig. 2-6 and below:

(x ↓ y) ↓z = [(x + y)′ + z]′ = (x + y)z′ = xz′ + yz′ 

x ↓ (y ↓ z) = [x + (y + z)′]′ − x′(y + z) − x′y + x′z

To overcome this difficulty, we define the multiple NOR (or NAND) gate as a complemented OR 
(or AND) gate. Thus, by definition, we have:

x ↓ y ↓ z = (x + y + z)′
   x ↑ y ↑ z = (xyz)′

The graphic symbols for the three-input gates are shown in Fig. 2-7. In writing cascaded NOR 
and NAND operations, one must use the correct parentheses to signify the proper sequence of 
the gates. To demonstrate this, consider the circuit of Fig. 2-7(c). The Boolean function for the 
circuit must be written as:

F = [(ABC)′(DE)′]′ = ABC + DE

The second expression is obtained from De Morgan’s theorem. It also shows that an expression in 
sum of products can be implemented with NAND gates. Further discussion of NAND and NOR 
gates can be found in Sections 3-6, 4-7, and 4-8.

x

y
z

x ↓ (y ↓ z)      x′(y + z)

x
y

z
(x ↓ y) ↓ z = (x + y)z′

Figure 2.6 Demonstrating the nonassciativity of the NOR operator; (x ↓ y) ↓ z ≠ x(y ↓ z)

x

z
(x + y + z)′y

(a) Three-input NOR gate

(xyz)′
x
y
z

(b) Three-input NAND gate

A

D

E

B
C

F = [(ABC)′:(DE)]′ = ABC + DE

(c) Cascaded NAND gate

Figure 2.7 Multiple-input and Cascaded NOR and NAND gate
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The exclusive-OR and equivalence gates are both commutative and associative and can be 
extended to more than two inputs. However, multiple-input exclusive-OR gates are uncommon 
from the hardware standpoint. In fact, even a two-input function is usually constructed with other 
types of gates. Moreover, the definition of these functions must be modified when extended to 
more than two variables. The exclusive-OR is an odd function, i.e., it is equal to 1 if the input 
variables have an odd number of 1’s. The equivalence function is an even function, i.e., it is equal 
to 1 if the input variables have an even number of 0’s. The construction of a three-input exclusive-
OR function is shown in Fig. 2-8. It is normally implemented by cascading two-input gates as 
shown in (a). Graphically, it can be represented with a single three-input gate as shown in (b). The 
truth table in (c) clearly indicates that the output F is equal to 1 if only one input is equal to 1 or 
if all three inputs are equal to 1, i.e., when the total number of 1’s in the input variables is odd. 
Further discussion of exclusive-OR and equivalence can be found in Section 4-9.

EXAMPLE 2-7: Construct AND Gate using NOR Gate

Soln: A.B = (A.B)ˮ =  (A′ + B′)′ using D Morgan’s theorem 

A
A'

y = (A' + B')' = A.B

B'
B

2.8 IC Digital Logic Families
The IC was introduced in Section 1-9, where it was stated that digital circuits are invariably 
constructed with ICs. Having discussed various digital logic gates in the previous section, we are 
now in a position to present IC gates and discuss their general properties.

x
y

z
F = x ⊕ y ⊕ z

(a) Using two-input gates

F = x ⊕ y ⊕ z
x
y
z

(b) A three-input gate

x y z F
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
1
0
1
0
0
1

(c) Truth table

Figure 2.8 Three-input exclusive-OR gate

www.youseficlass.ir



Boolean Algebra and Logic Gates 55 

Digital IC gates are classified not only by their logic operation, but also by the specific 
logic-circuit family to which they belong. Each logic family has its own basic electronic circuit 
upon which more complex digital circuits and functions are developed. The basic circuit in each 
family is either a NAND or a NOR gate. The electronic components employed in the construc-
tion of the basic circuit are usually used to name the logic family. Many different logic families of 
digital ICs have been introduced commercially. The ones that have achieved widespread popular-
ity are listed below.

TTL Transistor-transistor logic

ECL Emitter-coupled logic

MOS Metal-oxide semiconductor

CMOS Complementary metal-oxide semiconductor

I2L  Integrated-injection logic

TTL has an extensive list of digital functions and is currently the most popular logic family. 
ECL is used in systems requiring high-speed operations. MOS and I2L are used in circuits requir-
ing high component density, and CMOS is used in systems requiring low power consumption.

The analysis of the basic electronic circuit in each logic family is presented in Chapter 13. 
The reader familiar with basic electronics can refer to Chapter 13 at this time to become ac-
quainted with these electronic circuits. Here we restrict the discussion to the general properties 
of the various IC gates available commercially.

Because of the high density with which transistors can be fabricated in MOS and I2L, these 
two families are mostly used for LSI functions. The other three families. TTL, ECL, and CMOS, 
have LSI devices and also a large number of MSI and SSI devices. SSI devices are those that 
come with a small number of gates or flip-flops (presented in Section 6.2) in one IC package. 
The limit on the number of circuits in SSI devices is the number of pins in the package, A 14-pin 
package, for example, can accommodate only four two-input gates, because each gate requires 
three external pins—two each for inputs and one each for output, for a total of 12 pins. The re-
maining two pins are needed for supplying power to the circuits.

Some typical SSI circuits are shown in Fig. 2-9. Each IC is enclosed within a 14- or 16-pin 
package. The pins are numbered along the two sides of the package and specify the connections 
that can be made. The gates drawn inside the ICs are for information only and cannot be seen 
because the actual IC package appears as shown in Fig. 1-8.

TTL ICs are usually distinguished by numerical designation as the 5400 and 7400 series. 
The former has a wide operating-temperature range, suitable for military use, and the latter has 
a narrower temperature range, suitable for industrial use. The numeric designation of the 7400 
series means that IC packages are numbered as 7400, 7401, 7402, etc. Some vendors make avail-
able TTL ICs with different numerical designations, such as the 9000 or the 8000 series.

Figure 2-9(a) shows two TTL SSI circuits. The 7404 provides six (hex) inverters in a pack-
age. The 7400 provides four (quadruple) 2-input NAND gates. The terminals marked V

cc
 and 

GND are the power supply pins which require a voltage of 5 volts for proper operation.
The most common ECL type is designated as the 10,000 series. Figure 2-9(b) shows two 

ECL circuits. The 10102 provides four 2-input NOR gates. Note that an ECL gate may have two 
outputs, one for the NOR function and another for the OR function (pin 9 of the 10102 IC). The 
10107 IC provides three exclusive-OR gates. Here again there are two outputs from each gate; the 
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1 2 3 4 5 6

9 81011121314

vcc

7

GND7404–Hex inverters

9 81011121314

vcc

1 2 3 4 5 6 7
GND

7400–Quadruple 2-input NAND gates

(a) TTL gates

1 2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

vcc2

vcc1
VEE

10102–Quadruple 2-input NOR gates

2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

vcc2

1
vcc1 VEENC

10107–Triple exclusive-OR/NOR gates

(b) ECL gates

11121314 10 9

1 2 3 4 5 6 7

8

VssNC

NCVDD

4002–Dual 4-input NOR gates.

16 15 14 13 12 11 10 9

2 3 4 5 6 71 VssVDD

NC NC

4050–Hex buffers.

(c) CMOS gates

Figure 2.9 Some typical integrated-circuit gates
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other output gives the exclusive-NOR function or equivalence. ECL gates have three terminals 
for power supply. V

CC1
 and V

CC2
 are usually connected to ground, and V

EE
 to a - 5.2-volt supply.

CMOS circuits of the 4000 series are shown in Fig. 2-9(c). Only two 4-input NOR gates 
can be accommodated in the 4002 because of pin limitation. The 4050 type provides six buffer 
gates, Both ICs have two unused terminals marked NC (no connection). The terminal marked 
V

DD
 requires a power supply voltage from 3 to 15 volts, while V

ss
 is usually connected to ground.

2.8.1 Positive and Negative Logic

The binary signal at the inputs or output of any gate can have one of two values, except during 
transition. One signal value represents logic-1 and the other, logic-0. Since two signal values are 
assigned to two logic values, there exist two different assignments of signals to logic. Because of 
the principle of duality of Boolean algebra, an interchange of signal-value assignment results in 
a dual-function implementation.

Consider the two values of a binary signal as shown in Fig. 2-10. One value must be higher 
than the other since the two values must be different in order to distinguish between them. We 
designate the higher level by H and the lower level by L. There are two choices for logic-value 
assignment. Choosing the high-level H to represent logic-1, as shown in Fig. 2-10(a), defines a 
positive-logic system. Choosing the low-level L to represent logic-1, as shown in Fig. 2-10(b), 
defines a negative-logic system. The terms positive and negative are somewhat misleading since 
both signal values may be positive or both may be negative. It is not signal polarity that deter-
mines the type of logic, but rather the assignment of logic values according to the relative am-
plitudes of the signals.

Integrated-circuit data sheets define digital functions not in terms of logic-1 or logic-0, but 
rather in terms of H and L levels. It is up to the user to decide on a positive or negative logic as-
signment. The high-level and low-level voltages for the three IC digital logic families are listed 
in Table 2-7. In each family, there is a range of voltage values that the circuit will recognize as a 
high or low level. The typical value is the most commonly encountered. The table also lists the 
voltage-supply requirements for each family as a reference.

TTL has typical values of H = 3.5 volts and L = 0.2 volt. ECL has two negative values, with 
H = − 0.8 volt and L = − 1.8 volt. Note that even though both levels are negative, the higher one 
is -0.8. CMOS gates can use a supply voltage V

DD
 anywhere from 3 to 15 volts; typically, either 

5 or 10 volts is used. The signal values in CMOS are a function of the supply voltage with H = 
V

DD
 and L = 0 volt. The polarity assignments for positive and negative logic are also indicated in 

the table.
In light of this discussion, it would be necessary to justify the logic symbols used for the ICs 

listed in Fig. 2-9. Take, for example, one of the gates of the 7400 IC. This gate is shown in block 

0

1

L

H

Logic
value

Signal
value

1

0

L

H

Logic
value

Signal
value

(a) Positive logic (b) Negative logic

Figure 2.10 Signal-amplitude assignment and type of logic
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diagram form in Fig. 2-11(b). The manufacturer’s truth table for this gate given in a data sheet 
is shown in Fig. 2-11(a). This specifies the physical behavior of the gate, with H being typically 
3.5 volts and L being 0.2 volt. This physical gate can function as either a NAND or NOR gate, 
depending on the polarity assignment.

The truth table of Fig. 2-11(c) assumes positive-logic assignment with H = 1 and L = 0. 
Checking this truth table with the truth tables in Fig. 2-5, we recognize it as a NAND gate. The 
graphic symbol for a positive-logic NAND gate is shown in Fig. 2-11(d) and is similar to the one 
adopted previously.

Now consider the negative-logic assignment for this physical gate with L = 1 and H = 0. 
The result is the truth table shown in Fig. 2-11(e). This table can be recognized to represent the 

L
L
H
H

L
H
L
H

H
H
H
L

x zy

(a)  Truth table in terms 
of H and L

z
TTL
7400
gate

x

y

(b) Gate block diagram

0
0
1
1

0
1
0
1

1
1
1
0

x zy

(c)  Truth table for positive logic; H 
= 1, L = 0

x
y

z

(d)  Graphic symbol for posi-
tive logic NAND gate.

1
1
0
0

1
0
1
0

0
0
0
1

x zy

(e)  Truth table for nagative logic; 
L = 1, H = 0

x
z

y

(f)  Graphic symbol for naga-
tive logic NOR gate.

Figure 2.11 Demonstration of positive and negative logic

Table 2-7 H and L levels in IC logic families

IC family 
type

Voltage 
supply (V)

High-level voltage (V) Low-level voltage (V)

Range Typical Range Typical

TTL   V
CC

 = 5
ECL   V

EE
 = − 5.2 

CMOS  V
DD

 = 3 - 10

Positive logic:
Negative logic:

2.4 - 5
- 0.95 -0.7
V

DD

3.5
-0.8
V

DD

logic-1 
logic-0

0 − 0.4
-1.9 - -1.6
0 - 0.5

0.2
-1.8
0

logic-0 
logic-1
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NOR function even though its entries are listed backwards. The graphic symbol for a negative-
logic NOR gate is shown in Fig. 2-11(f). The small triangle in the input and output wires desi-
gnates a polarity indicator. The presence of this polarity indicator along a terminal indicates that 
negative logic is assigned to the terminal. Thus, the same physical gate can function either as a 
positive-logic NAND or as a negative-logic NOR. The one drawn in the diagram is completely 
dependent on the polarity assignment that the designer wishes to employ.

In a similar manner, it is possible to show that a positive-logic NOR is the same physical 
gate as a negative-logic NAND. The same relation holds between AND and OR gates or between 
exclusive-OR and equivalence gates, In any case, if negative logic is assumed in any input or out-
put terminal, it is necessary to include the polarity indicator triangle symbol along the terminal. 
Some digital designers use this convention to facilitate the design of digital circuits when NAND 
or NOR gates are used exclusively. We will not use this symbology in this book but will resort 
to other methods for designing with NAND and NOR gates. Note that the ICs presented in Fig. 
2-9 are shown with their positive-logic graphic symbols. They could have been shown with their 
negative-logic symbols if one wished to do so.

The conversion from positive logic to negative logic, and vice versa, is essentially an opera-
tion that changes l’s to 0’s and 0’s to 1’s in both inputs and output of a gate. Since this operation 
produces the dual of a function, the change of all terminals from one polarity to the other results 
in taking the dual of the function. The result of this conversion is that all AND operations are 
converted to OR operations (or graphic symbols) and vice versa. In addition, one must not forget 
to include the polarity indicator in graphic symbols when negative logic is assumed.

The small triangle that represents a polarity indicator and the small circle that represents 
a complementation have similar effects but different meanings. Therefore, one can be replaced 
by the other, but the interpretation is different. A circle followed by a triangle, as in Fig. 2-11(f), 
represents a complementation followed by a negative-logic polarity indicator. The two cancel 
each other and both can be removed. But if both are removed, then the inputs and output of the 
gate will represent different polarities.

2.8.2 Special Characteristics

The characteristics of IC digital logic families are usually compared by analyzing the circuit of 
the basic gate in each family. The most important parameters that are evaluated and compared are 
fan-out, power dissipation, propagation delay, and noise margin. We first explain the properties 
of these parameters and then use them to compare the IC logic families.

Fan-out specifies the number of standard loads that the output of a gate can drive without 
impairing its normal operation. A standard load is usually defined as the amount of current 
needed by an input of another gate in the same IC family. Sometimes the term loading is used 
instead of fan-out. This term is derived from the fact that the output of a gate can supply a limited 
amount of current, above which it ceases to operate property and is said to be overloaded. The 
output of a gate is usually connected to the inputs of other similar gates, Each input consumes a 
certain amount of power from the gate input, so that each additional connection adds to the load 
of the gate. “Loading rules” are usually listed for a family of standard digital circuits. These rules 
specify the maximum amount of loading allowed for each output of each circuit. Exceeding the 
specified maximum load may cause a malfunction because the circuit cannot supply the power 
demanded from it. The fan-out is the maximum number of inputs that can be connected to the 
output of a gate, and it is expressed by a number.
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The fan-out capabilities of a gate must be considered when simplifying Boolean functions. 
Care must be taken not to develop expressions that result in an overloaded gate. Noninverting 
amplifiers or buffers are sometimes employed to provide additional driving capabilities for heavy 
loads.

Power dissipation is the supplied power required to operate the gate. This parameter is ex-
pressed in milliwatts (mW) and represents the actual power dissipated in the gate. The number 
that represents this parameter does not include the power delivered from another gate; rather, 
it represents the power delivered to the gate from the power supply. An IC with four gates will 
require, from its power supply, four times the power dissipated in each gate. In a given system, 
there may be many ICs, and the power required by each IC must be considered. The total power 
dissipation in a system is the sum total of the power dissipated in all ICs.

Propagation delay is the average transition delay time for a signal to propagate from input 
to output when the binary signals change in value. The signals through a gate take a certain 
amount of time to propagate from the inputs to the output. This interval of time is defined as the 
propagation delay of the gate. Propagation delay is expressed in nanoseconds (ns), and 1 ns is 
equal to 10−9 of a second.

The signals that travel from the inputs of a digital circuit to its outputs pass through a series 
of gates. The sum of the propagation delays through the gates is the total propagation delay of 
the circuit. When speed of operation is important, each gate must have a small propagation delay 
and the digital circuit must have a minimum number of series gates between inputs and outputs.

The input signals in most digital circuits are applied simultaneously to more than one gate. 
All those gates that receive their inputs exclusively from external inputs constitute the first logic 
level of the circuit. Gates that receive at least one input from an output of a first-logic-level gate 
are considered to be in the second logic level, and similarly for third and higher levels. The total 
propagation delay of the circuit is equal to the propagation delay of a gate times the number of 
logic levels in the circuit. Thus, a reduction in the number of logic levels results in a reduction of 
signal delay and faster circuits. The reduction of the propagation delay in circuits may be more 
important than the reduction in the total number of gates if speed of operation is a major factor.

Noise margin is the maximum noise voltage added to the input signal of a digital circuit 
that does not cause an undesirable change in the circuit output. There are two types of noise to be 
considered. DC noise is caused by a drift in the voltage levels of a signal. AC noise is a random 
pulse that may be created by other switching signals. Thus, noise is a term used to denote an 
undesirable signal that is superimposed upon the normal operating signal. The ability of circuits 
to operate reliably in a noise environment is important in many applications. Noise margin is 
expressed in volts (V) and represents the maximum noise signal that can be tolerated by the gate.

2.8.3 Characteristics of IC Logic Families

The basic circuit of the TTL logic family is the NAND gate. There are many versions of TTL, and 
three of them are listed in Table 2-8. This table gives the general characteristics of the IC logic 
families. Values listed are representative on a comparison basis. For any one family or version, 
the values may vary somewhat.

The standard TTL gate was the first version of the TTL family. Additional improvements 
were added as the technology progressed. The Schottky TTL is a later improvement that reduces 
the propagation delay but results in an increase in power dissipation. The low-power Schottky 
TTL version sacrifices some speed for reduced power dissipation. It has the same propagation 
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delay as the standard TTL, but the power dissipation is reduced considerably. The fan-out of the 
standard TTL is 10 but the low-power Schottky version has a fan-out of 20. Under certain condi-
tions the other versions may also have a fan-out of 20. The noise margin is better than 0.4 V, with 
a typical value of 1 V.

The basic circuit of the ECL family is the NOR gate. The special advantage of ECL gates 
is their low propagation delay. Some ECL versions may have a propagation delay as low as 0.5 
ns. The power dissipation in ECL gales is comparatively high and the noise margin low. These 
two parameters impose a disadvantage when choosing ECL over other logic families. However, 
because of its low propagation delay, ECL offers the highest speed of any family and is the ulti-
mate choice for very fast systems.

The basic circuit of CMOS is the inverter from which both NAND and NOR gates can be 
constructed. The special advantage of CMOS is its extremely low power dissipation. Under static 
conditions, the CMOS gate power dissipation is negligible and averages about 10 nW. When 
the gate signal changes state, there is a dynamic power dissipation which is proportional to the 
frequency at which the circuit is exercised. The number listed in the table is a typical value of 
dynamic power dissipation in CMOS gates.

The one major disadvantage of CMOS is its high propagation delay. This means that it is 
not practical for use in systems requiring high-speed operations. The characteristic parameters 
for the CMOS gate depend on the power supply voltage V

DD
 that is used. The power dissipation 

increases with increase in voltage supply. The propagation delay decreases with increase in volt-
age supply, and the noise margin is estimated to be about 40% of the voltage supply value.
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PROBLEMS

2-1. Which of the six basic laws (closure, associative, commutative, identity, inverse, and distributive) are 
satisfied for the pair of binary operators listed below?

+ 0 1 2 0 1 2

0 0 0 0 0 0 1 2

1 0 1 1 1 1 1 2

2 0 1 2 2 2 2 2

2-2. Show that the set of three elements {0, 1, 2} and the two binary operators + and · as defined by the 
above table is not a Boolean algebra. State which of the Huntington postulates is not satisfied?

2-3. Demonstrate by means of truth tables the validity of the following theorems of Boolean algebra.

(a) The associative laws.

(b) De Morgan’s theorems for three variables.

(c) The distributive law of + over

2-4. Repeat problem 2-3 using Venn diagrams.

2-5. Simplify the following Boolean functions to a minimum number of literals.

(a) xy + xy′
(b) (x + y)(x + y′)
(c)  xyz + x′y + xyz′
(d) zx + zx′y
(e) (A + B)′(A′ + B′)′
(f) y(wz′ + wz) + xy

2-6. Reduce the following Boolean expressions to the required number of literals.

(a) ABC + A′B′C + A′BC + ABC′ + A′B′C′  to five literals

(b) BC + AC′ + AB + BCD   to four literals

(c) [(CD)′ + A]′ + A + CD + AB   to three literals

(d) (A + C + D)(A + C + D′)(A + C + D)(A + B′) to four literals

2-7. Find the complement of the following Boolean functions and reduce them to a minimum number of 
literals.

(a) (BC′ + A′D)(AB′ + CD′)
(b) B′D + A′BC′ + ACD + A′BC

(c) [(AB)′A][(AB)′B]

(d) AB′ + C′D′
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2-8. Given two Boolean functions F
1
 and F

2
:

(a) Show that the Boolean function E = F
1
 + F

2
 obtained by ORing the two functions, contains the 

sum of all the minterms in F
1
 and F

2
.

(b) Show that the Boolean function G = F
1
F

2
, obtained from ANDing the two functions, contains 

those minterms common to both F
1
 and F

2
.

2-9. Obtain the truth table of the function:

 F = xy + xy′ + y′ z

2-10. Implement the simplified Boolean functions from problem 2-6 with logic gates.

2-11. Given the Boolean function:

 F = xy + x′y′ + y′z

(a) Implement it with AND, OR, and NOT gates,

(b) Implement it with only OR and NOT gates.

(c) Implement it with only AND and NOT gates.

2-12. Simplify the functions T
1
 and T

2
 to a minimum number of literals.

A B C T
1
 T

2

0 0 0 1 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 0 1

2-13. Express the following functions in a sum of minterms and a product of maxterms.

(a) F(A, B, C, D)= D(A′ + B) + B′D
(b) F(w, x, y, z) = y′z + wxy′ + wxz′ + w′x′z
(c) F(A, B, C, D) = (A + B′ + C)(A + B′)(A + C′ + D′)
 (A′ + B + C + D′)(B + C′ + D′)
(d) F(A, B, C) = (A′ + B)(B′ + C)

(e) F(x,y,z) = 1

(f) F(x, y, z) = (xy + z)(y + xz)

2-14. Convert the following to the other canonical form.

(a) F(x,y,z) = ∑(1.3, 7)

(b) F(A, B, C, D) = ∑(0, 2, 6,11,13, 14)

(c) F(x,y,z) = ∏(0, 3, 6, 7)

(d) F(A, B, C, D) = ∏(0, 1, 2, 3, 4, 6, 12)
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2-15. What is the difference between canonical form and standard form? Which form is preferable when 
implementing a Boolean function with gates? Which form is obtained when reading a function from 
a truth table?

2-16. The sum of all minterms of a Boolean function of n variables is 1.

(a) Prove the above statement for n = 3.

(b) Suggest a procedure for a general proof.

2-17. The product of all maxterms of a Boolean function of n variables is 0

(a) Prove the above statement for n =3.

(b) Suggest a procedure for a general proof. Can we use the duality principle after proving (b) of 
problem 2-16?

2-18. Show that the dual of the exclusive-OR is equal to its complement.

2-19. By substituting the Boolean function equivalent of the binary operations as defined in Table 2 6, 
show that:

(a) The inhibition and implication operators are neither commutative nor associative.

(b) The exclusive-OR and equivalence operators are commutative and associative.

(c) The NAND operator is not associative.

(d) The NOR and NAND operators are not distributive.

2-20. A majority gate is a digital circuit whose output is equal to 1 if the majority of the inputs are l’s. The 
output is 0 otherwise. By means of a truth table, find the Boolean function implemented by a 3-input 
majority gate. Simplify the function.

2-21. Verify the truth table for the 3-input exclusive-OR gate listed in Fig. 2-8(c). List all eight combina-
tions of x, y, and z; evaluate A = x ⊕ y; then evaluate F = A ⊕ z = x ⊕ y ⊕ z.

2-22. TTL SSI come mostly in 14-pin packages. Two pins are reserved for power supply and the other 
pins are used for input and output terminals. How many gates are enclosed in one such package if it 
contains the following types of gates:

(a) 2-input exclusive-OR gates.

(b) 3-input AND gates.

(c) 4-input NAND gates.

(d) 5-input NOR gates.

(e) 8-input NAND gates.

2-23. Show that a positive-logic AND gate is a negative-logic OR gate, and vice versa.

2-24. An IC logic family has NAND gates with fan-out of 5 and buffer gates with fan-out of 10. Show how 
the output signal of a single NAND gate can be applied to 50 other gate inputs.

2-25. Implement EX-NOR gate using minimum number of NAND gate and NAND gates using minimum 
number of NOR gates.

2-26. Show that (x ⊕ y)  z = x ⊕ (y  z)

2-27. With examples, make out difference between (a) min term & max term (b) positive and negative 
logic.

2-28. Differentiate between Standard TTL, Schottky TTL, ECL and CMOS IC logic families in terms of 
fan-out, noise margin, propagation delay and power dissipation.
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3C h a p t e r

Simplification of Boolean Functions

3.1 The Map Method

The complexity of the digital logic gates that implement a Boolean function is directly related 
to the complexity of the algebraic expression from which the function is implemented. Although 
the truth table representation of a function is unique, expressed algebraically, it can appear in 
many different forms. Boolean functions may be simplified by algebraic means as discussed in 
Section 2-4. However, this procedure of minimization is awkward because it lacks specific rules 
to predict each succeeding step in the manipulative process. The map method provides a simple 
straightforward procedure for minimizing Boolean functions. This method may be regarded ei-
ther as a pictorial form of a truth table or as an extension of the Venn diagram. The map method, 
first proposed by Veitch (1) and slightly modified by Karnaugh (2), is also known as the “Veitch 
diagram” or the “Karnaugh map.”

The map is a diagram made up of squares. Each square represents one minterm. Since any 
Boolean function can be expressed as a sum of minterms, it follows that a Boolean function is 
recognized graphically in the map from the area enclosed by those squares whose minterms are 
included in the function. In fact, the map presents a visual diagram of all possible ways a function 
may be expressed in a standard form. By recognizing various patterns, the user can derive alter-
native algebraic expressions for the same function, from which he can select the simplest one. We 
shall assume that the simplest algebraic expression is any one in a sum of products or product of 
sums that has a minimum number of literals. (This expression is not necessarily unique.)

3.2 Two- and Three-variable Maps

A two-variable map is shown in Fig. 3-1. There are four minterms for two variables; hence the 
map consists of four squares, one for each minterm. The map is redrawn in (b) to show the rela-
tionship between the squares and the two variables. The 0’s and 1’s marked for each row and each 
column designate the values of variables x and y, respectively. Notice that x appears primed in 
row 0 and unprimed in row 1. Similarly, y appears primed in column 0 and unprimed in column 1.

If we mark the squares whose minterms belong to a given function, the two-variable map 
becomes another useful way to represent any one of the 16 Boolean functions of two variables. 
As an example, the function xy is shown in Fig. 3-2(a). Since xy is equal to m

3
, a 1 is placed inside 

the square that belongs to m
3
 Similarly, the function x + y is represented in the map of Fig. 3-2(b) 
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by three squares marked with l’s. These squares are found from the minterms of the function:

x + y = x′y + xy′ + xy = m
1
 + m

2
 + m

3

The three squares could have also been determined from the intersection of variable x in the 
second row and variable y in the second column, which encloses the area belonging to x or y.

A three-variable map is shown in Fig. 3-3. There are eight minterms for three binary vari-
ables. Therefore, a map consists of eight squares. Note that the minterms are arranged, not in a 
binary sequence, but in a sequence similar to the reflected code listed in Table 1-4. The charac-
teristic of this sequence is that only one bit changes from 1 to 0 or from 0 to 1 in the listing se-
quence. The map drawn in part (b) is marked with numbers in each row and each column to show 
the relationship between the squares and the three variables. For example, the square assigned to 
m

5
 corresponds to row 1 and column 01. When these two numbers are concatenated, they give the 

binary number 101, whose decimal equivalent is 5.

m1
m0

m3m2

(a)

x

x

y
y

0 1

1

0 x′y′

xy′ xy

x′y

(b)

Figure 3.1 Two-variable map

Figure 3-2 Representation of functions in the map

x

x

y
y

0 1

1

0

1

(a) xy

x

x

y
y

0 1

1

0

1

1

1

(b) x + y

m0 m1 m3 m2

m4 m5 m7 m6

(a)

yz
00 01 11 10

y

x

z

0

1

x′y′z′ x′y′z x′yz x′yz′

xy′z′ xy′z xyz xyz′x

(b)

Figure 3-3 Three-variable map
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Another way of looking at square m
5
 = xy′z is to consider it to be in the row marked x and 

the column belonging to y′z (column 01). Note that there are four squares where each variable is 
equal to 1 and four where each is equal to 0. The variable appears unprimed in those four squares 
where it is equal to 1 and primed in those squares where it is equal to 0. For convenience, we 
write the variable with its letter symbol under the four squares where it is unprimed.

To understand the usefulness of the map for simplifying Boolean functions, we must rec-
ognize the basic property possessed by adjacent squares. Any two adjacent squares in the map 
differ by only one variable which is primed in one square and unprimed in the other. For example, 
m

5
 and m

7
 lie in two adjacent squares. Variable y is primed in m

5
 and unprimed in m

7
, while the 

other two variables are the same in both squares. From the postulates of Boolean algebra, it fol-
lows that the sum of two minterms in adjacent squares can be simplified to a single AND term 
consisting of only two literals. To clarify this, consider the sum of two adjacent squares such as 
m

5
 and m

7
:

m
5
 + m

7
 = xy′z + xyz = xz(y′ + y) = xz

Here the two squares differ by the variable y, which can be removed when the sum of the 
two minterms is formed. Thus, any two minterms in adjacent squares that are ORed together 
will cause a removal of the different variable. The following example explains the procedure for 
minimizing a Boolean function with a map.

EXAMPLE 3-1: Simplify the Boolean function:

F = x′yz + x′yz′ + xy′z′ + xy′z

First, a 1 is marked in each square as needed to represent the function as shown in Fig. 3-4. 
This can be accomplished in two ways: either by converting each minterm to a binary number 
and then marking a 1 in the corresponding square, or by obtaining the coincidence of the 
variables in each term. For example, the term x′yz has the corresponding binary number 011 
and represents minterm m

3
, in square 011. The second way to recognize the square is by the 

coincidence of variables x′, y, and z, which is found in the map by observing that x′ belongs 
to the four squares in the first row, y belongs to the four squares in the two right columns, and 
z belongs to the four squares in the two middle columns. The area that belongs to all three 
literals is the single square in the first row and third column. In a similar manner, the other 
three squares belonging to the function F are marked by l’s in the map. The function is thus 
represented by an area containing four squares, each marked with a 1, as shown in Fig. 3-4.  

yz
00 01 11 10

y

x

z

0

1 1 1

1 1

x

Figure 3.4 Map for Example 3-1; x′yz + x′yz′ + xy′z′ + xy′z = x′y + xy′
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The next step is to subdivide the given area into adjacent squares. These are indicated in the 
map by two rectangles, each enclosing two 1’s. The upper right rectangle represents the area 
enclosed by x′y; the lower left, the area enclosed by xy′. The sum of these two terms gives the 
answer:

F = x′y + xy′

Next consider the two squares labeled m
0
 and m

2
 in Fig. 3-3(a) or x′y′z′ and x′yz′ in  

Fig. 3-3 (b). These two minterms also differ by one variable y, and their sum can be simplified to 
a two-literal expression:

x′y′z′ + x′yz′ = x′z′

Consequently, we must modify the definition of adjacent squares to include this and other 
similar cases. This is done by considering the map as being drawn on a surface where the right 
and left edges touch each other to form adjacent squares.

EXAMPLE 3-2: Simplify the Boolean function:

F = x′yz + xy′z′ + xyz + xyz′

The map for this function is shown in Fig. 3-5. There are four squares marked with l’s, one 
for each minterm of the function. Two adjacent squares are combined in the third column to 
give a two-literal term yz. The remaining two squares with l’s are also adjacent by the new 
definition and are shown in the diagram enclosed by half rectangles. These two squares, when 
combined, give the two-literal term xz′. The simplified function becomes:

F = yz + xz′

Consider now any combination of four adjacent squares in the three-variable map. Any 
such combination represents the ORing of four adjacent minterms and results in an expression of 
only one literal. As an example, the sum of the four adjacent minterms m

0
, m

2
, m

4
, and m

6
 reduces 

to the single literal z′ as shown:

x′y′z′ + x′yz′ + xy′z′ + xyz′ = x′z′(y′ + y) + xz′(y′ + y)

  = x′z′ + xz′ = z′(x′ + x) = z′

yz
00 01 11 10

y

x

z

0

1

1

11
x

1

Figure 3.5 Map for Example 3-2; x′yz + xy′z′ + xyz + xyz′ = xz + xz′
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EXAMPLE 3-3: Simplify the Boolean function:

F = A′C + A′B + AB′C + BC

The map to simplify this function is shown in Fig. 3-6. Some of the terms in the function have 
less than three literals and are represented in the map by more than one square. For example, 
to find the squares corresponding to A′C, we form the coincidence of A′ (first row) and C (two 
middle coiumns) and obtain squares 001 and 011. Note that when marking 1’s in the squares, 
it is possible to find a 1 already placed there by a preceding term. In this example, the second 
term A′B has l’s in squares 011 and 010, but square 011 is common to the first term A′C and 
only one 1 is marked in it. The function in this example has five minterms, as indicated by 
the five squares marked with l’s. It is simplified by combining four squares in the center to 
give the literal C. The remaining single square marked with a 1 in 010 is combined with an 
adjacent square that has already been used once. This is permissible and even desirable since 
the combination of the two squares gives the term A′B while the single minterm represented 
by the square gives the three-variable term A′BC′. The simplified function is:

F = C + A′B

EXAMPLE 3-4: Simplify the Boolean function:

F(x,y, z) = ∑(0, 2, 4, 5, 6)

Here we are given the minterms by their decimal numbers. The corresponding squares are marked 
by l’s as shown in Fig. 3-7. From the map we obtain the simplified function:

F = z′ + xy′

3.3  Four-variable Map

The map for Boolean functions of four binary variables is shown in Fig. 3-8. In (a) are listed the 
16 minterms and the squares assigned to each. In (b) the map is redrawn to show the relation-
ship with the four variables. The rows and columns are numbered in a reflected-code sequence, 
with only one digit changing value between two adjacent rows or columns. The minterm  

BC
00 01 11 10

B

A

C

0

1

1

1

1

1

1

1
A

Figure 3.6 Map for Example 3-3; A′C + A′B + AB′C + BC = C + A′B
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corresponding to each square can be obtained from the concatenation of the row number with 
the column number. For example, the numbers of the third row (11) and the second column (01), 
when concatenated, give the binary number 1101, the binary equivalent of decimal 13. Thus, the 
square in the third row and second column represents minterm m

13
.

The map minimization of four-variable Boolean functions is similar to the method used to 
minimize three-variable functions. Adjacent squares are defined to be squares next to each other. 
In addition, the map is considered to lie on a surface with the top and bottom edges, as well as the 
right and left edges, touching each other to form adjacent squares. For example, m

0
 and m

2
 form 

adjacent squares, as do m
3
 and m

11
. The combination of adjacent squares that is useful during the 

simplification process is easily determined from inspection of the four-variable map:

One square represents one minterm, giving a term of four literals. 

Two adjacent squares represent a term of three literals. 

Four adjacent squares represent a term of two literals. 

Eight adjacent squares represent a term of one literal. 

Sixteen adjacent squares represent the function equal to 1.

No other combination of squares can simplify the function. The following two examples show 
the procedure used to simplify four-variable Boolean functions.

yz
00 01 11 10

y

x

z

0

1 1 1

11

x
1

Figure 3.7 f(x,y,z) = ∑(0,2,4,5,6) = z′ + xy′

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

w′x′y′z′

w′xy′z′ w′xy′z w′xyz w′xyz′

wxy′z′ wxy′z wxyz wxyz′

wx′y′z′ wx′y′z wx′yz wx′yz′

w′x′y′z w′x′yz w′x′yz′

yz

wx 00

00

01

01

11

11

10

10

y

w

x

(a) (b)

Figure 3.8 Four-variable map
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EXAMPLE 3-5: Simplify the Boolean function;

F(w, x,y, z) = ∑(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)

Since the Function has four variables, a four-variable map must be used. The minterms listed 
in the sum are marked by l’s in the map of Fig. 3-9. Eight adjacent squares marked with l’s 
can be combined to form the one literal term y′. The remaining three l’s on the right cannot be 
combined together to give a simplified term. They must be combined as two or four adjacent 
squares. The larger the number of squares combined, the less the number of literals in the 
term. In this example, the top two l’s on the right are combined with the top two l’s on the left 
to give the term w′z′. Note that it is permissible to use the same square more than once. We are 
now left with a square marked by 1 in the third row and fourth column (square 1110). Instead 
of taking this square alone (which will give a term of four literals), we combine it with squares 
already used to form an area of four adjacent squares. These squares comprise the two middle 
rows and the two end columns, giving the term xz′. The simplified function is:

F = y′ + w′z′ + xz′

EXAMPLE 3-6: Simplify the Boolean function:

F = A′B′C′ + B′CD′ + A′BCD′ + AB′C′

The area in the map covered by this function consists of the squares marked with l’s in  
Fig. 3-10. This function has four variables and, as expressed, consists of three terms, each 
with three literals, and one term of four literals. Each term of three literals is represented in 
the map by two squares, For example, A′B′C′ is represented in squares 0000 and 0001. The 
function can be simplified in the map by taking the l’s in the four corners to give the term 
B′D′. This is possible because these four squares are adjacent when the map is drawn in a 
surface with top and bottom or left and right edges touching one another. The two left-hand 
1’s in the top row are combined with the two 1’s in the bottom row to give the term B′C′. 

yz

wx 00

00

01

1

1

1

1

1 1

1

1

1

1

1

01

11

11

10

10

y

z

w

x

Figure 3.9 Map for Example 3-5; F(w,x,y,z) = ∑(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y′ + w′z′ + xz′
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The remaining 1 may be combined in a two-square area to give the term A′CD′. The simpli-
fied function is:

F = B′D′ + B′C + A′CD′

3.4 Five- and Six-Variable Maps

Maps of more than four variables are not as simple to use. The number of squares becomes ex-
cessively large and the geometry for combining adjacent squares becomes more involved. The 
number of squares is always equal to the number of minterms. For five-variable maps, we need 
32 squares; for six-variable maps, we need 64 squares. Maps with seven or more variables need 
too many squares. They are impractical to use. The five- and six-variable maps are shown in Figs. 
3-11 and 3-12, respectively. The rows and columns are numbered in a reflected-code sequence; 
the minterm assigned to each square is read from these numbers. In this way, the square in the 
third row (11) and second column (001), in the five-variable map, is number 11001, the equiva-
lent of decimal 25. Therefore, this square represents minterm m

25
. The letter symbol of each 

variable is marked along those squares where the corresponding bit value of the reflected-code 

CD
AB 00

00

01

1

1

1
1

1

11

01

11

11

10

10

C

D

A

B

Figure 3.10 Map for Example 3-6: A′B′C′ + B′CD + A′BCD′ + AB′C′ = B′D′ + B′C′ + A′CD′

CDE

AB 00

00

01

0 1 3 2

8 9 11 10

24 25 27 26

16 17 19 18

01

11

11

10 110 111

6 7 5 4

14 15 13 12

30 31 29 28

22 23 21 20

101 100

10

C

D

B

E E

A

Figure 3.11 Five-variable map
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number is a 1. For example, in the five-variable map, the variable A is a 1 in the last two rows; B is 
a 1 in the middle two rows. The reflected numbers in the columns show variable C with a 1 in the 
rightmost four columns, variable D with a 1 in the middle four columns, and the 1’s for variable 
E not physically adjacent but split in two parts. The variable assignment in the six-variable map 
is determined similarly.

The definition of adjacent squares for the maps of Figs. 3-11 and 3-12 must be modified 
again to take into account the fact that some variables are split into two parts. The five-variable 
map must be thought to consist of two four-variable maps, and the six-variable map to consist 
of four four-variable maps. Each of these four-variable maps is recognized from the double lines 
in the center of the map; each retains the previously defined adjacency when taken individually. 
In addition, the center double line must be considered as the center of a book, with each half of 
the map being a page. When the book is closed, two adjacent squares will fall one on the other. 
In other words, the center double line is like a mirror with each square being adjacent, not only 
to its four neighboring squares, but also to its mirror image. For example, minterm 31 in the 
five-variable map is adjacent to minterms 30, 15, 29, 23, and 27. The same minterm in the six-
variable map is adjacent to all these minterms plus minterm 63.

From inspection, and taking into account the new definition of adjacent squares, it is possi-
ble to show that any 2k adjacent squares, for k = 0, 1, 2, . . . , n, in an n-variable map, will represent 
an area that gives a term of n - k literals. For the above statement to have any meaning, n must 
be larger than k. When n = k, the entire area of the map is combined to give the identity function. 
Table 3-1 shows the relationship between the number of adjacent squares and the number of 
literals in the term. For example, eight adjacent squares combine an area in the five-variable map 
to give a term of two literals.

DEF

ABC
000 001

0 1 3 2

8 9 11 10

24 25 27 26

16 17 19 18

011 010 110 111

6 7 5 4

14 15 13 12

30 31 29 28

22 23 21 20

101 100

000

001

011

010

110

111

101

100

D

A

FF

E

B

C

C

48 49 51 50

56 57 59 58

40 41 43 42

32 33 35 34

54 55 53 52

62 63 61 60

46 47 45 44

38 39 37 36

Figure 3.12 Six-variable map
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EXAMPLE 3-7: Simplify the Boolean function:

F(A, B, C, D, E) = ∑(0, 2, 4, 6, 9, 11, 13, 15, 17, 21, 25, 27, 29, 31)

The five-variable map of this function is shown in Fig. 3-13. Each minterm is converted to 
its equivalent binary number and the 1’s are marked in their corresponding squares. It is now 
necessary to find combinations of adjacent squares that will result in the largest possible area. 
The four squares in the center of the right-half map are reflected across the double line and are 
combined with the four squares in the center of the left-half map to give eight allowable adja-
cent squares equivalent to the term BE. The two l’s in the bottom row are the reflection of each 
other about the center double line. By combining them with the other two adjacent squares, 
we obtain the term AD′E. The four l’s in the top row are all adjacent and can be combined to 
give the term A′B′E′. All the l’s are now included. The simplified function is:

F = BE + AD′E + A′B′E′

Table 3-1 The relationship between the number of adjacent squares and the number of  
literals in the term

Number of adjacent  
squares Number of literals in a term in an n-variable map

k 2k n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

0 1 2 3 4 5 6 7

1 2 1 2 3 4 5 6

2 4 0 1 2 3 4 5

3 8 0 1 2 3 4

4 16 0 1 2 3

5 32 0 1 2

6 64 0 1

00

1

1

1

1

1

1

1

1 1

1

1

01

11

10

B

A

1 1

CDE

AB 110 111 101 100000 001 011 010

C

D

E E

Figure 3.13 Map for Example 3.7; F(A, B, C, D, E) = (0, 2, 4, 6, 9, 11, 13, 15, 17, 21, 25, 27, 
29, 31) = BE + AD′E + A′B′E′
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3.5 Product of Sums Simplification

The minimized Boolean functions derived from the map in all previous examples were expressed 
in the sum of products form. With a minor modification, the product of sums form can be obtained.

The procedure for obtaining a minimized function in product of sums follows from the 
basic properties of Boolean functions. The 1’s placed in the squares of the map represent the 
minterms of the function. The minterms not included in the function denote the complement of 
the function. From this we see that the complement of a function is represented in the map by 
the squares not marked by 1’s. If we mark the empty squares by 0’s and combine them into valid 
adjacent squares, we obtain a simplified expression of the complement of the function, i.e., of 
F′. The complement of F′ gives us back the function F. Because of the generalized DeMorgan’s 
theorem, the function so obtained is automatically in the product of sums form. The best way to 
show this is by example.

EXAMPLE 3-8: Simplify the following Boolean function in (a) sum of products and (b) 
product of sums.

F (A, B, C, D) = ∑(0, 1, 2, 5, 8, 9, 10)

The 1’s marked in the map of Fig. 3-14 represent all the minterms of the function. The squares 
marked with 0’s represent the minterms not included in F and therefore denote the comple-
ment of F. Combining the squares with 1’s gives the simplified function in sum of products:

(a) F = B′D′ + B′C′ + A′C′D
If the squares marked with 0’s are combined, as shown in the diagram, we obtain the simpli-
fied complemented function:

F′ = AB + CD + BD′

Applying DeMorgan’s theorem (by taking the dual and complementing each literal as de-
scribed in Section 2-4), we obtain the simplified function in product of sums:

(b) F = (A′ + B′) (C′ + D′) (B′ + D)

00
1 1 0 1

0 1 0 0

0 0 0 0

1 1 0 1

01

11

10
A

CD C

D

B

AB
000 001 011 010

Figure 3.14 Map for Example 3.8; F(A, B, C, D) = ∑ (0, 1, 2, 5, 8, 9, 10) = B′ D′ + B′ C′ + A′ C′ 
D′ = (A′ + B′)(C′ + D′)(B′ + D)
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The implementation of the simplified expressions obtained in Example 3-8 is shown in 
Fig. 3-15. The sum of products expression is implemented in (a) with a group of AND gates, 
one for each AND term. The outputs of the AND gates are connected to the inputs of a single 
OR gate. The same function is implemented in (b) in its product of sums form with a group of 
OR gates, one for each OR term. The outputs of the OR gates are connected to the inputs of a 
single AND gate, in each case, it is assumed that the input variables are directly available in their 
complement, so inverters are not needed. The configuration pattern established in Fig. 3-15 is 
the general form by which any Boolean function is implemented when expressed in one of the 
standard forms. AND gates are connected to a single UR gate when in sum of products; OR gates 
are connected to a single AND gate when in product of sums. Either configuration forms two 
levels of gates. Thus, the implementation of a function in a standard form is said to be a two-level 
implementation.

Example 3-8 showed the procedure for obtaining the product of sums simplification when 
the function is originally expressed in the sum of minterms canonical form. The procedure is also 
valid when the function is originally expressed in the product of maxterm canonical form. Con-
sider, for example, the truth table that defines the function F in Table 3-2. In sum of minterms, 
this function is expressed as:

F (x, y, z) = ∑(1,3,4,6)

B′

C′

A′

F
D′

D

B′
D′

C′

A′
D

F

                   (a) F = B′D′ + B′C′ + A′C′D      (b) F = (A′ + B′)(C′ + D′)(B′ + D)

Figure 3.15 Gate implementation of the function of Example 3-8

Table 3-2 Truth table of function F

x y z F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0
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In product of maxterms, it is expressed as:

F (x, y, z) = ∏ (0, 2, 5, 7)

In other words, the 1’s of the function represent the minterms, and the 0’s represent the maxterms. 
The map for this function is drawn in Fig. 3-16. One can start simplifying this function by first 
marking the 1’s for each minterm that the function is a 1. The remaining squares are marked by 
0’s. If, on the other hand, the product of maxterms is initially given, one can start marking 0’s in 
those squares listed in the function; the remaining squares are then marked by 1’s. Once the 1’s 
and 0’s are marked, the function can be simplified in either one of the standard forms. For the sum 
of products, we combine the 1’s to obtain:

F = x′ z + x z′

For the product of sums, we combine the 0’s to obtain the simplified complemented function:

F′ = x z + x′z′

which shows that the exclusive-OR function is the complement of the equivalence function (Sec-
tion 2-6). Taking the complement of F′, we obtain the simplified function in product of sums:

F = (x′ + z′) (x + z)

To enter a function expressed in product of sums in the map, take the complement of the function 
and from it find the squares to be marked by 0’s. For example, the function:

F = (A′ + B′ + C)(B + D)

can be entered in the map by first taking its complement:

F′ = ABC′ + B′D′

and then marking 0’s in the squares representing the minterms of F′. The remaining squares are 
marked with 1’s.

3.6 NaNd and Nor Implementation

Digital circuits are more frequently constructed with NAND or NOR gates than with AND and 
OR gates. NAND and NOR gates are easier to fabricate with electronic components and are the 

yz
00 01 11 10

y

x

z

0

1

1 1 1 0

1 0 0 1x

Figure 3.16 Map for the function of Table 3.2
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basic gates used in all IC digital logic families. Because of the prominence of NAND and NOR 
gates in the design of digital circuits, rules and procedures have been developed for the conver-
sion from Boolean functions given in terms of AND, OR, and NOT into equivalent NAND or 
NOR logic diagrams. The procedure for two-level implementation is presented in this section. 
Multilevel implementation is discussed in Section 4-7.

To facilitate the conversion to NAND and NOR logic, it is convenient to define two oth-
er graphic symbols for these gates. Two equivalent symbols for the NAND gate are shown in  
Fig. 3-17(a). The AND-invert symbol has been defined previously and consists of an AND graph-
ic symbol followed by a small circle. Instead, it is possible to represent a NAND gate by an 
OR graphic symbol preceded by small circles in all the inputs. The invert-OR symbol for the 
NAND gate follows from DeMorgan’s theorem and from the convention that small circles denote 
complementation.

Similarly, there are two graphic symbols for the NOR gate as shown in Fig. 3-17(b). The 
OR-invert is the conventional symbol. The invert-AND is a convenient alternative that utilizes 
DeMorgan’s theorem and the convention that small circles in the inputs denote complementation.

A one-input NAND or NOR gate behaves like an inverter. As a consequence, an inverter 
gate can be drawn in three different ways as shown in Fig. 3-17(c). The small circles in all inverter 
symbols can be transferred to the input terminal without changing the logic of the gate.

It should be pointed out that the alternate symbols for the NAND and NOR gates could 
be drawn with small triangles in all input terminals instead of the circles. A small triangle is a 
negative-logic polarity indicator (see Section 2-8 and Fig. 2-11). With small triangles in the input 
terminals, the graphic symbol denotes a negative-logic polarity for the inputs, but the output of 
the gate (not having a triangle) would have a positive-logic assignment. In this book, we prefer to 
stay with positive logic throughout and employ small circles when necessary to denote comple-
mentation.

x
y
z

Invert-OR

F = x′ + y′ + z′ = (xyz)′
x

AND- invert

F = (xyz)′y
z

(a) Two grapic symbol for NAND gate

x
y
z

x
y
z

F = (x + y + z)′

OR-Invert

F = x′y′z′ = (x + y + z)′

invert-AND

(b) Two grapic symbols for NOR gate.

AND- invertBuffer- invert

x xx′ x′

OR-Invert

x x′

(c) Three grapic symbols for inverter.

Figure 3.17 Graphic symbols for NAND and NOR gates
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3.6.1 NAND Implementation

The implementation of a Boolean function with NAND gates requires that the function be sim-
plified in the sum of products form. To see the relationship between a sum of products expression 
and its equivalent NAND implementation, consider the logic diagrams drawn in Fig. 3-18. All 
three diagrams are equivalent and implement the function:

F = AB + CD + E

The function is implemented in Fig. 3-18 (a) in sum of products form with AND and OR gates. 
In (b) the AND gates are replaced by NAND gates and the OR gate is replaced by a NAND gate 
with an invert-OR symbol. The single variable E is complemented and applied to the second-lev-
el invert-OR gate. Remember that a small circle denotes complementation. Therefore, two circles 
on the same line represent double complementation and both can be removed. The complement 
of E goes through a small circle which complements the variable again to produce the normal 
value of E. Removing the small circles in the gates of Fig. 3-18 (b) produces the circuit in (a). 
Therefore, the two diagrams implement the same function and are equivalent.

In Fig. 3-18 (c), the output NAND gate is redrawn with the conventional symbol. The one-
input NAND gate complements variable E. It is possible to remove this inverter and apply E′ 
directly to the input of the second-level NAND gate. The diagram in (c) is equivalent to the one in 
(b), which in turn is equivalent to the diagram in (a). Note the similarity between the diagrams in 
(a) and (c). The AND and OR gates have been changed to NAND gates, but an additional NAND 
gate has been included with the single variable E. When drawing NAND logic diagrams, the 
circuit shown in either (b) or (c) is acceptable. The one in (b), however, represents a more direct 
relationship to the Boolean expression it implements.

The NAND implementation in Fig. 3-18(c) can be verified algebraically. The NAND function 
it implements can be easily converted to a sum of products form by using DeMorgan’s theorem:

F = [(AB)′ • (CD)′ • E′]′ = AB + CD + E

From the transformation shown in Fig. 3-18, we conclude that a Boolean function can be 
implemented with two levels of NAND gates. The rule for obtaining the NAND logic diagram 
from a Boolean function is as follows:

1. Simplify the function and express it in sum of products.

2. Draw a NAND gate for each product term of the function that has at least two literals. The 
inputs to each NAND gate are the literals of the term, This constitutes a group of first-level 
gates.

F

A

C

D

E

B

F

A

C

D

E

B

A

F
C

D

E

B

(a) (c)(b)

Figure 3.18 Three ways to implement F = AB + CD + E
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3. Draw a single NAND gate (using the AND-invert or invert-OR graphic symbol) in the 
second level, with inputs coming from outputs of first-level gates.

4. A term with a single literal requires an inverter in the first level or may be complemented 
and applied as an input to the second-level NAND gate.

Before applying these rules to a specific example, it should be mentioned that there is a 
second way to implement a Boolean function with NAND gates. Remember that if we combine 
the 0’s in a map, we obtain the simplified expression of the complement of the function in sum 
of products. The complement of the function can then be implemented with two levels of NAND 
gates using the rules stated above. If the normal output is desired, it would be necessary to insert 
a one-input NAND or inverter gate to generate the true value of the output variable. There are oc-
casions where the designer may want to generate the complement of the function; so this second 
method may be preferable.

EXAMPLE 3-9: Implement the following function with NAND gates:

F(x, y, z) = ∑ (0, 6)

The first step is to simplify the function in sum of products form. This is attempted with the 
map shown in Fig. 3-19(a). There are only two l’s in the map, and they cannot be combined. 
The simplified function in sum of products for this example is:

F = x′ y′ z′ + x y z′

The two-level NAND implementation is shown in Fig. 3-19(b). Next we try to simplify the 
complement of the function in sum of products. This is done by combining the 0’s in the map:

F′ = x′ y + x y′ + z

The two-level NAND gate for generating F′ is shown in Fig. 3-19(c). If output F is required, 
it is necessary to add a one-input NAND gate to invert the function. This gives a three-level 
implementation. In each case, it is assumed that the input variables are available in both the 
normal and complement forms. If they were available in only one form, it would be neces-
sary to insert inverters in the inputs, which would add another level to the circuits. The one-
input NAND gate associated with the single variable z can be removed provided the input is 
changed to z′.

3.6.2 NOR Implementation

The NOR function is the dual of the NAND function. For this reason, all procedures and rules 
for NOR logic are the dual of the corresponding procedures and rules developed for NAND  
logic.

The implementation of a Boolean function with NOR gates requires that the function be 
simplified in product of sums form. A product of sums expression specifies a group of OR gates 
for the sum terms, followed by an AND gate to produce the product. The transformation from 
the OR-AND to the NOR-NOR diagram is depicted in Fig. 3-20. It is similar to the NAND  
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transformation discussed previously, except that now we use the product of sums expression:

F = (A + B) (C + D) E

The rule for obtaining the NOR logic diagram from a Boolean function can be derived from 
this transformation. It is similar to the three-step NAND rule, except that the simplified expres-
sion must be in the product of sums and the terms for the first-level NOR gates are the sum terms. 
A term with a single literal requires a one-input NOR or inverter gate or may be complemented 
and applied directly to the second-level NOR gate.

yz
00 01 11 10

y

x

z

0

1

01 0 0

01 0 1x

F = x′y′z′ + xyz′

F = x′y + xy′ + z

(a) Map simplification in sum of products

F

y′

z′

x′

y

z′

x

(b) F = x′ y′ z′ + x y z

x′

F

F

x

y′

z

y

(c) F′ = x′ y + x y′ + z′

Figure 3.19 Implementation of the function of Example 3.9 with NAND gates
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E
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A

B

C
D

E

F

A

B
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D

E’

(c)(a) (b)

Figure 3.20 Three ways to implement F = (A + B) (C + D)E
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A second way to implement a function with NOR gates would be to use the expression for 
the complement of the function in product of sums. This will give a two-level implementation for 
F′ and a three-level implementation if the normal output F is required.

To obtain the simplified product of sums from a map, it is necessary to combine the 0’s in 
the map and then complement the function. To obtain the simplified product of sums expres-
sion for the complement of the function, it is necessary to combine the 1’s in the map and then 
complement the function. The following example demonstrates the procedure for NOR imple-
mentation.

EXAMPLE 3-10: Implement the function of Example 3-9 with NOR gates.
The map of this function is drawn in Fig. 3-19(a). First, combine the 0’s in the map to 

obtain:

F′ = x′ y + x y′ + z

This is the complement of the function in sum of products. Complement F′ to obtain the sim-
plified function in product of sums as required for NOR implementation:

F = (x + y′) (x′ + y) z′

The two-level implementation with NOR gates is shown in Fig. 3-21(a). The term with a 
single literal z′ requires a one-input NOR or inverter gate. This gate can be removed and input 
z applied directly to the input of the second-level NOR gate.

A second implementation is possible from the complement of the function in product of 
sums. For this case, first combine the 1’s in the map to obtain:

F = x′ y′ z′ + x y z′

This is the simplified expression in sum of products. Complement this function to obtain the 
complement of the function in product of sums as required for NOR implementation:

F′ = (x + y + z) (x′ +y′ + z)

The two-level implementation for F′ is shown in Fig. 3-21(b). If output F is desired, it can be 
generated with an inverter in the third level.

F

x

y´

x´
y

z’

x’

F’

F

x

y’

z

z

y

(a) F = (x + y′) (x′ + y) z′ (b) F′ = (x + y + z) (x′ + y′ + z)

Figure 3.21 Implementation with NOR gate
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Table 3-3 summarizes the procedures for NAND or NOR implementation. One should not 
forget to always simplify the function in order to reduce the number of gates in the implementa-
tion. The standard forms obtained from the map simplification procedures apply directly and are 
very useful when dealing with NAND or NOR logic.

3.7 other Two-level Implementations

The types of gates most often found in integrated circuits are NAND and NOR. For this reason, 
NAND and NOR logic implementations are the most important from a practical-point of view. 
Some NAND or NOR gates (but not all) allow the possibility of a wire connection between the 
outputs of two gates to provide a specific logic function. This type of logic is called wired logic. 
For example, open-collector TTL NAND gates, when tied together, perform the wired-AND 
logic, (The open-collector TTL gate is shown in Chapter 13, Fig, 13-11). The wired-AND logic 
performed with two NAND gates is depicted in Fig. 3-22(a). The AND gate is drawn with the 
lines going through the center of the gate to distinguish it from a conventional gate. The wired-
AND gate is not a physical gate but only a symbol to designate the function obtained from the 
indicated wired connection. The logic function implemented by the circuit of Fig. 3-22(a) is:

F = (AB)′ • (CD)′ = (AB + CD)′

and is called an AND-OR-INVERT function.
Similarly, the NOR output of ECL gates can be tied together to perform a wired-OR func-

tion. The logic function implemented by the circuit of Fig. 3-22(b) is:

F = (A + B)′ + (C + D)′ = [(A + B) (C + D)]′

and is called an OR-AND-INVERT function.

Table 3-3 Rules for NAND and NOR implementation

Case
Function to 

simplify
Standard form to 

use How to derive
Implement 

with
Number of levels 

to F

(a) F Sum of products Combine 1’s in map NAND 2

(b) F′ Sum of products Combine 0’s in map NAND 3

(c) F Product of sums Complement F′ in (b) NOR 2

(d) F′ Product of sums Complement F in (a) NOR 3

F=(AB+CD)’
C

D

A

B
F={(A+B) (C+D)}’

x

y’

x
y

(a) Wired - And in open – collector 
TTL NAND gates

(AND - OR - INVERT)

(b) Wired-OR in ECL gates
(OR – AND - INVERT)

Figure 3.22 Wired logic
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A wired-logic gate does not produce a physical second-level gate since it is just a wire 
connection. Nevertheless, for discussion purposes, we will consider the circuits of Fig. 3-22 as 
two-level implementations. The first level consists of NAND (or NOR) gates and the second level 
has a single AND (or OR) gate. The wired connection in the graphic symbol will be omitted in 
subsequent discussions.

3.7.1 Nondegenerate Forms

It will be instructive from a theoretical point of view to find out how many two-level combina-
tions of gates are possible. We consider four types of gates: AND, OR, NAND, and NOR. If we 
assign one type of gate for the first level and one type for the second level, we find that there 
are 16 possible combinations of two-level forms. (The same type of gate can be in the first and 
second levels, as in NAND-NAND implementation.) Eight of these combinations are said to be 
degenerate forms because they degenerate to a single operation. This can be seen from a circuit 
with AND gates in the first level and an AND gate in the second level. The output of the circuit 
is merely the AND function of all input variables.

The other eight nondegenerate forms produce an implementation in sum of products or 
product of sums. The eight nondegenerate forms are:

AND-OR  OR-AND
NAND-NAND  NOR-NOR
NOR-OR  NAND-AND
OR-NAND  AND-NOR

The first gate listed in each of the forms constitutes a first level in the implementation. The sec-
ond gate listed is a single gate placed in the second level. Note that any two forms listed in the 
same line are the duals of each other.

The AND-OR and OR-AND forms are the basic two-level forms discussed in Section 3-5. 
The NAND-NAND and NOR-NOR were introduced in Section 3-6. The remaining four forms 
are investigated in this section.

3.7.2 AND-OR-INVERT Implementation

The two forms NAND-AND and AND-NOR are equivalent forms and can be treated together. 
Both perform the AND-OR-INVERT function, as shown in Fig. 3-23. The AND-NOR form re-
sembles the AND-OR form with an inversion done by the small circle in the output of the NOR 
gate. It implements the function:

F = (AB + CD + E)′

A

F
C

D

E

B

A

F
C

D

E

B

A

F
C

D

E

B

(c) NAND – AND(b) AND – NOR(a) AND – NOR

Figure 3.23 AND – OR – INVERT circuits; F = (AB + CD + E)′
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By using the alternate graphic symbol for the NOR gate, we obtain the diagram of Fig. 
3-23(b). Note that the single variable E is not complemented because the only change made is 
in the graphic symbol of the NOR gate. Now we move the circles from the input terminal of the 
second-level gate to the output terminals of the first-level gates. An inverter is needed for the 
single variable to maintain the circle. Alternatively, the inverter can be removed provided input E 
is complemented. The circuit of Fig. 3-23(c) is a NAND - AND form and was shown in Fig. 3-22 
to implement the AND-OR-INVERT function.

An AND-OR implementation requires an expression in sum of products. The AND-OR-
INVERT implementation is similar except for the inversion. Therefore, if the complement of the 
function is simplified in sum of products (by combining the 0’s in the map), it will be possible to 
implement F′ with the AND-OR part of the function. When F′ passes through the always present 
output inversion (the INVERT part), it will generate the output F of the function. An example for 
the AND-OR-INVERT implementation will be shown subsequently.

3.7.3 OR-AND-INVERT Implementation

The OR-NAND and NOR-OR forms perform the OR-AND-INVERT function. This is shown in 
Fig. 3-24, The OR-NAND form resembles the OR-AND form, except for the inversion done by 
the circle in the NAND gate. It implements the function:

F = [(A + B) (C + D) E]′

By using the alternate graphic symbol for the NAND gate, we obtain the diagram of Fig. 
3-24(b). The circuit in (c) is obtained by moving the small circles from the inputs of the second-
level gate to the outputs of the first-level gates. The circuit of Fig. 3-24(c) is a NOR-OR form and 
was shown in Fig. 3-22 to implement the OR-AND-INVERT function.

The OR-AND-INVERT implementation requires an expression in product of sums. If the 
complement of the function is simplified in product of sums, we can implement F′ with the OR-
AND part of the function. When F′ passes through the INVERT part, we obtain the complement 
of F′, or F, in the output.

3.7.4 Tabular Summary and Example

Table 3-4 summarizes the procedures for implementing a Boolean function in any one of the four 
two-level forms. Because of the INVERT part in each case, it is convenient to use the simplifica-
tion of F′ (the complement) of the function. When F′ is implemented in one of these forms, we 
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(a) OR – NAND (b) OR – NAND (c) NOR – OR

Figure 3.24 OR – AND – INVERT circuits; F = [(A + B) (C + D) E]′
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obtain the complement of the function in the AND-OR or OR-AND form. The four two-level 
forms invert this function, giving an output which is the complement of F′. This is the normal 
output F.

EXAMPLE 3-11: Implement the function of Fig. 3-19(a) with the four two-level forms listed 
in Table 3-4. The complement of the function is simplified in sum of products by combining 
the 0’s in the map:

F′ = x′ y + x y′ + z

The normal output for this function can be expressed as

F = (x′ y + x y′ + z)′

which is in the AND-OR-INVERT form. The AND-NOR and NAND-AND implementations 
are shown in Fig. 3-25(a). Note that a one-input NAND or inverter gate is needed in the 
NAND-AND implementation, but not in the AND-NOR case. The inverter can be removed if 
we apply the input variable z′ instead of z.

The OR-AND-INVERT forms require a simplified expression of the complement of the 
function in product of sums. To obtain this expression, we must first combine the 1’s in the 
map:

F = x′ y′ z′ + x y z′

Then we take the complement of the function:

F′ = (x + y + z) (x′ + y′ + z)

The normal output F can now be expressed in the form:

F = [(x + y + z)(x′ + y′ + z)]′

which is in the OR-AND-INVERT form. From this expression we can implement the function 
in the OR-NAND and NOR-OR forms as shown in Fig. 3-25(b).

Table 3-4 Implementation with other two-level forms

Equivalent 
nondegenerate 

form

Implements 
the 

function

Simplify 

F′ 
in

To get an 
output of

       (a)                     (b)*

AND-NOR     NAND - AND AND-OR-INVERT Sum of products by combining 
0’s in the map

F

OR-NAND      NOR-OR OR-AND-INVERT Product of sums by combining 
1’s in the map and then com-
plementing

F

*Form (b) requires a one-input NAND or NOR (inverter) gate for a single literal term.
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3.8 don’t-care Conditions

The 1’s and 0’s in the map signify the combination of variables that makes the function equal to 
1 or 0, respectively. The combinations are usually obtained from a truth table that lists the condi-
tions under which the function is a 1. The function is assumed equal to 0 under all other condi-
tions. This assumption is not always true since there are applications where certain combinations 
of input variables never occur. A four-bit decimal code, for example, has six combinations which 
are not used. Any digital circuit using this code operates under the assumption that these unused 
combinations will never occur as long as the system is working properly. As a result, we don’t 
care what the function output is to be for these combinations of the variables because they are 
guaranteed never to occur. These don’t-care conditions can be used on a map to provide further 
simplification of the function.

It should be realized that a don’t-care combination cannot be marked with a 1 on the map 
because it would require that the function always be a 1 for such input combination. Likewise, 
putting a 0 in the square requires the function to be 0. To distinguish the don’t-care conditions 
from 1’s and 0’s, an X will be used.

When choosing adjacent squares to simplify the function in the map, the X’s may be as-
sumed to be either 0 or 1, whichever gives the simplest expression. In addition, an X need not be 
used at all if it does not contribute to covering a larger area. In each case, the choice depends only 
on the simplification that can be achieved.

AND-NOR NAND-AND

(a) F = (x′ y + x y′ + z)′

F

x’

x

y’

z

y

x’

F
x

y’

z

y
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y

z

x

y’

z

x’

F

y

z

x

y’

z

x’

OR-NAND NOR-OR

(b) F = [(x + y + z) (x′ + y′ + z)]′

Figure 3.25 Other two-level implementations
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EXAMPLE 3-12: Simplify the Boolean function:

F(w, x, y, z) = ∑(1,3, 7, 11, 15)

and the don’t-care conditions:

d(w, x, y, z) = ∑(0, 2, 5)

The minterms of F are the variable combinations that make the function equal to 1. The 
minterms of d are the don’t-care combinations known never to occur. The minimization is 
shown in Fig. 3-26. The minterms of F are marked by 1’s, those of d are marked by X’s, and 
the remaining squares are filled with 0’s. In (a), the 1’s and X’s are combined in any conve-
nient manner so as to enclose the maximum number of adjacent squares. It is not necessary 
to include all or any of the X’s, but only those useful for simplifying a term. One combination 
that gives a minimum function encloses one X and leaves two out. This results in a simplified 
sum-of-products function:

F = w′ z + y z

In (b), the 0’s are combined with any X’s convenient to simplify the complement of the func-
tion. The best results are obtained if we enclose the two X’s as shown. The complement func-
tion is simplified to:

F′ =  z′ + w y′

Complementing again, we obtain a simplified product of sums function:

F =  z (w′ + y)

The two expressions obtained in Example 3-12 give two functions which can be shown to 
be algebraically equal. This is not always the case when don’t-care conditions are involved. As 

Figure 3.26 Example with don’t-care conditions
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(b) Combining 0′s and X′s F = z (w′ + y)
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a matter of fact, if an X is used as a 1 when combining the 1’s and again as a 0 when combining 
the 0’s, the two resulting functions will not yield algebraically equal answers. The selection of the 
don’t-care condition as a 1 in the first case and as a 0 in the second results in different minterm 
expressions and thus different functions. This can be seen from Example 3-12. In the solution of 
this example, the X chosen to be a 1 was not chosen to be a 0. Now, if in Fig. 3-26(a) we choose 
the term w′ x′ instead of w′ z, we still obtain a minimized function:

F = w′ x′ + y z

But it is not algebraically equal to the one obtained in product of sums because the same X’s 
are used as 1’s in the first minimization and as 0’s in the second.

This example also demonstrates that an expression with the minimum number of literals is 
not necessarily unique. Sometimes the designer is confronted with a choice between two terms 
with an equal number of literals, with either choice resulting in a minimized expression.

More SolVed ProbleMS

Simplify by K-Map

1. Simplify the following equation by K-Map

 F(A, B, C) = ∑m(0, 2, 4) + ∑d(1, 3, 5, 6, 7)

  

BC

00 01 11 10A

X X

1 X X 1
2

6

3

7

1

5

0

4

X X

0

1

 F(A, B, C) = C′
2. Simplify π(0, 2, 3.6) by K-Map

  

BC

00 01 11 10A
2

6

3

7

1

5

0

4

0
0 0

0

0

1

 f = (A + C) (A + B′) (B′ + C)

3. Simplify the following equation by K-Map

 F(A, B, C, D) = ∑m(2, 4, 5, 13, 14) + ∑d(0, 1, 
8, 10)

  

CD

X X

X

AB
00

00

01

01 1 1

1
1

1

11

11

10

10

2

6

3

7

1

5

0

4

14

10

15

11

13

9

12

8

 Ans. F = A′C′ + BC′D + B′CD′ + ACD′

3.9 The Tabulation Method

The map method of simplification is convenient as long as the number of variables does not ex-
ceed five or six. As the number of variables increases, the excessive number of squares prevents 
a reasonable selection of adjacent squares. The obvious disadvantage of the map is that it is es-
sentially a trial-and-error procedure which relies on the ability of the human user to recognize 
certain patterns. For functions of six or more variables, it is difficult to be sure that the best selec-
tion has been made.
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The tabulation method overcomes this difficulty. It is a specific step-by-step procedure that 
is guaranteed to produce a simplified standard-form expression for a function. It can be applied 
to problems with many variables and has the advantage of being suitable for machine computa-
tion. However, it is quite tedious for human use and is prone to mistakes because of its routine, 
monotonous process. The tabulation method was first formulated by Quine (3) and later im-
proved by McCluskey (4). It is also known as the Quine-McCluskey method.

The tabular method of simplification consists of two parts. The first is to find by an exhaus-
tive search all the terms that are candidates for inclusion in the simplified function. These terms 
are called prime-implicants. The second operation is to choose among the prime-implicants 
those that give an expression with the least number of literals.

3.10 determination of Prime-implicants

The starting point of the tabulation method is the list of minterms that specify the function. The 
first tabular operation is to find the prime-implicants by using a matching process. This process 
compares each minterm with every other minterm. If two minterms differ in only one variable, 
that variable is removed and a term with one less literal is found. This process is repeated for 
every minterm until the exhaustive search is completed. The matching-process cycle is repeated 
for those new terms just found. Third and further cycles are continued until a single pass through 
a cycle yields no further elimination of literals. The remaining terms and all the terms that did not 
match during the process comprise the prime-implicants. This tabulation method is illustrated by 
the following example.

EXAMPLE 3-13: Simplify the following Boolean function by using the tabulation method:

F = ∑(0, 1, 2, 8, 10, 11, 14, 15)

Step 1: Group binary representation of the minterms according to the number of 1’s 
contained, as shown in Table 3-5, column (a). This is done by grouping the minterms into five 
sections separated by horizontal lines. The first section contains the number with no 1’s in it. 
The second section contains those numbers that have only one 1, The third, fourth, and fifth 
sections contain those binary numbers with two, three, and four 1’s, respectively. The decimal 
equivalents of the minterms are also carried along for identification.

Step 2: Any two minterms which differ from each other by only one variable can be 
combined, and the unmatched variable removed. Two minterm numbers fit into this category 
if they both have the same bit value in all positions except one. The minterms in one section 
are compared with those of the next section down only, because two terms differing by more 
than one bit cannot match. The minterm in the first section is compared with each of the three 
minterms in the second section. If any two numbers are the same in every position but one, a 
check is placed to the right of both minterms to show that they have been used. The resulting 
term, together with the decimal equivalents, is listed in column (b) of the table. The vari-
able eliminated during the matching is denoted by a dash in its original position. In this case 
m

0
 (0000) combines with m

1
, (0001) to form (000 -). This combination is equivalent to the  
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algebraic operation:

m
0
 + m

1
 = w′ x′ y′ z′ + w′ x′ y′ z = w′ x′ y′

Minterm m
0
 also combines with m

2
 to form (00-0) and with m

8
 to form (-000). The result of 

this comparison is entered into the first section of column (b). The minterms of sections two 
and three of column (a) are next compared to produce the terms listed in the second section of 
column (b). All other sections of (a) are similarly compared and subsequent sections formed 
in (b). This exhaustive comparing process results in the four sections of (b).

Step 3: The terms of column (b) have only three variables. A 1 under the variable means 
it is unprimed, a 0 means it is primed, and a dash means the variable is not included in the 
term. The searching and comparing process is repeated for the terms in column (b) to form 
the two-variable terms of column (c). Again, terms in each section need to be compared only 
if they have dashes in the same position. Note that the term (000-) does not match with any 
other term. Therefore, it has no check mark at its right. The decimal equivalents are written 
on the left-hand side of each entry for identification purposes. The comparing process should 
be carried out again in column (c) and in subsequent columns as long as proper matching is 
encountered. In the present example, the operation stops at the third column.

Step 4: The unchecked terms in the table form the prime-implicants. In this example 
we have the term w′ x′ y′ (000-) in column (b), and the terms x′ z′(-0-0) and wy (1-1-) in 
column (c). Note that each term in column (c) appears twice in the table, and as long as the 
term forms a prime-implicants, it is unnecessary to use the same term twice. The sum of the 
prime-implicants gives a simplified expression for the function. This is because each checked 
term in the table has been taken into account by an entry of a simpler term in a subsequent 
column. Therefore, the unchecked entries (prime-implicants) are the terms left to formulate 
the function. For the present example, the sum of prime-implicants gives the minimized func-
tion in sum of products:

F = w′ x′ y′ + x′ z′ + w y

Table 3-5 Determination of prime-implicants for Example 3-13

(a) (b) (c)

        w x y z              w x  y  z                         w  x  y  z

0        0 0 0 0 √ 0,   1     0  0   0  -
0,   2     0  0   - 0 √

0,   2,   8,   10   - 0  –  0
0,   8,   2,   10   - 0  - 0

1        0 0 0 1 √
2        0 0 1 0 √

0,   8     - 0  0  0 √ 10,  11, 14,  15     1   - 1   -
10,  14,  11, 15    1   - 1   -

8       1 0 0 0 √ 2,    10   - 0  1   0 √
8,    10   1  0  -  0 √

10   1 0 1 0 √
10, 11   1   0  1  - √

11   1 0 1 1 √
14    1 1 1 0 √

10, 14   1  - 1  0 √

15     1 1 1 1 √
11, 15   1  - 1  1 √
14, 15   1 1   1  - √
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It is worth comparing this answer with that obtained by the map method. Figure 3-27 shows 
the map simplification of this function. The combinations of adjacent squares give the three 
prime-implicants of the function. The sum of these three terms is the simplified expression in 
sum of products.

It is important to point out that Example 3-13 was purposely chosen to give the simplified 
function from the sum of prime-implicants. In most other cases, the sum of prime-implicants 
does not necessarily form the expression with the minimum number of terms. This is demon-
strated in Example 3-14.

The tedious manipulation that one must undergo when using the tabulation method is re-
duced if the comparing is done with decimal numbers instead of binary. A method will now be 
shown that uses subtraction of decimal numbers instead of the comparing and matching of binary 
numbers. We note that each 1 in a binary number represents the coefficient multiplied by a power 
of 2. When two minterms are the same in every position except one, the minterm with the extra 
1 must be larger than the number of the other minterm by a power of 2. Therefore, two mint-
erms can be combined if the number of the first minterm differs by a power of 2 from a second 
larger number in the next section down the table. We shall illustrate this procedure by repeating  
Example 3-13.

As shown in Table 3-6, column (a), the minterms are arranged in sections as before, except 
that now only the decimal equivalents of the minterms are listed. The process of comparing min-
terms is as follows: Inspect every two decimal numbers in adjacent sections of the table. If the 
number in the section below is greater than the number in the section above by a power of 2 (i.e., 
1, 2, 4, 8, 16, etc.), check both numbers to show that they have been used, and write them down 
in column (b). The pair of numbers transferred to column (b) includes a third number in paren-
theses that designates the power of 2 by which the numbers differ. The number in parentheses 
tells us the position of the dash in the binary notation. The result of all comparisons of column 
(a) is shown in column (b).

The comparison between adjacent sections in column (b) is carried out in a similar fashion, 
except that only those terms with the same number in parentheses are compared. The pair of 
numbers in one section must differ by a power of 2 from the pair of numbers in the next section. 
And the numbers in the next section below must be greater for the combination to take place. In 

1 1

1

1

1

1

1

1

yz

wx 00

00

01

01

11

11

10

10

y

z

w

x

Figure 3.27 Map for the function of Example 3.13: F = w′ x′ y′ + x′ z′ + w y
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column (c), write all four decimal numbers with the two numbers in parentheses designating the 
positions of the dashes. A comparison of Tables 3-5 and 3-6 may be helpful in understanding the 
derivations in Table 3-6.

The prime-implicants are those terms not checked in the table. These are the same as be-
fore, except that they are given in decimal notation. To convert from decimal notation to binary, 
convert all decimal numbers in the term to binary and then insert a dash in those positions desi-
gnated by the numbers in parentheses. Thus 0, 1 (1) is converted to binary as 0000, 0001; a dash 
in the first position of either number results in (000-). Similarly, 0, 2, 8, 10 (2, 8) is converted to 
the binary notation from 0000, 0010, 1000, and 1010, and a dash inserted in positions 2 and 8, 
to result in (-0-0)

EXAMPLE 3-14: Determine the prime-implicants of the function:

F (w, x, y, z) = Σ(1, 4, 6, 7, 8, 9, 10, 11, 15)

The minterm numbers are grouped in sections as shown in Table 3-7, column (a). The binary 
equivalent of the minterm is included for the purpose of counting the number of 1’s. The 
binary numbers in the first section have only one 1; in the second section, two 1’s; etc. The 
minterm numbers are compared by the decimal method and a match is found if the number in 
the section below is greater than that in the section above. If the number in the section below 
is smaller than the one above, a match is not recorded even if the two numbers differ by a 
power of 2. The exhaustive search in column (a) results in the terms of column (b), with all 
minterms in column (a) being checked. There are only two matches of terms in column (b). 
Each gives the same two-literal term recorded in column (c). The prime-implicants consist of 
all the unchecked terms in the table. The conversion from the decimal to the binary notation 
is shown at the bottom of the table. The prime-implicants are found to be x′ y′ z, w′ x z′, w′ x 
y, x y z, w y z, and w x′.

Table 3-6 Determination of prime-implicants of  
Example 3-13 with decimal notation

(a) (b) (c)

0 √ 0,   1   (1) 0,   2,    8,  10 (2, 8)

0,   2   (2) √ 0,   2,    8,  10 (2, 8)

1 √ 0,   8   (8) √

2 √ 2,   10 (8) √ 10, 11, 14, 15 (1, 4)

8 √ 8,   10 (2) √ 10, 11, 14, 15 (1, 4)

10 √
10, 11 (1) √

11 √ 10, 14 (4) √

14 √

15 √ 11, 15 (4) √

14, 15 (1) √
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The sum of the prime-implicants gives a valid algebraic expression for the function. 
However, this expression is not necessaily the one with the minimum number of terms. This 
can be demonstrated from inspection of the map for the function of Example 3-14. As shown in  
Fig. 3-28, the minimized function is recognized to be:

F = x′ y′z + w′ x z′ + x y z + w x′

which consists of the sum of four of the six prime-implicants derived in Example 3-14. The tabu-
lar procedure for selecting the prime-implicants that give the minimized function is the subject 
of the next section.

3.11 Selection of Prime-implicants

The selection of prime-implicants that form the minimized function is made from a prime-im-
plicant table. In this table, each prime-implicant is represented in a row and each minterm in 
a column. Crosses are placed in each row to show the composition of minterms that make the 

Table 3-7 Determination of prime-implicants for Example 3-14

(a) (b) (c)

0001 1 √ 1,   9  (8) 8, 9, 10, 11 (1, 2) 

0100 4 √ 4,   6  (2) 8, 9, 10, 11 (1, 2)

1000 8 √ 8,   9  (1) √

8,   10 (2) √

0110 6 √

1001 9 √ 6,   7  (1)

1010 10 √ 9,   11 (2) √

10, 11 (1) √

0111 7 √

1011 11 √ 7,   15 (8)

11,15 (4)

1111 15 √

Prime-implicants

Decimal
Binary 
w  x y  z Term

1, 9 (8) -  0  0  1 x′ y′ z

4, 6 (2) 0  1  -  0 w′xz′

6, 7(1) 0  1  1    - w′xy

7, 15 (8) -  1 1   1 xyz

11, 15(4) 1  - 1   1 wyz

8, 9, 10, 11 (1, 2) 1  0  - - wx′
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1

1

11

1

1 1 1

1

yz

wx 00

00

01

01

11

11

10

10

y

z

w

x

Figure 3.28 Map for the function of Example 3.14; F = x′ y′ z + w′ x z′ + x y z + w x′

Table 3-8 Prime-implicant table for Example 3-15

1 4 6 7 8 9 10 11 15

√ x′ y′ z 1, 9 X X

√ w′ x z′ 4, 6 X X

   w′ x y 6, 7 X X

   x y z 7, 15 X X

   w y z 11, 15 X X

√ w x′ 8, 9, 10, 11 X X X X

√ √ √ √ √ √ √

prime-implicants. A minimum set of prime-implicants is then chosen that covers all the minterms 
in the function. This procedure is illustrated in Example 3-15.

EXAMPLE 3-15: Minimize the function of Example 3-14. The prime-implicant table for 
this example is shown in Table 3-8. There are six rows, one for each prime-implicant (derived 
in Example 3-14), and nine columns, each representing one minterm of the function. Crosses 
are placed in each row to indicate the minterms contained in the prime-implicant of that row. 
For example, the two crosses in the first row indicate that minterms 1 and 9 are contained in 
the prime-implicant x′ y′ z. It is advisable to include the decimal equivalent of the prime-im-
plicant in each row, as it conveniently gives the minterms contained in it. After all the crosses 
have been marked, we proceed to select a minimum number of prime-implicants.

The completed prime-implicant table is inspected for columns  containing only a single 
cross. In this example, there are four minterms whose columns have a single cross: 1, 4, 8, 
and 10. Minterm 1 is covered by prime-implicant x′ y′ z, i.e., the selection of prime-implicant 
x′ y′ z guarantees that minterm 1 is included in the function. Similarly, minterm 4 is covered 
by prime-implicant w′ x z′, and minterms 8 and 10, by prime-implicant w x′. Prime-implicants  
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The simplified expressions derived in the preceding examples were all in the sum of prod-
ucts form. The tabulation method can be adapted to give a simplified expression in product of 
sums. As in the map method, we have to start with the complement of the function by taking the 
0’s as the initial list of minterms. This list contains those minterms not included in the original 
function which are numerically equal to the maxterms of the function. The tabulation process 
is carried out with the 0’s of the function and terminates with a simplified expression in sum 
of products of the complement of the function. By taking the complement again, we obtain the 
simplified product of sums expression.

A function with don’t-care conditions can be simplified by the tabulation method after a 
slight modification. The don’t-care terms are included in the list of minterms when the prime-
implicants are determined. This allows the derivation of prime-implicants with the least number 
of literals. The don’t-care terms are not included in the list of minterms when the prime-impli-
cant table is set up, because don’t-care terms do not have to be covered by the selected prime- 
implicants.

3.12 Concluding remarks

Two methods of Boolean function simplification were introduced in this chapter. The criterion 
for simplification was taken to be the minimization of the number of literals in sum of products 
or product of sums expressions. Both the map and the tabulation methods are restricted in their 
capabilities since they are useful for simplifying only Boolean functions expressed in the stan-
dard forms. Although this is a disadvantage of the methods, it is not very critical. Most applica-
tions prefer the standard forms over any other form. We have seen from Fig. 3-15 that the gate 
implementation of expressions in standard form consists of no more than two levels of gates. 
Expressions not in the standard form are implemented with more than two levels. Humphrey (5) 
shows an extension of the map method that produces simplified multilevel expressions.

One should recognize that the reflected-code sequence chosen for the maps is not unique. It 
is possible to draw a map and assign a binary reflected-code sequence to the rows and columns 

that cover minterms with a single cross in their column are called essential prime-implicants. 
To enable the final simplified expression to contain all the minterms, we have no alternative 
but to include essential prime-implicants. A check mark is placed in the table next to the es-
sential prime-implicants to indicate that they have been selected.

Next we check each column whose minterm is covered by the selected essential prime-
implicants. For example, the selected prime-implicant x′ y′ z covers minterms 1 and 9. A 
check is inserted in the bottom of the columns. Similarly, prime-implicant w′ x z′ covers min-
terms 4 and 6, and w x′ covers minterms 8, 9, 10, and 11. Inspection of the prime-implicant 
table shows that the selection of the essential prime-implicants covers all the minterms of 
the function except 7 and 15. These two minterms must be included by the selection of one 
or more prime-implicants. In this example, it is clear that prime-implicant x y z covers both 
minterms and is therefore the one to be selected. We have thus found the minimum set of 
prime-implicants whose sum gives the required minimized function:

F = x′ y′ z + w′ x z′ + w x′ + x y z
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different from the sequence employed here. As long as the binary sequence chosen produces a 
change in only one bit between adjacent squares, it will produce a valid and useful map.

Two alternate versions of the three-variable maps which are often found in the digital logic 
literature are shown in Fig. 3-29. The minterm numbers are written in each square for reference. 
In (a), the assignment of the variables to the rows and columns is different from the one used in 
this book. In (b), the map has been rotated in a vertical position. The minterm number assign-
ment in all maps remains in the order x y z. For example, the square for minterm 6 is found by 
assigning to the ordered variables the binary number x y z = 110. The square for this minterm is 
found in (a) from the column marked x y = 11 and the row with z = 0. The corresponding square 
in (b) belongs in the column marked with x = 1 and the row with y z = 10. The simplification 
procedure with these maps is exactly the same as described in this chapter except, of course, for 
the variations in minterm and variable assignment.

Two other versions of the four-variable map are shown in Fig. 3-30. The map in (a) is very 
popular and is used quite often in the literature. Here again, the difference is slight and is mani-
fested by a mere interchange of variable assignment from rows to columns and vice versa. The 
map in (b) is the original Veitch diagram (1) which Karnaugh (2) modified to the one shown in 

xy
00 01 11 10

x

z

y

0

1

0 2 6 4

1 3 7 5z

0 4

1 5

3 7

2 6

yz 0

00

1

01

11

10
y

z

x

Figure 3.29 Variations of the three-variable map

         (a)          (b)

CD

AB
00

00

01

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

01

11

11

10

10

B

A

C

D

12 14 6 4

13 15 7 5

9 11 3 1

8 10 2 0

B

A

C

D

Figure 3.30 Variation of the four-variable map

    (a)          (b)
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(a). Again, the simplification procedures do not change when these maps are used instead of the 
one employed in this book. There are also variations of the five- and six-variable maps. In any 
case, any map that looks different from the one used in this book, or is called by a different name, 
should be recognized merely as a variation of minterm assignment to the squares in the map.

As is evident from Examples 3-13 and 3-14, the tabulation method has the drawback that 
errors inevitably occur in trying to compare numbers over long lists. The map method would 
seem to be preferable, but for more than five variables, we cannot be certain that the best simpli-
fied expression has been found. The real advantage of the tabulation method lies in the fact that 
it consists of specific step-by-step procedures that guarantee an answer. Moreover, this formal 
procedure is suitable for computer mechanization.

It was stated in Section 3-9 that the tabulation method always starts with the minterm list 
of the function. If the function is not in this form, it must be converted. In most applications, 
the function to be simplified comes from a truth table, from which the minterm list is readily 
available. Otherwise, the conversion to minterms adds considerable manipulative work to the 
problem. However, an extension of the tabulation method exists for finding prime-implicants 
from arbitrary sum of products expressions. See, for example, McCluskey (7).

In this chapter, we have considered the simplification of functions with many input vari-
ables and a single output variable. However, some digital circuits have more than one output. 
Such circuits are described by a set of Boolean functions, one for each output variable. A circuit 
with multiple outputs may sometimes have common terms among the various functions which 
can be utilized to form common gates during the implementation. This results in further simpli-
fication not taken into consideration when each function is simplified separately. There exists an 
extension of the tabulation method for multiple-output circuits (6, 7). However, this method is 
too specialized and very tedious for human manipulation. It is of practical importance only if a 
computer program based on this method is available to the user.
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ProbleMS

3-1.  Obtain the simplified expressions in sum of products for the following Boolean functions:

(a) F(x, y, z) = Σ(2, 3, 6, 7)

(b) F(A, B, C. D) = Σ(7, 13, 14, 15)

(c) F(A, B, C, D) = Σ(4, 6, 7, 15)

(d) F(w, x, y, z) = Σ(2, 3, 12, 13, 14, 15)

3-2.  Obtain the simplified expressions in sum of products for the following Boolean functions;

(a) x y + x′ y′ z′ + x′ y z′
(b) A′B + BC′ + B′C′
(c) a′ b′ + bc + a′ b c′
(d) x y′ z + x y z′ + x′ y z + x y z

3-3.  Obtain the simplified expressions in sum of products for the following Boolean functions:

(a) D (A′ + B)+ B′(C + AD)

(b) ABD + A′C′D′ + A′B + A′CD′ + AB′D′
(c) k′ l m′ + k′ m′ n + klm′n′ + lmn′
(d) A′B′C′D′ + AC′D′ + B′CD′ + A′BCD + BC′D
(e) x′ z + w′ x y′ + w(x′ y + x y′)

3-4.  Obtain the simplified expressions in sum of products for the following Boolean functions:

(a) F(A, B, C, D, E) = Σ(0, 1, 4, 5, 16, 17, 21, 25, 29)

(b) BDE + B′C′D + CDE + A′B′CE + A′B′C + B′C′D′E′
(c) A′B′CE′ + A′B′C′D′ + B′D′E′ + B′CD′ + CDE′ + BDE′

3-5.  Given the following truth table:

x y z F
1

F
2

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

(a) Express F
1
 and F

2
 in product of maxterms.

(b) Obtain the simplified functions in sum of products.

(c) Obtain the simplified functions in product of sums.
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3-6.  Obtain the simplified expressions in product of sums:

(a) F(x, y, z) = ∏ (0, 1, 4, 5)

(b) F(A, B, C, D) = ∏ (0, 1, 2, 3, 4, 10, 11)

(c) F(w, x, y, z) = ∏ (1, 3, 5, 7, 13, 15)

3-7.  Obtain the simplified expressions in (1) sum of products and (2) product of sums:

(a) x′ z′ + y′ z′ + yz′ + x y z

(b) (A + B′ + D) (A′ + B + D)(C + D)(C′ + D′)

(c) (A′ + B′ + D′)(A + B′ + C′)(A′ + B + D′)(B + C′ + D′)

(d) (A′ + B′ + D) (A′ + D′) (A + B + D′)(A + B′ + C + D)

(e) w′ y z′ + υ w′ z′ + υ w′ x + υ′ wz + υ′ w′ y′ z′

3-8.  Draw the gate implementation of the simplified Boolean functions obtained in problem 3-7 using 
AND and OR gates.

3-9. Simplify each of the following functions and implement them with NAND gates.

(a) F1 = AB′ + AB′C + A′BD + ABE′+ A′BE′+ A′D

(b) F2 = (A + C) (A′ + B′ + C)(A′ + B′ + C + D)(B′ + C + D′)

3-10. Simplify each of the following functions and implement them with NOR gates

(a) F1 = (A + B) (A′ + B′ + C + D′)(A′ + B′ + D′)(A+ B′ + C + D′)(C + D′)

(b) F2 = AB′C + A′BD + A′BE′ + A′BC′ + A′BC′ + CD

3-11.  Implement the following functions with NAND gates. Assume that both the normal and complement 
inputs are available.

(a) BD + BCD + AB′C′D′ + A′B′CD′ with no more than six gates, each having three inputs.

(b) (AB + A′B′)(CD′ + C′D) with two-input gates.

3-12.  Implement the following functions with NOR gates. Assume that both the normal and complement 
inputs are available.

(a) AB′ + C′D′ + A′CD′ + DC(AB + A′B′) + DB(AC′ + A′C)

(b) AB′CD′ + A′BCD′ + AB′C′D + A′BC′D

3-13.  List the eight degenerate two-level forms and show that they reduce to a single operation. Explain 
how the degenerate two-level forms can be used to extend the fan-in of gates.

3-14.  Implement the functions of problem 3-9 with the following two-level forms:

 NOR-OR, NAND-AND, OR-NAND, and AND-NOR.

3-15.  Simplify the Boolean function F in sum of products using the don’t-care conditions d:

(a) F = y′ + x′ z′

    d = y z + x y

(b) F = B′C′D′ + BCD′ + ABCD′

    d = B′CD′ + A′BC′D
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3-16.  Simplify the Boolean function F using the don’t-care conditions d, in (1) sum of products and (2) 
product of sums:

(a) F = A′B′D′ + A′CD + A′BC

    d = A′BC′D + ACD + AB′ D′

(b) F = w′ (x′ y + x′ y′ + x y z) + x ‘z′(y + w)

    d = w′ x(y′ z + y z′) + wyz

(c) F = ACE + A′CD′E′ + A′C′DE

    d = DE′ + A′D′E + AD′E′

(d) F = B′DE′ + A′BE + B′C′E′ + A′BC′D′

    d = BDE′ + CD′E′

3-17.  Implement the following functions using the don’t-care conditions. Assume that both the normal and 
complement inputs are available.

(a) F = A′B′C′ + AB′D + A′B′CD′  with no more than two NOR gates.

    d = ABC + AB′D′
(b) F = (A + D)(A′ + B)(A′ + C′) with no more than three NAND gates.

(c) F = B′D + B′C + ABCD  with NAND gates.

    d = A′BD + AB′C′D′
3-18.  Implement the following function with either NAND or NOR gates. Use only four gates. Only the 

normal inputs are available.

F = w′ x z + w′ y z + x′ y z′ + w x y′ z 

d = w y z

3-19.  The following Boolean expression:

 BE + B′DE′
 is a simplified version of the expression:

 A′BE + BCDE + BC′D′E + A′B′DE′ + B′C′DE′
 Are there any don’t-care conditions? If so, what are they?

3-20.  Give three possible ways to express the function:

 F = A′B′D′ + AB′CD′ + A′BD + ABC′D
 with eight or less literals.

3-21.  With the use of maps, find the simplest form in sum of products of the function F = fg, where f and 
g are given by:

 f = w x y′ + y′ z + w′ y z′ + x′ y z′
 g = (w + x + y′ + z′) (x′ + y′ + z)(w′ + y + z′)

 Hint: See problem 2-8(b).

3-22.  Simplify the Boolean function of problem 3-2(a) using the map defined in Fig. 3-29(a). Repeat with 
the map of Fig. 3-29(b).

3-23.  Simplify the Boolean function of problem 3-3(a) using the map defined in Fig. 3-30(a). Repeat with 
the map of Fig. 3-30(b).
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3-24.  Simplify the following Boolean functions by means of the tabulation method.

(a) F(A, B, C, D, E, F, G)= ∑ (20. 28, 52, 60)

(b) F(A, B, C, D, E, F, G) = ∑ (20, 28, 38, 39, 52, 60, 102, 103, 127)

(c) F(A, B, C, D, E, F) = ∑ (6, 9, 13, 18, 19, 25, 27, 29, 41, 45, 57, 61)

3-25.  Repeat problem 3-6 using the tabulation method.

3-26.  Repeat problem 3-16 (c) and (d) using the tabulation method.

3-27. Simplify f(w, x, y, z) =  ∑(0, 1, 2, 8, 12, 13, 14) + d(3, 5, 10, 15) with K-Map and implement using 
two-variable NAND gates.

3-28. What are Prime-implicants? Minimize following equation using Quine-McCluskey method. 

 f(v, w, x, y, z) =  ∑(1, 4, 12, 14, 16, 18, 21, 25, 26, 29, 31) + d(0, 2, 5, 30)
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Combinational Logic

4.1 Introduction

Logic circuits for digital systems may be combinational or sequential. A combinational circuit 
consists of logic gates whose outputs at any time are determined directly from the present com-
bination of inputs without regard to previous inputs. A combinational circuit performs a specific 
information-processing operation fully specified logically by a set of Boolean functions. Sequen-
tial circuits employ memory elements (binary cells) in addition to logic gates. Their outputs are 
a function of the inputs and the state of the memory elements. The state of memory elements, 
in turn, is a function of previous inputs. As a consequence, the outputs of a sequential circuit 
depend not only on present inputs, but also on past inputs, and the circuit behavior must be 
specified by a time sequence of inputs and internal states. Sequential circuits are discussed in  
Chapter 6.

In Chapter 1 we learned to recognize binary numbers and binary codes that represent dis-
crete quantities of information. These binary variables are represented by electric voltages or 
by some other signal. The signals can be manipulated in digital logic gates to perform required 
functions. In Chapter 2 we introduced Boolean algebra as a way to express logic functions alge-
braically. In Chapter 3 we learned how to simplify Boolean functions to achieve economical gate 
implementations. The purpose of this chapter is to use the knowledge acquired in previous chap-
ters and formulate various systematic design and analysis procedures of combinational circuits. 
The solution of some typical examples will provide a useful catalog of elementary functions 
important for the understanding of digital computers and systems.

A combinational circuit consists of input variables, logic gates, and output variables. The 
logic gates accept signals from the inputs and generate signals to the outputs. This process trans-
forms binary information from the given input data to the required output data. Obviously, both 
input and output data are represented by binary signals, i.e., they exist in two possible values, one 
representing logic-1 and the other logic-0. A block diagram of a combinational circuit is shown 
in Fig. 4-1. The n input binary variables come from an external source; the m output variables go 
to an external destination. In many applications, the source and/or destination are storage regis-
ters (Section 1-7) located either in the vicinity of the combinational circuit or in a remote external 
device. By definition, an external register does not influence the behavior of the combinational 
circuit because, if it does, the total system becomes a sequential circuit.
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For n input variables, there are 2n possible combinations of binary input values. For each 
possible input combination, there is one and only one possible output combination. A combina-
tional circuit can be described by m Boolean functions, one for each output variable. Each output 
function is expressed in terms of the n input variables.

Each input variable to a combinational circuit may have one or two wires. When only one 
wire is available, it may represent the variable either in the normal form (unprimed) or in the 
complement form (primed). Since a variable in a Boolean expression may appear primed and/
or unprimed, it is necessary to provide an inverter for each literal not available in the input wire. 
On the other hand, an input variable may appear in two wires, supplying both the normal and 
complement forms to the input of the circuit. If so, it is unnecessary to include inverters for the 
inputs. The type of binary cells used in most digital systems are flip-flop circuits (Chapter 6) that 
have outputs for both the normal and comple ment values of the stored binary variable. In our 
subsequent work, we shall assume that each input variable appears in two wires, supplying both 
the normal and complement values simultaneously. We must also realize that an inverter circuit 
can always supply the complement of the variable if only one wire is available.

4.2 Design Procedure

The design of combinational circuits starts from the verbal outline of the problem and ends in a 
logic circuit diagram, or a set of Boolean functions from which the logic diagram can be easily 
obtained. The procedure involves the following steps:

1. The problem is stated.

2. The number of available input variables and required output variables is determined.

3. The input and output variables are assigned letter symbols.

4. The truth table that defines the required relationships between inputs and outputs is de-
rived.

5. The simplified Boolean function for each output is obtained.

6. The logic diagram is drawn.

A truth table for a combinational circuit consists of input columns and output columns. 
The 1’s and 0’s in the input columns are obtained from the 2n binary combinations available for n 
input variables. The binary values for the outputs are determined from examination of the stated 
problem. An output can be equal to either 0 or 1 for every valid input combination. However, 
the specifications may indicate that some input combinations will not occur. These combinations 
become don’t-care conditions.

The output functions specified in the truth table give the exact definition of the combina-
tional circuit. It is important that the verbal specifications be interpreted correctly into a truth 

  Combinational
        Logic
        Circuit

n input
variables

m output
variables

Figure 4.1 Block diagram of a combinational circuit
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table. Sometimes the designer must use his intuition and experience to arrive at the correct in-
terpretation. Word specifications are very seldom complete and exact. Any wrong interpretation 
which results in an incorrect truth table produces a combinational circuit that will not fulfill the 
stated requirements.

The output Boolean functions from the truth table are simplified by any available method, 
such as algebraic manipulation, the map method, or the tabulation procedure. Usually there will 
be a variety of simplified expressions from which to choose. However, in any particular applica-
tion, certain restrictions, limitations, and criteria will serve as a guide in the process of choosing 
a particular algebraic expression. A practical design method would have to consider such con-
straints as (1) minimum number of gates, (2) minimum number of inputs to a gate, (3) minimum 
propagation time of the signal through the circuit, (4) minimum number of interconnections, and 
(5) limitations of the driving capabilities of each gate. Since all these criteria cannot be satisfied 
simultaneously, and since the importance of each constraint is dictated by the particular applica-
tion, it is difficult to make a general statement as to what constitutes an acceptable simplification. 
In most cases the simplification begins by satisfying an elementary objective, such as produc-
ing a simplified Boolean function in a standard form, and from that proceeds to meet any other 
performance criteria.

In practice, designers tend to go from the Boolean functions to a wiring list that shows the 
interconnections among various standard logic gates. In that case the design need not go any fur-
ther than the required simplified output Boolean functions. However, a logic diagram is helpful 
for visualizing the gate implementation of the expressions.

4.3 Adders

Digital computers perform a variety of information-processing tasks. Among the basic functions 
encountered are the various arithmetic operations. The most basic arithmetic operation, no doubt, 
is the addition of two binary digits. This simple addition consists of four possible elementary op-
erations, namely, 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 10. The first three operations produce 
a sum whose length is one digit, but when both augend and addend bits are equal to 1, the binary 
sum consists of two digits. The higher significant bit of this result is called a carry. When the 
augend and addend numbers contain more significant digits, the carry obtained from the addition 
of two bits is added to the next higher-order pair of significant bits. A combinational circuit that 
performs the addition of two bits is called a half-adder. One that performs the addition of three 
bits (two significant bits and a previous carry) is a full-adder. The name of the former stems from 
the fact that two half-adders can be employed to implement a full-adder. The two adder circuits 
are the first combinational circuits we shall design.

4.3.1 Half-Adder

From the verbal explanation of a half-adder, we find that this circuit needs two binary inputs 
and two binary outputs. The input variables designate the augend and addend bits; the output 
variables produce the sum and carry. It is necessary to specify two output variables because the 
result may consist of two binary digits. We arbitrarily assign symbols x and y to the two inputs 
and S (for sum) and C (for carry) to the outputs.

Now that we have established the number and names of the input and output variables, we 
are ready to formulate a truth table to identify exactly the function of the half-adder. This truth 
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table is shown below:

x y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

The carry output is 0 unless both inputs are 1. The S output represents the least significant bit of 
the sum.

The simplified Boolean functions for the two outputs can be obtained directly from the truth 
table. The simplified sum of products expressions are:

S = x′y + xy′
C = xy

The logic diagram for this implementation is shown in Fig. 4-2(a), as are four other implementa-
tions for a half-adder. They all achieve the same result as far as the input-output behavior is con-
cerned. They illustrate the flexibility available to the designer when implementing even a simple 
combinational logic function such as this.

Figure 4-2(a), as mentioned above, is the implementation of the half-adder in sum of prod-
ucts. Figure 4-2(b) shows the implementation in product of sums:

S = (x + y) (x′ + y′)
C = x y

To obtain the implementation of Fig. 4-2(c), we note that S is the exclusive-OR of x and y. The 
complement of S is the equivalence of x and y (Section 2-6):

S′ = x y + x′y′

but C = x y, and therefore we have:

S′ = (C + x′y′)′

In Fig. 4-2(d) we use the product of sums implementation with C derived as follows:

C = x y = (x′ + y′)′

The half-adder can be implemented with an exclusive-OR and an AND gate as shown in  
Fig. 4-2(e). This form is used later to show that two half-adder circuits are needed to construct a 
full-adder circuit.

4.3.2 Full-Adder

A full-adder is a combinational circuit that forms the arithmetic sum of three input bits. It con-
sists of three inputs and two outputs. Two of the input variables, denoted by x and y represent the 
two significant bits to be added. The third input, z represents the carry from the previous lower 
significant position. Two outputs are necessary because the arithmetic sum of three binary digits 
ranges in value from 0 to 3, and binary 2 or 3 needs two digits. The two outputs are designated 
by the symbols S for sum and C for carry. The binary variable S gives the value of the least  
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significant bit of the sum. The binary variable C gives the output carry. The truth table of the 
full-adder is as follows:

x y z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The eight rows under the input variables designate all possible combinations of 1’s and 0’s that 
these variables may have. The 1’s and 0’s for the output variables are determined from the arith-
metic sum of the input bits. When all input bits are O’s, the output is 0. The S output is equal to 1 

x
C

y

x

S

x′

y

y′
x
y

x′
y′

S

x
C

y

(a) S = xy′ + x′y
    C = xy

(b) S = (x + y) (x′ + y′)
     C = x y

x′

y′

x

y
C

S

C

x

S

x′

y′

y

(c) S = (C + x′y′)′
    C = xy

(d) S = (x + y) (x′ + y′)
    C = (x′ +  y′)′

x
y

C

S

(e) S = x ⊕ y
     C = xy

Figure 4.2 Various implementations of a half-adder
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when only one input is equal to 1 or when all three inputs are equal to 1. The C output has a carry 
of 1 if two or three inputs are equal to 1.

The input and output bits of the combinational circuit have different interpretations at vari-
ous stages of the problem. Physically, the binary signals of the input wires are considered binary 
digits added arithmetically to form a two-digit sum at the output wires. On the other hand, the 
same binary values are considered variables of Boolean functions when expressed in the truth 
table or when the circuit is implemented with logic gates. It is important to realize that two dif-
ferent interpretations are given to the values of the bits encountered in this circuit.

The input-output logical relationship of the full-adder circuit may be ex pressed in two Boo-
lean functions, one for each output variable. Each output Boolean function requires a unique map 
for its simplification. Each map must have eight squares, since each output is a function of three 
input variables. The maps of Fig. 4-3 are used for simplifying the two output functions. The 1’s 
in the squares for the maps of S and C are determined directly from the truth table. The squares 
with 1’s for the S output do not combine in adjacent squares to give a simplified expression in 
sum of products. The C output can be simplified to a six-literal expression. The logic diagram for 
the full-adder implemented in sum of products is shown in Fig. 4-4. This implementation uses 
the following Boolean expressions:

S = x′y′z + x′yz′ + xy′z′ + xyz

    C = xy + xz + yz

yz
00 01 11 10

y

x

z

0

1 1 1

1 1

x

yz
00 01 11 10

y

x

z

0

1 1 1

1

1x

               S = x′y′z + x′yz′ + xy′z′ + xyz                           C = xy + xz + yz

Figure 4.3 Maps for full-adder
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Figure 4.4 Implementation of full-adder in sum of products
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Other configurations for a full-adder may be developed. The product-of-sums implementa-
tion requires the same number of gates as in Fig. 4-4, with the number of AND and OR gates 
interchanged. A full-adder can be implemented with two half-adders and one OR gate, as shown 
in Fig. 4-5. The S output from the second half-adder is the exclusive-OR of z and the output of 
the first half-adder, giving;

S = z ⊕ (x ⊕ y) 
= z′(x y′ + x′y) + z(x y′ + x′y)′ 
= z′(x y′ + x′y) + z(x y + x′y′) 
= x y′z′ + x′yz′ + x yz + x′y′z

and the carry output is:

C = z(x y′ + x′y) + x y = x y′z + x′yz + x y

4.4 Subtractors

The subtraction of two binary numbers may be accomplished by taking the complement of the 
subtrahend and adding it to the minuend (Section 1-5). By this method, the subtraction opera-
tion becomes an addition operation requiring full-adders for its machine implementation. It is 
possible to implement subtraction with logic circuits in a direct manner, as done with paper and 
pencil. By this method, each subtrahend bit of the number is subtracted from its corresponding 
significant minuend bit to form a difference bit. If the minuend bit is smaller than the subtrahend 
bit, a 1 is borrowed from the next significant position. The fact that a 1 has been borrowed must 
be conveyed to the next higher pair of bits by means of a binary signal coming out (output) of a 
given stage and going into (input) the next higher stage. Just as there are half- and full-adders, 
there are half-and full-subtractors.

4.4.1 Half-Subtractor

A half-subtractor is a combinational circuit that subtracts two bits and produces their difference. 
It also has an output to specify if a 1 has been borrowed. Designate the minuend bit by x and the 
subtrahend bit by y. To perform x - y, we have to check the relative magnitudes of x and y. If x 
> y, we have three possibilities: 0 - 0 = 0, 1 - 0 = 1, and 1 - 1 = 0. The result is called the dif-
ference bit. If x < y, we have 0 - 1, and it is necessary to borrow a 1 from the next higher stage. 
The 1 borrowed from the next higher stage adds 2 to the minuend bit, just as in the decimal sys-

x

z

y s

c

Figure 4.5 Implementation of full-adder with two half-adders and an OR gate
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tem a borrow adds 10 to a minuend digit. With the minuend equal to 2, the difference becomes 
2 - 1 = 1. The half-subtractor needs two outputs. One output generates the difference and will be 
designated by the symbol D. The second output, designated B for borrow, generates the binary 
signal that informs the next stage that a 1 has been borrowed. The truth table for the input-output 
relationships of a half-subtractor can now be derived as follows:

x y B D

0 0 0 0

0 1 1 1

1 0 0 1

1 1 0 0

The output borrow B is a 0 as long as x ≥ y. It is a 1 for x = 0 and y = 1. The D output is the result 
of the arithmetic operation 2B + x - y.

The Boolean functions for the two outputs of the half-subtractor are derived directly from 
the truth table:

 D = x′y + x y′
B = x′y

It is interesting to note that the logic for D is exactly the same as the logic for output S in the 
half-adder.

4.4.2 Full-Subtractor

A full-subtractor is a combinational circuit that performs a subtraction between two bits, taking 
into account that a 1 may have been borrowed by a lower significant stage. This circuit has three 
inputs and two outputs. The three inputs, x, y, and z, denote the minuend, subtrahend, and previ-
ous borrow, respectively. The two outputs, D and B, represent the difference and output borrow, 
respectively. The truth table for the circuit is as follows:

x y z B D

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

The eight rows under the input variables designate all possible combinations of 1’s and 0’s that 
the binary variables may take. The 1’s and 0’s for the output variables are determined from the 
subtraction of x - y - z. The combinations having input borrow z = 0 reduce to the same four 
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conditions of the half-adder. For x = 0, y = 0, and z = 1, we have to borrow a 1 from the next stage, 
which makes B = 1 and adds 2 to x. Since 2 - 0 - 1 = 0, D = 0. For x = 0 and yz = 11, we need to 
borrow again, making B = 1 and x = 2. Since 2 - 1 - 1 = 0, D = 0. For x = 1 and yz = 01, we have 
x - y - z = 0, which makes B = 0 and D = 0. Finally, for x = 1, y = 1, z = 1, we have to borrow 1, 
making B = 1 and x = 3, and 3 - 1 - 1 = 1, making D = 1.

The simplified Boolean functions for the two outputs of the full-subtractor are derived in 
the maps of Fig. 4-6. The simplified sum of products output functions are:

D = x′y′z + x′yz′ + x y′z′ + x yz

B = x′y + x′z + yz

Again we note that the logic function for output D in the full-subtractor is exactly the same as 
output S in the full-adder. Moreover, the output B resembles the function for C in the full-adder, 
except that the input variable x is complemented. Because of these similarities, it is possible to 
convert a full-adder into a full-subtractor by merely complementing input x prior to its applica-
tion to the gates that form the carry output.

4.5 Code Conversion

The availability of a large variety of codes for the same discrete elements of information results 
in the use of different codes by different digital systems. It is sometimes necessary to use the out-
put of one system as the input to another. A conversion circuit must be inserted between the two 
systems if each uses different codes for the same information. Thus, a code converter is a circuit 
that makes the two systems compatible even though each uses a different binary code.

To convert from binary code A to binary code B, the input lines must supply the bit combi-
nation of elements as specified by code A and the output lines must generate the corresponding 
bit combination of code B. A combinational circuit performs this transformation by means of 
logic gates. The design procedure of code converters will be illustrated by means of a specific 
example of conversion from the BCD to the excess-3 code.

The bit combinations for the BCD and excess-3 codes are listed in Table 1-2 (Section 1-6). 
Since each code uses four bits to represent a decimal digit, there must be four input variables and 
four output variables. Let us designate the four input binary variables by the symbols A, B, C, 
and D, and the four output variables by w. x, y, and z. The truth table relating the input and out-
put variables is shown in Table 4-1. The bit combinations for the inputs and their corresponding 
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            D = x′y′z + x′yz + x y′z′ + x yz                                B = x′y + x′z + yz

Figure 4-6 Maps for full-subtractor
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outputs are obtained directly from Table 1-2. We note that four binary variables may have 16 bit 
combinations, only 10 of which are listed in the truth table. The six bit combinations not listed 
for the input variables are don’t-care combinations. Since they will never occur, we are at liberty 
to assign to the output variables either a 1 or a 0, whichever gives a simpler circuit.

The maps in Fig. 4-7 are drawn to obtain a simplified Boolean function for each output. 
Each of the four maps of Fig. 4-7 represents one of the four outputs of this circuit as a function 
of the four input variables. The 1’s marked inside the squares are obtained from the minterms 
that make the output equal to 1. The 1’s are obtained from the truth table by going over the output 
columns one at a time. For example, the column under output z has five 1’s; therefore, the map for 
z must have five 1’s, each being in a square corresponding to the minterm that makes z equal to 1. 
The six don’t-care combinations are marked by X’s. One possible way to simplify the functions 
in sum of products is listed under the map of each variable.

A two-level logic diagram may be obtained directly from the Boolean expressions derived 
by the maps. There are various other possibilities for a logic diagram that implements this circuit. 
The expressions obtained in Fig. 4-7 may be manipulated algebraically for the purpose of using 
common gates for two or more outputs. This manipulation, shown below, illustrates the flexibility 
obtained with multiple-output systems when implemented with three or more levels of gates.

   z = D′
 y = CD + C′D′ = CD + (C + D)′
   x = B′C + B′D + BC′D′ = B′(C + D) + BC′D′
          = B′(C + D) + B(C + D)′
w = A + BC + BD = A + B(C + D)

The logic diagram that implements the above expressions is shown in Fig. 4-8. In it we see that 
the OR gate whose output is C + D has been used to implement partially each of three outputs.

Not counting input inverters, the implementation in sum of products requires seven AND 
gates and three OR gates. The implementation of Fig. 4-8 requires four AND gates, four OR 

Table 4-1 Truth table for code-conversion example

Input
BCD

Output
Excess-3 code

A B C D w x y z

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 l 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0
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gates, and one inverter. If only the normal inputs are available, the first implementation will re-
quire inverters for variables B, C, and D, whereas the second implementation requires inverters 
for variables B and D.

4.6 Analysis Procedure

The design of a combinational circuit starts from the verbal specifications of a required func-
tion and culminates with a set of output Boolean functions or a logic diagram. The analysis of a 
combinational circuit is somewhat the reverse process. It starts with a given logic diagram and 
culminates with a set of Boolean functions, a truth table, or a verbal explanation of the circuit 
operation. If the logic diagram to be analyzed is accompanied by a function name or an explana-
tion of what it is assumed to accomplish, then the analysis problem reduces to a verification of 
the stated function.

The first step in the analysis is to make sure that the given circuit is combinational and not 
sequential. The diagram of a combinational circuit has logic gates with no feedback paths or 

CD
AB 00

00

01

1

1

1

11

X X X

X

X

X

01

11

11

10

10

C

Dx = D′

A

B

CD
AB 00
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01

1

1

1
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X X X

X

X

X

01

11
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C

Dy = CD + C′D′

A

B

CD
AB 00

00

01

1 11

1

1

X X X X

X X

01

11
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10
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C

D

y = B′C + B′D + BC′D′

A

B

CD
AB 00

00

01

11 1

1 1

X X X X

X X

01

11

11

10

10

C

D

w = A + BC + BD

A

B

Figure 4.7 Maps for BCD-to-excess-3 code coverter
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memory elements. A feedback path is a connection from the output of one gate to the input of a 
second gate that forms part of the input to the first gate. Feedback paths or memory elements in a 
digital circuit define a sequential circuit and must be analyzed according to procedures outlined 
in Chapter 6.

Once the logic diagram is verified as a combinational circuit, one can proceed to obtain 
the output Boolean functions and/or the truth table. If the circuit is accompanied by a verbal 
explanation of its function, then the Boolean functions or the truth table is sufficient for verifi-
cation. If the function of the circuit is under investigation, then it is necessary to interpret the 
operation of the circuit from the derived truth table. The success of such investigation is en-
hanced if one has previous experience and familiarity with a wide variety of digital circuits. The 
ability to correlate a truth table with an information-processing task is an art one acquires with  
experience.

To obtain the output Boolean functions from a logic diagram, proceed as follows:

1. Label with arbitrary symbols all gate outputs that are a function of the input variables. 
Obtain the Boolean functions for each gate.

2. Label with other arbitrary symbols those gates which are a function of input variables 
and/or previously labeled gates. Find the Boolean func tions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.

4. By repeated substitution of previously defined functions, obtain the output Boolean 
functions in terms of input variables only.

Analysis of the combinational circuit in Fig. 4-9 illustrates the proposed procedure. We 
note that the circuit has three binary inputs. A, B and C, and two binary outputs, F

1
 and F

2
. The 

D

D′
z

y

x

w

C

CD

B

A

(C + D)′

C + D

Figure 4.8 Logic diagram for BCD-to-excess-3 code coverter
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outputs of various gates are labeled with intermediate symbols. The outputs of gates that are a  
function of input variables only are F

2
, T

1
 and T

2
. The Boolean functions for these three outputs 

are:

F
2
 = AB + AC + BC

T
1
 = A + B + C

T
2
 = ABC

Next we consider outputs of gates which are a function of already defined symbols:

T
3
 = F′

2
 T

1

F
1
 = T

3
 + T

2

The output Boolean function F
2
 expressed above is already given as a function of the inputs only. 

To obtain F
1
 as a function of A, B, and C, form a series of substitutions as follows:

F
1
 = T

3
 + T

2
 = F′

2
 T

1
 + ABC = (AB + AC + BC)′(A + B + C) + ABC

= (A′ + B′)(A′ + C′)(B′ + C′)(A + B + C) + ABC
= (A′ + B′C′)(AB′ + AC′ + BC′ + B′C) + ABC
= A′BC′ + A′B′C + AB′C′ + ABC

If we want to pursue the investigation and determine the information-transformation task 
achieved by this circuit, we can derive the truth table directly from the Boolean functions and 
try to recognize a familiar operation. For this example, we note that the circuit is a full-adder, 
with F

1
 being the sum output and F

2
 the carry output. A, B, and C are the three inputs added  

arithmetically.

A
B
C

A

A

B

B

A

C

B

C

C

T1

T2

T3

F1

F′2

F2

Figure 4.9 Logic diagram for analysis example
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The derivation of the truth table for the circuit is a straightforward process once the output 
Boolean functions are known. To obtain the truth table directly from the logic diagram without 
going through the derivations of the Boolean functions, proceed as follows:

1. Determine the number of input variables to the circuit. For n inputs, form the 2n possible 
input combinations of 1’s and 0’s by listing the binary numbers from 0 to 2n - 1.

2. Label the outputs of selected gates with arbitrary symbols.

3. Obtain the truth table for the outputs of those gates that are a function of the input vari-
ables only.

4. Proceed to obtain the truth table for the outputs of those gates that are a function of pre-
viously defined values until the columns for all outputs are determined.

This process can be illustrated using the circuit of Fig. 4-9. In Table 4-2, we form the eight 
possible combinations for the three input variables. The truth table for F

2
 is determined directly 

from the values of A, B, and C, with F
2
 equal to 1 for any combination that has two or three inputs 

equal to 1. The truth table for F′
2
 is the complement of F′

2
. The truth tables for T

1
 and T

2
 are the 

OR and AND functions of the input variables, respectively. The values for T
3
 are derived from T

1
, 

and F′
2
: T

3
 is equal to 1 when both T

1
 and F′

2
 are equal to 1, and to 0 otherwise. Finally, F

1
 is equal 

to 1 for those combinations in which either T
2
 or T

3
 or both are equal to 1. Inspection of the truth 

table combinations for A, B, C, F
1
, and F

2
 of Table 4-2 shows that it is identical to the truth table 

of the full-adder given in Section 4-3 for x, y, z, S, and C, respectively.
Consider now a combinational circuit that has don’t-care input combinations. When such 

a circuit is designed, the don’t-care combinations are marked by X’s in the map and assigned an 
output of either 1 or 0, whichever is more convenient for the simplification of the output Boolean 
function. When a circuit with don’t-care combinations is being analyzed, the situation is entirely 
different. Even though we assume that the don’t-care input combinations will never occur, the 
fact of the matter is that if any one of these combinations is applied to the inputs (intentionally 
or in error), a binary output will be present. The value of the output will depend on the choice 
for the X’s taken during the design. Part of the analysis of such a circuit may involve the deter-
mination of the output values for the don’t-care input combinations. As an example, consider 
the BCD-to-excess-3 code converter designed in Section 4-5. The outputs obtained when the six 

Table 4-2 Truth table for logic diagram of Fig. 4-9

A B C F
2 F

2
′ T

1
T

2
T

3
F

1

0 0 0 0 1 0 0 0 0

0 0 1 0 1 1 0 1 1

0 1 0 0 1 1 0 I 1

0 1 1 1 0 1 0 0 0

1 0 0 0 1 1 0 1 1

1 0 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0 0

1 1 1 1 0 1 1 0 1
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unused combinations of the BCD code are applied to the inputs are:

Unused BCD inputs Outputs

A B C D w x y z

1 0 1 0 1 1 0 1

1 0 1 1 1 1 1 0

1 I 0 0 1 1 1 1

1 1 0 1 1 0 0 0

1 1 1 0 1 0 0 1

1 1 1 1 1 0 1 0

These outputs may be derived by means of the truth table analysis method as outlined in this sec-
tion. In this particular case, the outputs may be obtained directly from the maps of Fig. 4-7. From 
inspection of the maps, we determine whether the X’s in the corresponding minterm squares for 
each output have been included with the 1’s or the O’s. For example, the square for minterm m

l0
 

(1010) has been included with the l’s for outputs w, x, and z, but not for y. Therefore, the outputs 
for m

l0
 are wx yz = 1101, as listed in the above table. We also note that the first three outputs in 

the table have no meaning in the excess-3 code, and the last three outputs correspond to decimal 
5, 6, and 7, respectively. This coincidence is entirely a function of the choice for the X’s taken 
during the design.

4.7 Multilevel Nand Circuits

Combinational circuits are more frequently constructed with NAND or NOR gates rather than 
AND and OR gates. NAND and NOR gates are more common from the hardware point of 
view because they are readily available in integrated-circuit form. Because of the prominence 
of NAND and NOR gates in the design of combinational circuits, it is important to be able to 
recognize the relationships that exist between circuits constructed with AND-OR gates and their 
equivalent NAND or NOR diagrams.

The implementation of two-level NAND and NOR logic diagrams was presented in Section 
3-6. Here we consider the more general case of multilevel circuits. The procedure for obtaining 
NAND circuits is presented in this section, and for NOR circuits in the next section.

4.7.1 Universal Gate

The NAND gate is said to be a universal gale because any digital system can be implemented 
with it. Combinational circuits and sequential circuits as well can be constructed with this gate 
because the flip-flop circuit (the memory element most frequently used in sequential circuits) can 
be constructed from two NAND gates connected back to back, as shown in Section 6-2.

To show that any Boolean function can be implemented with NAND gates, we need only 
show that the logical operations AND, OR, and NOT can be implemented with NAND gates. The 
implementation of the AND, OR, and NOT operations with NAND gates is shown in Fig. 4-10. 
The NOT operation is obtained from a one-input NAND gate, actually another symbol for an 
inverter circuit. The AND operation requires two NAND gates. The first produces the inverted 
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AND and the second acts as an inverter to produce the normal output. The OR operation is achie-
ved through a NAND gate with additional inverters in each input.

A convenient way to implement a combinational circuit with NAND gates is to obtain the 
simplified Boolean functions in terms of AND, OR, and NOT and convert the functions to NAND 
logic. The conversion of the algebraic expression from AND, OR, and NOT operations to NAND 
operations is usually quite complicated because it involves a large number of applications of 
De Morgan’s theorem. This difficulty is avoided by the use of simple circuit manipulations and 
simple rules as outlined below.

4.7.2 Boolean Function Implementation — Block Diagram Method

The implementation of Boolean functions with NAND gates may be obtained by means of a 
simple block diagram manipulation technique. This method requires that two other logic dia-
grams be drawn prior to obtaining the NAND logic diagram. Nevertheless, the procedure is very 
simple and straightforward:

1. From the given algebraic expression, draw the logic diagram with AND, OR, and NOT 
gates. Assume that both the normal and complement inputs are available.

2. Draw a second logic diagram with the equivalent NAND logic, as given in Fig. 4-10, 
substituted for each AND, OR, and NOT gate.

3. Remove any two cascaded inverters from the diagram, since double inversion does not 
perform a logic function. Remove inverters connected to single external inputs and 
complement the corresponding input variable. The new logic diagram obtained is the 
required NAND gate implementation,

 This procedure is illustrated in Fig. 4-11 for the function:

F = A(B + CD) + BC′

A A′ NOT (inverter)

A

B

(AB)′
AB AND

(A′B′)′ = A + B OR

A

B

A′

B′

Figure 4-10 Implementation of NOT. AND, or OR by NAND gates
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The AND-OR implementation of this function is shown in the logic diagram of Fig. 4-11(a). 
For each AND gate, we substitute a NAND gate followed by an inverter; for each OR gate, we 
substitute input inverters followed by a NAND gate. This substitution follows directly from the 
logic equivalences of Fig. 4-10 and is shown in the diagram of Fig. 4-11(b). This diagram has 
seven inverters and five two-input NAND gates listed with numbers inside the gate symbol. Pairs 
of inverters connected in cascade (from each AND box to each OR box) are removed since they 
form double inversion. The inverter connected to input B is removed and the input variable is 
designated by B′. The result is the NAND logic diagram shown in Fig. 4-11(c), with the number 
inside each symbol identifying the gate from Fig. 4-11(b).

C

D

B

B F

C′

A

(a) AND/OR implementation

C
AND OR

1

3

4

5

2

D

B

B

C′

A

A
AND

AND OR

F

(b) Substituting equivalent NAND functions from Fig. 5.8

C
1

3

4

5
2

D

B′

B F

C′

A

(c) NAND implementation

Figure 4.11 Implementation of F = A(B + CD) + BC′ with NAND gates
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This example demonstrates that the number of NAND gates required to implement the 
Boolean function is equal to the number of AND-OR gates, provided both the normal and the 
complement inputs are available. If only the normal inputs are available, inverters must be used 
to generate any required complemented inputs.

A second example of NAND implementation is shown in Fig. 4-12. The Boolean function 
to be implemented is:

F = (A + B′) (CD+ E)

The AND-OR implementation is shown in Fig. 4-12(a), and its NAND logic substitution in Fig. 
4-12(b). One pair of cascaded inverters may be removed. The three external inputs E, A, and B′, 
which go directly to inverters, are complemented and the corresponding inverters removed. The 
final NAND gate implementation is in Fig. 4-12(c).

The number of NAND gates for the second example is equal to the number of AND-OR 
gates plus an additional inverter in the output (NAND gate 5). In general, the number of NAND 

C

D

E

B′

FA

(a) AND/OR implementation

C
AND OR

1

3

4

D

E

A

B′

AND

2

5

OR

F

(b) Substituting equivalent NAND functions

C
1

3

4
2

D

E′

B

A′ F5

(c) NAND implementation

Figure 4.12 Implementation of (A + B′)(CD + E) with NAND gates
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gates required to implement a function equals the number of AND-OR gates, except for an oc-
casional inverter. This is true provided both normal and complement inputs are available, because 
the conversion forces certain input variables to be complemented.

The block diagram method is somewhat tiresome to use because it requires the drawing of 
two logic diagrams to obtain the answer in a third. With some experience, it is possible to reduce 
the amount of labor by anticipating the pairs of cascaded inverters and the inverters in the inputs. 
Starting from the procedure just outlined, it is not too difficult to derive general rules for imple-
menting Boolean functions with NAND gates directly from an algebraic expression.

4.7.3 Analysis Procedure

The foregoing procedure considered the problem of deriving a NAND logic diagram from a 
given Boolean function. The reverse process is the analysis problem which starts with a given 
NAND logic diagram and culminates with a Boolean expression or a truth table. The analysis of 
NAND logic diagrams follows the same procedures presented in Section 4-6 for the analysis of 
combinational circuits. The only difference is that NAND logic requires a repeated application of 
De Morgan’s theorem. We shall now demonstrate the derivation of the Boolean function from a 
logic diagram. Then we will show the derivation of the truth table directly from the NAND logic 
diagram. Finally, a method will be presented for converting a NAND logic diagram to AND-OR 
logic diagram by means of block diagram manipulation.

4.7.4 Derivation of the Boolean Function by Algebraic Manipulation

The procedure for deriving the Boolean function from a logic diagram is outlined in Section 4-6. 
This procedure is demonstrated for the NAND logic diagram shown in Fig. 4-13, which is the 
same as that in Fig. 4-11(c). First, all gate outputs are labeled with arbitrary symbols. Second, the 
Boolean functions for die outputs of gates that receive only external inputs are derived:

T
1
 = (CD)′ = C′+ D′

T
2
 = (BC)′ = B′ + C

The second form follows directly from De Morgan’s theorem and may, at times, be more con-
venient to use. Third, Boolean functions of gates which have inputs from previously derived  

C T1

T3

T2

T4

D

B′

B F

C′

A

Figure 4.13 Analysis example
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functions are determined in consecutive order until the output is expressed in terms of input 
variables:

 T
3
 = (B′T

1
)′ = (B′C′ + B′D′)′

= (B + C)(B + D) = B + CD

T
4
 = (AT

3
)′ = [A(B+ CD)]′

F = (T
2
T

4
)′ = {(BC′)′[A(B + CD)]′}′

= BC′ + A(B+ CD)

4.7.5 Derivation of the Truth Table

The procedure for obtaining the truth table directly from a logic diagram is also outlined in 
Section 4-6. This procedure is demonstrated for the NAND logic diagram of Fig. 4-13. First, 
the four input variables, together with their 16 combinations of 1’s and 0’s, are listed as in Table 
4-3. Second, the outputs of all gates are labeled with arbitrary symbols as in Fig. 4-13. Third, we 
obtain the truth table for the outputs of those gates that are a function of the input variables only. 
These are T

1
, and T

2
. T

1
 = (CD)′; so we mark 0’s in those rows where both C and D are equal 

to 1 and fill the rest of the rows of T
1
 with 1’s. Also, T

2
 = (BC′)′; so we mark 0’s in those rows 

where B = 1 and C = 0, and fill the rest of the rows of T
2
 with 1’s. We then proceed to obtain the 

truth table for the outputs of those gates that are a function of previously defined outputs until 
the column for the output F is determined. It is now possible to obtain an algebraic expression 
for the output from the derived truth table. The map shown in Fig. 4-14 is obtained directly from 
Table 4-3 and has 1’s in the squares of those minterms for which F is equal to 1. The simplified 

Table 4-3 Truth table for the circuit of Figure 4-13

A B C D T
1

T
2

T
3

T
4

F

0 0 0 0 1 1 0 1 0

0 0 0 1 1 1 0 1 0

0 0 1 0 1 I 0 1 0

0 0 1 1 0 1 1 1 0

0 1 0 0 1 0 1 1 1

0 1 0 1 1 0 1 1 1

0 1 1 0 1 1 1 1 0

0 1 1 1 0 1 1 1 0

1 0 0 0 1 1 0 1 0

1 0 0 1 1 1 0 1 0

1 0 1 0 1 1 0 1 0

1 0 1 1 0 1 1 0 1

1 1 0 0 1 0 1 0 1

1 1 0 1 1 0 1 0 1

1 1 1 0 1 1 1 0 1

1 1 1 1 0 1 1 0 1

www.youseficlass.ir



Combinational Logic 123 

expression obtained from the map is:

F = AB + ACD + BC′ = A(B + CD) + BC′

This is the same as the expression of Fig. 4-11, thus verifying the correct answer.

4.7.6 Block Diagram Transformation

It is sometimes convenient to convert a NAND logic diagram to its equivalent AND-OR log-
ic diagram to facilitate the analysis procedure. By doing so, the Boolean function can be de-
rived more easily without employing De Morgan’s theorem. The conversion of logic diagrams 
is accomplished through a process reverse from that used for implementation. In Section 3-6, 
we showed two alternate graphic symbols for the NAND gate. These symbols are repeated in  
Fig, 4-15 for convenience. By judicious use of both symbols, it is possible to convert a NAND 
diagram to an equivalent AND-OR form.

The conversion of a NAND logic diagram to an AND-OR diagram is achieved through a 
change in symbols from AND-invert to invert-OR in alternate levels of gates. The first level to be 
changed to an invert-OR symbol should be the last level. These changes produce pairs of circles 
along the same line, and these can be removed since they represent double complementation. 
Moreover, a one-input AND or OR gate can be removed since it does not perform a logical func-
tion. A one-input AND or OR with a circle in the input or output is changed to an inverter circuit.

This procedure is demonstrated in Fig. 4-16. The NAND logic diagram of Fig. 4-16(a) is 
to be converted to an AND-OR diagram. The symbol of the gate in the last level is changed to 

CD
AB 00

00

01

11

1 1 1

1

1

01

11

11

10

10

C

D

F = AB + BC′ + ACD

A

B

Figure 4.14 Derivation of F from Table 4.3

B
C

A
(ABC)′ B

C

A
A′ + B′ + C′
= (ABC)′

                               (a) AND-invert                                            (b) invert-OR

Figure 4.15 Two symbols for NAND gate
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an invert-OR. Looking for alternate levels, we find one more gate requiring a change of symbol 
as shown in Fig, 4-16(b). Any two circles along the same line are removed. Circles that go to 
external inputs are also removed, provided the corresponding input variable is complemented. 
The re quired AND-OR logic diagram is drawn in Fig. 4-16(c).

4.8 Multilevel NOR Circuits

The NOR function is the dual of the NAND function. For this reason, all procedures and rules for 
NOR logic form a dual of the corresponding procedures and rules developed for NAND logic. 
This section enumerates various methods for NOR logic implementation and analysis by follow-
ing the same list of topics used for NAND logic. However, less detailed explanation is included 
so as to avoid excessive repetition of the material in Section 4-7.

4.8.1 Universal Gate

The NOR gate is universal because any Boolean function can be implemented with it, including a 
flip-flop circuit as shown in Section 6-2. The conversion of AND, OR, and NOT to NOR is shown 

C

D

B′

B

C′

A

(a) NAND logic diagram

C

D

B′

B

C′

A

(b) Substitution of invert-OR symols in alternate levels

C

D

B

B

C′

A

(c) AND-OR logic diagram

Figure 4.16 Conversion of NAND logic diagram to AND-OR
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in Fig. 4-17. The NOT operation is obtained from a one-input NOR gate, yet another symbol for 
an inverter circuit. The OR operation requires two NOR gates. The first produces the inverted-OR 
and the second acts as an inverter to obtain the normal output. The AND operation is achieved 
through a NOR gate with additional inverters at each input.

4.8.2 Boolean Function Implementation — Block Diagram Method

The block diagram procedure for implementing Boolean functions with NOR gates is similar to 
the procedure outlined in the previous section for NAND gates.

1. Draw the AND-OR logic diagram from the given algebraic expression. Assume that both 
the normal and the complement inputs are available.

2. Draw a second logic diagram with equivalent NOR logic, as given in Fig. 4-17, substi-
tuted for each AND, OR, and NOT gate.

3. Remove pairs of cascaded inverters from the diagram. Remove inverters connected to 
single external inputs and complement the corresponding input variable.

The procedure is illustrated in Fig. 4-18 for the function:

F = A(B + CD) + BC′

The AND-OR implementation of the function is shown in the logic diagram of Fig. 4-18(a). For 
each OR gate, we substitute a NOR gate followed by an inverter. For each AND gate, we substi-
tute input inverters followed by a NOR gate. The pair of cascaded inverters from the OR box to 
the AND box is removed. The four inverters connected to external inputs are removed and the 
input variables comple mented. The result is the NOR logic diagram shown in Fig. 4-l8(c). The 
number of NOR gates in this example equals the number of AND-OR gates plus an additional 
inverter in the output (NOR gate 6). In general, the number of NOR gates required to implement 
a Boolean function equals the number of AND-OR gates, except for an occasional inverter. This 
is true provided both normal and complement inputs are available, because the conversion forces 
certain input variables to be complemented.

A

B

(A + B)′
A + B OR

(A′ + B′)′ = AB AND

A

B

A′

B′

A A′ NOT (inverter)

Figure 4.17 Implementation of NOT, OR, and AND by NOR gates
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4.8.3 Analysis Procedure

The analysis of NOR logic diagrams follows the same procedures presented in Section 4-6 for 
the analysis of combinational circuits. To derive the Boolean function from a logic diagram, we 
mark the outputs of various gates with arbitrary symbols. By repetitive substitutions, we obtain 
the output variable as a function of the input variables. To obtain the truth table from a logic 

C

D

B

B F

C′

A

(a) AND/OR implementation

C

AND

1

4

D

B

B

C′

A

3

OR

AND

F

AND

5

OR

2

6

(b) Substitution equivalent NOR functions from Fig 5-19

C′
1

2

3

4

5 6

D′

F

B

B′

C

A′

(c) NOR implementation

Figure 4.18 Implementation of F = A(B + CD) + BC′ with NOR gates
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diagram without first deriving the Boolean function, we form a table listing the n input variables 
with 2n rows of 1’s and 0’s. The truth table of various NOR gate outputs is derived in succession 
until the output truth table is obtained. The output function of a typical NOR gate is of the form 
T = (A + B′ + C)′: so the truth table for T is marked with a 0 for those combinations where A = 1 
or B = 0 or C = l. The rest of the rows are filled with 1’s.

4.8.4 Block Diagram Transformation

To convert a NOR logic diagram to its equivalent AND-OR logic diagram, we use the two sym-
bols for NOR gates shown in Fig. 4-19. The OR-invert is the normal symbol for a NOR gate and 
the invert-AND is a convenient alternative that utilizes De Morgan’s theorem and the convention 
that small circles at the inputs denote complementation.

The conversion of a NOR logic diagram to an AND-OR diagram is achieved through a 
change in symbols from OR-invert to invert-AND starting from the last level and in alternate 
levels. Pairs of small circles along the same line are removed. A one-input AND or OR gate is 
removed, but if it has a small circle at the input or output, it is converted to an inverter.

This procedure is demonstrated in Fig. 4-20, where the NOR logic diagram in (a) is con-
verted to an AND-OR diagram. The symbol of the gate in the last level (5) is changed to an 
invert-AND. Looking for alternate levels, we find one gate in level 3 and two in level 1. These 
three gates undergo a symbol change as shown in (b). Any two circles along the same line are 
removed. Circles that go to external inputs are also removed, provided the corresponding input 
variable is complemented. The gate in level 5 becomes a one-input AND gate and is removed. 
The required AND-OR logic diagram is drawn in Fig. 4-20(c).

4.9 Exclusive-OR and Equivalence Functions

Exclusive-OR and equivalence, denoted by ⊕ and , respectively, are binary operations that 
perform the following Boolean functions:

x ⊕ y = x y′ + x′y
x  y = x y + x′y′

The two operations are the complements of each other. Each is commutative and associative. 
Because of these two properties, a function of three or more variables can be expressed without 
parentheses as follows:

(A ⊕ B) ⊕ C = A ⊕ (B ⊕ C) = A ⊕ B ⊕ C

This would imply the possibility of using exclusive-OR (or equivalence) gates with three or more 
inputs. However, multiple-input exclusive-OR gates are very uneconomical from a hardware 

A (A + B + C)′
B
C

A′B′C′ = (A + B + C)′A
B
C

                               (a)  OR-invert                                         (b) invert-AND

Figure 4-19 Two symbols for NOR gate
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standpoint. In fact, even a two-input function is usually constructed with other types of gates. 
For example, Fig. 4-21(a) shows the im plementation of a two-input exclusive-OR function with 
AND, OR, and NOT gates. Figure 4-21(b) shows it with NAND gates.

Only a limited number of Boolean functions can be expressed exclusively in terms of exclu-
sive-OR or equivalence operations. Nevertheless, these functions emerge quite often during the 
design of digital systems. The two functions are particularly useful in arithmetic operations and 
in error detection and correction.

An n-variable exclusive-OR expression is equal to the Boolean function with 2n/2 minterms 
whose equivalent binary numbers have an odd number of 1’s. This is demonstrated in the map of 
Fig. 4-22 (a) for the four-variable case. There are 16 minterms for four variables. Half the min-
terms have a numerical value with an odd number of 1’s; the other half have a numerical value 
with an even number of 1’s. The numerical value of a minterm is determined from the row and 
column numbers of the square that represents the minterm. The map of Fig. 4-22 (a) has 1’s in 
the squares whose minterm numbers have an odd number of 1’s. The function can be expressed 

C′

D′

B

B′

C

A′

(a) NOR logic diagram

C′

D′

B

B′

C

A′

(b) Substitution of invert-AND symbols in alternate levels

                  

C

D

B

B

C′

A

   (c) AND-OR logic diagram

Figure 4.20 Conversion of NOR logic diagram to AND-OR
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x

x ⊕ y

y

(a) with AND-OR-NOT gates

x

x ⊕ y

y

(b) with NAND gates

Figure 4.21 Exclusive-OR implementations
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                                (a)        (b) 

Figure 4.22 Map for a four-variable (a) exclusive-OR function and (b) equivalence function 
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in terms of the exclusive-OR operations on the four variables. This is justified by the following 
algebraic manipulation:

A ⊕ B ⊕ C ⊕ D    = (AB′ + A′B) ⊕ (CD′ + C′D) 
 = (AB′ + A′B)(CD + C′D′) + (AB + A′B′)(CD′ + C′D) 
   = ∑(1, 2, 4, 7, 8, 11, 13, 14)

An n-variable equivalence expression is equal to the Boolean function with 2n/2 minterms, 
whose equivalent binary numbers have an even number of O’s. This is demonstrated in the map 
of Fig. 4-22(b) for the four-variable case. The squares with l’s represent the eight minterms with 
an even number of 0’s, and the function can be expressed in terms of the equivalence operations 
on the four variables.

When the number of variables in a function is odd, the minterms with an even number of 
0’s are the same as the minterms with an odd number of 1’s. This is demonstrated in the three-
variable map of Fig. 4-23(a). Therefore, an exclusive-OR expression is equal to an equivalence 
expression when both have the same odd number of variables. However, they form the comple-
ments of each other when the number of variables is even, as demonstrated in the two maps of 
Fig. 4-22(a) and (b).

When the minterms of a function with an odd number of variables have an even number of 
1’s (or equivalently, an odd number of 0’s), the function can be expressed as the complement of 
either an exclusive-OR or an equivalence expression. For example, the three-variable function 
shown in the map of Fig. 4-23(b) can be expressed as follows:

(A ⊕ B ⊕ C)'=A ⊕ B  C 

or

(A  B  C)' = A  B ⊕ C

The S output of a full-adder and the D output of a full-subtractor (Section 4-3) can be 
implemented with exclusive-OR functions because each function consists of four minterms with 
numerical values having an odd number of 1’s. The exclusive-OR function is extensively used in 
the implementation of digital arithmetic operations because the latter are usually implemented 
through proce dures that require a repetitive addition or subtraction operation.

BC
00 01 11 10

B

A

C

0

1 1 1

1 1

A

BC
00 01 11 10

B

A

C

0

1 1 1

1 1

A

               (a) F = A ⊕ B ⊕ C = A  B  C              (b) F = A ⊕ B  C = A  B ⊕ C

Figure 4.23 Map for three-variable functions
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Exclusive-OR and equivalence functions are very useful in systems requiring error-de-
tection and error-correction codes. As discussed in Section 1-6, a parity bit is a scheme for  
detecting errors during transmission of binary information. A parity bit is an extra bit included 
with a binary message to make the number of 1’s either odd or even. The message, including the 
parity bit, is transmitted and then checked at the receiving end for errors. An error is detected 
if the checked parity does not correspond to the one transmitted. The circuit that generates the 
parity bit in the transmitter is called a parity generator; the circuit that checks the parity in the 
receiver is called a parity checker.

As an example, consider a three-bit message to be transmitted with an odd-parity bit.  
Table 4-4 shows the truth table for the parity generator. The three bits x, y, and z constitute the 
message and are the inputs to the circuit. The parity bit P is the output. For odd parity, the bit 
P is generated so as to make the total number of 1’s odd (including P). From the truth table, 
we see that P = 1 when the number of 1’s in x, y, and z is even. This corresponds to the map of  
Fig. 4-23(b); so the function for P can be expressed as follows:

P = x ⊕ y  z

The logic diagram for the parity generator is shown in Fig. 4-24(a). It consists of one two-input 
exclusive-OR gate and one two-input equivalence gate. The two gates can be interchanged and 

Table 4-4 Odd-parity generation

Parity bit
Three-bit message generated

x y z P

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

x
y

z P
      

x

y

z

p

C

                    (a) 3-bit odd parity generator                     (b) 4-bit odd parity checker

Figure 4.24 Logic diagrams for parity generation and checking
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still produce the same function, since P is also equal to:

P = x  y ⊕ z

The three-bit message and the parity bit are transmitted to their destination, where they are 
applied to a parity-checker circuit. An error occurs during transmission if the parity of the four 
bits received is even, since the binary information transmitted was originally odd. The output C 
of the parity checker should be a 1 when an error occurs, i.e., when the number of l’s in the four 
inputs is even. Table 4-5 is the truth table for the odd-parity checker circuit. From it we see that 
the function for C consists of the eight minterms with numerical values having an even number 
of O’s. This corresponds to the map of Fig. 4-22(b); so the function can be expressed with equi-
valence operators as follows:

C = x  y  z  P

The logic diagram for the parity checker is shown in Fig. 4-24(b) and consists of three two-input 
equivalence gates.

It is worth noting that the parity generator can be implemented with the circuit of  
Fig. 4-24(b) if the input P is permanently held at logic-0 and the output is marked P, the advan-
tage being that the same circuit can be used for both parity generation and checking.

It is obvious from the foregoing example that panty generation and checking circuits always 
have an output function that includes half of the minterms whose numerical values have either 

Table 4-5 Odd-parity check

Four-bits received Parity-error check

x y z P C

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1
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an even or odd number of 1’s. As a consequence, they can be implemented with equivalence and/
or exclusive-OR gates.

REFERENCES

1. Rhyne, V. T., Fundamentals of Digital Systems Design. Englewood Cliffs, N.J.: Prentice-Hall. Inc., 
1973.

2. Peatman, J. P., The Design of Digital Systems. New York: McGraw-Hill Book Co., 1972.

3. Nagle, H. T. Jr., B. D. Carrol, and J. D. Irwin, An Introduction to Computer Logic. Englewood Cliffs, 
N. J.: Prentice-Hall. Inc., 1975.

4. Hill, F. J., and G. R. Peterson, Introduction to Switching Theory and Logical Design, 2nd. ed. New 
York: John Wiley & Sons. Inc. 1974.

5. Maiey, G. A., and J. Earle, The Logic Design of Transistor Digital Computers. Englewood Cliffs, N. 
J.: Prentice-Hall. Inc., 1963.

6. Friedman, A. D., and P. R. Menon, Theory and Design of Switching Circuits. Woodland Hills, Calif.: 
Computer Science Press. Inc., 1975.

PROBLEMS

4-1 A combinational circuit has four inputs and one output. The output is equal to 1 when (1) all the 
inputs are equal to 1 or (2) none of the inputs are equal to 1 or (3) an odd number of inputs are equal 
to I. 

(a) Obtain the truth table. 

(b) Find the simplified output function in sum of products.

(c) Find the simplified output function in product of sums.

(d) Draw the two logic diagrams.

4-2. Design a combinational circuit that accepts a three-bit number and generates an output binary num-
ber equal to the square of the input number.

4-3. It is necessary to multiply two binary numbers, each two bits long, in order to form their product in 
binary. Let the two numbers be represented by a

1
, a

0
 and b

1
, b

0
, where subscript 0 denotes the least 

significant bit.

(a) Determine the number of output lines required.

(b) Find the simplified Boolean expressions for each output.

4-4. Repeat problem 4-3 to form the sum (instead of the product) of the two binary numbers.

4-5. Design a combinational circuit with four input lines that represent a decimal digit in BCD and four 
output lines that generate the 9’s complement of the input digit.

4-6. Design a combinational circuit whose input is a four-bit number and whose output is the 2’s comple-
ment of the input number.

4-7. Design a combinational circuit that multiplies by 5 an input decimal digit represented in BCD. The 
output is also in BCD. Show that the outputs can be obtained from the input lines without using any 
logic gates.

4-8. Design a combinational circuit that detects an error in the representation of a decimal digit in BCD. 
In other words, obtain a logic diagram whose output is logic-1 when the inputs contain an unused 
combination in the code.
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4-9. Implement a full-subtractor with two half-subtractors and an OR gate.

4-10. A BCD-to-seven-segment decoder is a combinational circuit that accepts a decimal digit in BCD 
and generates the appropriate outputs for selection of segments in a display indicator used for dis-
playing the decimal digit. The seven outputs of the decoder (a, b, c, d, e, f, g) select the corresponding  
segments in the display as shown in Fig. P4-14(a). The numeric designation chosen to repre-
sent the decimal digit is shown in Fig. P4-14(b). Design the BCD-to-seven-segment decoder  
circuit.

 

a

b bf

e
d

c

cg

          (a) Segment designation               (b) Numerical designation for display

Figure P4.14

A

C

B

F1

F2

Figure P4.15 

4-11. Analyze the two-output combinational circuits shown in Fig. P4-15. Obtain the Boolean functions 
for the two outputs and explain the circuit operation.

4-12. Derive the truth table of the circuit shown in Fig, P4-15.

4-13. Using the block diagram method, convert the logic diagram of Fig. 4-8 to a NAND implementation.

4-14. Repeat problem 4-15 for NOR implementation.

4-15. Obtain the NAND logic diagram of a full-adder from the Boolean functions:

 C = x y + xz + yz
 S = C′(x + y + z) + x yz

4-16. Determine the Boolean function for the output F of the circuit in Fig. P4-20. Obtain an equivalent 
circuit with fewer NOR gates.
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A’
B’

B’

B’

C

A

F

Figure P4-20

4-17. Determine the output Boolean functions of the circuits in Fig, F4-21.

4-18. Obtain the truth table for the circuits in Fig. P4-21.

4-19. Obtain the equivalent AND-OR logic diagram of Fig. P4-21(a).

4-20. Obtain the equivalent AND-OR logic diagram of Fig P4-21(b).

4-21. Obtain the logic diagram of a two-input equivalence function using (a) AND, OR, and NOT gates; 
(b) NOR gates; and (c) NAND gates.

4-22. Show that the circuit in Fig. 4-21(b) is an exclusive-OR.

4-23. Show that A  B  C  D = ∑(0, 3, 5, 6, 9, 10, 12, 15).

4-24. Design a combinational circuit that converts a four-bit reflected-code number (Table 1-4) to a four-
bit binary number. Implement the circuit with exclusive-OR gates.

4-25. Design a combinational circuit to check for even parity of four bits. A logic-1 output is required 
when the four bits do not constitute an even parity.

 

F1

z

x
y

F2

(a)

A
B

C

F

(b)

Figure P4-21
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4-26. Implement the four Boolean functions listed using three half-adder circuits (Fig. 4-2e). 

 D = A ⊕ B ⊕ C

 E = A′BC + AB′C
 F = ABC′ + (A′ + B′)C
 G = ABC

4.27. Design a combinational circuit which accepts a two-bit number and generates an output binary nu-
mber equal to the cube of the input number.

4.28. Implement a combinational circuit which convert four bit excess 3 code to four bit BCD code.

4.29. Implement full adder with the help of (a) NAND gates (b) NOR gates.

4.30. Design a combinational circuit which convert BCD number to its corresponding 7 bit ASCII bit. 
Implement your circuit with NAND gates only.

4.31. What are universal gates? Why are they called so? 

4.32. Write short notes on

(a) Parity generator and checker

(b) Realization of full-subtractor with the help of full-adder

(c) Multilevel realization of gates.

(d) Equivalence functions

4.33. Covert Excess 3 code to Biquinary (5043210).

4.34. Implement  following Boolean function using exclusive or and AND gates

 F = ABCD + A′B′C′D′ + ABC′D′ + A′B′CD
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Combinational Logic with MSI and LSI

5.1 Introduction

The purpose of Boolean function simplification is to obtain an algebraic expression that, when 
implemented, results in a low-cost circuit. However, the criteria that determine a low-cost circuit 
or system must be defined if we are to evaluate the success of the achieved simplification. The 
design procedure for combinational circuits presented in Section 4-2 minimizes the number of 
gates required to implement a given function. This classical procedure assumes that, given two 
circuits that perform the same function, the one that requires fewer gates is preferable because it 
will cost less. This is not necessarily true when integrated circuits are used.

Since several logic gates are included in a single IC package, it becomes economical to use 
as many of the gates from an already used package even if, by doing so. we increase the total 
number of gates. Moreover, some of the interconnections among gates in many ICs are internal to 
the chip and it is more economical to use as many internal interconnections as possible in order to 
minimize the number of wires between external pins. With integrated circuits, it is not the count 
of gates that determines the cost but the number and type of ICs employed and the number of 
external interconnections needed to implement the given function.

There are numerous occasions where the classical method of Section 4-2 will not produce 
the best combinational circuit for implementing a given function. Moreover, the truth table and 
the simplification procedure in this method become too cumbersome if the number of input 
variables is excessively large. The final circuit obtained dictates that it be implemented with a 
random connection of SSI gates, which may require a relatively large number of ICs and inter-
connecting wires. In many cases the application of an alternate design procedure can produce a 
combinational circuit for a given function which is far better than the one obtained by following 
the classical design method. The possibility of an alternate design procedure depends on the 
particular problem and the ingenuity of the designer. The classical method constitutes a general 
procedure that, if followed, guarantees to produce a result. However, before applying the classical 
method, it is always wise to investigate the possibility of an alternate method which may be more 
efficient for the particular problem at hand.

The first question that must be answered before going through a detailed design of a com-
binational circuit is whether the function is already available in an IC package. Numerous MSI 
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devices are available commercially. These devices perform specific digital functions commonly 
employed in the design of digital computer systems. If an MSI device cannot be found to produce 
exactly the function needed, a resourceful designer may be able to formulate a method so as to 
incorporate an MSI device in his circuit. The selection of MSI components in preference to SSI 
gates is extremely important, since it would invariably result in a considerable reduction of IC 
packages and interconnecting wires.

The first half of this chapter presents examples of combinational circuits designed by meth-
ods other than the classical procedure. All of the examples demonstrate the internal construction 
of existing MSI functions. Thus we present new design tools and at the same time acquaint the 
reader with existing MSI functions. Familiarity with available MSI functions is very important 
not only in the design of combinational circuits, but also in the design of more complicated digital  
computer systems.

Occasionally one finds MSI and LSI circuits that can be applied directly to the design and 
implementation of any combinational circuit. Four techniques of combinational logic design by 
means of MSI and LSI are introduced in the second half of the chapter. These techniques make 
use of the general properties of decoders, multiplexers, read-only memories (ROM), and pro-
grammable logic arrays (PLA). These four IC components have a large number of applications. 
Their use in implementing combinational circuits as described here is just one of many other 
applications.

5.2 Binary Parallel Adder

The full-adder introduced in Section 4-3 forms the sum of two bits and a previous carry. Two bi-
nary numbers of n bits each can be added by means of this circuit. To demonstrate with a specific 
example, consider two binary numbers, A = 1011 and B = 0011, whose sum is S = 1110. When 
a pair of bits are added through a full-adder, the circuit produces a carry to be used with the pair 
of bits one significant position higher. This is shown in the following table:

Subscript i 4 3 2 1
Full-adder 
of Fig. 4-5

Input carry 0 1 1 0 C
i

z

Augend 1 0 1 1 A
i

x

Addend 0 0 1 1 B
i

y

Sum 1 1 1 0 S
i

S

Output carry 0 0 1 1 C
i+1

C

The bits are added with full-adders, starting from the least significant position (subscript i), 
to form the sum bit and carry bit. The inputs and outputs of the full-adder circuit of Fig. 4-5 are 
also indicated above. The input carry C

1
 in the least significant position must be 0. The value of 

C
i+1

 in a given significant position is the output carry of the full-adder. This value is transferred 
into the input carry of the full-adder that adds the bits one higher significant position to the left. 
The sum bits are thus generated starting from the rightmost position and are available as soon as 
the corresponding previous carry bit is generated.
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The sum of two n-bit binary numbers, A and B, can be generated in two ways: either in a 
serial fashion or in parallel. The serial addition method uses only one full-adder circuit and a 
storage device to hold the generated output carry. The pair of bits in A and B are transferred seri-
ally, one at a time, through the single full-adder to produce a string of output bits for the sum. 
The stored output carry from one pair of bits is used as an input carry for the next pair of bits.  
The parallel method uses n full-adder circuits, and all bits of A and B are applied simultaneously. 
The output carry from one full-adder is connected to the input carry of the full-adder one posi-
tion to its left. As soon as the carries are generated, the correct sum bits emerge from the sum 
outputs of all full-adders.

A. binary parallel adder is a digital function that produces the arithmetic sum of two binary 
numbers in parallel. It consists of full-adders connected in cascade. with the output carry from 
one full-adder connected to the input carry of the next full-adder.

Figure 5-1 shows the interconnection of four full-adder (FA) circuits to provide a 4-bit 
binary parallel adder. The augend bits of A and the addend bits of B are designated by subscript 
numbers from right to left, with subscript 1 denoting the low-order bit. The carries are connected 
in a chain through the full-adders. The input carry to the adder is C

1
 and the output carry is C

5
. 

The S outputs generate the required sum bits. When the 4-bit full-adder circuit is enclosed within 
an IC package, it has four terminals for the augend bits, four terminals for the addend bits, four 
terminals for the sum bits, and two terminals for the input and output carries.*

An n-bit parallel adder requires n full-adders. It can be constructed from 4-bit, 2-bit, and 
1-bit full-adders ICs by cascading several packages. The output carry from one package must be 
connected to the input carry of the one with the next higher-order bits.

The 4-bit full-adders is a typical example of an MSI function. It can be used in many ap-
plications involving arithmetic operations. Observe that the design of this circuit by the classical 
method would require a truth table with 29 = 512 entries, since there are nine inputs to the circuit. 
By using an iterative method of cascading an already known function, we were able to obtain a 
simple and well-organized implementation.

The application of this MSI function to the design of a combinational circuit is demon-
strated in the following example.

*An example of a 4-bit full-adders is the TTL type 74283 IC.

C1

S1S2S3S4

A1

C2

B1A2B2A3B3A4B4

FA FA FA FA
C3C4C5

Figure 5-1 4-bit full-adders
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EXAMPLE 5-1: Design a BCD-to-excess-3 code converter.
This circuit was designed in Section 4-5 by the classical method. The circuit obtained 

from this design is shown in Fig. 4-8 and requires 11 gates. When implemented with SSI 
gates, it requires 3 IC packages and 14 internal wire connections (not including input and 
output connections). Inspection of the truth table immediately reveals that the excess-3 equiv-
alent code can be obtained from the BCD code by the addition of binary 0011. This addition 
can be easily implemented by means of a 4-bit full-adders MSI circuit, as shown in Fig. 5-2. 
The BCD digit is applied to inputs A. Inputs B are set to a constant 0011. This is done by ap-
plying logic-1 B

1
 and B

2
 and logic-0 to B

3
, B

4
, and C

1
. Logic-1 and logic-0 are physical signals 

whose values depend on the IC logic family used. For TTL circuits, logic-1 is equivalent to 
3.5 volts and logic-0 is equivalent to ground. The S outputs from the circuit give the excess-3 
equivalent code of the input BCD digit. This implementation requires one IC package and five 
wire connections, not including input and output wiring.

5.2.1 Carry Propagation

The addition of two binary numbers in parallel implies that all the bits of the augend and the 
addend are available for computation at the same time. As in any combinational circuit, the 
signal must propagate through the gates before the correct output sum is available in the output 
terminals. The total propagation time is equal to the propagation delay of a typical gate times 
the number of gate levels in the circuit. The longest propagation delay time in a parallel adder is 
the time it takes the carry to propagate through the full-adders. Since each bit of the sum output 
depends on the value of the input carry, the value of S

i
 in any given stage in the adder will be in 

its steady-state final value only after the input carry to that stage has been propagated. Consider 
output S

4
 in Fig. 5-1. Inputs A

4
 and B

4
 reach a steady value as soon as input signals are applied 

C1

C5

Excess-3
output

BCD
input

Not used

A1

B1

A2

B2

A3

B3

A4

B4

S1

S2

S3

S41

0

Figure 5-2 BCD-to-excess-3 code converter
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to the adder. But input carry C
4
 does not settle to its final steady-state value until C

3
 is available 

in its steady-state value. Similarly C
3
 has to wait for C

2
, and so on down to C

1
. Thus only after 

the carry propagates through all stages will the last output S
4
 and carry C

5
 settle to their final 

steady-state value.
The number of gate levels for the carry propagation can be found from the circuit of the 

full-adder. This circuit was derived in Fig. 4-5 and is redrawn in Fig. 5-3 for convenience. The 
input and output variables use the subscript i to denote a typical stage in the parallel adder. The 
signals at P

i
 and G

i
 settle to their steady-state value after the propagation through their respective 

gates. These two signals are common to all full-adders and depend only on the input augend and 
addend bits. The signal from the input carry, C

i
, to the output carry, C

i+1
, propagates through an 

Ai

Bi

Ci

Pi

Gi

Si

Ci + 1

Figure 5-3 Full-adder crcuit

C1

G1

G2

P1

P2

G3

P3

C2

C3

C4

Figure 5-4 Logic diagram of a look-ahead carry generator

www.youseficlass.ir



142 Chapter 5

AND gate and an OR gate, which constitute two gate levels. If there are four full-adders in the 
parallel adder, the output carry C

5
 would have 2 × 4 = 8 gate levels from C

1
 to C

5
. The total pro-

pagation time in the adder would be the propagation time in one half-adder plus eight gate levels. 
For an n-bit parallel adder, there are 2n gate levels for the carry to propagate through.

The carry propagation time is a limiting factor on the speed with which two numbers are 
added in parallel. Although a parallel adder, or any combinational circuit, will always have some 
value at its output terminals, the outputs will not be correct unless the signals are given enough 
time to propagate through the gates connected from the inputs to the outputs. Since all other 
arithmetic operations are implemented by successive additions, the time consumed during the 
addition process is very critical. An obvious solution for reducing the carry propagation delay 
time is to employ faster gates with reduced delays. But physical circuits have a limit to their 
capability. Another solution is to increase the equipment complexity in such a way that the carry 
delay time is reduced. There are several techniques for reducing the carry propagation time in a 
parallel adder. The most widely used technique employs the principle of look-ahead carry and 
is described below.

Consider the circuit of the full-adder shown in Fig. 5-3. If we define two new binary vari-
ables:

P
i
 = A

i
 ⊕ B

i

G
i
 = A

i
B

i

the output sum and carry can be expressed as:

S
i
 = P

i
 ⊕ C

i

C
i + 1

 = G
i
 + P

i
C

i

G
i
 is called a carry generate and it produces an output carry when both A

i
 and B

i
 are one, regard-

less of the input carry. P
i
 is called a carry propagate because it is the term associated with the 

propagation of the carry from C
i
 to C

i+1
.

We now write the Boolean function for the carry output of each stage and substitute for 
each C

i
 its value from the previous equations:

C
2
= G

1
+ P

1
C

1

C
3
= G

2
 + P

2
C

2
 = G

2
 + P

2
(G

1
 + P

1
C

1
) = G

2
 + P

2
G

1
 + P

2
 P

1
C

1

C
4
= G

3
 + P

3
C

3
 = G

3
 + P

3
G

2
 + P

3
P

2
G

1
 + P

3
P

2
P

1
C

1

Since the Boolean function for each output carry is expressed in sum of products, each function 
can be implemented with one level of AND gates followed by an OR gate (or by a two-level 
NAND). The three Boolean functions for C

2
, C

3
, and C

4 
are implemented in the look-ahead carry 

generator shown in Fig. 5-4. Note that C
4 
does not have to wait for C

3
 and C

2
 to propagate; in fact, 

C
4
 is propagated at the same time as C

2
 and C

3
.†

The construction of a 4-bit parallel adder with a look-ahead carry scheme is shown in  
Fig. 5-5. Each sum output requires two exclusive-OR gates. The output of the first exclusive-OR 
gate generate the P

i
 variable, and the AND gale generates the G

i
 variable. All the P’s and G’s are 

† A typical look-ahead carry generator is the IC type 74182. It is implemented with AND-OR-INVERT 
gates. It also has two outputs, G and P, to generate C

5
 = G + PC

1
.
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generated in two gate levels. The carries are propagated through the look-ahead carry generator 
(similar to that in Fig. 5-4) and applied as inputs to the second exclusive-OR gate. After the P and 
G signals settle into their steady-state values, all output carries are generated after a delay of two 
levels of gates. Thus, outputs S

2
 through S

4
 have equal propagation delay times. The two-level 

circuit for the output carry C
5
 is not shown in Fig 5-4. This circuit can be easily derived by the 

equation-substitution method as done above (see Problem 5-4).

5.3 Decimal Adder

Computers or calculators that perform arithmetic operations directly in the decimal number sys-
tem represent decimal numbers in binary-coded form. An adder for such a computer must em-
ploy arithmetic circuits that accept coded decimal numbers and present results in the accepted 
code. For binary addition, it was sufficient to consider a pair of significant bits at a time, together 
with a previous carry. A decimal adder requires a minimum of nine inputs and five outputs, since 
four bits are required to code each decimal digit and the circuit must have an input carry and out-
put carry. Of course, there is a wide variety of possible decimal adder circuits, dependent upon 
the code used to represent the decimal digits.

The design of a nine-input, five-output combinational circuit by the classical method 
requires a truth table with 29 = 512 entries. Many of the input combinations are don’t-care  

S1

S2

S3

S4

C2

C1 C1

A4

B4

G4

Look-ahead
     carry
  generator

P4

G3

P3

G2

P2

G1

P1

A3

B3

A2

B2

A1

B1

C5

C3

C4

P4

P3

P2

P1

C5

Figure 5-5 4-bit full-adders with look-ahead carry
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conditions, since each binary code input has six combinations that are invalid. The simplified 
Boolean functions for the circuit may be obtained by a computer-generated tabular method, and 
the result would probably be a connection of gates forming an irregular pattern. An alternate 
procedure is to add the numbers with full-adder circuits, taking into consideration the fact that 
six combinations in each 4-bit input are not used. The output must be modified so that only those 
binary combinations which are valid combinations of the decimal code are generated.

5.3.1 BCD adder

Consider the arithmetic addition of two decimal digits in BCD, together with a possible carry 
from a previous stage. Since each input digit does not exceed 9, the output sum cannot be greater 
than 9 + 9 + 1 = 19, the 1 in the sum being an input carry. Suppose we apply two BCD digits to a 
4-bit binary adder. The adder will form the sum in binary and produce a result which may range 
from 0 to 19. These binary numbers are listed in Table 5-1 and are labeled by symbols K, Z

8
, Z

4
, 

Z
2
, and Z

1
. K is the carry, and the subscripts under the letter Z represent the weights 8, 4, 2, and 1 

that can be assigned to the four bits in the BCD code. The first column in the table lists the binary 
sums as they appear in the outputs of a 4-bit binary adder. The output sum of two decimal digits 

Table 5-1 Derivation of a BCD adder

Binary sum BCD sum Decimal

K Z
8

Z
4

Z
2

Z
1

C S
8

S
4

S
2

S
1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 2

0 0 0 1 1 0 0 0 1 1 3

0 0 1 0 0 0 0 1 0 0 4

0 0 1 0 1 0 0 1 0 1 5

0 0 1 1 0 0 0 1 1 0 6

0 0 1 1 1 0 0 1 1 1 7

0 1 0 0 0 0 1 0 0 0 8

0 1 0 0 1 0 1 0 0 1 9

0 1 0 1 0 1 0 0 0 0 10

0 1 0 1 1 1 0 0 0 1 11

0 1 1 0 0 1 0 0 1 0 12

0 1 1 0 1 1 0 0 1 1 13

0 1 1 1 0 1 0 1 0 0 14

0 1 1 1 1 1 0 1 0 1 15

1 0 0 0 0 1 0 1 1 0 16

1 0 0 0 1 1 0 1 1 1 17

1 0 0 1 0 1 1 0 0 0 18

1 0 0 1 1 1 1 0 0 1 19
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must be represented in BCD and should appear in the form listed in the second column of the 
table. The problem is to find a simple rule by which the binary number in the first column can be 
converted to the correct BCD-digit representation of the number in the second column.

In examining the contents of the table, it is apparent that when the binary sum is equal to 
or less than 1001, the corresponding BCD number is identical, and therefore no conversion is 
needed. When the binary sum is greater than 1001, we obtain a nonvalid BCD representation. 
The addition of binary 6 (0110) to the binary sum converts it to the correct BCD representation 
and also produces an output carry as required.

The logic circuit that detects the necessary correction can be derived from the table entries. 
It is obvious that a correction is needed when the binary sum has an output carry K = 1. The other 
six combinations from 1010 to 1111 that need a correction have a 1 in position Z

8
. To distinguish 

them from binary 1000 and 1001 which also have a 1 in position Z
8
, we specify further that either 

Z
4
 or Z

2
 must have a 1. The condition for a correction and an output carry can be expressed by 

the Boolean function:

C = K + Z
8
Z

4
 + Z

8
Z

2

when C = 1, it is necessary to add 0110 to the binary sum and provide an output carry for the 
next stage.

A BCD adder is a circuit that adds two BCD digits in parallel and produces a sum digit also 
in BCD. A BCD adder must include the correction logic in its internal construction. To add 0110 
to the binary sum, we use a second 4-bit binary adder as shown in Fig. 5-6. The two decimal 
digits, together with the input carry, are first added in the top 4-bit binary adder to produce the 
binary sum. When the output carry is equal to zero, nothing is added to the binary sum. When 
it is equal to one, binary 0110 is added to the binary sum through the bottom 4-bit binary adder. 
The output carry generated from the bottom binary adder can be ignored, since it supplies infor-
mation already available at the output-carry terminal.

The BCD adder can be constructed with three IC packages. Each of the 4-bit adders is an 
MSI function and the three gates for the correction logic need one SSI package. However, the 
BCD adder is available in one MSI circuit.‡ To achieve shorter propagation delays, an MSI BCD 
adder includes the necessary circuits for look-ahead carries. The adder circuit for the correction 
does not need all four full-adders, and this circuit can be optimized within the IC package.

A decimal parallel adder that adds n decimal digits needs n BCD adder stages. The output 
carry from one stage must be connected to the input carry of the next higher-order stage.

5.4 Magnitude Comparator

The comparison of two numbers is an operation that determines if one number is greater than, 
less than, or equal to the other number. A magnitude comparator is a combinational circuit that 
compares two numbers. A and B, and determines their relative magnitudes. The outcome of the 
comparison is specified by three binary variables that indicate whether A > B, A = B. or A < B.

The circuit for comparing two n-bit numbers has 22n entries in the truth table and be-
comes too cumbersome even with n = 3. On the other hand, as one may suspect, a comparator 
circuit possesses a certain amount of regularity. Digital functions which possess an inherent  

‡TTL IC type 82S83 is a BCD adder.
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well-defined regularity can usually be designed by means of an algorithmic procedure if one is 
found to exist. An algorithm is a procedure that specifics a finite set of steps which, if followed, 
give the solution to a problem. We illustrate this method here by deriving an algorithm for the 
design of a 4-bit magnitude comparator.

The algorithm is a direct application of the procedure a person uses to compare the relative 
magnitudes of two numbers. Consider two numbers, A and B, with four digits each. Write the 
coefficients of the numbers with descending significance as follows:

A = A
3
A

2
A

1
A

0

B = B
3
B

2
B

1
B

0

where each subscripted letter represents one of the digits in the number. The two numbers are 
equal if all pairs of significant digits are equal i.e., if A

3
 = B

3
 and A

2
 = B

2
 and A

1
 = B

1
 and A

0
 = B

0
. 

When the numbers are binary, the digits are either 1 or 0 and the equality relation of each pair of 
bits can be expressed logically with an equivalence function:

x
i
 = A

i
B

i
 + A′

i 
B′

i
        i = 0, 1, 2, 3

where x
i
 = 1 only if the pair of bits in position i are equal, i.e., if both are 1’s or both are 0’s.

S1S2S4S8

Z1Z2Z4Z8

0

4-bit binary adder

4-bit binary adder Carry
   in

Carry
  out

Output
  carry

Addend Augend

Figure 5-6 Block diagram of a BCD adder
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The equality of the two numbers, A and B, is displayed in a combinational circuit by an 
output binary variable which we designate by the symbol (A = B). This binary variable is equal to 
1 if the input numbers, A and B, are equal, and it is equal to 0 otherwise. For the equality condi-
tion to exist, all x

i
 variables must be equal to 1. This dictates an AND operation of all variables:

(A = B) = x
3
 x

2
 x

1
 x

0

the binary variable (A = B) is equal to 1 only if all pairs of digits of the two numbers are equal.
To determine if A is greater than or less than B, we inspect the relative magnitudes of pairs 

of significant digits starting from the most significant position. If the two digits are equal, we 
compare the next lower significant pair of digits. This comparison continues until a pair of un-
equal digits is reached. If the corresponding digit of A is 1 and that of B is 0, we conclude that 
A > B. If the corresponding digit of A is 0 and that of B is 1, we have that A < B. The sequential 
comparison can be expressed logically by the following two Boolean functions:

(A > B) = A
3
B′

3
 + x

3
A

2
B′

2
 + x

3
x

2
A

1
B′

1
 + x

3
x

2
x

1
A

0
B′

0

(A < B) = A′
3
B

3
 + x

3
A′

2
B

2
 + x

3
x

2
A′

1
B

1
 + x

3
x

2
x

1
A′

0
B

0

the symbols (A > B) and (A < B) are binary output variables which are equal to 1 when A > B or 
A < B, respectively.

The gate implementation of the three output variables just derived is simpler than it seems 
because it involves a certain amount of repetition. The “unequal” outputs can use the same gates 
that are needed to generate the “equal” output. The logic diagram of the 4-bit magnitude com-
parator is shown in Fig. 5-7.§ The four x outputs are generated with equivalence (exclusive-NOR) 
circuits and applied to an AND gate to give the output binary variable (A = B). The other two 
outputs use the x variables to generate the Boolean functions listed above. This is a multilevel 
implementation and, as clearly seen, it has a regular pattern. The procedure for obtaining magni-
tude comparator circuits for binary numbers with more than four bits should be obvious from this 
example. The same circuit can be used to compare the relative magnitudes of two BCD digits.

5.5 Decoders

Discrete quantities of information are represented in digital systems with binary codes. A binary 
code of n bits is capable of representing up to 2n distinct elements of the coded information. 
A decoder is a combinational circuit that converts binary information from n input lines to a 
maximum of 2n unique output lines. If the n-bit decoded information has unused or don’t-care 
combinations, the decoder output will have less than 2n outputs.

The decoders presented here are called n-to-m line decoders where m ≤ 2n Their purpose 
is to generate the 2n (or less) minterms of n input variables. The name decoder is also used in 
conjunction with some code converters such as a BCD-to-seven-segment decoder (see Problem 
4-14).

As an example, consider the 3-to-8 line decoder circuit of Fig. 5-8. The three inputs are de-
coded into eight outputs, each output representing one of the minterms of the 3-input variables. 

§ TTL type 7485 is a 4-bit magnitude comparator. It has three more inputs for connecting comparators in 
cascade (see Problem 5-14).
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The three inverters provide the complement of the inputs, and each one of the eight AND gates 
generates one of the minterms. A particular application of this decoder would be a binary-to-
octal conversion. The input variables may represent a binary number, and the outputs will then 
represent the eight digits in the octal number system. However, a 3-to-8 line decoder can be used 
for decoding any 3-bit code to provide eight outputs, one for each element of the code.

The operation of the decoder may be further clarified from its input-output relationships, 
listed in Table 5-2. Observe that the output variables are mutually exclusive because only one 
output can be equal to 1 at any one time. The output line whose value is equal to 1 represents the 
minterm equivalent of the binary number presently available in the input lines.¶

¶ IC type 74138 is a 3-to-8 line decoder. It is constructed with NAND gates. The outputs are the 
complements of the values shown in Table 5-2.

(A = B)

(A > B)

A1

x1

x0

B1

A1

B0

A2

x2

B2

A3

x3

B3

(A < B)

Figure 5-7 4-bit magnitude comparator 
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EXAMPLE 5-2: Design a BCD-to-decimal decoder.
The elements of information in this case are the ten decimal digits represented by the 

BCD code. The code itself has four bits. Therefore, the decoder should have four inputs to 
accept the coded digit and ten outputs, one for each decimal digit. This will give a 4-line to 
10-line BCD-to-decimal decoder.

There is really no need to design such a decoder because it can be found in IC form as 
an MSI function. We will design it anyway for two reasons. First, it gives insight on what to 
expect in such an MSI function. Second, this is a good example for demonstrating the practi-
cal consequences of don’t-care conditions.

Since the circuit has ten outputs, it would be necessary to draw ten maps to simplify each 
one of the output functions. There are six don’t-care conditions here, and they must be taken 
into consideration when we simplify each of the output functions. Instead of drawing ten 
maps, we will draw only one map and write each of the output variables, D

0
 to D

9
, inside its 

corresponding minterm square as shown in Fig. 5-9. Six input combinations will never occur, 
so we mark their corresponding minterm squares with X’s.

It is the designer’s responsibility to decide on how to treat the don’t-care conditions. As-
sume that it is decided to use them in such a way as to simplify the functions to the minimum 

x

y

z

D0 = x´y´z´

D1 = x´y´z

D2 = x´yz´

D3 = x´yz

D4 = xy´z´

D5 = xy´z

D6 = xyz´

D7 = xyz

Figure 5-8 A 3-to-8-line decoder 
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number of literals. D
0
 and D

1
 cannot be combined with any don’t-care minterms. D

2 
can be 

combined with the don’t care minterm m
10

 to give:

D
2
 = x’yz’

The square with D
9
 can be combined with three other don’t-care squares to give:

D
9
 = wz

Using the don’t-care terms for the other outputs, we obtain the circuit shown in Fig. 5-10. 
Thus the don’t-care terms cause a reduction in the number of inputs in most of the AND gates.

A careful designer should investigate the effect of the above minimization. Although it is 
true that under normal operating conditions the invalid six combina tions will never occur, what 
if there is a malfunction and they do occur? An analysis of the circuit of Fig. 5-10 shows that the 

Table 5-2 Truth table of a 3-to-8 line decoder

Inputs Outputs

x y z D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

yz
wx 00

00

01

01

11

11

10

10

y

z

x

w

D0 D1 D3 D2

D4 D5 D7 D6

X X X X

D8 D9 X X

Figure 5-9 Map for simplifying a BCD-to-decimal decoder
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six invalid input combinations will produce outputs as listed in Table 5-3. The reader can look at 
the table and decide whether this is a good or bad design.

Another reasonable design decision would be to make all outputs equal to 0 when an invalid 
input combination occurs.** This would require ten 4-input AND gates. Other possibilities may 
be considered. In any case, one should not treat don’t-care conditions indiscriminately but should 
try to investigate their effect once the circuit is in operation.

5.5.1 Combinational Logic Implementation

A decoder provides the 2n minterm of n input variables. Since any Boolean function can be ex-
pressed in sum of minterms canonical form, one can use a decoder to generate the minterms and 
an external OR gate to form the sum. In this way, any combinational circuit with n inputs and m 
outputs can be implemented with an n-to-2 n line decoder and m OR gates.

The procedure for implementing a combinational circuit by means of a decoder and OR 
gates requires that the Boolean functions for the circuit be expressed in sum of minterms. This 
form can be easily obtained from the truth table or by expanding the functions to their sum of 
minterms (see Section 2-5). A decoder is then chosen which generates all the minterms of the n 
input variables. The inputs to each OR gate are selected from the decoder outputs according to 
the minterm list in each function.

** IC type 7442 is a BCD-to-decimal decoder. The selected outputs are in the 0 state, and all the invalid 
combinations give an output of all 1’s.

D0 = w´x´y´z´

D1 = w´x´y´z

D2 = x´yz´

D3 = x´yz

D4 = xy´z´

D5 = xy´z

D6 = xyz´

D7 = xyz

D8 = wz´

D9 = wz

w

x

y

z

Figure 5-10 BCD-to-decimal decoder

www.youseficlass.ir



152 Chapter 5

EXAMPLE 5-3: Implement a full-adder circuit with a decoder and two OR gates.
From the truth table of the full-adder (Section 4-3), we obtain the functions for this 

combinational circuit in sum of minterms:

 S(x, y, z) = ∑(1, 2, 4, 7)

C(x
, 
y, z,) = ∑(3, 5, 6, 7)

Since there are three inputs and a total of eight minterms, we need a 3-to-8 line decoder. The 
implementation is shown in Fig. 5-11. The decoder generates the eight minterms for x, y, z. 
The OR gate for output S forms the sum of minterms 1, 2, 4, and 7. The OR gate for output C 
forms the sum of minterms 3, 5, 6, and 7.

A function with a long list of minterms requires an OR gate with a large number of inputs. 
A function F having a list of k minterms can be expressed in its complemented form F′ with 2n - 
k minterms. If the number of minterms in a function is greater than 2n /2, then F′ can be expressed 
with fewer minterms than required for F. In such a case, it is advantageous to use a NOR gate to 
sum the minterms of F′. The output of the NOR gate will generate the normal output F. 

Table 5-3 Partial truth table for the circuit of Fig, 5-10

Inputs Outputs

w x y       z D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

1 0 1      0 0 0 1 0 0 0 0 0 1 0

1 0 1      1 0 0 0 1 0 0 0 0 0 1

1 1 0      0 0 0 0 0 1 0 0 0 1 0

1 1 0      1 0 0 0 0 0 1 0 0 0 1

1 1 1      0 0 0 0 0 0 0 1 0 1 0

1 1 1      1 0 0 0 0 0 0 0 1 0 1

x
2

22

3×8
decoder

21

20

1
S

C

0

y

4

3

5z

7

6

Figure 5-11 Implementation of a full-adder with a decoder
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The decoder method can be used to implement any-combinational circuit. However, its 
implementation must be compared with all other possible implementations to determine the best 
solution. In some cases this method may provide the best implementation, especially if the com-
binational circuit has many outputs and if each output function (or its complement) is expressed 
with a small number of minterms.

5.5.2 Demultiplexers

Some IC decoders are constructed with NAND gates. Since a NAND gate produces the AND 
operation with an inverted output, it becomes more economical to generate the decoder minterms 
in their complemented form. Most, if not all, IC decoders include one or more enable inputs 
to control the circuit operation. A 2-to-4 line decoder with an enable input constructed with 
NAND gates is shown in Fig, 5-12. All outputs are equal to 1 if enable input E is 1, regardless of 
the values of inputs A and B. When the enable input is 0, the circuit operates as a decoder with 
complemented outputs. The truth table lists these conditions. The X’s under A and B are don’t-
care conditions. Normal decoder operation occurs only with E = 0, and the outputs are selected 
when they are in the 0 state.

The block diagram of the decoder is shown in Fig. 5-13(a). The small circle at input E in-
dicates that the decoder is enabled when E = 0. The small circles at the outputs indicate that all 
outputs are complemented.

A decoder with an enable input can function as a demultiplexer. A demultiplexer is a circuit 
that receives information on a single line and transmits this information on one of 2 n possible 
output lines. The selection of a specific output line is controlled by the bit values of n selection 
lines. The decoder of Fig. 5-12 can function as a demultiplexer if the E line is taken as a data 
input line and lines A and B are taken as the selection lines. This is shown in Fig. 5-13(b). The 
single input variable E has a path to all four outputs, but the input information is directed to only 
one of the output lines, as specified by the binary value of the two selection lines A and B. This 
can be verified from the truth table of this circuit, shown in Fig. 5-12(b). For example, if the 
selection lines AB = 10, output D

2
 will be the same as the input value E, while all other outputs 

are maintained at 1. Because decoder and demultiplexer operations are obtained from the same 

A

D0

D1

D2

D3

B

E      

D0E
1    X    X

0    0    0

0    1    1

0    1    0

0    0    1

1      1       1      1

0      1       1      1

1      0       1      1

1      1       0      1

1      1       1      0

A B D1 D2 D3

                                      (a) Logic diagram                             (b) Truth table

Figure 5-12 A 2-to-4 line decoder with enable (E) input
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circuit, a decoder with an enable input is referred to as a decoder/demultiplexer. It is the enable 
input that makes the circuit a demultiplexer; the decoder itself can use AND, NAND, or NOR 
gates.

Decoder/demultiplexer circuits can be connected together to form a larger decoder circuit. 
Figure 5-14 shows two 3×8 decoders with enable inputs connected to form a 4 × 16 decoder. 
When w = 0, the top decoder is enabled and the other is disabled. The bottom decoder outputs 
are all 0’s, and the top eight outputs generate minterms 0000 to 0111. When w = 1, the enable 
conditions are reversed; the bottom decoder outputs generate minterms 1000 to 1111, while the 
outputs of the top decoder are all 0’s. This example demonstrates the usefulness of enable inputs 
in ICs. In general, enable lines are a convenient feature for connecting two or more IC packages 
for the purpose of expanding the digital function into a similar function with more inputs and 
outputs.

5.5.3 Encoders

An encoder is a digital function that produces a reverse operation from that of a decoder. An en-
coder has 2n (or less) input lines and n output lines. The output lines generate the binary code for 
the 2n input variables. An example of an encoder is shown in Fig. 5-15. The octal-to-binary en-

A

  2⋅4
decoder

B

E
Enable

Inputs

D0

D1

D2

D3

       

D0

D1

D2

E
Input

Select

D3

A

       1×4
demultiplexer

B

                         (a) Decoder with enable                                 (b) Demultiplexer

Figure 5-13 Block diagrams for the circuit of Fig. 5-12

D0 to D7

x

y

z

w

E

3×8
decoder

E

3×8
decoder D8 to D15

Figure 5-14 A 4 × 16 decoder constructed with two 3 × 8 decoders
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coder consists of eight inputs, one for each of the eight digits, and three outputs that generate the 
corresponding binary number. It is constructed with OR gates whose inputs can be determined 
from the truth table given in Table 5-4. The low-order output bit z is 1 if the input octal digit is 
odd. Output y is 1 for octal digits 2, 3, 6, or 7. Output x is a 1 for octal digits 4, 5, 6, or 7. Note 
that D

0
 is not connected to any OR gate; the binary output must be all 0’s in this case. An all 0’s 

output is also obtained when all inputs are all 0’s. This discrepancy can be resolved by providing 
one more output to indicate the fact that all inputs are not 0’s.

The encoder in Fig. 5-15 assumes that only one input line can be equal to 1 at any time; 
otherwise the circuit has no meaning. Note that the circuit has eight inputs and could have 28 = 
256 possible input combinations. Only eight of these combinations have any meaning. The other 
input combinations are don’t-care conditions.

Encoders of this type (Fig. 5-15) are not available in IC packages, since they can be easily 
constructed with OR gates. The type of encoder available in IC form is called a priority encoder†† 

††For example, IC type 74148.

D0

D1

D2

D3

D4

D5

D6

D7

x = D4 + D5 + D6 + D7

y = D2 + D3 + D6 + D7

z = D1 + D3 + D5 + D7

Figure 5-15 Octal-to-binary encoder

Table 5-4 Truth table ol octai-to-binary encoder

Inputs Outputs

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

x y z

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1
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These encoders establish an input priority to ensure that only the highest-priority input line is 
encoded. Thus, in Table 5-4, if priority is given to an input with a higher subscript number over 
one with a lower subscript number, then if both D

2
 and D

5
 are logic-1 simultaneously, the output 

will be 101 because D
5
 has a higher priority over D

2
. Of course, the truth table of a priority enco-

der is different from the one in Table 5-4 (see Problem 5-21).

5.6 Multiplexers

Multiplexing means transmitting a large number of information units over a smaller number of 
channels or lines. A digital multiplexer is a combinational circuit that selects binary information 
from one of many input lines and directs it to a single output line. The selection of a particular 
input line is controlled by a set of selection lines. Normally, there are 2n input lines and n selec-
tion lines whose bit combinations determine which input is selected.

A 4-line to 1-line multiplexer is shown in Fig. 5-16. Each of the four input lines, I
0
 to I

3
, is 

applied to one input of an AND gate. Selection lines s
1
 and s

0
 are decoded to select a particular 

AND gate. The function table in the figure lists the input-to-output path for each possible bit 
combination of the selection lines. When this MSI function is used in the design of a digital sys-
tem, it is represented in block diagram form as shown in Fig. 5-16(c). To demonstrate the circuit 
operation, consider the case when s

1
s

0
 = 10. The AND gate associated with input I

2
 has two of 

its inputs equal to 1 and the third input connected to I
2
. The other three AND gates have at least 

one input equal to 0, which makes their output equal to 0. The OR-gale output is now equal to 
the value of I

2
, thus providing a path from the selected input to the output. A multiplexer is also 

called a data selector, since it selects one of many inputs and steers the binary information to the 
output line.

l0

s1

s0

l1

l2

l3

Y

Inputs Output

Select

0

1

2

3

       4×1
      MUX

s1 s0

l0

s1 s0 Y

l1
l2

 0        0

 0        1

 1        0

 1        1 l3

                                (b) Block diagram                                                    (c) Function table

Figure 5-16 A 4-to-1 line multiplexer

(a) Logic diagram

www.youseficlass.ir



Combinational Logic with MSI and LSI 157 

The AND gates and inverters in the multiplexer resemble a decoder circuit and, indeed, they 
decode the input selection lines. In general, a 2n-to-1 line multiplexer is constructed from an n-to-
2n decoder by adding to it 2n input lines, one to each AND gate. The outputs of the AND gates are 
applied to a single OR gate to provide the 1-line output. The size of a multiplexer is specified by 
the number 2n of its input lines and the single output line. It is then implied that it also contains 
n selection lines. A multiplexer is often abbreviated as MUX.

As in decoders, multiplexer ICs may have an enable input to control the operation of the 
unit. When the enable input is in a given binary state, the outputs are disabled, and when it is in 
the other state (the enable state), the circuit functions as a normal multiplexer. The enable input 
(sometimes called strobe) can be used to expand two or more multiplexer ICs to a digital multi-
plexer with a larger number of inputs.

In some cases two or more multiplexers are enclosed within one IC package. The selection 
and enable inputs in multiple-unit ICs may be common to all multiplexers. As an illustration, a 
quadruple 2-line to 1-line multiplexer IC is shown in Fig. 5-17.‡‡ It has four multiplexers, each 
capable of selecting one of two input lines. Output Y

1
 can be selected to be equal to either A

1
 

or B
1
. Similarly, output Y

2
 may have the value of A

2
 or B

2
, and so on. One input selection line, 

S, suffices to select one of two lines in all four multiplexers. The control input E enables the 
multiplexers in the 0 state and disables them in the 1 state. Although the circuit contains four 
multiplexers, we may think of it as a circuit that selects one in a pair of 4-tnput lines. As shown 
in the function table, the unit is selected when E = 0. Then, if S = 0, the four A inputs have a path 
to the outputs. On the other hand, if S = 1, the four B inputs are selected. The outputs have all 0’s 
when E = 1, regardless of the value of S.

The multiplexer is a very useful MSI function and has a multitude of applications. It is 
used for connecting two or more sources to a single destination among computer units, and it is 
useful for constructing a common bus system. These and other uses of the multiplexer are dis-
cussed in later chapters in conjunction with their particular applications. Here we demonstrate 
the general properties of this device and show that it can be used to implement any Boolean  
function.

5.6.1 Boolean Function Implementation

It was shown in the previous section that a decoder can be used to implement a Boolean function 
by employing an external OR gale. A quick reference to the multiplexer of Fig. 5-16 reveals that 
it is essentially a decoder with the OR gate already available. The minterms out of the decoder 
to be chosen can be controlled with the input lines. The minterms to be included with the func-
tion being implemented are chosen by making their corresponding input lines equal to 1, those 
minterms not included in the function are disabled by making their input lines equal to 0. This 
gives a method for implementing any Boolean function of n variables with a 2n-to-l multiplexer. 
However, it is possible to do better than that.

If we have a Boolean function of n + 1 variables, we lake n of these variables and connect 
them to the selection lines of a multiplexer. The remaining single variable of the function is used 
for the inputs of the multiplexer. If A is this single variable, the inputs of the multiplexer are 
chosen to be either A or A′ or 1 or 0. By judicious use of these four values for the inputs and by 
connecting the other variables to the selection lines, one can implement any Boolean function 

‡‡This is similar to IC type 74157.
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with a multiplexer. In this way it is possible to generate any function of n + I variables with a 2n 
-to-l multiplexer.

To demonstrate this procedure with a concrete example, consider the function of three 
variables:

F(A, B, C) = ∑(1,3,5,6)

The function can be implemented with a 4-to-l multiplexer as shown in Fig. 5-18. Two of the 
variables, B and C are applied to the selection lines in that order, i.e.. B is connected to s

1
 and C 

to s
0
. The inputs of the multiplexer are 0, 1, A, and A′. When BC = 00, output F = 0 since I

0
 = 0. 

Therefore, both minterms m
0
 = A′B′C′ and m

4
 = AB′C′ produce a 0 output, since the output is 0 

when BC = 00 regardless of the value of A. When BC = 01, output F = 1, since I
1
 = 1, Therefore, 

both minterms m
1
 = A′B′C and m

5
 = AB′C produce a 1 output, since the output is 1 when BC = 

A1

A2

A3

A4

Y1

Y2

Y3

Y4

B1

B2

B3

B4

S
(Select)

E
(Enable)

• •

••

•

•

••

•

•

•

•

•

•

Function table

E S Output Y

1 x .all 0’s

0 0 select A

0 1 select B

Figure 5-17 Quadruple 2-to-1 line multiplexers
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01 regardless of the value of A, When BC = 10, input I
2
 is selected. Since A is connected to this 

input, the output will be equal to 1 only for minterm m
6
 = ABC. but not for minterm m

2
 = A′BC′, 

because when A′ = 1, then A = 0, and since I
2
 = 0, we have F = 0. Finally, when BC = 11, input 

I
3
 is selected. Since A′ is connected to this input, the output will be equal to 1 only for minterm 

m
3
 = A′BC. but not for m

7
 = ABC. This information is summarized in Fig. 5-18(b), which is the 

truth table of the function we want to implement.
The above discussion shows by analysis that the multiplexer implements the required func-

tion. We now present a general procedure for implementing any Boolean function of n variables 
with a 2n-1-to-l multiplexer.

First, express the function in its sum of minterms form. Assume that the ordered sequence 
of variables chosen for the minterms is ABCD …, where A is the leftmost variable in the ordered 
sequence of n variables and BCD … are the remaining n - 1 variables. Connect the n - 1 variables 
to the selection lines of the multiplexer with B connected to the high-order selection line, C to the 
next lower selection line, and so on down to the last variable, which is connected to the lowest-
order selection line s

0
. Consider now the single variable A. Since this variable is in the highest-

order position in the sequence of variables, it will be complemented in minterms 0 to (2n/2) - 1 
which comprise the first half in the list of minterms. The second half of the minterms will have 
their A variable uncomplemented. For a three-variable function, A, B, C, we have eight minterms. 
Variable A is complemented in minterms 0 to 3 and uncomplemented in minterms 4 to 7.

List the inputs of the multiplexer and under them list all the minterms in two rows. The first 
row lists all those minterms where A is complemented, and the second row all the minterms with 
A uncomplemented, as shown in Fig. 5-l8(c). Circle all the minterms of the function and inspect 
each column separately.

If the two minterms in a column are not circled, apply 0 to the corresponding multiplexer 
input.

If the two minterms are circled, apply 1 to the corresponding multiplexer input.
If the bottom minterm is circled and the top is not circled, apply A to the corresponding 

multiplexer input.
If the top minterm is circled and the bottom is not circled, apply A′ to the corresponding 

multiplexer input.

This procedure follows from the conditions established during the previous analysis.
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0
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0
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0
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            (a) Multiplexer implementation                    (b) Truth table          (c) Implementation table

Figure 5-18 Implementing F(A,B,C) = ∑ (1,3,5,6,) with a miltiplexer 
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Figure 5-l8(c) shows the implementation table for the Boolean function;

F(A, B,C) = ∑(1,3,5,6)

from which we obtain the multiplexer connections of Fig, 5-18(a), Note that B must be connected 
to s

1
 and C to s

0
.

It is not necessary to choose the leftmost variable in the ordered sequence of a variable list 
for the inputs to the multiplexer. In fact, we can choose any one of the variables for the inputs 
of the multiplexer, provided we modify the multiplexer implementation table. Suppose we want 
to implement the same function with a multiplexer, but using variables A and B for selection 
lines s

1
 and s

0
 and variable C for the inputs of the multiplexer. Variable C is complemented in 

the even-numbered minterms and uncomplemented in the odd-numbered minterms, since it is 
the last variable in the sequence of listed variables. The arrangement of the two minterm rows in 
this case must be as shown in Fig. 5-19(a). By circling the minterms of the function and using 
the rules stated above, we obtain the multi plexer connection for implementing the function as in 
Fig. 5-19(b).

In a similar fashion, it is possible to use any single variable of the function for use in the 
multiplexer inputs. One can formulate various combinations for imple menting a Boolean func-
tion with multiplexers. In any case, all the input variables, except one, are applied to the selection 
lines. The remaining single variable, or its complement, or 0 or 1, are then applied to the inputs 
of the multiplexer.

EXAMPLE 5-4: Implement the following function with a multiplexer:

F(A, B, C, D) = ∑(0, 1, 3, 4, 8, 9, 15)

This is a four-variable function and therefore we need a multiplexer with three selection lines 
and eight inputs. We choose to apply variables B, C, and D to the selection lines. The imple-
mentation table is then as shown in Fig. 5-20, The first half of the minterms are associated 
with A’ and the second half with A. By circling the minterms of the function and applying 
the rules for finding values for the multiplexer inputs, we obtain the implementation shown.

0

C C C

C

C´

C´ 4 62

1 5 73

l0 l1 l2 l3

      

       4×1
      MUX

l0

s0
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A

B

C

l1

s1

l2

l3

                    (a) Implementation table                (b) Multiplexer connection

Figure 5-19 Alternate Implementation for F(A,B,C) = ∑ (1,3,5,6,)
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Let us now compare the multiplexer method with the decoder method for implementing 
combinational circuits. The decoder method requires an OR gate for each output function, but 
only one decoder is needed to generate all minterms. The multiplexer method uses smaller-size 
units but requires one multiplexer for each output function. It would seem reasonable to assume 
that combinational circuits with a small number of outputs should be implemented with multi-
plexers. Combinational circuits with many output functions would probably use fewer ICs with 
the decoder method.

Although multiplexers and decoders may be used in the implementation of combinational 
circuits, it must be realized that decoders are mostly used for decoding binary information and 
multiplexers are mostly used to form a selected path between multiple sources and a single des-
tination. They should be considered when designing small, special combinational circuits which 
are not otherwise available as MSI functions. For large combinational circuits with multiple 
inputs and outputs, there is a more suitable IC component, and it is presented in the following 
section.

5.7 Read-Only Memory (ROM)

We saw in Section 5-5 that a decoder generates the 2n minterms of the n input variables. By in-
serting OR gates to sum the minterms of Boolean functions, we were able to generate any desired 
combinational circuit. A read-only memory (ROM) is a device that includes both the decoder and 
the OR gates within a single IC package. The connections between the outputs of the decoder and 
the inputs of the OR gates can be specified for each particular configuration by “programming” 
the ROM. The ROM is very often used to implement a complex combinational circuit in one IC 
package and thus eliminate all interconnecting wires.

A ROM is essentially a memory (or storage) device in which a fixed set of binary informa-
tion is stored. The binary information must first be specified by the user and is then embedded 
in the unit to form the required interconnection pattern. ROMs come with special internal links 

0

1 1 0

A

A´ A´ 0 0 A

A´ 21 3 4 65 7

8 109 11 12 1413 15

l0 l1 l2 l3 l4 l5 l6 l7

        

       8×1
      MUX FY

l0

s0

l1

s1s2
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0

B

C
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l7

Figure 5-20 Implementing F(A, B, C, D) = ∑(0, 1, 3, 4, 8, 9, 15)
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that can be fused or broken. The desired interconnection for a particular application requires that 
certain links be fused to form the required circuit paths. Once a pattern is established for a ROM, 
it remains fixed even when power is turned off and then on again.

A block diagram of a ROM is shown in Fig. 5-21. It consists of n input lines and m output 
lines. Each bit combination of the input variables is called an address. Each bit combination that 
comes out of the output lines is called a word. The number of bits per word is equal to the number 
of output lines m. An address is essentially a binary number that denotes one of the minterms of n 
variables. The number of distinct addresses possible with n input variables is 2n. An output word 
can be selected by a unique address, and since there are 2n distinct addresses in a ROM, there are 
2n distinct words which are said to be stored in the unit. The word available on the output lines at 
any given time depends on the address value applied to the input lines. A ROM is characterized 
by the number of words 2n and the number of bits per word m. This terminology is used because 
of the similarity between the read-only memory and the read-write memory which is presented 
in Section 7-7.

Consider a 32 × 8 ROM. The unit consists of 32 words of 8 bits each. This means that there 
are eight output lines and that there are 32 distinct words stored in the unit, each of which may be 
applied to the output lines. The particular word selected that is presently available on the output 
lines is determined from the five input lines. There are only five inputs in a 32 × 8 ROM because 
25 = 32, and with five variables we can specify 32 addresses or minterms. For each address input, 
there is a unique selected word. Thus, if the input address is 00000, word number 0 is selected 
and it appears on the output lines. If the input address is 11111, word number 31 is selected and 
applied to the output lines. In between, there are 30 other addresses that can select the other 30 
words.

The number of addressed words in a ROM is determined from the fact that n input lines are 
needed to specify 2n words. A ROM is sometimes specified by the total number of bits it contains, 
which is 2n × m. For example, a 2048-bit ROM may be organized as 512 words of 4 bits each. 
This means that the unit has 4 output lines and 9 input lines to specify 29 = 512 words. The total 
number of bits stored in the unit is 512 × 4 = 2048.

Internally, the ROM is a combinational circuit with AND gates connected as a decoder and 
a number of OR gates equal to the number of outputs in the unit. Figure 5-22 shows the internal 
logic construction of a 32 × 4 ROM. The five input variables are decoded into 32 lines by means 
of 32 AND gates and 5 inverters. Each output of the decoder represents one of the minterms of a 

2n×m
ROM

n inputs

m outputs

Figure 5-21 ROM block diagram
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function of five variables. Each one of the 32 addresses selects one and only one output from the 
decoder. The address is a 5-bit number applied to the inputs, and the selected minterm out of the 
decoder is the one marked with the equivalent decimal number. The 32 outputs of the decoder 
are connected through links to each OR gate. Only four of these links are shown in the diagram, 
but actually each OR gate has 32 inputs and each input goes through a link that can be broken 
as desired.

The ROM is a two-level implementation in sum of minterms form. It does not have to be an 
AND-OR implementation, but it can be any other possible two-level minterm implementation. 
The second level is usually a wired-logic connection (see Section 3-7) to facilitate the fusing of 
links.

ROMs have many important applications in the design of digital computer systems. Their 
use for implementing complex combinational circuits is just one of these applications. Other 
uses of ROMs are presented in other parts of the book in conjunction with their particular ap-
plications.

5.7.1 Combinational Logic Implementation

From the logic diagram of the ROM, it is clear that each output provides the sum of all the mint-
erms of the n input variables. Remember that any Boolean function can be expressed in sum-of-
minterms form. By breaking the links of those minterms not included in the function, each ROM 
output can be made to represent the Boolean function of one of the output variables in the com-
binational circuit. For an n-input, m-output combinational circuit, we need a 2n × m ROM. The 

       5×32
      decorder

A0

Address input
Minterms

128 links

0

1

2

31

A1

A2

A3

A4

F1 F2 F3 F4

Figure 5-22 Logic construction of a 32 × 4 ROM
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opening of the links is referred to as programming the ROM. The designer need only specify a 
ROM program table that gives the information for the required paths in the ROM. The actual pro-
gramming is a hardware procedure which follows the specifications listed in the program table.

Let us clarify the process with a specific example. The truth table in Fig. 5-23(a) specifies a 
combinational circuit with two inputs and two outputs. The Boolean functions can be expressed 
in sum of minterms:

F
1
(A

1
, A

0
) = ∑ (1, 2, 3)

F
2
(A

1
, A

0
) = ∑ (0, 2)

When a combinational circuit is implemented by means of a ROM, the functions must be 
expressed in sum of minterms or, better yet, by a truth table. If the output functions are simpli-
fied, we find that the circuit needs only one OR gate and an inverter. Obviously, this is too simple 
a combinational circuit to be implemented with a ROM. The advantage of a ROM is in complex 

A0A1

0
0
1
1

0
1
0
1

0
1
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1
0
1
0

F2F1

(a) Truth table
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      decoder
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       2 × 4
      decoder

A1
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11

A0

F1 F2

             (b) ROM with AND - OR gates                       (c) ROM with AND - OR - INVERT gates

Figure 5-23 Combinational-circuit implementaion with a 4 × 2 ROM
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combinational circuits. This example merely demonstrates the procedure and should not be con-
sidered in a practical situation.

The ROM that implements the combinational circuit must have two inputs and two outputs; 
so its size must be 4 × 2. Figure 5-23(b) shows the internal construction of such a ROM. It is 
now necessary to determine which of the eight available links must be broken and which should 
be left in place. This can be easily done from the output functions listed in the truth table. Those 
minterms that specify an output of 0 should not have a path to the output through the OR gate. 
Thus, for this particular case the truth table shows three 0’s, and their corresponding links to the 
OR gates must be removed. It is obvious that we must assume here that an open input to an OR 
gate behaves as a 0 input.

Some ROM units come with an inverter after each of the OR gates and, as a consequence, 
they are specified as having initially all 0’s at their outputs. The programming procedure in such 
ROMs requires that we open the link paths of the minterms (or addresses) that specify an output 
of l in the truth table. The output of the OR gate will then generate the complement of the func-
tion, but the inverter placed after the OR gate complements the function once more to provide the 
normal output. This is shown in the ROM of Fig. 5-23(c).

The previous example demonstrates the general procedure for implementing any combina-
tional circuit with a ROM. From the number of inputs and outputs in the combinational circuit, 
we first determine the size of ROM required. Then we must obtain the programming truth table of 
the ROM; no other manipulation or simplification is required. The 0’s (or 1’s) in the output func-
tions of the truth table directly specify those links that must be removed to provide the required 
combinational circuit in sum of minterms form.

In practice, when one designs a circuit by means of a ROM, it is not necessary to show the 
internal gate connections of links inside the unit as was done in Fig. 5-23. This was shown here 
for demonstration purposes only. All the designer has to do is specify the particular ROM (or its 
designation number) and provide the ROM truth table as in Fig. 5-23(a). The truth table gives all 
the information for programming the ROM. No internal logic diagram is needed to accompany 
the truth table.

EXAMPLE 5-5: Design a combinational circuit using a ROM. The circuit accepts a 3-bit 
number and generates an output binary number equal to the square of the input number.

The first step is to derive the truth table for the combinational circuit. In most cases this 
is all that is needed. In some cases we can fit a smaller truth table for the ROM by using cer-
tain properties in the truth table of the combinational circuit. Table 5-5 is the truth table for the 
combinational circuit. Three inputs and six outputs are needed to accommodate all possible 
numbers. We note that output B

0
 is always equal to input A

0
; so there is no need to generate 

B
0
 with a ROM since it is equal to an input variable. Moreover, output B

1
 is always 0, so this 

output is always known. We actually need to generate only four outputs with the ROM; the 
other two are easily obtained. The minimum size ROM needed must have three inputs and 
four outputs. Three inputs specify eight words, so the ROM size must be 8 × 4. The ROM 
implementation is shown in Fig. 5-24. The three inputs specify eight words of four bits each. 
The other two outputs of the combinational circuit are equal to 0 and A

0
. The truth table in  

Fig. 5-24 specifies all the information needed for programming the ROM, and the block dia-
gram shows the required connections.
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5.7.2 Types of ROMs

The required paths in a ROM may be programmed in two different ways. The first is called mask 
programming and is done by the manufacturer during the last fabrication process of the unit. The 
procedure for fabricating a ROM requires that the customer fill out the truth table he wishes the 
ROM to satisfy. The truth table may be submitted on a special form provided by the manufactu-
rer. More often, it is submitted on paper tape or punch cards in the format specified on the data 
sheet of the particular ROM. The manufacturer makes the corresponding mask for the paths to 
produce the 1’s and 0’s according to the customer’s truth table. This procedure is costly because 
the vendor charges the customer a special fee for custom masking a ROM. For this reason, mask 
programming is economical only if large quantities of the same ROM configuration are to be 
manufactured.

For small quantities, it is more economical to use a second type of ROM called a program-
mable read-only memory or PROM. When ordered, PROM units contain all 0’s (or all l’s) in 
every bit of the stored words. The links in the PROM are broken by application of current pulses 
through the output terminals. A broken link defines one binary state and an unbroken link rep-
resents the other state. This allows the user to program the unit in his own laboratory to achieve 
the desired relationship between input addresses and stored words. Special units called PROM 
programmers are available commercially to facilitate this procedure. In any case, all procedures 
for programming ROMs are hardware procedures even though the word programming is used.

The hardware procedure for programming ROMs or PROMs is irreversible and, once pro-
grammed the fixed pattern is permanent and cannot be altered. Once a bit pattern has been 
established, the unit must be discarded if the bit pattern is to be changed. A third type of unit 
available is called erasable PROM or EPROM. EPROMs can be restructured to the initial value 
(all 0’s or all 1’s) even though they have been changed previously. When an EPROM is placed 
under a special ultraviolet light for a given period of time, the short-wave radiation discharges the 
internal gates that serve as contacts. After erasure, the ROM returns to its initial state and can be 
reprogrammed. Certain ROMs can be erased with electrical signals instead of ultraviolet light, 
and these are sometimes called electrically alterable ROMs or EAROMs.

The function of a ROM can be interpreted in two different ways. The first interpretation is of 
a unit that implements any combinational circuit. From this point of view, each output terminal 

Table: 5-5 Truth table for circuit of Example 5-5

Inputs Outputs Decimal

A
2

A
1

A
0

B
5

B
4

B
3

B
2

B
1

B
0

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 1

0 1 0 0 0 0 1 0 0 4

0 1 1 0 0 1 0 0 1 9

1 0 0 0 1 0 0 0 0 16

1 0 1 0 1 1 0 0 1 25

1 1 0 1 0 0 1 0 0 36

I 1 1 1 1 0 0 0 1 49
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is considered separately as the output of a Boolean function expressed in sum of minterms. The 
second interpretation considers the ROM to be a storage unit having a fixed pattern of bit strings 
called words. From this point of view, the inputs specify an address to a specific stored word 
which is then applied to the outputs. For example, the ROM of Fig. 5-24 has three address lines 
which specify eight stored words as given by the truth table. Each word is four bits long. This 
is the reason why the unit is given the name read-only memory. Memory is commonly used to 
designate a storage unit. Read is commonly used to signify that the contents of a word specified 
by an address in a storage unit is placed at the output terminals. Thus, a ROM is a memory unit 
with a fixed word pattern that can be read out upon application of a given address. The bit pattern 
in the ROM is permanent and cannot be changed during normal operation.

ROMs are widely used to implement complex combinational circuits directly from their 
truth tables. They are useful for converting from one binary code to another (such as ASCII to 
EBCDIC and vice versa), for arithmetic functions such as multipliers, for display of characters 
in a cathode-ray tube, and in many other applications requiring a large number of inputs and out-
puts. They are also em ployed in the design of control units of digital systems. As such, they are 
used to store fixed bit patterns that represent the sequence of control variables needed to enable 
the various operations in the system. A control unit that utilizes a ROM to store binary control 
information is called a microprogrammed control unit. Chapter 10 deals with this subject in more 
detail.

5.8 Programmable Logic Array (PLA)

A combinational circuit may occasionally have don’t-care conditions. When imple mented with 
a ROM, a don’t-care condition becomes an address input that will never occur. The words at the 
don’t-care addresses need not be programmed and may be left in their original state (all 0’s or 
all 1’s). The result is that not all the bit patterns available in the ROM are used, which may be 
considered a waste of available equipment.

Consider, for example, a combinational circuit that converts a 12-bit card code to a 6-bit 
internal alphanumeric code as listed in Table 1-5. The input card code consists of 12 lines desig-
nated by 0, 1, 2…….,9, 11, 12. The size of the ROM for implementing the code converter must 

8×4
ROM

B1 B0

0

B2

A1 A0A2

B3B4

F4F3F2F1

B5        

A1A2 A0

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
0
0
1
1

0
0
0
0
1
1
0
1

0
0
0
1
0
1
0
0

0
0
1
0
0
0
1
0

F2F1 F4F3

                             (a) Block diagram                                 (b) ROM truth table

Figure 5-24 ROM implementaion of Example 5-5
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be 4096 × 6, since there are 12 inputs and 6 outputs. There are only 47 valid entries for the card 
code; all other input combinations are don’t-care conditions. Thus only 47 words of the 4096 
available are used. The remaining 4049 words of ROM are not used and are thus wasted.

For cases where the number of don’t-care conditions is excessive, it is more economical to 
use a second type of LSI component called programmable logic array or PLA. A PLA is similar 
to a ROM in concept; however, the PLA does not provide full decoding of the variables and does 
not generate all the minterms as in the ROM. In the PLA, the decoder is replaced by a group of 
AND gates, each of which can be programmed to generate a product term of the input variables. 
The AND and OR gates inside the PLA are initially fabricated with links among them. The spe-
cific Boolean functions are implemented in sum of products form by opening appropriate links 
and leaving the desired connections.

A block diagram of the PLA is shown in Fig. 5-25. It consists of n inputs, m outputs, k 
product terms, and m sum terms. The product terms constitute a group of k AND gates and the 
sum terms constitute a group of m OR gates. Links are inserted between all n inputs and their 
complement values to each of the AND gates. Links are also provided between the outputs of the 
AND gates and the inputs of the OR gates. Another set of links in the output inverters allows the 
output function to be generated either in the AND-OR form or in the AND-OR-INVERT form. 
With the inverter link in place, the inverter is bypassed, giving an AND-OR implementation. 
With the link broken, the inverter becomes part of the circuit and the function is implemented in 
the AND-OR-INVERT form.

The size of the PLA is specified by the number of inputs, the number of product terms, and 
the number of outputs (the number of sum terms is equal to the number of outputs). A typical 
PLA has 16 inputs, 48 product terms, and 8 outputs.§§ The number of programmed links is 2n × 
k + k × m + m, whereas that of a ROM is 2n × m.

Figure 5-26 shows the internal construction of a specific PLA. It has three inputs, three 
product terms, and two outputs. Such a PLA is too small to be available commercially; it is pre-
sented here merely for demonstration purposes. Each input and its complement are connected 
through links to the inputs of all AND gates. The outputs of the AND gates are connected through 
links to each input of the OR gates. Two more links are provided with the output inverters. By 
breaking selected links and leaving others in place, it is possible to implement Boolean functions 
in their sum of products form.

As with a ROM, the PLA may be mask-programmable or field programmable. With a mask-
programmable PLA, the customer must submit a PLA program table to the manufacturer. This 
table is used by the vendor to produce a custom-made PLA that has the required internal paths 

§§TTL IC type 82S100.

n×k
links

n×k
links

k×m
links

  m
links

k product
     terms
(AND gates)

    m sum
     terms
(OR gates)

    n
inputs

    m
output

Figure 5-25 PLA block diagram
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between inputs and outputs. A second type of PLA available is called a field programmable logic 
array or FPLA. The FPLA can be programmed by the user by means of certain recommended 
procedures. Commercial hardware programmer units are available for use in conjunction with 
certain FPLAs.

5.8.1 PLA Program Table

The use of a PLA must be considered for combinational circuits that have a large number of 
inputs and outputs. It is superior to a ROM for circuits that have a large number of don’t-care 
conditions. The example presented below demonstrates how a PLA is programmed. Bear in mind 
when going through the example that such a simple circuit will not require a PLA because it can 
be implemented more economically with SSI gates.

Consider the truth table of the combinational circuit, shown in Fig. 5-27(a). Although a 
ROM implements a combinational circuit in its sum of minterms form, a PLA implements the 
functions in their sum of products form. Each product term in the expression requires an AND 
gate. Since the number of AND gates in a PLA is finite, it is necessary to simplify the function to 
a minimum number of product terms in order to minimize the number of AND gates used. The 
simplified functions in sum of products are obtained from the maps of Fig. 5-27(b):

F
1
 = AB′ + AC

F
2
 = AC + BC

There are three distinct product terms in this combinational circuit: AB′, AC, and BC. The 
circuit has three inputs and two outputs; so the PLA of Fig. 5-26 can be used to implement this 
combinational circuit.

Programming the PLA means that we specify the paths in its AND-OR-NOT pattern. A 
typical PLA program table is shown in Fig. 5-27(c). It consists of three columns. The first col-
umn lists the product terms numerically. The second column specifies the required paths between 
inputs and AND gates. The third column specifies the paths between the AND gates and the OR 
gates. Under each output variable, we write a T (for true) if the output inverter is to be bypassed, 
and C (for complement) if the function is to be complemented with the output inverter. The Bool-
ean terms listed at the left are not part of the table: they are included for reference only.

For each product term, the inputs are marked with 1, 0, or - (dash). If a variable in the prod-
uct term appears in its normal form (unprimed), the corresponding input variable is marked with 
a 1. If it appears complemented (primed), the corresponding input variable is marked with a 0. If 
the variable is absent in the product term, it is marked with a dash. Each product term is associ-
ated with an AND gate. The paths between the inputs and the AND gates are specified under the 
column heading inputs. A 1 in the input column specifies a path from the corresponding input to 
the input of the AND gate that forms the product term, A 0 in the input column specifies a path 
from the corresponding complemented input to the input of the AND gate. A dash specifies no 
connection. The appropriate links are broken, and the ones left in place form the desired paths, as 
shown in Fig. 5-26, It is assumed that the open terminals in the AND gate behave like a 1 input.

The paths between the AND and OR gates are specified under the column heading outputs. 
The output variables are marked with l’s for all those product terms that formulate the function. 
In the example of Fig. 5-27, we have:

F
1
 = AB′ + AC
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so F
1
 is marked with 1’s for product terms 1 and 2 and with a dash for product term 3. Each 

product term that has a 1 in the output column requires a path from the corresponding AND gate 
to the output OR gate. Those marked with a dash specify no connection. Finally, a T (true) output 
dictates that the link across the output inverter remains in place, and a C (complement) specifies 
that the corre sponding link be broken. The internal paths of the PLA for this circuit are shown 
in Fig. 5-26. It is assumed that an open terminal in an OR gate behaves like a 0, and that a short 
circuit across the output inverter does not damage the circuit.

When designing a digital system with a PLA, there is no need to show the internal connec-
tions of the unit as was done in Fig. 5-26. All that is needed is a PLA program table from which 
the PLA can be programmed to supply the appropriate paths.

When implementing a combinational circuit with PLA, careful investigation must be un-
dertaken in order to reduce the total number of distinct product terms, since a given PLA would 
have a finite number of AND terms. This can be done by simplifying each function to a minimum 
number of terms. The number of literals in a term is not important since we have available all 
input variables. Both the true value and the complement of the function should be simplified to 
see which one can be expressed with fewer product terms and which one provides product terms 
that are common to other functions.

BA C

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
1
1
0
1

0
0
0
1
0
1
0
1

F2F1

     

B

C

1 1A

F1 = AB´ + AC

1

B

C

1

1

A

F2 = AC + BC

1

                                        (a) Truth table               (b) Map simplification.

Product
  term

    Inputs  
A     B     C

Outputs  
 F1    F2     

1
2
3

1
1
-

1
1
-

0
-
1

-
1
1

-
1
1

T T T/C

AB´
AC
BC

(c) PLA program table.

Figure 5-27 Steps required in PLA implementation
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EXAMPLE 5-6: A combinational circuit is defined by the functions:

F
1
(A, B, C) = ∑(3, 5, 6, 7) 

F
2
(A, B, C) = ∑(0, 2, 4, 7)

Implement the circuit with a PLA having three inputs, four product terms, and two outputs.
The two functions are simplified in the maps of Fig. 5-28. Both the true values and the com-
plements of the functions are simplified. The combinations that gives a minimum number of 
product terms are:

F
1
 = (B′C + A′C′ + A′B′)’

F
2
 = B′C + A′C′ + ABC

This gives only four distinct product terms: B′C, A′C′, A′B′, and ABC. The PLA program 
table for this combination is shown in Fig. 5-28. Note that output F

1
 is the normal (or true) 

output even though a C is marked under it. This is because F′
1
 is generated prior to the output 

inverter. The inverter complements the function to produce F
1
 in the output.

B

C

1 11

1

A

F1 = AC + AB + BC          

B

C

1

1

1

A

F2 = B´C´ + A´C´ + ABC

1

B

C

0

0

0 0

A

F´1 = B´C´ + A´C´ + A´B´         

B

C

0

0 0

0

A

F´2  = B´C´ + A´C + ABC´

Product
  term

PLA program table

    Inputs  
A     B     C

Outputs  
 F1    F2     

1
2
3
4

1
1
1
-

1
1
-
1

0
0
-
1

0
-
0
1

-
0
0
1

C T T/C

B´C´
A´C´
A´B´
ABC

Figure 5-28 Solution to Example 5-6
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The combinational circuit for this example is too small for practical implementation with 
a PLA. It was presented here merely for demonstration purposes. A typical commercial PLA 
would have over 10 inputs and about 50 product terms. The simplification of Boolean functions 
with so many variables should be carried out by means of a tabulation method or other computer-
assisted simplification method. This is where a computer program may aid in the design of com-
plex digital systems. The computer program should simplify each function of the combinational 
circuit and its complement to a minimum number of terms. The program then selects a minimum 
number of distinct terms that cover all functions in their true or complement form.

5.9 Concluding Remarks

This chapter presented a variety of design methods for combinational circuits. It also presented 
and explained a number of MSI and LSI circuits that can be used when designing more com-
plicated digital systems. The emphasis here was on combinational logic MSI and LSI functions. 
Sequential logic MSI functions are discussed in Chapter 7. Processor and control MSI and LSI 
functions are pre sented in Chapters 9 and 10. Microcomputer LSI components are introduced in 
Chapter 12.

The MSI functions presented here and others available commercially are described in data 
books or catalogs. IC data books contain exact descriptions of many MSI and other integrated 
circuits. Some of these data books are listed in the following References.

MSI and LSI circuits can be used in a variety of applications. Some of these applications 
were discussed throughout the chapter, some are included in Problems, and others will be found 
in succeeding chapters in conjunction with their particular applications. Resourceful designers 
may find many other applications to suit their particular needs. Manufacturers of integrated cir-
cuits publish numerous application notes to suggest possible utilization of their products. A list 
of available application notes can be obtained by writing to manufacturers directly or by inqui-
ring of their local representatives.
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PROBLEMS

5-1. Design an excess-3-to-BCD code converter using a 4-bit full-adders MSI circuit.

5-2. Using four MSI circuits, construct a binary parallel adder to add two 16-bit binary numbers. Label 
all carries between the MSI circuits.

5-3. Using 4 exclusive-OR gates and a 4-bit full-adders MSI circuit, construct a 4-bit parallel adder/
subtractor. Use an input select variable V so that when V = 0, the circuit adds and when V = 1, the 
circuit subtracts. (Hint: Use 2’s complement subtraction.)

5-4. Derive the two-level equation for the output carry C
5
 shown in the look-ahead carry generator of  

Fig. 5-5.

5-5. (a)  Using the AND-OR-1NVERT implementation procedure described in Section 3-7, show that the 
output carry in a full-adder circuit can be expressed as:

 C
i + 1 

= G
i 
+ P

i
C

i
 = (G

i
′P

i
′ + G

i
′C

i
′)

 (b)  IC type 74182 is a look-ahead carry generator MSI circuit that generates the carries with AND-
OR-INVERT gates. The MSI circuit assumes that the input terminals have the complements of 
the G’s, the P’s, and of C

1
. Derive the Boolean functions for the look-ahead carries C

2
, C

3
, and C

4
 

in this IC. (Hint: Use the equation substitution method to derive the carries in terms of C′
1
).

5-6. (a)  Redefine the carry propagate and carry generate as follows:

 P
i
 = A

i
 + B

i

 G
i
 = A

i
 B

i

       Show that the output carry and output sum of a full-adder becomes:

 C
i + 1 

= (C
i
′G

i
′ + P

i
′) = G

i
 + P

i
C

i

     S
i 
= (P

i
G

i
′) ⊕ C

i

 (b)  The logic diagram of the first stage of a 4-bit parallel adder as implemented in IC type 74283 is 
shown in Fig. P5-6. Identify the P

1
′ and G

1
′ terminals as defined in (a) and show that the circuit 

implements a full-adder circuit.

B1

A1

C1

C2

S1

Figure P5-6 First stage of a parallel adder 
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 (c)  Obtain the output carries C
3
 and C

4
 as a function of P′

1
, P′

2
, P′

3
, G′

1
, G′

2
, G′

3
, and C in AND-OR-

INVERT form, and draw the two-level look-ahead circuit for this IC. [Hint: Use the equation-
substitution method as done in the text when deriving Fig. 5-4, but use the AND-OR-INVERT 
function given in (a) for C

i + 1
].

5-7. (a)  Assume that the exclusive-OR gate has a propagation delay of 20 ns and that the AND or OR 
gates have a propagation delay of 10 ns. What is the total propagation delay time in the 4-bit adder 
of Fig. 5-5?

 (b)  Assume that C
5
 is propagated in the box of Fig. 5-5 at the same time as the other carries (see 

problem 5-4). What will be the propagation delay time of the 16-bit adder of problem 5-2?

5-8. Design a binary multiplier that multiplies a 4-bit number B = b
3
b

2
b

1
b

0
 by a 3-bit number A = a

2
 a

1
 a

0
 

to form the product C = c
6
c

5
c

4
c

3
c

2
c

1
c

0
. This can be done with 12 gates and two 4-bit parallel adders. 

The AND gates are used to form the products of pairs of bits. For example, the product of a
0
 and b

0
 

can be generated by ANDing a
0
 with b

0
. The partial products formed by the AND gates are summed 

with the parallel adders.

5-9. How many don’t-care inputs are there in a BCD adder?

5-10. Design a combinational circuit that generates the 9’s complement of a BCD digit.

5-11. Design a decimal arithmetic unit with two selection variables, V
1
 and V

0
, and two BCD digits, A 

and B. The unit should have four arithmetic operations which depend on the values of the selection 
variables as shown below.

V
1

V
0

Output function

0 0 A + 9’s complement of B

0 1 A + B

1 0 A + 10’s complement of B

1 1 A + 1 (add 1 to A)

 Use MSI functions in the design and the 9’s complementer of problem 5-10.

5-12. It is necessary to design a decimal adder for two digits represented in the excess-3 code (Table 1-2). 
Show that the correction after adding the two digits with a 4-bit binary adder is as follows:

(a) The output carry is equal to the carry out of the binary adder.

(b) If output carry = 1, add 0011.

(c) If output carry = 0, add 1101.

 Construct the adder with two 4-bit binary adders and an inverter.

5-13. Design a circuit that compares two 4-bit numbers, A and B, to check if they are equal. The circuit has 
one output x, so that x =1 if A = B, and x = 0 if A ≠ B.

5-14. The 74L85 IC is a 4-bit magnitude comparator similar to that in Fig. 5-7, except that it has three 
more inputs and internal circuits that perform the equivalent logic as shown in Fig. P5-14. With these 
ICs, numbers of greater length may be compared by connecting comparators in cascade. The A < B, 
A > B, and A = B outputs of a stage handling less-significant bits are connected to the corresponding 
A < B, A > B, and A = B inputs of the next stage handling more-significant bits. The stage that handles 
the least-significant bits must be a circuit as shown in Fig. 5-7. If the 74L85 IC is used, a 1 must be 
applied to the A = B input and a 0 to the A < B and A > B inputs in the IC that handles the four least 
significant bits. Using one circuit as in Fig. 5-7 and one 74L85 IC, obtain a circuit to compare two 
8-bit numbers. Justify the circuit operation.
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5-15. Modify the BCD-to-decimal decoder of Fig. 5-10 to give an output of all 0’s when any invalid input 
combination occurs.

5-16. Design a BCD-to-excess-3 code converter with a BCD-to-decimal decoder and four OR gates.

5-17. A combinational circuit is defined by the following three functions:

 F
1 
= x′ y′ + xyz′ 

 F
2
 = x′ + y

 F
3
 = xy + x′y′

 Design the circuit with a decoder and external gates.

5-18. A combinational circuit is defined by the following two functions:

 F
1
(x, y) = ∑(0, 3)

 F
2
(x, y) = ∑(1, 2, 3)

 Implement the combinational circuit by means of the decoder shown in Fig. 5-12 and external 
NAND gates.

5-19. Construct a 5 × 32 decoder with four 3×8 decoder/demultiplexers and a 2 × 4 decoder. Use a block 
diagram construction as in Fig. 5-14.

5-20. Draw the logic diagram of a 2-line to 4-line decoder/demultiplexer using NOR gates only.

5-21. Specify the truth table of an octal-to-binary priority encoder. Provide an output to indicate if at least 
one of the inputs is a 1. The table can be listed with 9 rows, and some of the inputs will have don’t-
care values.

5-22. Design a 4-line to 2-line priority encoder. Include an output E to indicate that at least one input  
is a 1.

5-23. Implement the Boolean function of Example 5-4 with an 8 × 1 multiplexer with A, B, and D connec-
ted to selection lines s

2
, s

1
, and s

0
, respectively.

   Circuit
      of
    Fig.5-7

A0

A1

A2

A3

A < B

A < B
A < B

A > B

A = B

A > B

A > B

A = B

A = B

B0

B1

B2

B3

Figure P5-14 Logically equivalent circuit of IC type 74L85
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5-24. Implement the combinational circuit specified in problem 5-17 with a dual 4-line to 1-line multiple-
xers, an OR gate, and inverter.

5-25. The 32 × 6 ROM together with the 20 line as shown in Fig. P5-25 converts a 6-bit binary number 
to its corresponding 2-digit BCD number. For example, binary 100001 converts to BCD 011 0011 
(decimal 33). Specify the truth table for the ROM.

5-26. Prove that a 32 × 8 ROM can be used to implement a circuit that generates the binary square of an 
input 5-bit number with B

0
 = A

0
 and B

1
 = 0 as in Fig. 5-24(a). Draw a block diagram of the circuit 

and list the first four and the last four entries of the ROM truth table.

5-27. What size ROM would it take to implement:

(a) A BCD adder/subtracior with a control input to select between the addition and subtraction.

(b) A binary multiplier that multiplies two 4-bit numbers.

(c) Dual 4-line to 1-line multiplexers with common selection inputs.

5-28. Each output inverts in the PLA of Fig. 5-26 is replaced by an exclusive-OR gate. Each exclusive-
OR gate has two inputs. One output is connected to the output of the OR gate, and the other input is 
connected through links to a signal equivalent to either 0 or 1. Show how to select the true/comple-
ment output in this configuration.

5-29. Derive the PLA program table for a combinational circuit that squares a 3-bit number. Minimize the 
number of product terms. (See Fig. 5-24 for the equivalent ROM implementation.)

5-30. List the PLA program table for the BCD-to-excess-3 code convener defined in Section 4-5.

5-31. Design a combinational circuit using a ROM which accepts a 2-bit number and generate a binary 
number equal to the cube of the input binary number.

5-32. Using 3 × 8 decoder and two OR gates design a full-subtractor.

5-33. With 2 × 1 mux implement XOR gate and AND gate.

5-34. Construct 16x1 mux using five 4 × 1 only.

5-35. Implement full-subtractor circuit with multiplexer.

5-36. A combinational circuit is defined by the functions

 F1(A, B, C) = ∑(1, 2, 3, 5)

 F2(ABC) = ∑(O, 2, 4, 6)

 Implement the circuit with PLA having three inputs, four product terms, and two outputs.

32×6 ROM

F4 F5 F6F3F2F1

A B C D E

22232425 21 20

100101

Figure P5-25 Binary-to-decimal converter
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5-37. Differentiate between

(a)   PLA and ROM

(b)   MUX, DECODER

MORE SOLvED ExAMPLES

1. With 2 × 1 mux implement NOT gate and OR gate  

 
A

F(A) = A'1

0

I0

   2 X 1 MUX
I1

                NOT gate
 

 
A

F(A) = A + BB

1

I0

   2 X 1 MUX
I1

                

A B Y

0 0 0
0 1 1 
1 0 1
1 1 1

                 OR gate                                                  Truth Table

       
 I0 I1

B' 0 2
   
B 1 3

B 1
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Sequential Logic

6.1 Introduction

The digital circuits considered thus far have been combinational, i.e., the outputs at any instant of 
time are entirely dependent upon the inputs present at that time. Although every digital system is 
likely to have combinational circuits, most systems encountered in practice also include memory 
elements, which require that the system be described in terms of sequential logic.

A block diagram of a sequential circuit is shown in Fig. 6-1. It consists of a combinational 
circuit to which memory elements are connected to form a feedback path. The memory elements 
are devices capable of storing binary information within them. The binary information stored in 
the memory elements at any given time defines the state of the sequential circuit. The sequential 
circuit receives binary information from external inputs. These inputs, together with the pres-
ent state of the memory elements, determine the binary value al the output terminals. They also 
determine the condition for changing the state in the memory elements. The block diagram dem-
onstrates that the external outputs in a sequential circuit are a function not only of external inputs 
but also of the present state of the memory elements. The next state of the memory elements is 
also a function of external inputs and the present state. Thus, a sequential circuit is specified by 
a time sequence of inputs, outputs, and internal states.

There are two main types of sequential circuits. Their classification depends on the timing 
of their signals. A synchronous sequential circuit is a system whose behavior can be defined 
from the knowledge of its signals at discrete instants of time. The behavior of an asynchronous 
sequential circuit depends upon the order in which its input signals change and can be affected at 
any instant of time. The memory elements commonly used in asynchronous sequential circuits 
are time-delay devices. The memory capability of a time-delay device is due to the fact that it 

 

  Combinational
        circuit

Memory
elements

Inputs Outputs

Figure 6.1 Block diagram of a sequential circuit
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takes a finite time for the signal to propagate through the device. In practice, the internal propa-
gation delay of logic gates is of sufficient duration to produce the needed delay, so that physical 
time-delay units may be unnecessary. In gate-type asynchronous systems, the memory elements 
of Fig. 6-1 consist of logic gates whose propagation delays constitute the required memory. Thus, 
an asynchronous sequential circuit may be regarded as a combinational circuit with feedback. 
Because of the feedback among logic gates, an asynchronous sequential circuit may, at times, 
become unstable. The instability problem imposes many difficulties on the designer. Hence they 
are not as commonly used as synchronous systems.

A synchronous sequential logic system, by definition, must employ signals that affect the 
memory elements only at discrete instants of time. One way of achieving this goal is to use 
pulses of limited duration throughout the system so that one pulse amplitude represents logic-1 
and another pulse amplitude (or the absence of a pulse) represents logic-0. The difficulty with a 
system of pulses is that any two pulses arriving from separate independent sources to the inputs 
of the same gate will exhibit unpredictable delays, will separate the pulses slightly, and will result 
in unreliable operation.

Practical synchronous sequential logic systems use fixed amplitudes such as voltage levels 
for the binary signals. Synchronization is achieved by a timing device called a master-clock gen-
erator which generates a periodic train of clock pulses. The clock pulses are distributed through-
out the system in such a way that memory elements are affected only with the arrival of the 
synchronization pulse. In practice, the clock pulses are applied into AND gates together with the 
signals that specify the required change in memory elements. The AND gate outputs can transmit 
signals only at instants which coincide with the arrival of clock pulses. Synchronous sequential 
circuits that use clock pulses in the inputs of memory elements are called clocked sequential cir-
cuits. Clocked sequential circuits are the type encountered most frequently. They do not manifest 
instability problems and their timing is easily broken down into independent discrete steps, each 
of which is considered separately. The sequential circuits discussed in this book are exclusively 
of the clocked type.

The memory elements used in clocked sequential circuits are called flip-flops. These circuits 
are binary cells capable of storing one bit of information. A flip-flop circuit has two outputs, one 
for the normal value and one for the complement value of the bit stored in it. Binary information 
can enter a flip-flop in a variety of ways, a fact which gives rise to different types of flip-flops. 
In the next section we examine the various types of flip-flops and define their logical properties.

6.2 Flip-Flops

A flip-Hop circuit can maintain a binary state indefinitely (as long as power is delivered to the 
circuit) until directed by an input signal to switch states. The major differences among various 
types of flip-flops are in the number of inputs they possess and m the manner in which the inputs 
affect the binary state. The most common types of flip-flops are discussed below,

6.2.1 Basic Flip-Flop Circuit

It was mentioned in Sections 4-7 and 4-8 that a flip-flop circuit can be constructed from two 
NAND gates or two NOR gates. These constructions are shown in the logic diagrams of Figs. 
6-2 and 6-3. Each circuit forms a basic flip-flop upon which other more complicated types can 
be built. The cross-coupled connection from the output of one gate to the input of the other gate 
constitutes a feedback path. For this reason, the circuits are classified as asynchronous sequential 
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circuits. Each flip-flop has two outputs, Q and Q′, and two inputs, set and reset. This type of flip-
flop is sometimes called a direct-coupled RS flip-flop or SR latch. The R and S are the first letters 
of the two input names.

To analyze the operation of the circuit of Fig, 6-2, we must remember that the output of a 
NOR gate is 0 if any input is 1, and that the output is 1 only when all inputs are 0. As a starting 
point, assume that the set input is 1 and the reset input is 0. Since gate 2 has an input of 1, its 
output Q′ must be 0, which puts both inputs of gate 1 at 0, so that output Q is 1. When the set 
input is returned to 0, the outputs remain the same, because output Q remains a 1, leaving one 
input of gate 2 at 1. That causes output Q′ to stay at 0, which leaves both inputs of gate number 
1 at 0, so that output Q is a 1. In the same manner it is possible to show that a 1 in the reset input 
changes output Q to 0 and Q′ to 1. When the reset input returns to 0, the outputs do not change.

When a 1 is applied to both the set and the reset inputs, both Q and Q′ outputs go to 0. This 
condition violates the fact that outputs Q and Q′ are the complements of each other. In normal 
operation this condition must be avoided by making sure that l’s are not applied to both inputs 
simultaneously.

A flip-flop has two useful states. When Q = 1 and Q′ = 0, it is in the set state (or I-state). 
When Q = 0 and Q′ = 1, it is in the clear state (or 0-state). The outputs Q and Q′ are complements 
of each other and are referred to as the normal and complement outputs, respectively. The binary 
state of the flip-flop is taken to be the value of the normal output.

Under normal operation, both inputs remain at 0 unless the state of the flip-flop has to be 
changed. The application of a momentary 1 to the set input causes the flip-flop to go to the set 
state. The set input must go back to 0 before a 1 is applied to the reset input. A momentary 1 
applied to the reset input causes the flip-flop to go the clear state. When both inputs are initially 
0, a 1 applied to the set input while the flip-flop is in the set state or a 1 applied to the reset input 
while the flip-flop is in the clear state leaves the outputs unchanged. When a 1 is applied to both 

0 R(reset)

1

0 S(set)

1

Q

Q´

1

2

Q´S

(after S = 1, R = 0)

(after S = 0, R = 1)

R

1
0
0
0
1

0
0
1
0
1

1
1
0
0
0

0
0
1
1
0

Q

                            (a) Logic diragram             (b) Truth table

Figure 6.2 Basic flip–flop circuit with NOR gates

0 R(reset)

1

0 S(set)

1
Q

Q´

1

2

Q´S

(after S = 1, R = 0)

(after S = 0, R = 1)

R

1
1
0
1
0

0
1
1
1
0

0
0
1
1
1

1
1
0
0
1

Q

  (a) Logic diagram                (b) Truth table

Figure 6.3 Basic flip – flop circuit with NAND gates
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the set and the reset inputs, both outputs go to 0. This state is undefined and is usually avoided. 
If both inputs now go to 0, the state of the flip-flop is indeterminate and depends on which input 
remains a 1 longer before the transition to 0.

The NAND basic flip-flop circuit of Fig, 6-3 operates with both inputs normally at 1 unless 
the state of the flip-flop has to be changed. The application of a momentary 0 to the set input 
causes output Q to go to 1 and Q′ to go to 0, thus putting the flip-flop into the set state. After the 
set input returns to 1, a momentary 0 to the reset input causes a transition to the clear state. When 
both inputs go to 0, both outputs go to 1—a condition avoided in normal flip-flop operation.

6.2.2 Clocked RS Flip-Flop

The basic flip-flop as it stands is an asynchronous sequential circuit. By adding gates to the 
inputs of the basic circuit, the flip-flop can be made to respond to input levels during the occur-
rence of a clock pulse. The clocked RS flip-flop shown in Fig. 6-4(a) consists of a basic NOR 
flip-flop and two AND gates. The outputs of the two AND gates remain at 0 as long as the clock 
pulse (abbreviated CP) is 0, regardless of the S and R input values. When the clock pulse goes 
to 1, information from the S and R inputs is allowed to reach the basic flip-flop. The set state is 
reached with S = 1, R = 0. and CP = 1. To change to the clear state, the inputs must be S = 0,  
R = 1, and CP = 1. With both S = 1 and R = 1, the occurrence of a clock pulse causes both outputs 
to momentarily go to 0. When the pulse is removed, the state of the flip-flop is indeterminate, 
i.e., either state may result, depending on whether the set or the reset input of the basic flip-flop 
remains a 1 longer before the transition to 0 at the end of the pulse.

The graphic symbol for the clocked RS flip-flop is shown in Fig, 6-4(b). It has three inputs: 
S, R, and CP. The CP input is not written within the box because it is recognized from the marked 

Q
R

S

CP
(Clock
pulses) Q´

SQ R

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
1
indeterminate
1
0
1
indeterminate

Q(t+1)

(a) Logic diagram (c) Characteristic table

Q
R S
Q´

CP

(b) Graphic symbol

SR
00 01 11 10

S

R
Q(r+1) = S+R´Q

0

1 1 1

X

X

1

Q

Q

SR = 0

(d) Characteristic equation

Figure 6.4 Clocked RS flip-flop
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small triangle. The triangle is a symbol for a dynamic indicator and denotes the fact that the flip-
flop responds to an input clock transition from a low-level (binary 0) to a high-level (binary 1) 
signal. The outputs of the flip-flop are marked with Q and Q′ within the box. The flip-flop can be 
assigned a different variable name even though Q, is written inside the box. In that case the letter 
chosen for the flip-flop variable is marked outside the box along the output line. The state of the 
flip-flop is determined from the value of its normal output Q. If one wishes to obtain the com-
plement of the normal output, it is not necessary to insert an inverter, because the complemented 
value is available directly from output Q′.

The characteristic table for the flip-flop is shown in Fig. 6-4(c). This table summarizes the 
operation of the flip-flop in a tabular form. Q is the binary state of the flip-flop at a given time 
(referred to as present state), the S and R columns give the possible values of the inputs, and  
Q(t + 1) is the state of the flip-flop after the occurrence of a clock pulse (referred to as next state).

The characteristic equation of the flip-flop is derived in the map of Fig. 6-4(d). This equa-
tion specifies the value of the next state as a function of the present state and the inputs. The 
characteristic equation is an algebraic expression for the binary information of the characteristic 
table. The two indeterminate states are marked by X’s in the map, since they may result in either 
a 1 or a 0. However, the relation SR = 0 must be included as pan of the characteristic equation to 
specify that both S and R cannot equal 1 simultaneously.

6.2.3 D Flip-Flop

The D flip-flop shown in Fig. 6-5 is a modification of the clocked RS flip-flop. NAND gates 1 
and 2 form a basic flip-flop and gates 3 and 4 modify it into a clocked RS flip-flop. The D input 
goes directly to the S input, and its complement, through gate 5, is applied to the R input. As long 
as the clock pulse input is at 0, gates 3 and 4 have a 1 in their outputs, regardless of the value of 
the other inputs. This conforms to the requirement that the two inputs of a basic NAND flip-flop 

Q

D

CP

Q´

13

4
5

2

(a) Logic diagram with NAND gates

Q
D

Q´

CP

(b) Graphic symbol

Q D

0
0
1
1

0
1
0
1

0
1
0
1

Q(t + 1)

(c) Characteristic table

0 1

Q(t + 1) = D

0

1 1

1

Q

D

(d) Characteristic equation

Figure 6.5 Clocked D flip-flop
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(Fig. 6-3) remain initially at the 1 level. The D input is sampled during the occurrence of a clock 
pulse, if it is 1, the output of gate 3 goes to 0, switching the flip-flop to the set state (unless it 
was already set). If it is 0, the output of gate 4 goes to 0, switching the flip-flop to the clear state.

The D flip-flop receives the designation from its ability to transfer “data” into a flip-flop. It 
is basically an RS flip-flop with an inverter in the R input. The added inverter reduces the number 
of inputs from two to one. This type of flip-flop is sometimes called a gated D-latch. The CP 
input is often given the variable designation G (for gate) to indicate that this input enables the 
gated latch to make possible the data entry into the flip-flop.

The symbol for a clocked D flip-flop is shown in Fig. 6-5(b). The characteristic table is 
listed in part (c) and the characteristic equation is derived in part (d), The characteristic equation 
shows that the next state of the flip-flop is the same as the D input and is independent of the value 
of the present state.

6.2.4 JK Flip-Flop

A JK flip-flop is a refinement of the RS flip-flop in that the indeterminate state of the RS type is 
defined in the JK type. Inputs J and K behave like inputs S and R to set and clear the flip-flop 
(note that in a JK flip-flop, the letter J is for set and the letter K is for clear). When inputs are 

Q
K

J

CP

Q´

(a) Logic diagram

Q
K J
Q´

CP

(b) Graphic symbol

JQ K

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
1
1
1
0
1
0

Q(t+1)

 (c) Characteristic table 

JK
00 01 11 10

J

Q

Q

K

0

1 1 1

1 1

Q(j+1) + JQ´ − K´Q

(d) Characteristic equation

Figure 6.6 Clocked JK flip–flop
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applied to both J and K simultaneously, the flip-flop switches to its complement state, that is, if 
Q = 1, it switches to Q = 0, and vice versa.

A clocked JK flip-flop is shown in Fig. 6-6(a). Output Q is ANDed with K and CP inputs 
so that the flip-flop is cleared during a clock pulse only if Q was previously 1. Similarly, output 
Q′ is ANDed with J and CP inputs so that the flip-flop is set with a clock pulse only if Q′ was 
previously I.

As shown in the characteristic table in Fig. 6-6(c), the JK flip-flop behaves like an RS 
flip-flop, except when both J and K are equal to 1. When both J and K are 1, the clock pulse is 
transmitted through one AND gate only—the one whose input is connected to the flip-flop out-
put which is presently equal to 1. Thus, if Q = 1, the output of the upper AND gate becomes 1 
upon application of a clock pulse, and the flip-flop is cleared. If Q′ = 1, the output of the lower 
AND gate becomes a 1 and the flip-flop is set. In either case, the output state of the flip-flop is 
complemented.

The inputs in the graphic symbol for the JK flip-flop must be marked with a J (under Q) and 
K (under (Q′). The characteristic equation is given in Fig. 6-4(d) and is derived from the map of 
the characteristic table.

Note that because of the feedback connection in the JK flip-flop, a CP signal which remains 
a 1 (while J = K = 1) after the outputs have been complemented once will cause repeated and 
continuous transitions of the outputs. To avoid this undesirable operation, the clock pulses must 
have a time duration which is shorter than the propagation delay through the flip-flop. This is a 
restrictive requirement, since the operation of the circuit depends on the width of the pulses. For 
this reason, JK flip-flops are never constructed as shown in Fig, 6-6(a). The restriction on the 
pulse width can be eliminated with a master-slave or edge-triggered construction, as discussed in 
the next section. The same reasoning applies to the T flip-flop presented below.

The T flip-flop is a single-input version of the JK flip-flop. As shown in Fig. 6-7(a), the T 
flip-flop is obtained from a JK type if both inputs are tied together. The designation T comes from 
the ability of the flip-flop to “toggle,” or change state. Regardless of the present state of the flip-
flop, it assumes the complement state when the clock pulse occurs while input T is logic-1. The 
symbol, characteristic table, and characteristic equation of the T flip-flop are shown in Fig. 6-7, 
parts (b), (c), and (d), respectively.

The flip-flops introduced in this section are the most common types available commercially. 
The analysis and design procedures developed in this chapter are applicable for any clocked flip-
flop once its characteristic table is defined.

6.3 Triggering of Flip-flops

The state of a flip-flop is switched by a momentary change in the input signal. This momentary 
change is called a trigger and the transition it causes is said to trigger the flip-flop. Asynchronous 
flip-flops, such as the basic circuits of Figs. 6-2 and 6-3, require an input trigger defined by a 
change of signal level. This level must be returned to its initial value (0 in the NOR and 1 in the 
NAND flip-flop) before a second trigger is applied. Clocked flip-flops are triggered by pulses. A 
pulse starts from an initial value of 0, goes momentarily to 1, and after a short time, returns to 
its initial 0 value. The time interval from the application of the pulse until the output transition 
occurs is a critical factor that needs further investigation.

As seen from the block diagram of Fig. 6-1, a sequential circuit has a feedback path be-
tween the combinational circuit and the memory elements. This path can produce instability if 
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the outputs of memory elements (flip-flops) are changing while the outputs of the combinational 
circuit that go to flip-flop inputs are being sampled by the clock pulse. This timing problem can 
be prevented if the outputs of flip-flops do not start changing until the pulse input has returned 
to 0. To ensure such an operation, a flip-flop must have a signal propagation delay from input to 
output in excess of the pulse duration. This delay is usually very difficult to control if the designer 
depends entirely on the propagation delay of logic gates. One way of ensuring the proper delay is 
to include within the flip-flop circuit a physical delay unit having a delay equal to or greater than 
the pulse duration. A better way to solve the feedback timing problem is to make the flip-flop 
sensitive to the pulse transition rather than the pulse duration.

A clock pulse may be either positive or negative. A positive clock source remains at 0 dur-
ing the interval between pulses and goes to 1 during the occurrence of a pulse. The pulse goes 
through two signal transitions; from 0 to 1 and the return from 1 to 0. As shown in Fig. 6-8, the 
positive transition is defined as the positive edge and the negative transition as the negative edge. 
This definition applies also to negative pulses.

The clocked flip-flops introduced in Section 6-2 are triggered during the positive edge of 
the pulse, and the state transition starts as soon as the pulse reaches the logic-1 level. The new 
state of the flip-flop may appear at the output terminals while the input pulse is still 1. If the other 
inputs of the flip-flop change while the clock is still 1, the flip-flop will start responding to these 
new values and a new output state may occur. When this happens, the output of one flip-flop 
cannot be applied to the inputs of another flip-flop when both are triggered by the same clock 

Q
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Q´

(a)  Logic diagram
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(d) Characteristic equation

Figure 6.7 Clocked T flip-flop
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pulse. However, if we can make the flip-flop respond to the positive (or negative) edge transition 
only, instead of the entire pulse duration, then the multiple-transition problem can be eliminated.

One way to make the flip-flop respond only to a pulse transition is to use capacitive cou-
pling. In this configuration, an RC (resistor-capacitor) circuit is inserted in the clock input of 
the flip-flop. This circuit generates a spike in response to a momentary change of input signal. 
A positive edge emerges from such a circuit with a positive spike, and a negative edge emerges 
with a negative spike. Edge triggering is achieved by designing the flip-flop to neglect one spike 
and trigger on the occurrence of the other spike. Another way to achieve edge triggering is to use 
a master-slave or edge-triggered flip-flop as discussed below.

6.3.1 Master-Slave Flip-Flop

A master-slave flip-flop is constructed from two separate flip-flops. One circuit serves as a master 
and the other as a slave, and the overall circuit is referred to as a master-stave flip-flop. The logic 
diagram of an RS master-slave flip-flop is shown in Fig. 6-9. It consists of a master flip-flop, a 
slave flip-flop, and an inverter. When clock pulse CP is 0, the output of the inverter is 1. Since the 

0

Positive pulse

Positive 
 edge

Negative 
 edge

1
Negative pulse

Positive 
edge

Negative 
edge

Figure 6.8 Definition of clock pulse transition
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S
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Q´
Y´

R
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R
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Slave

Figure 6.9 Logic diagram of master-slave flip-flop
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clock input of the slave is 1, the flip-flop is enabled and output Q is equal to Y, while Q′ is equal 
to Y′. The master flip-flop is disabled because CP = 0. When the pulse becomes 1, the informa-
tion then at the external R and S inputs is transmitted to the master flip-flop. The slave flip-flop, 
however, is isolated as long as the pulse is at its 1 level, because the output of the inverter is 0. 
When the pulse returns to 0, the master flip-flop is isolated, which prevents the external inputs 
from affecting it. The slave flip-flop then goes to the same state as the master flip-flop.

The timing relationships shown in Fig. 6-10 illustrate the sequence of events that occur in 
a master-slave flip-flop. Assume that the flip-flop is in the clear state prior to the occurrence of 
a pulse, so that Y = 0 and Q = 0. The input conditions are S = 1, R = 0, and the next clock pulse 
should change the flip-flop to the set state with Q = 1. During the pulse transition from 0 to 1, 
the master flip-flop is set and changes Y to 1. The slave flip-flop is not affected because its CP 
input is 0. Since the master flip-flop is an internal circuit, its change of state is not noticeable in 
the outputs Q and Q′. When the pulse returns to 0, the information from the master is allowed to 
pass through to the slave, making the external output Q = 1. Note that the external S input can be 
changed at the same time that the pulse goes through its negative edge transition. This is because, 
once the CP reaches 0, the master is disabled and its R and S inputs have no influence until the 
next clock pulse occurs. Thus, in a master-slave flip-flop, it is possible to switch the output of the 
flip-flop and its input information with the same clock pulse. It must be realized that the S input 
could come from the output of another master-slave flip-flop that was switched with the same 
clock pulse.

The behavior of the master-slave flip-flop just described dictates that the state changes in all 
flip-flops coincide with the negative edge transition of the pulse. However, some IC master-slave 
flip-flops change output states in the positive edge transition of clock pulses. This happens in flip-
flops that have an additional inverter between the CP terminal and the input of the master. Such 
flip-flops are triggered with negative pulses (see Fig. 6-8), so that the negative edge of the pulse 
affects the master and the positive edge affects the slave and the output terminals.

The master-slave combination can be constructed for any type of flip-flop by adding a 
clocked RS flip-flop with an inverted clock to form the slave. An example of a master-slave JK 
flip-flop constructed with NAND gates is shown in Fig. 6-11. It consists of two flip-flops; gates 
1 through 4 form the master flip-flop, and gates 5 through 8 form the slave flip-flop. The infor-

S

CP

Y

Q

Figure 6.10 Timing relationships in a master-slave flip-flop
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mation present at the J and K inputs is transmitted to the master flip-flop on the positive edge of 
a clock pulse and is held there until the negative edge of the clock pulse occurs, after which it 
is allowed to pass through to the slave flip-flop. The clock input is normally 0, which keeps the 
outputs of gates 1 and 2 at the 1 level. This prevents the J and K inputs from affecting the master 
flip-flop. The slave flip-flop is a clocked RS type, with the master flip-flop supplying the inputs 
and the clock input being inverted by gate 9. When the clock is 0, the output of gate 9 is 1, so 
that output Q is equal to Y. and Q′ is equal to Y′. When the positive edge of a clock pulse occurs, 
the master flip-flop is affected and may switch states. The slave flip-flop is isolated as long as the 
clock is at the 1 level, because the output of gate 9 provides a 1 to both inputs of the NAND basic 
flip-flop of gates 7 and 8. When the clock input returns to 0, the master flip-flop is isolated from 
the J and K inputs and the slave flip-flop goes to the same state as the master flip-flop.

Now consider a digital system containing many master-slave flip-flops, with the outputs of 
some flip-flops going to the inputs of other flip-flops. Assume that clock pulse inputs to all flip-
flops are synchronized (occur at the same time). At the beginning of each clock pulse, some of 
the master elements change state, but all flip-flop outputs remain at their previous values. After 
the clock pulse returns to 0. some of the outputs change state, but none of these new states have 
an effect on any of the master elements until the next clock pulse. Thus the states of flip-flops in 
the system can be changed simultaneously during the same clock pulse, even though outputs of 
flip-flops are connected to inputs of flip-flops. This is possible because the new state appears at 
the output terminals only after the clock pulse has returned to 0. Therefore, the binary content of 
one flip-flop can be transferred to a second flip-flop and the content of the second transferred to 
the first, and both transfers can occur during the same clock pulse.

6.3.2 Edge-Triggered Flip-Flop

Another type of flip-flop that synchronizes the state changes during a clock pulse transition is the 
edge-triggered flip-flop. In this type of flip-flop, output transitions occur at a specific level of the 
clock pulse. When the pulse input level exceeds this threshold level, the inputs are locked out and 
the flip-flop is therefore unresponsive to further changes in inputs until the clock pulse returns to 
0 and another pulse occurs. Some edge-triggered flip-flops cause a transition on the positive edge 
of the pulse, and others cause a transition on the negative edge of the pulse.
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5
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Figure 6.11 Clocked master-slave JK flip-flop
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The logic diagram of a D-type positive-edge-triggered flip-flop is shown in Fig. 6-12. It 
consists of three basic flip-flops of the type shown in Fig, 6-3. NAND gates 1 and 2 make up 
one basic flip-flop and gates 3 and 4 another. The third basic flip-flop comprising gates 5 and 6 
provides the outputs to the circuit. Inputs 5 and R of the third basic flip-flop must be maintained 
at logic-1 for the outputs to remain in their steady-state values, When S = 0 and R = 1, the output 
goes to the set state with Q = 1. When S = 1 and R = 0, the output goes to the clear state with Q = 
0. Inputs S and R are determined from the states of the other two basic flip-flops. These two basic 
flip-flops respond to the external inputs D (data) and CP (clock pulse).

The operation of the circuit is explained in Fig. 6-13, where gates 1-4 are redrawn to show 
all possible transitions. Outputs S and R from gates 2 and 3 go to gates 5 and 6, as shown in Fig. 
6-12, to provide the actual outputs of the flip-flop. Figure 6-13(a) shows the binary values at the 
outputs of the four gates when CP = 0. Input D may be equal to 0 or 1. In either case, a CP of 0 
causes the outputs of gates 2 and 3 to go to I, thus making S = R = 1, which is the condition for 
a steady-state output. When D = 0, gate 4 has a 1 output, which causes the output of gate 1 to go 
to 0. When D = 1, gate 4 goes to 0, which causes the output of gate 1 to go to 1. These are the 
two possible conditions when the CP terminal, being 0, disables any changes at the outputs of the 
flip-flop, no matter what the value of D happens to be.

There is a definite time, called the setup time, in which the D input must be maintained at 
a constant value prior to the application of the pulse. The setup time is equal to the propagation 
delay through gates 4 and 1 since a change in D causes a change in the outputs of these two gates. 
Assume now that D does not change during the setup time and that input CP becomes 1. This 
situation is depicted in Fig. 6-13(b). If D = 0 when CP becomes I. then S remains 1 but R changes 
to 0. This causes the output of the flip-flop Q to go to 0 (in Fig, 6-12). If now, while CP = 1, there 
is a change in the D input, the output of gate 4 will remain at 1 (even if D goes to 1), since one 
of the gate inputs comes from R which is maintained at 0. Only when CP returns to 0 can the 
output of gate 4 change; but then both R and S become 1, disabling any changes in the output 
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Figure 6.12 D-type positive-edge-triggered flip-flop
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of the flip-flop. However, there is a definite time, called the hold time, that the D input must not 
change after the application of the positive-going transition of the pulse. The hold time is equal 
to the propagation delay of gate 3, since it must be ensured that R becomes 0 in order to maintain 
the output of gate 4 at 1, regardless of the value of D.

If D = 1 when CP = 1, then S changes to 0 but R remains at 1, which causes the output of 
the flip-flop Q to go to 1. A change in D while CP = 1 does not alter S and R because gate t is 
maintained at 1 by the 0 signal from S. When CP goes to zero, both S and R go to 1 to prevent the 
output from undergoing any changes.

In summary, when the input clock pulse makes a positive-going transition, the value of D 
is transferred to Q. Changes in D when CP is maintained at a steady 1 value do not affect Q. 
Moreover, a negative pulse transition does not affect the output, nor does it when CP = 0. Hence, 
the edge-triggered flip-flop eliminates any feedback problems in sequential circuits just as a 
master-slave flip-flop does. The setup time and hold time must be taken into consideration when 
using this type of flip-flop.
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Figure 6.13 Operation of the D-type edge-triggered flip-flop
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When using different types of flip-flops in the same sequential circuit, one must ensure that 
all flip-flop outputs make their transitions at the same time, i.e., during either the negative edge 
or the positive edge of the pulse. Those flip-flops that behave opposite from the adopted polarity 
transition can be changed easily by the addition of inverters in their clock inputs. An alternate 
procedure is to provide both positive and negative pulses (by means of an inverter), and then ap-
ply the positive pulses to flip-flops that trigger during the negative edge and negative pulses to 
flip-flops that trigger during the positive edge, or vice versa.

6.3.3 Direct Inputs

Flip-flops available in IC packages sometimes provide special inputs for setting or clearing the 
flip-flop asynchronously. These inputs are usually called direct preset and direct clear. They af-
fect the flip-flop on a positive (or negative) value of the input signal without the need for a clock 
pulse. These inputs are useful for bringing all flip-flops to an initial state prior to their clocked 
operation. For example, after power is turned on in a digital system, the states or its flip-flops are 
indeterminate. A clear switch clears all the flip-flops to an initial cleared state and a start switch 
begins the system’s clocked operation. The clear switch must clear all flip-flops asynchronously 
without the need for a pulse.

The graphic symbol of a master-slave flip-flop with direct clear is shown in Fig. 6-14. The 
clock or CP input has a circle under the small triangle to indicate that the outputs change during 
the negative transition of the pulse. (The absence of the small circle would indicate a positive-
edge-triggered flip-flop.) The direct clear input also has a small circle to indicate that, normally, 
this input must be maintained at 1. If the clear input is maintained at 0, the flip-flop remains 
cleared, regardless of the other inputs or the clock pulse. The function table specifies the circuit 
operation. The X’s are don’t-care conditions which indicate that a 0 in the direct clear input dis-
ables all other inputs. Only when the clear input is 1 would a negative transition of the clock have 
an effect on the outputs. The outputs do not change if J = K = 0. The flip-flop toggles or comple-
ments when J = K = 1. Some flip-flops may also have a direct preset input which sets the output 
Q to 1 (and Q′ to 0) asynchronously.

When direct asynchronous inputs are available in a master-slave flip-flop, they must con-
nect to both the master and the stave in order to override the other inputs and the clock. A direct 
clear in the JK master-slave flip-flop of Fig. 6-10 is connected to the inputs of gales 1, 4, and 8. 
A direct clear in the D edge-triggered flip-flop of Fig. 6-12 is connected to the inputs of gates 2 
and 6.
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Figure 6.14 JK flip-flop with direct clear
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6.4 Analysis of Clocked Sequential Circuits

The behavior of a sequential circuit is determined from the inputs, the outputs, and the states 
of its flip-flops. Both the outputs and the next state are a function of the inputs and the present 
state. The analysis of sequential circuits consists of obtain ing a table or a diagram for the time 
sequence of inputs, outputs, and internal states. It is also possible to write Boolean expressions 
that describe the behavior of sequential circuits. However, these expressions must include the 
necessary time sequence either directly or indirectly.

A logic diagram is recognized as the circuit of a sequential circuit if it includes flip-flops. 
The flip-flops may be of any type and the logic diagram may or may not include combinational 
gates. In this section, we first introduce a specific example of a clocked sequential circuit and 
then present various methods for describing the behavior of sequential circuits. The specific ex-
ample will be used throughout the discussion to illustrate the various methods.

6.4.1 An Example of a Sequential Circuit

An example of a clocked sequential circuit is shown in Fig. 6-15. It has one input variable x, one 
output variable y, and two clocked RS flip-flops labeled A and B. The cross-connections from 
outputs of flip-flops to inputs of gates are not shown by line drawings so as to facilitate the trac-
ing of the circuit. Instead, the connections are recognized from the letter symbol marked in each 
input. For example, the input marked x′ in gate 1 designates an input from the complement of x. 
The second input marked A designates a connection to the normal output of flip-flop A. 

We shall assume negative edge triggering in both flip-flops and in the source that produces 
the external input x. Therefore, the signals for a given present, state are available during the time 
from the termination of a clock pulse to the termination of the next clock pulse, at which time 
the circuit goes to the next state.

x
A
B´

y

x´

A
1

2

3

4

x

A´

x

B´

x´

B

R Q´ B´

CP

B

A´

A

S Q

R Q´

S Q

Figure 6.15 Example of a clocked sequential circuit
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6.4.2 State Table

The time sequence of inputs, outputs, and flip-flop states may be enumerated in a state table.* The 
state table for the circuit of Fig. 6-15 is shown in Table 6-1. It consists of three sections labeled 
present state, next state, and output. The present state designates the states of flip-flops before the 
occurrence of a clock pulse. The next state shows the states of flip-flops after the application of a 
clock pulse, and the output section lists the values of the output variables during the present state. 
Both the next state and output sections have two columns, one for x = 0 and the other for x = 1.

The derivation of the state table starts from an assumed initial state. The initial state of most 
practical sequential circuits is defined to be the state with 0’s in all flip-flops. Some sequential 
circuits have a different initial state and some have none at all. In either case, the analysis can 
always start from any arbitrary state. In this example, we start deriving the state table from the  
initial state 00.

When the present state is 00, A = 0 and B = 0. From the logic diagram, we see that with 
both flip-flops cleared and x = 0, none of the AND gates produce a logic-1 signal. Therefore, the 
next state remains unchanged. With AB = 00 and x = 1, gate 2 produces a logic-1 signal at the S 
input of flip-flop B and gate 3 produces a logic-1 signal at the R input of flip-flop A. When a clock 
pulse triggers the flip-flops, A is cleared and B is set, making the next state 01. This information 
is listed in the first row of the state table.

In a similar manner, we can derive the next state starting from the other three possible pres-
ent states. In general, the next state is a function of the inputs, the present state, and the type of 
flip-flop used. With RS flip-flops, for example, we must remember that a 1 in input S sets the 
flip-flop and a 1 in input R clears the flip-flop, regardless of its previous state. A 0 in both the S’ 
and R inputs leaves the flip-flop unchanged, whereas a 1 in both the S and R inputs shows a bad 
design and an indeterminate state table.

The entries for the output section are easier to derive. In this example, output y is equal to 
1 only when x = 1, A = 1, and B = 0. Therefore, the output columns are marked with 0’s, except 
when the present state is 10 and input x = 1, for which y is marked with a 1.

The state table of any sequential circuit is obtained by the same procedure used in the ex-
ample. In general, a sequential circuit with m flip-flops and n input variables will have 2m rows, 
one for each state. The next state and output sections each will have 2n columns, one for each 
input combination.

* Switching circuit theory books call this table a transition table. They reserve the name state table for a 
table with internal states represented by arbitrary symbols.

Table 6-1 State table for circuit of Fig. 6-15

Next state Output

Present State x = 0 x = 1 x = 0 x = 1

AB AB AB y y

00 00 01 0 0

01 11 01 0 0

10 10 00 0 1

11 10 11 0 0
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The external outputs of a sequential circuit may come from logic gates or from memory ele-
ments. The output section in the state table is necessary only if there are outputs from logic gates. 
Any external output taken directly from a flip-flop is already listed in the present state column 
of the state table. Therefore, the output section of the state table can be excluded if there are no 
external outputs from logic gates.

6.4.3 State Diagram

The information available in a state table may be represented graphically in a state diagram. In 
this diagram, a state is represented by a circle, and the transition between states is indicated by 
directed lines connecting the circles. The state diagram of the sequential circuit of Fig. 6-15 is 
shown in Fig. 6-16. The binary number inside each circle identifies the state the circle represents. 
The directed lines are labeled with two binary numbers separated by a /. The input value that 
causes the state transition is labeled first; the number after the symbol / gives the value of the 
output during the present state. For example, the directed line from state 00 to 01 is labeled 1/0, 
meaning that the sequential circuit is in a present state 00 while x = 1 and x = 0, and that on the 
termination of the next clock pulse, the circuit goes to next state 01. A directed line connecting 
a circle with itself indicates that no change of state occurs. The state diagram provides the same 
information as the state table and is obtained directly from Table 6-1.

There is no difference between a state table and a state diagram except in the manner of 
representation. The state table is easier to derive from a given logic diagram and the state diagram 
follows directly from a state table. The state diagram gives a pictorial view of state transitions 
and is in a form suitable for human interpretation of the circuit operation. The state diagram is 
often used as the initial design specification of a sequential circuit.

6.4.4 State Equations

A state equation (also known as an application equation) is an algebraic expression that specifies 
the conditions for a flip-flop state transition. The left side of the equation denotes the next state 
of a flip-flop and the right side, a Boolean function that specifies the present state conditions 
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Figure 6.16 State diagram for the circuit of Fig. 6.16
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that make the next state equal to 1. A state equation is similar in form to a flip-flop characteristic 
equation, except that it specifies the next state conditions in terms of external input variables and 
other flip-flop values. The state equation is derived directly from a state table. For example, the 
state equation for flip-flop A is derived from inspection of Table 6-1. From the next state columns, 
we note that flip-flop A goes to the 1 state four times: when x = 0 and AB = 01 or 10 or 11, or when 
x = 1 and AB = 11. This can be expressed algebraically in a state equation as follows:

A(t + 1) = (A′B + AB′ + AB) x′ + ABx

The right-hand side of the state equation is a Boolean function for a present state. When this 
function is equal to 1, the occurrence of a clock pulse causes flip-flop A to have a next state of 1. 
When the function is equal to 0, the clock pulse causes A to have a next state of 0. The left side 
of the equation identifies the flip-flop by its letter symbol, followed by the time function designa-
tion (t + 1), to emphasize that this value is to be reached by the flip-flop one pulse sequence later.

The state equation is a Boolean function with time included. It is applicable only in clock 
sequential circuits, since A (t + 1) is defined to change value with the occurrence of a clock pulse 
at discrete instants of time.

The state equation for flip-flop A is simplified by means of a map as shown in Fig. 6-17(a). 
With some algebraic manipulation, the function can be expressed in the following form:

A (t + 1) = B′x + (B′x)′A

If we let Bx′ = S and B′ x = R. we obtain the relationship:

A (t + 1) = S + R′A

which is the characteristic equation of an RS flip-flop [Fig. 6-4(d)]. This relationship between 
the state equation and the flip-flop characteristic equation can be justified from inspection of 
the logic diagram of Fig. 6-15. In it we see that the S input of flip-flop A is equal to the Boolean 
function Bx′ and the R input is equal to B′x. Substituting these functions into the flip-flop charac-
teristic equation results in its state equation for this sequential circuit.

The state equation for a flip-flop in a sequential circuit may be derived from a state table or 
from a logic diagram. The derivation from the state table consists of obtaining the Boolean func-
tion specifying the conditions that make the next state of the flip-flop a 1. The derivation from a 
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Figure 6.17 State equation for flip-flops A and B
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logic diagram consists of obtaining the functions of the flip-flop inputs and substituting them into 
the flip-flop characteristic equation.

The derivation of the state equation for flip-flop B from the state table is shown in the map 
of Fig. 6-17(b). The 1’s marked in the map are the present state and input combinations that cause 
the flip-flop to go to a next state of 1. These conditions are obtained directly from Table 6-1. The 
simplified form obtained in the map is manipulated algebraically, and the state equation obtained 
is:

B(t + 1) = A′x + (Ax′)′ B

The state equation can be derived directly from the logic diagram. From Fig. 6-15, we see 
that the signal for input S of flip-flop B is generated by the function A′ x and the signal for input 
R by the function Ax′. Substituting S = A′ x and R = Ax′ into an RS flip-flop characteristic equa-
tion given by:

B (t + 1) = S + R′B

we obtain the state equation derived above.
The state equations of all flip-flops, together with the output functions, fully specify a se-

quential circuit. They represent, algebraically, the same information a state table represents in 
tabular form and a state diagram represents in graphical form.

6.4.5 Flip-flop Input Functions

The logic diagram of a sequential circuit consists of memory elements and gates. The type of 
flip-flops and their characteristic table specify the logical properties of the memory elements. 
The interconnections among the gates form a combinational circuit and may be specified al-
gebraically with Boolean functions. Thus, knowledge of the type of flip-flops and a list of the 
Boolean functions of the combinational circuit provide all the information needed to draw the 
logic diagram of a sequential circuit. The part of the combinational circuit that generates exter-
nal outputs is described algebraically by the circuit output functions. The part of the circuit that 
generates the inputs to flip-flops are described algebraically by a set of Boolean functions called 
flip-flop input functions or sometimes input equations.

We shall adopt the convention of using two letters to designate a flip-flop input variable: the 
first to designate the name of the input and the second the name of the flip-flop. As an example, 
consider the following flip-flop input functions:

JA = BC′ x + B′Cx′
   KA = B + y

JA and KA designate two Boolean variables. The first letter in each denotes the J and K input, 
respectively, of a JK flip-flop. The second letter A is the symbol name of the flip-flop. The right 
side of each equation is a Boolean function for the corresponding flip-flop input variable. The 
implementation of the two input functions is shown in the logic diagram of Fig. 6-18. The JK flip-
flop has an output symbol A and two inputs labeled J and K. The combinational circuit drawn in 
the diagram is the implementation of the algebraic expression given by the input functions. The 
outputs of the combinational circuit are denoted by JA and KA in the input functions and go to 
the J and K inputs, respectively, of flip-flop A.
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From this example, we see that a flip-flop input function is an algebraic expression for a 
combinational circuit. The two-letter designation is a variable name for an output of the combi-
national circuit. This output is always connected to the input (designated by the first letter) of a 
flip-flop (designated by the second letter).

The sequential circuit of Fig. 6-15 has one input x, one output y and two RS flip-flops 
denoted by A and B. The logic diagram can be expressed algebraically with four flip-flop input 
functions and one circuit output function as follows:

SA = Bx′  RA = B′x
SB = A′x  RB = Ax′
   y = AB′x  

This set of Boolean functions fully specifies the logic diagram, Variables SA and RA specify 
an RS flip-flop labeled A; variables SB and RB specify a second RS flip-flop labeled B. Variable 
y denotes the output. The Boolean expressions for the variables specify the combinational circuit 
part of the sequential circuit.

The flip-flop input functions constitute a convenient algebraic form for specifying a logic 
diagram of a sequential circuit. They imply the type of flip-flop from the first letter of the input 
variable and they fully specify the combinational circuit that drives the flip-flop. Time is not in-
cluded explicitly in these equations but is implied from the clock pulse operation. It is sometimes 
convenient to specify a sequential circuit algebraically with circuit output functions and flip-flop 
input functions instead of drawing the logic diagram.

6.5 State Reduction and Assignment†

The analysis of sequential circuits starts from a circuit diagram and culminates in a state table or 
diagram. The design of a sequential circuit starts from a set of specifications and culminates in a 
logic diagram. Design procedures are presented starting from Section 6-7. This section discusses 
certain properties of sequential circuits that may be used to reduce the number of gates and flip-
flops during the design.

†This section may be omitted without loss of continuity.

B

B

y

CP

x
C´

A´

A

B´

x´
C

K Q´

J Q

Figure 6.18 Implementation of the flip-flop input functions JA = BC′ x + B′Cx′ and KA = B + y
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6.5.1 State Reduction

Any design process must consider the problem of minimizing the cost of the final circuit. The 
two most obvious cost reductions are reductions in the number of flip-flops and the number of 
gates. Because these two items seem the most obvious, they have been extensively studied and 
investigated. In fact, a large portion of the subject of switching theory is concerned with finding 
algorithms for minimizing the number of flip-flops and gates in sequential circuits.

The reduction of the number of flip-flops in a sequential circuit is referred to as the state 
reduction problem. State reduction algorithms are concerned with procedures for reducing the 
number of states in a state table while keeping the external input-output requirements unchan-
ged. Since m flip-flops produce 2m states, a reduction in the number of states may (or may not) 
result in a reduction in the number of flip-flops. An unpredictable effect in reducing the number 
of flip-flops is that sometimes the equivalent circuit (with less flip-flops) may require more com-
binational gates.

We shall illustrate the need for state reduction with an example. We start with a sequential 
circuit whose specification is given in the state diagram of Fig. 6-19. In this example, only the 
input-output sequences are important; the internal states are used merely to provide the required 
sequences. For this reason, the states marked inside the circles are denoted by letter symbols 
instead of by their binary values. This is in contrast to a binary counter, where the binary value 
sequence of the states themselves are taken as the outputs.

There are an infinite number of input sequences that may be applied to the circuit; each 
results in a unique output sequence. As an example, consider the input sequence 01010110100 
starting from the initial state a. Each input of 0 or 1 produces an output of 0 or 1 and causes the 
circuit to go to the next state. From the state diagram, we obtain the output and state sequence 
for the given input sequence as follows: With the circuit in initial state a, an input of 0 produces 
an output of 0 and the circuit remains in state a. With present state a, and input of 1, the output 
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Figure 6-19 State diagram
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is 0 and the next state is b. With present state b and input of 0, the output is 0 and next state is c. 
Continuing this process, we find the complete sequence to be as follows:

state a a b c d e f f g f g a

input 0 1 0 1 0 1 1 0 1 0 0

output 0 0 0 0 0 1 1 0 1 0 0

In each column, we have the present state, input value, and output value. The next state is writ-
ten on top of the next column. It is important to realize that in this circuit the states themselves 
are of secondary importance because we are interested only in output sequences caused by input 
sequences.

Now let us assume that we have found a sequential circuit whose state diagram has less than 
seven states and we wish to compare it with the circuit whose state diagram is given by Fig. 6-19. 
If identical input sequences are applied to the two circuits and identical outputs occur for all input 
sequences, then the two circuits are said to be equivalent (as far as the input-output is concerned) 
and one may be replaced by the other. The problem of state reduction is to find ways of reducing 
the number of states in a sequential circuit without altering the input-output relationships.

We shall now proceed to reduce the number of states for this example. First, we need the 
state table; it is more convenient to apply procedures for state reduction here than in state dia-
grams. The state table of the circuit is listed in Table 6-2 and is obtained directly from the state 
diagram of Fig. 6-19.

An algorithm for the state reduction of a completely specified state table is given here 
without proof: “Two states are said to be equivalent if, for each member of the set of inputs, they 
give exactly the same output and send the circuit either to the same state or to an equivalent state. 
When two states are equivalent, one of them can be removed without altering the input-output 
relationships.”

We shall apply this algorithm to Table 6-2. Going through the state table, we look for two 
present states that go to the same next state and have the same output for both input combina-
tions. States g and e are two such states; they both go to states a and f and have outputs of 0 and 
1 for x = 0 and x = 1, respectively. Therefore, states g and e are equivalent; one can be removed. 

Table 6-2 State table

Next state Output

Present state x = 0 x = 1 x = 0 x = 1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1

e a f 0 1

f g f 0 1

g a f 0 1
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The procedure of removing a state and replacing it by its equivalent is demonstrated in Table 6-3. 
The row with present state g is crossed out and state g is replaced by state e each time it occurs 
in the next state columns.

Present state f now has next states e and f and outputs 0 and 1 for x = 0 and x = 1, respec-
tively. The same next states and outputs appear in the row with present state d. Therefore, states f 
and d are equivalent; state f can be removed and replaced by d. The final reduced table is shown 
in Table 6-4. The state diagram for the reduced table consists of only five states and is shown in 
Fig. 6-20. This state diagram satisfies the original input-output specifications and will produce 
the required output sequence for any given input sequence. The following list derived from the 
state diagram of Fig. 6-20 is for the input sequence used previously. We note that the same output 
sequence results although the state sequence is different:

state a a b c d e d d e d e a

input 0 1 0 1 0 1 1 0 1 0 0

output 0 0 0 0 0 1 1 0 1 0 0

In fact, this sequence is exactly the same as that obtained for Fig. 6-19, if we replace e by  
g and d by f.

It is worth noting that the reduction in the number of states of a sequential circuit is possible 
if one is interested only in external input-output relationships. When external outputs are taken 

Next state Output

Present state x = 0 x = 1 x = 0 x = 1

a a b 0 0

b c d 0 0

c a d 0 0

d e f d 0 1

e a f d 0 1

f g e f 0 1

g a f 0 1

Table 6-3 Reducing the state table

Table 6-4 Reduced state table

Next state Output

Present state x = 0 x = 1 x = 0 x = 1

a a b 0 0

b c d 0 0

c a d 0 0

d e d 0 1

e a d 0 1
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directly from flip-flops, the outputs must be independent of the number of states before state 
reduction algorithms are applied.

The sequential circuit of this example was reduced from seven to five states. In either case, 
the representation of the states with physical components requires that we use three flip-flops, 
because m flip-flops can represent up to 2m distinct states. With three flip-flops, we can formulate 
up to eight binary states denoted by binary numbers 000 through 111, with each bit designating 
the state of one flip-flop. If the state table of Table 6-2 is used, we must assign binary values to 
seven states; the remaining state is unused. If the state table of Table 6-4 is used, only five states 
need binary assignment, and we are left with three unused states, Unused states are treated as 
don’t-care conditions during the design of the circuit. Since don’t-care conditions usually help in 
obtaining a simpler Boolean function, it is more likely that the circuit with five states will require 
fewer combinational gates than the one with seven states. In any case, the reduction from seven 
to five states does not reduce the number of flip-flops. In general, reducing the number of states 
in a state table is likely to result in a circuit with less equipment. However, the fact that a state 
table has been reduced to fewer states does not guarantee a saving in the number of flip-flops or 
the number of gates.

6.5.2 State Assignment

The cost of the combinational circuit part of a sequential circuit can be reduced by using the 
known simplification methods for combinational circuits. However, there is another factor, 
known as the state assignment problem, that comes into play in minimizing the combinational 
gates. State assignment procedures are concerned with methods for assigning binary values to 
states in such a way as to reduce the cost of the combinational circuit that drives the flip-flops. 
This is particularly helpful when a sequential circuit is viewed from its external input-output 
terminals. Such a circuit may follow a sequence of internal states, but the binary values of the 
individual states may be of no consequence as long as the circuit produces the required sequence 
of outputs for any given sequence of inputs. This does not apply to circuits whose external out-
puts are taken directly from flip-flops with binary sequences fully specified.

The binary state assignment alternatives available can be demonstrated in conjunction with 
the sequential circuit specified in Table 6-4. Remember that, in this example, the binary values 
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Figure 6-20 Reduced state diagram
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of the states are immaterial as long as their sequence maintains the proper input-output rela-
tionships. For this reason, any binary number assignment is satisfactory as long as each state is 
assigned a unique number. Three examples of possible binary assignments are shown in Table 
6-5 for the five states of the reduced table. Assignment 1 is a straight binary assignment for the 
sequence of states from a through e. The other two assignments are chosen arbitrarily. In fact, 
there are 140 different distinct assignments for this circuit (11).

Table 6-6 is the reduced state table with binary assignment 1 substituted for the letter sym-
bols of the five states.‡ It is obvious that a different binary assignment will result in a state table 
with different binary values for the states, while the input-output relationships remain the same. 
The binary form of the state table is used to derive the combinational circuit part of the sequen-
tial circuit. The complexity of the combinational circuit obtained depends on the binary state 
assignment chosen. The design of the sequential circuit presented in this section is completed in 
Example 6-1 of Section 6-7.

Various procedures have been suggested that lead to a particular binary assignment from 
the many available. The most common criterion is that the chosen assignment should result in a 
simple combinational circuit for the flip-flop inputs. However, to date, there are no state assign-
ment procedures that guarantee a minimal-cost combinational circuit. State assignment is one of 
the challenging problems of switching theory. The interested reader will find a rich and growing 
literature on this topic. Techniques for dealing with the state assignment problem are beyond the 
scope of this book.

‡A state table with binary assignment is sometimes called a transition table.

Table 6-5 Three possible binary state assignments

State Assignment I Assignment 2 Assignment 3

a 001 000 000

b 010 010 100

c 011 011 010

d 100 101 101

e 101 111 011

Table 6-6 Reduced state table with binary assignment 1

Next state Output

Present state x = 0 x = 1 x = 0 x = 1

001 001 010 0 0

010 011 100 0 0

011 001 100 0 0

100 101 100 0 1

101 001 100 0 1

www.youseficlass.ir



204 Chapter 6

6.6 Flip-flop Excitation Tables

The characteristic tables for the various flip-flops were presented in Section 6-2. A characteris-
tic table defines the logical property of the flip-flop and completely characterizes its operation. 
Integrated-circuit flip-flops are sometimes defined by a characteristic table tabulated somewhat 
differently. This second form of the char acteristic tables for RS, JK, D, and T flip-flops is shown 
in Table 6-7. They represent the same information as the characteristic tables of Figs. 6-4(c) 
through 6-7(c).

Table 6-7 defines the state of each flip-flop as a function of its inputs and previous state. Q 
(t) refers to the present state and Q(t + 1) to the next state after the occurrence of a clock pulse. 
The characteristic table for the RS flip-flop shows that the next state is equal to the present state 
when inputs S and R are both 0. When the R input is equal to 1, the next clock pulse clears the 
flip-flop. When the S input is equal to 1, the next clock pulse sets the flip-flop. The question mark 
for the next state when S and R are both equal to 1 simultaneously designates an indeterminate 
next state.

The table for the JK flip-flop is the same as that for the RS when J and K are replaced by 
S and R, respectively, except for the indeterminate case. When both A and K are equal to 1, the 
next state is equal to the complement of the present state, i.e., Q(t + 1) = Q′(t). The next state of 
the D flip-flop is completely dependent on the input D and independent of the present state. The 
next state of the T flip-flop is the same as the present state if T = 0 and complemented if T = 1.

The characteristic table is useful for analysis and for defining the operation of the flip-flop. 
It specifies the next state when the inputs and present state are known. During the design process 
we usually know the transition from present state to next state and wish to find the flip-flop input 
conditions that will cause the required transition. For this reason, we need a table that lists the 
required inputs for a given change of state. Such a list is called an excitation table.

Table 6-8 presents the excitation tables for the four flip-flops. Each table consists of two 
columns, Q (t) and Q(t + 1), and a column for each input to show how the required transition 
is achieved. There are four possible transitions from present state to next state. The required in-
put conditions for each of the four transitions are derived from the information available in the 

Table 6-7 Flip-flop characteristic tables

S R Q(t + 1) J K Q(t + 1)

0 0 Q(t) 0 0 Q (t)

0 1 0 0 1 0

1 0 1 1 0 1

1 1 ? 1 1 Q′(t)
    (a) RS           (b) JK

D Q (t + 1) T Q (t + 1)

0 0 0 Q (t)

1 1 1 Q′(t)
        (c) D               (d) T
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characteristic table. The symbol X in the tables represents a don’t-care condition, i.e., it does not 
matter whether the input is 1 or 0.

6.6.1 RS Flip-flop

The excitation table for the RS flip-flop is shown in Table 6-8(a). The first row shows the flip-flop 
in the 0-state at time t. It is desired to leave it in the 0-state after the occurrence of the pulse. 
From the characteristic table, we find that if S and R are both 0, the flip-flop will not change state. 
Therefore, both S and R inputs should be 0. However, it really doesn’t matter if R is made a 1 
when the pulse occurs, since it results in leaving the flip-flop in the 0-state. Thus, R can be 1 or 
0 and the flip-flop will remain in the 0-state at t + 1, Therefore, the entry under R is marked by 
the don’t-care condition X.

If the flip-flop is in the 0-state and it is desired to have it go to the l-state, then from the char-
acteristic table, we find that the only way to make Q(t + 1) equal to 1 is to make S = 1 and R = 0. 
If the flip-flop is to have a transition from the 1-state to the 0-state, we must have S = 0 and R = 1.

The last condition that may occur is for the flip-flop to be in the 1-state and remain in the 
1-state. Certainly R must be 0; we do not want to clear the flip-flop. However, S may be either 
a 0 or a 1. If it is 0, the flip-flop does not change and remains in the 1-state; if it is 1, it sets the 
flip-flop to the 1-state as desired. Therefore, S is listed as a don’t-care condition.

6.6.2 JK Flip-Flop

The excitation table for the JK flip-flop is shown in Table 6-8(b). When both present state and 
next state are 0, the J input must remain at 0 and the K input can be either 0 or 1. Similarly, when 
both present state and next state are 1, the K input must remain at 0 while the J input can be 0 or 
1. If the flip-flop is to have a transition from the 0-state to the 1-state. J must be equal to 1 since 
the J input sets the flip-flop. However, input K may be either 0 or a 1. If K = 0, the J = 1 condition 

Table 6-8 Flip-flop excitation tables

Q(t) Q(t + 1) S R Q(t) Q(t + 1) J K

0 0 0 X 0 0 0 X

0 1 1 0 0 1 1 X

1 0 0 1 1 0 X 1

1 1 X 0 1 1 X 0

                                        (a) RS         (b) JK

Q(t) Q(t + 1) D Q(t) Q(t + 1) T

0 0 0 0 0 0

0 1 1 0 l 1

1 0 0 1 0 1

1 1 1 1 1 0

          (c) D                 (d) T
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sets the flip-flop as required; if K = 1 and J =1, the flip-flop is complemented and goes from the 
0-state to the 1-state as required. Therefore the K input is marked with a don’t-care condition for 
the 0-to-1 transition. For a transition from the 1-state to the 0-state, we must have K = 1, since 
the K input clears the flip-flop. However, the J input may be either 0 or 1, since J = 0 has no ef-
fect, and J = 1 together with K = 1 complements the flip-flop with a resultant transition from the 
1-state to the 0-state.

The excitation table for the JK flip-flop illustrates the advantage of using this type when 
designing sequential circuits. The fact that it has so many don’t-care conditions indicates that the 
combinational circuits for the input functions are likely to be simpler because don’t-care terms 
usually simplify a function.

6.6.3 D Flip-Flop

The excitation table for the D flip-flop is shown in Table 6-8(c). From the characteristic table, 
Table 6-7(c), we note that the next state is always equal to the D input and independent of the 
present state. Therefore, D must be 0 if Q(t + 1) has to be 0, and 1 if Q(t + 1) has to be 1, regard-
less of the value of Q (t).

6.6.4 T Flip-Flop

The excitation table for the T flip-flop is shown in Table 6-8(d). From the characteristic table, 
Table 6-7(d), we find that when input T = 1, the state of the flip-flop is complemented; when  
T = 0, the state of the flip-flop remains unchanged. Therefore, when the state of the flip-flop must 
remain the same, the requirement is that T = 0. When the state of the flip-flop has to be comple-
mented, T must equal 1.

6.6.5 Other Flip-Flops

The design procedure to be described in this chapter can be used with any flip-flop. It is neces-
sary that the flip-flop characteristic table, from which it is possible to develop a new excitation 
table, be known. The excitation table is then used to determine the flip-flop input functions, as 
explained in the next section.

6.7 Design Procedure

The design of a clocked sequential circuit starts from a set of specifications and culminates in 
a logic diagram or a list of Boolean functions from which the logic diagram can be obtained. 
In contrast to a combinational circuit, which is fully specified by a truth table, a sequential 
circuit requires a state table for its specification. The first step in the design of sequential cir-
cuits is to obtain a state table or an equivalent representation, such as a state diagram or state  
equations.

A synchronous sequential circuit is made up of flip-flops and combinational gates. The 
design of the circuit consists of choosing the flip-flops and then finding a combinational gate 
structure which, together with the flip-flops, produces a circuit that fulfills the stated specifica-
tions. The number of flip-flops is determined from the number of states needed in the circuit. 
The combinational circuit is derived from the state table by methods presented in this chapter. 
In fact, once the type and number of flip-flops are determined, the design process involves a  
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transformation from the sequential circuit problem into a combinational circuit problem. In this 
way the techniques of combinational circuit design can be applied.

This section presents a procedure for the design of sequential circuits. Although intended to 
serve as a guide for the beginner, this procedure can be shortened with experience. The procedure 
is first summarized by a list of consecutive recommended steps as follows:

1. The word description of the circuit behavior is stated. This may be accompanied by a 
state diagram, a timing diagram, or other pertinent information.

2. From the given information about the circuit, obtain the state table.

3. The number of states may be reduced by state reduction methods if the sequential circuit 
can be characterized by input-output relationships independent of the number of states.

4. Assign binary values to each state if the state table obtained in step 2 or 3 contains letter 
symbols.

5. Determine the number of flip-flops needed and assign a letter symbol to each.

6. Choose the type of flip-flop to be used.

7. From the state table, derive the circuit excitation and output tables.

8. Using the map or any other simplification method, derive the circuit output functions and 
the flip-flop input functions.

9. Draw the logic diagram.

The word specification of the circuit behavior usually assumes that the reader is familiar 
with digital logic terminology. It is necessary that the designer use intuition and experience to 
arrive at the correct interpretation of the circuit specifications, because word descriptions may be 
incomplete and inexact. However, once such a specification has been set down and the state table 
obtained, it is possible to make use of the formal procedure to design the circuit.

The reduction of the number of states and the assignment of binary values to the states were 
discussed in Section 6-5. The examples that follow assume that the number of states and the bi-
nary assignment for the states are known. As a consequence, steps 3 and 4 of the design will not 
be considered in subsequent discussions.

It has already been mentioned that the number of flip-flops is determined from the number 
of states. A circuit may have unused binary states if the total number of states is less than 2m. The 
unused states are taken as don’t-care conditions during the design of the combinational circuit 
part of the circuit.

The type of flip-flop to be used may be included in the design specifications or may depend 
on what is available to the designer. Many digital systems are constructed entirely with JK flip-
flops because they are the most versatile available. When many types of flip-flops are available, 
it is advisable to use the RS or D flip-flop for applications requiring transfer of data (such as shift 
registers), the T type for applications involving complementation (such as binary counters), and 
the JK type for general applications.

The external output information is specified in the output section of the state table. From it 
we can derive the circuit output functions. The excitation table for the circuit is similar to that of 
the individual flip-flops, except that the input conditions are dictated by the information available 
in the present state and next state columns of the state table. The method of obtaining the excita-
tion table and the simplified flip-flop input functions is best illustrated by an example.
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We wish to design the clocked sequential circuit whose state diagram is given in Fig. 6-21. 
The type of flip-flop to be used is JK.

The state diagram consists of four states with binary values already assigned. Since the di-
rected lines are marked with a single binary digit without a /, we conclude that there is one input 
variable and no output variables. (The state of the flip-flops may be considered the outputs of the 
circuit.) The two flip-flops needed to represent the four states are designated A and B. The input 
variable is designated x.

The state table for this circuit, derived from the state diagram, is shown in Table 6-9. Note 
that there is no output section for this circuit. We shall now show the procedure for obtaining the 
excitation table and the combinational gate structure.

The derivation of the excitation table is facilitated if we arrange the state table in a different 
form. This form is shown in Table 6-10, where the present state and input variables are arranged 
in the form of a truth table. The next state value for each present state and input conditions is 
copied from Table 6-9. The excitation table of a circuit is a list of flip-flop input conditions that 
will cause the required state transitions and is a function of the type of flip-flop used. Since this 
example specified JK flip-flops, we need columns for the J and K inputs of flip-flops A (denoted 
by JA and KA) and B (denoted by JB and KB).

The excitation table for the JK flip-flop was derived in Table 6-8(b). This table is now used 
to derive the excitation table of the circuit. For example, in the first row of Table 6-10 we have a 
transition for flip-flop A from 0 in the present state to 0 in the next state. In Table 6-8(b) we find 
that a transition of states from 0 to 0 requires that input J = 0 and input K = X. So 0 and X are 
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Figure 6-21 State diagram

Table 6-9 State table

Next state

Present state x = 0 x = 1

A B A B A B

0 0 0 0 0 1

0 1 1 0 0 1

1 0 1 0 1 1

1 1 1 1 0 0
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copied in the first row under JA and KA, respectively. Since the first row also shows a transition 
for flip-flop B from 0 in the present state to 0 in the next state, 0 and X are copied in the first row 
under JB and KB. The second row of Table 6-10 shows a transition for flip-flop B from 0 in the 
present state to 1 in the next state. From Table 6-8(b) we find that a transition from 0 to 1 requires 
that input J = 1 and input K = X. So 1 and X are copied in the second row under JB and KB, 
respectively. This process is continued for each row of the table and for each flip-flop, with the 
input conditions as specified in Table 6-8(b) being copied into the proper row of the particular 
flip-flop being considered.

Let us now pause and consider the information available in an excitation table such as Table 
6-10. We know chat a sequential circuit consists of a number of flip-flops and a combinational 
circuit. Figure 6-22 shows the two JK flip-flops needed for the circuit and a box to represent the 
combinational circuit. From the block diagram, it is clear that the outputs of the combinational 
circuit go to flip-flop inputs and external outputs (if specified). The inputs to the combinational 
circuit are the external inputs and the present state values of the flip-flops. Moreover, the Bool-
ean functions that specify a combinational circuit are derived from a truth table that shows the 
input-output relations of the circuit. The truth table that describes the combinational circuit is 
available in the excitation table. The combinational circuit inputs are specified under the present 
state and input columns, and the combinational circuit outputs are specified under the flip-flop 
input columns. Thus, an excitation table transforms a state diagram to the truth table needed for 
the design of the combinational circuit part of the sequential circuit.

The simplified Boolean functions for the combinational circuit can now be derived. The 
inputs are the variables A, B, and x; the outputs are the variables JA, KA, JB, and KB. The infor-
mation from the truth table is transferred into the maps of Fig. 6-23, where the four simplified 
flip-flop input functions are derived:

JA = Bx′ KA = Bx

JB = x  KB = A  x

The logic diagram is drawn in Fig. 6-24 and consists of two flip-flops, two AND gates, one 
equivalence gate, and one inverter.

Table 6-10 Excitation table

Inputs of combinational circuit
Next state

Outputs of combinational circuit

Present state Input Flip-flop inputs

A B X A B JA KA JB KB

0 0 0 0 0 0 X 0 X

0 0 1 0 1 0 X 1 X

0 1 0 1 0 1 X X 1

0 1 1 0 1 0 X X 0

1 0 0 1 0 X 0 0 X

1 0 1 1 1 X 0 1 X

1 1 0 1 1 X 0 X 0

I 1 1 0 0 X 1 X 1
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With some experience, it is possible to reduce the amount of work involved in the design 
of the combinational circuit. For example, it is possible to obtain the information for the maps of 
Fig. 6-23 directly from Table 6-9, without having to derive Table 6-10. This is done by systemati-
cally going through each present state and input combination in Table 6-9 and comparing it with 
the binary values of the corresponding next state. The required input conditions as specified by 
the flip-flop excitation in Table 6-8 is then determined. Instead of inserting the 0, 1, or X thus 
obtained into the excitation table, it can be written down directly into the appropriate square of 
the appropriate map.

The excitation table of a sequential circuit with m flip-flops, k inputs per flip-flop, and n 
external inputs consists of m + n columns for the present state and input variables and up to  
2m + n rows listed in some convenient binary count. The next state section has m columns, one 
for each flip-flop. The flip-flop input values are listed in mk columns, one for each input of each 
flip-flop. If the circuit contains j outputs, the table must include j columns. The truth table of 
the combinational circuit is taken from the excitation table by considering the m + n present 
state and input columns as inputs and the mk + j flip-flop input values and external outputs as  
outputs.

6.7.1 Design with Unused States

A circuit with m flip-flops would have 2m states. There are occasions when a sequential circuit 
may use less than this maximum number of states. States that are not used in specifying the se-
quential circuit are not listed in the state table. When simplifying the input functions to flip-flops, 
the unused states can be treated as don’t-care conditions.

EXAMPLE 6-1: Complete the design of the sequential circuit presented in Section 6-5. Use 
the reduced state table with assignment 1 as given in Table 6-6. The circuit is to employ RS 
flip-flops.

The state table of Table 6-6 is redrawn in Table 6-11 in the form convenient for obtaining 
the excitation table. The flip-flop input conditions are derived from the present state and next 
state columns of the state table. Since RS flip-flops are used, we need to refer to Table 6-8(a) 
for the excitation conditions of this type of flip-flop. The three flip-flops are given variable 
names A, B, and C. The input variable is x and the output variable is y. The excitation table of 
the circuit provides all the information needed for the design.

There are three unused states in this circuit: binary states 000, 110, and 111. When an 
input of 0 or 1 is included with these unused states, we obtain six don’t-care minterms: 0, 1, 
12, 13, 14, and 15. These six binary combinations are not listed in the table under present state 
and input and are treated as don’t-care terms.

The combinational circuit part of the sequential circuit is simplified in the maps of  
Fig. 6-25. There are seven maps in the diagram. Six maps are for simplifying the input func-
tions for the three RS flip-flops. The seventh map is for simplifying the output y. Each map has 
six X’s in the squares of the don’t-care minterms 0, 1, 2, 13, 14, and 15. The other don’t-care 
terms in the maps come from the X’s in the flip-flop input columns of the table. The simplified 
functions are listed under each map. The logic diagram obtained from these Boolean func-
tions is drawn in Fig. 6-26.
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One factor neglected up to this point in the design is the initial state of a sequential circuit. 
When power is first turned on in a digital system, one does not know in what state the flip-flops 
will settle. It is customary to provide a master-reset input whose purpose is to initialize the states 
of all flip-flops in the system. Typically, the master reset is a signal applied to all flip-flops asyn-
chronously before the clocked operations start. In most cases flip-flops are cleared to 0 by the 
master-reset signal, but some may be set to 1. For example, the circuit of Fig. 6-26 may initially 
be reset to a state ABC = 001, since state 000 is not a valid state for this circuit.

But what if a circuit is not reset to an initial valid state? Or worse, what if, because of a 
noise signal or any other unforeseen reason, the circuit finds itself in one of its invalid states? 

Q

K J

Q’

A

Q

K J

Q’

B

x

CP

Figure 6-24 Logic diagram of  sequential circuit

Table 6-11 Excitation table for Example 6-1

Present state Input Next state Flip-flop inputs Output

A B C x A B C SA RA SB RB SC RC y

0 0 1 0 0 0 1 0 X 0 X X 0 0

0 0 1 1 0 1 0 0 X 1 0 0 1 0

0 1 0 0 0 1 1 0 X X 0 1 0 0

0 1 0 1 1 0 0 1 0 0 1 0 X 0

0 1 1 0 0 0 1 0 X 0 1 X 0 0

0 1 1 1 1 0 0 1 0 0 1 0 1 0

1 0 0 0 1 0 1 X 0 0 X 1 0 0

1 0 0 1 1 0 0 X 0 0 X 0 X 1

1 0 1 0 0 0 1 0 1 0 X X 0 0

1 0 1 1 1 0 0 X 0 0 X 0 1 1
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In that case it is necessary to ensure that the circuit eventually goes into one of the valid states 
so it can resume normal operation. Otherwise, if the sequential circuit circulates among invalid 
states, there will be no way to bring it back to its intended sequence of state transitions. Although 
one can assume that this undesirable condition is not supposed to occur, a careful designer must 
ensure that this situation never occurs.

It was stated previously that unused states in a sequential circuit can be treated as don’t-care 
conditions. Once the circuit is designed, the m flip-flops in the system can be in any one of 2m 
possible states. If some of these states were taken as don’t-care conditions, the circuit must be 
investigated to determine the effect of these unused states. The next state from invalid states can 
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Figure 6-25 Maps for simplifying the sequential circuit of Example 6-1
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be determined from the analysis of the circuit. In any case, it is always wise to analyze a circuit 
obtained from a design to ensure that no mistakes were made during the design process.

EXAMPLE 6-2: Analyze the sequential circuit obtained in Example 6-1 and determine the 
effect of the unused states.

The unused states are 000, 110, and 111. The analysis of the circuit is done by the 
method outlined in Section 6-4. The maps of  Fig. 6-25 may also help in the analysis. What is 
needed here is to start with the circuit diagram of Fig. 6-26 and derive the state table or dia-
gram. If the derived state table is identical to Table 6-6 (or the state-table part of Table 6-11), 
then we know that the design is correct. In addition, we must determine the next states from 
the unused states 000. 110, and 111.

The maps of Fig. 6-25 can help in finding the next state from each of the unused states. 
Take, for instance, the unused state 000. If the circuit, for some reason, happens to be in the 
present state 000, an input x = 0 will transfer the circuit to some next state and an input x = 1 
will transfer it to another (or the same) next state. We first investigate minterm ABCx = 0000. 
From the maps, we see that this minterm is not included in any function except for SC, i.e., 
the set input of flip-flop C. Therefore, flip-flops A and B will not change but flip-flop C will 

R

y

A

B

C´

CP

A´

B´

Q´

S Q

R Q´

S Q

R Q´

S Q

x

Figure 6-26 Logic diagram for Example 6-1
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be set to 1. Since the present state is ABC = 000, the next state will be ABC = 001. The maps 
also show that minterm ABCx = 0001 is included in the functions for SB and RC. Therefore, 
B will be set and C will be cleared. Starting with ABC = 000 and setting B, we obtain the next 
state ABC = 010 (C is already cleared). Investigation of the map for outputs y shows that y 
will be 0 for these two minterms.

The result of the analysis procedure is shown in the state diagram of Fig. 6-27. The cir-
cuit operates as intended, as long as it stays within the states 001, 010, 011, 010, and 101. If it 
ever finds itself in one of the invalid states 000, 110, or 111, it goes to one of the valid states 
within one or two clock pulses. Thus the circuit is self-starting and self-correcting, since it 
eventually goes to a valid state from which it continues to operate as required.

An undesirable situation would have occurred if the next state of 110 for x = 1 happened 
to be 111 and the next state of 111 for x = 0 or 1 happened to be 110. Then, if the circuit starts 
from 110 or 111, it will circulate and stay between these two states forever. Unused states 
that cause such undesirable behavior should be avoided; if they are found to exist, the circuit 
should be redesigned. This can be done most easily by specifying a valid next state for any 
unused state that is found to circulate among invalid states.

6.8 Design of Counters

A sequential circuit that goes through a prescribed sequence of states upon the application of 
input pulses is called a counter. The input pulses, called count pulses, may be clock pulses, or 
they may originate from an external source and may occur at prescribed intervals of time or at 
random. In a counter, the sequence of states may follow a binary count or any other sequence 
of states. Counters are found in almost all equipment containing digital logic. They are used for 
counting the number of occurrences of an event and are useful for generating timing sequences 
to control operations in a digital system.

Of the various sequences a counter may follow, the straight binary sequence is the simplest 
and most straightforward. A counter that follows the binary sequence is called a binary counter, 
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1/0

1/0

1/0
1/1

1/1

1/11/1

001

000

011 010

100
111

110
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0/0

0/0

0/0

0/0

0/0

0/0
0/0
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Figure 6-27 State diagram for the circuit of Fig. 6-26
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An n-bit binary counter consists of n flip-flops and can count in binary from 0 to 2n - 1. As an 
example, the state diagram of a 3-bit counter is shown in Fig. 6-28. As seen from the binary states 
indicated inside the circles, the flip-flop outputs repeat the binary count sequence with a return 
to 000 after 111. The directed lines between circles are not marked with input-output values as in 
other state diagrams. Remember that state transitions in clocked sequential circuits occur during 
a clock pulse; the flip-flops remain in their present states if no pulse occurs. For this reason, the 
clock pulse variable CP does not appear explicitly as an input variable in a state diagram or state 
table. From this point of view, the state diagram of a counter does not have to show input-output 
values along the directed lines. The only input to the circuit is the count pulse, and the outputs are 
directly specified by the present states of the flip-flops. The next state of a counter depends en-
tirely on its present state, and the state transition occurs every time the pulse occurs. Because of 
this property, a counter is completely specified by a list of the count sequence, i.e., the sequence 
of binary states that it undergoes.

The count sequence of a 3-bit binary counter is given in Table 6-12. The next number in the 
sequence represents the next state reached by the circuit upon the application of a count pulse. 

000

001

010

011

100

101

110

111

Figure 6-28 State diagram of a 3-bit binary counter

Table 6-12 Excitation table for a 3-bit binary counter

Count sequence Flip-flop inputs

A
2

A
1

A
0

TA
2

TA
1

TA
0

0 0 0 0 0 1

0 0 1 0 1 1

0 1 0 0 0 1

0 1 1 1 1 1

1 0 0 0 0 I

1 0 1 0 1 I

1 1 0 0 0 1

1 1 1 1 1 1
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The count sequence repeats after it reaches the last value, so that state 000 is the next state after 
111. The count sequence gives all the information needed to design the circuit. It is not neces-
sary to list the next states in a separate column because they can be read from the next number in 
the sequence. The design of counters follows the same procedure as that outlined in Section 6-7, 
except that the excitation table can be obtained directly from the count sequence.

Table 6-12 is the excitation table for the 3-bit binary counter. The three flip-flops are given 
variable designations A

2
, A

1
, and A

0
. Binary counters are most efficiently constructed with T 

flip-flops (or JK flip-flop with J and K lied together). The flip-flop excitation for the T inputs is 
derived from the excitation table of the T flip-flop and from inspection of the state transition from 
a given count (present state) to the next below it (next state). As an illustration, consider the flip-
flop input entries for row 001. The present state here is 001 and the next state is 010, which is the 
next count in the sequence. Comparing these two counts, we note that A

2
 goes from 0 to 0; so TA

2
 

is marked with a 0 because flip-flop A
2
 must remain unchanged when a clock pulse occurs. A

1
 

goes from 0 to 1; so TA
1
 is marked with a 1 because this flip-flop must be complemented in the 

next clock pulse. Similarly, A
0
 goes from 1 to 0, indicating that it must be complemented; so TA

0
 

is marked with a 1. The last row with present state 111 is compared with the first count 000 which 
is its next state. Going from all 1’s to all 0’s requires that all three flip-flops be complemented.

The flip-flop input functions from the excitation tables are simplified in the maps of Fig. 
6-29. The Boolean functions listed under each map specify the combinational-circuit part of the 
counter. Including these functions with the three flip-flops, we obtain the logic diagram of the 
counter as shown in Fig. 6-30.

A counter with n flip-flops may have a binary sequence of less than 2n numbers. A BCD 
counter counts the binary sequence from 0000 to 1001 and returns to 0000 to repeat the  

A2

A0

TA2 = A1A0

A1

1

1

TA1=A0

1

1

1

1

TA0=1

1

1

1

1

1

1

1

1

Figure 6-29 Maps for a 3-bit binary counter

Q
T

Q
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Q
T
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A2 A1 A0

Count
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Figure 6-30 Logic diagram of 3-bit binary counter

www.youseficlass.ir



218 Chapter 6

sequence. Other counters may follow an arbitrary sequence which may not be the straight binary 
sequence. In any case, the design procedure is the same. The count sequence is listed and the 
excitation table is obtained by comparing a present count with the next count listed below it. A 
tabulated count sequence always assumes a repeated count, so that the next state of the last entry 
is the first count listed.

EXAMPLE 6-3: Design a counter that has a repeated sequence of six states as listed in Table 
6-13.

In this sequence, flip-flops B and C repeat the binary count 00, 01, 10, while flip-flop A 
alternates between 0 and 1 every three counts. The count sequence for A, B, C is not straight 
binary and two states, 011 and 111, are not used. The choice of JK flip-flops results in the 
excitation table of Table 6-13. Inputs KB and KC have only 1’s and X’s in their columns, so 
these inputs are always 1. The other flip-flop input functions can be simplified using minterms 
3 and 7 as don’t-care conditions. The simplified functions are:

J A = B KA = B

JB = C  KB = 1

JC= B′  KC = 1

The logic diagram of the counter is shown in Fig, 6-31(a). Since there are two unused 
states, we analyze the circuit to determine their effect. The state diagram so obtained is drawn 
in Fig. 6-31(b). If the circuit ever goes to an invalid state, the next count pulse transfers it to 
one of the valid states, and it continues to count correctly. Thus the counter is self-starting. 
A self-starting counter is one that can start from any state but eventually reaches the normal 
count sequence.

6.9 Design with State Equations

A sequential circuit can be designed by means of state equations rather than an excitation table. 
As shown in Section 6-4, a state equation is an algebraic expression that gives the conditions 
for the next state as a function of the present state and input variables. The state equations of a 
sequential circuit express in algebraic form the same information which is expressed in tabular 
form in a state table.

Table 6-13 Excitation table for Example 6-3

Count sequence Flip-flop inputs

A B C JA KA JB KB JC KC

0 0 0 0 X 0 X 1 X

0 0 1 0 X 1 X X 1

0 1 0 1 X X 1 0 X

1 0 0 X 0 0 X 1 X

1 0 1 X 0 1 X X 1

1 1 0 X 1 X 1 0 X
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The state equation method is convenient when the circuit is already specified in this form 
or when the state equations are easily derived from the state table. This is the preferred method 
when D flip-flops are used. The method may sometimes be convenient to use with JK flip-flops. 
The application of this procedure to circuits with RS or T flip-flops is possible but involves a con-
siderable amount of algebraic manipulation. Here we will show the application of this method to 
sequential circuits employing D or JK flip-flops. The starting point in each case is the flip-flop 
characteristic equation derived in Section 6-2.

6.9.1 Sequential Circuits with D Flip-flops

The characteristic equation of the D flip-flop is derived in Fig, 6-5(d):

Q(t + 1) = D

This equation states that the next state of the flip-flop is equal to the present value of its D input 
and is independent of the value of the present state. This means that the entries for the next state 
in the state table are exactly the same as the D inputs. Therefore, it is not necessary to derive the 
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J
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K J
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K J
Count
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110
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(a) Logic diagram of counter

(b) State diagram of counter

Figure 6-31 Solution to Example 6-3
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flip-flop input conditions for the excitation table because this information is already available in 
the next state columns.

Take, for example, the excitation table of Table 6-10. The next state column for A has four 
1’s, and so does the column for the next state of B. To design this circuit with D flip-flops, we 
write the state equations and equate them to the corresponding D inputs:

A(t + 1) = DA(A, B, x) = ∑(2,4,5,6) 

B(t + 1) = DB(A, B, x) = ∑(1,3,5.6)

where DA and DB are the flip-flop input functions for D flip-flops A and B, respectively, and each 
function is expressed as the sum of four minterms. The simplified functions can be obtained by 
means of two three-variable maps. The simplified flip-flop input functions are:

DA = AB′ + Bx′
DB = A′ x + B′ x + A B x′

If there are unused states in the sequential circuit, they must be considered, together with 
the inputs, as don’t-care combinations. The don’t-care minterms thus obtained can be used to 
simplify the state equations of the D flip-flop input functions.

EXAMPLE 6-4: Design a sequential circuit with four flip-flops, A, B, C, and D. The next 
states of B, C, and D are equal to the present states of A, B, and C. respectively. The next state 
of A is equal to the exclusive-OR, of the present states of C and D.

From the statement of the problem, it is convenient to first write the state equations for 
the circuit:

A(t + 1) = C ⊕ D

B(t + 1) = A

C(t +1) = B

D(t + 1) = C

This circuit specifies a feedback shift register. In a feedback shift register, each flip-flop trans-
fers or shifts its content to the next flip-flop when a clock pulse occurs, but the next state of 
the first flip-flop (A in this case) is some function of the present state of other flip-flops. Since 
the state equations are very simple, the most convenient flip-flop to use is the D type.

The flip-flop input functions for this circuit are taken directly from the state equations, 
with the next state variable replaced by the flip-flop input variable:

DA = C ⊕ D

DB = A

DC = B

DD = C

The circuit can be constructed with four D flip-flops and one exclusive-OR gate.
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6.9.2 State Equations with JK Flip-flops§

The characteristic equation for the JK flip-flop is derived in Fig. 6-6(d):

Q(t + 1) = (J)Q′ + (K′)Q

Input variables J and K are enclosed in parentheses so as not to confuse the AND terms of 
the characteristic equation with the two-letter convention which has been used to represent the 
flip-flop input variables.

The sequential circuit can be derived directly from the state equations without having to 
draw the excitation table. This is done by means of a matching process between the state equa-
tion for each flip-flop and the general characteristic equation of the JK flip-flop. The matching 
process consists of manipulating each state equation until it is in the form of the characteristic 
equation. Once this is done, the functions for inputs J and K can be extracted and simplified. This 
must be done for each state equation listed, and its flip-flop variable name A, B, C, etc., must 
replace the letter Q in the characteristic equation.

A given state equation for Q(t + 1) may be already expressed as a function of Q and Q′. 
More often, either Q or Q′ or both would be absent in the Boolean expression. It is then necessary 
to manipulate the expression algebraically until both Q and Q′ are included in the expression. 
The following example demonstrates all the possibilities that may be encountered.

EXAMPLE 6-5: Design a sequential circuit with JK flip-flops to satisfy the following state 
equations:

A(t + 1) = A′B′CD + A′B′C + ACD + AC′D′
B(t + 1) = A′C + CD′ + A′BC
C(t + 1) = B
D(t + 1) = D′

The input functions for flip-flop A are derived by this method by arranging the state 
equation and matching it with the characteristic equation as follows:

A(t + 1) = (B′CD + B′C)A′ + (CD + C′D′)A
             = (J)A′+ (K′)A

From the equality of the two equations, we deduce the input functions for flip-flop A to be:

 J = B′CD + B′C= B′C
K = (CD + C′D′)′ = CD′ + CD

The state equation for flip-flop B can be arranged as follows:

B(t + 1) = (A′C + CD′) + (A′C′)B

§This part may be omitted without loss of continuity.
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However, this form is not suitable for matching with the characteristic equation because the 
variable B′ is missing. If the first quantity in parentheses is ANDed with (B′ + B), the equation 
remains the same but with the variable B′ included. Thus:

B(t + 1) = (A′C + CD′)(B′ + B) + (A′C′)B
              = (A′C + CD′)B′ + (A′C + CD′ + A′C′)B 
              = (J)B′ + (K′)B

From the equality of the two equations, we deduce the input functions for flip-flop B:

 J = A′C + CD′
K = (A′C + CD′ + A′C′)′ = AC′ + AD

The state equation for flip-flop C can be manipulated as follows:

C(t + 1′) = B = B(C′ + C) = BC′ + BC
               = (J)C′ + (K′)C

The input functions for flip-flop C are:

 J = B
K = B’

Finally, the state equation for flip-flop D may be manipulated for the purpose of match-
ing as follows:

D(t + 1) = D′ = 1.D′ + O.D
              = (J)D′ + (K′)D

which gives the input function:

J = K = 1

The derived input functions can be accumulated and listed together. The two-letter conven-
tion to designate the flip-flop input variable, not used in the above derivation, is used below:

JA = B′C  KA = CD′ + C′D
JB = A′C + CD′ KB = AC′ + AD
JC = B  KC = B′
JD = 1   KD = 1

The design procedure introduced here is an alternative method for determining the flip-flop 
input functions of a sequential circuit when JK flip-flops are employed. To use this procedure 
when a state diagram or state table is initially specified, it is necessary that the state equations 
be derived by the procedure outlined in Section 6-4. The state-equation method for finding flip-
flop input functions can be extended to cover unused states which are considered as don’t-care 
conditions. The don’t-care minterms are written in the form of a state equation and manipulated 
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until they are in the form of the characteristic equation for the particular flip-flop considered. The 
J and K functions in the don’t-care state equation are then taken as don’t-care minterms when 
simplifying the input functions for a particular flip-flop.
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PROBLEMS

6-1. Show the logic diagram of a clocked RS flip-flop with four NAND gates.

6-2. Show the logic diagram of a clocked D flip-flop with AND and NOR gates.

6-3. Show that the clocked D flip-flop of Fig. 6-5(a) can be reduced by one gate.

6-4. Consider a JK′ flip-flop, i.e., a JK flip-flop with an inverter between external input K′ and internal 
input K.

(a) Obtain the flip-flop characteristic table.

(b) Obtain the characteristic equation.

(c) Show that tying the two external inputs together forms a D flip-flop.

6-5. A set-dominate flip-flop has a set and a reset input. It differs from a conventional RS flip-flop in that 
an attempt to simultaneously set and reset results in setting the flip-flop.

(a) Obtain the characteristic table and characteristic equation for the set-dominate flip-flop.

(b) Obtain a logic diagram for an asynchronous set-dominate flip-flop.

6-6. Obtain the logic diagram of a master-slave JK flip-flop with AND and NOR gates. Include a provi-
sion for setting and clearing the flip-flop asynchronously (without a clock).
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6-7. This problem investigates the operation of the master-slave JK flip-flop through the binary transition 
in the internal gales of Fig. 6-11. Evaluate the binary values (0 or 1) in the outputs of the nine gates 
when the inputs to the circuit go through the following sequence:

(a) CP = 0, Y = 0, Q = 0, and J = K = 1.

(b) After CP goes to 1 (Y should go to 1; Q remains at 0).

(c) After CP goes to 0 and immediately after that J goes to 0(Q should go to 1; Y is  unaffected).

(d) After CP goes to 1 again (Y should go to 0).

(e) After CP goes back to 0 and immediately after that K goes to 0 (Q should go to 0).

(f) All succeeding pulses have no effect as long as J and K remain at 0.

6-8. Connect an asynchronous clear terminal to the inputs of gates 2 and 6 of the flip-flop in Fig. 6-12.

(a) Show that when the clear input is 0, the flip-flop is cleared, and remains cleared, regardless of 
the values of CP and D inputs.

(b) Show that when the clear input is 1, it has no effect on the normal clocked operations.

6-9. The full-adder of Fig. P6-10 receives two external inputs x and y; the third input z comes from the 
output of a D flip-flop. The carry output is transferred to the flip-flop every clock pulse. The external 
S output gives the sum of x, y, and z. Obtain the state table and state diagram of the sequential circuit.

Q

D

x

y C
Full
adder

CP

S

z

Figure P6-10

6-10. Derive the state table and state diagram of the sequential circuit of Fig. P6-11. What is the function 
of the circuit?

QQ´

T

A´ A B´ B

QQ´

T

CP

Figure P6-11
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6-11. A sequential circuit has four flip-flops A, B, C, D and an input x. It is described by the following state 
equations:

A(t + 1) = (CD′ + C′D)x + (CD + C′D′)x′
B(t +1) =A

C(t + 1) = B

D(t + 1) = C

(a) Obtain the sequence of states when x = 1, starting from state ABCD = 0001.

(b) Obtain the sequence of states when x = 0, starting from state ABCD = 0000.

6-12. A sequential circuit has two flip-flops (A and B), two inputs (x and y) and an output (z). The flip-flop 
input functions and the circuit output function are as follows:

JA = xB + y′B′ KA = xy′ B′
JB = xA′  KB = xy′ + A

  z = xyA + x′y′B
 Obtain the logic diagram, state table, state diagram, and state equations.

6-13. Reduce the number of states in the following state table and tabulate the reduced state table.

Present state Next state Output

x = 0 x = 1 x = 0 x = 1

a f b 0 0

b d c 0 0

c f e 0 0

d g a 1 0

e d c 0 0

f f b 1 1

g g h 0 1

h g a 1 0

6-14. Starting from state a of the state table in problem 6-14, find the output sequence generated with an 
input sequence 01110010011.

6-15. Repeal problem 6-15 using the reduced table of problem 6-14. Show that the same output sequence 
is obtained.

6-16. Substitute binary assignment 2 of Table 6-5 to the states in Table 6-4 and obtain the binary state table. 
Repeal with binary assignment 3.

6-17. Obtain the excitation table of the JK′ flip-flop described in problem 6-4.

6-18. Obtain the excitation table of the set-dominate flip-flop described in problem 6-5.

6-19. A sequential circuit has one input and one output. The state diagram is shown in Fig. P6-20. Design 
the sequential circuit with (a) T flip-flops, (b) RS flip-flops, and (c) JK flip-flops.

6-20. Design the circuit of a 4-bit register that converts the binary number stored in the register to its 2’s 
complement value when input x = 1. The flip-flops of the register are of the RST type. This flip-flop 
has three inputs: two inputs have RS capabilities and one has a T capability. The RS inputs are used 
to transfer the 4-bit number when an input y = 1. Use the T input for the conversion.

6-21. Repeat Example 6-1 with binary assignment 3 of Table 6-5. Use JK flip-flops.
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6-22. Design a BCD counter with JK flip-flops.

 

001

100 011

010

000

1/0
1/1

1/1

1/1

1/1

0/0

0/0 0/0

0/0

0/0

Figure P6-20
6-23. Design a counter that counts the decimal digits according to the 2, 4, 2, 1 code (Table 1-2). Use T 

flip-flops.

6-24. Verify the circuit obtained in Example 6-5 by using the excitation table method.

6-25. Design the sequential circuit described by the following state equations. Use JK flip-flops.

A(t + 1) = xAB + yA′C + xy

B(t + 1) = xAC + y′BC′
C(t + 1) = x′B + yAB′

6-26. (a) Derive the state equations for the sequential circuit specified by Table 6-6, Section 6-5. List the 
don’t-care terms. (b) Derive the flip-flop input functions from the state equations (and don’t-care 
terms) using the method outlined in Example 6-5. Use JK flip-flops.

6-27. Differentiate between sequential circuit and combinational circuit. 

6-28. What is the problem found in RS flip-flop? Explain how it is solved in JK flip flop.

6-29. What is the necessity of mater-slave flip-flop? Explain working of D master-slave flip-flip.  Realize 
with all NOR gates.

6-30. Covert t flip-flip to D flip-flop.

6-31. With help of JK flip-flop design a counter which counts following binary sequence 2, 3, 1, 7, 4, 0 and 
repeat. 

6-32. With help of RS flip-flop design a counter which counts following binary sequence 1, 3, 5, 7, 9 and 
repeat.

6-33. With help of T flip-flop design a counter which counts following binary sequence 0, 2, 4, 6, 8 and 
repeat.

6-34. With help of D flip-flop design a counter which counts following binary sequence 1, 2, 6, 4, 3 and 
repeat.

6-35. What is lock out in a counter? How it can be avoided?

6-36. Bring out the differences between edge triggered and level triggered flip-flip.

6-37. Design a counter with JK flip-flip which counts binary sequence of 7, 4, 2, 1, 5….. . Is there a chance 
of lockout? Explain why. How can you improve that? Explain with your design.

6-38. Explain up-down counter which counts decimal digits according to 84-2-1 with JK flip-flop. Use one 
control bit for up and down counter.
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SOLvED ExAMPLE

With the help of SR flip-flip, realize T flip-flop.

Step 1 – (Logic Diagram)

Q

Q´

T Conversion 
Logic

R

SR Flip-flop

S

Step 2

Truth Table of required (T) flip-flop

FF input Present state Next State

T Q
n

Q
n + 1

0 0 0

1 0 1

1 1 0

0 1 1

Excitation table of given (SR) flip-flop

Present state Next State Flip-flop inputs

Q
n

Q
n + 1

S R

0 0 0 X

0 1 1 0

1 0 0 1

1 1 X 0

Step 3

Truth table of the required flip-flip (combining truth table and excitation table)

FF input Present state Next State Flip-flop inputs

T Q
n

Q
n + 1

S R

0 0 0 0 X

1 0 1 1 0

1 1 0 0 1

0 1 1 X 0
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Step 4

Finding the expression of given flip in terms of required flip-flop

0 1
Qn

0

1 1

T

X

R = TQ

0 1
Qn

0

1 1

T

X

S = TQ′

Step 5

Logic Diagram of the converted Flip-flop.

C SR FF

Qn´
Q´

QS
T

R

Qn
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7C h a p t e r

registers, Counters, and the  
Memory Unit

7.1 Introduction

A clocked sequential circuit consists of a group of flip-flops and combinational gates connected 
to form a feedback path. The flip-flops are essential because, in their absence, the circuit reduces 
to a purely combinational circuit (provided there is no feedback path). A circuit with only flip-
flops is considered a sequential circuit even in the absence of combinational gates.

An MSI circuit that contains storage cells within it is, by definition, a sequential circuit. 
MSI circuits that include flip-flops or other storage cells are usually classified by the function 
they perform rather than by the name “sequential circuit.”  These MSI circuits are classified in 
one of three categories: registers, counters, or random-access memory. This chapter presents 
various registers and counters available in IC form and explains their operation. The organization 
of the random-access memory is also presented.

A register is a group of binary storage cells suitable for holding binary information. A 
group of flip-flops constitutes a register, since each flip-flop is a binary cell capable of storing 
one bit of information. An n-bit register has a group of n flip-flops and is capable of storing any 
binary information containing n bits. In addition to the flip-flops, a register may have combi-
national gates that perform certain data-processing tasks. In its broadest definition, a register 
consists of a group of flip-flops and gates that effect their transition. The flip-flops hold binary 
information and the gates control when and how new information is transferred into the register.

Counters were introduced in Section 6-8. A counter is essentially a register that goes 
through a predetermined sequence of states upon the application of input pulses. The gates in a 
counter are connected in such a way as to produce a prescribed sequence of binary states in the 
register. Although counters are a special type of register, it is common to differentiate them by 
giving them a special name.

A memory unit is a collection of storage cells together with associated circuits needed to 
transfer information in and out of storage. A random-access memory (RAM) differs from a read-
only memory (ROM) in that a RAM can transfer the stored information out (read) and is also 
capable of receiving new information in for storage (write). A more appropriate name for such a 
memory would be read-write memory.

Registers, counters, and memories are extensively used in the design of digital systems in 
general and digital computers in particular. Registers can also be used to facilitate the design of 
sequential circuits. Counters are useful for generating timing variables to sequence and control 
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the operations in a digital system. Memories are essential for storage of programs and data in a 
digital computer. Knowledge of the operation of these components is indispensable for the un-
derstanding of the organization and design of digital systems.

7.2 Registers

Various types of registers are available in MSI circuits. The simplest possible register is one 
that consists of only flip-flops without any external gates. Figure 7-1 shows such a register con-
structed with four D-type flip-flops and a common clock pulse input. The clock pulse input, CP, 
enables all flip-flops so that the information presently available at the four inputs can be trans-
ferred into the 4-bit register. The four outputs can be sampled to obtain the information presently 
stored in the register.

The way that the flip-flops in a register are triggered is of primary importance. If the flip-
flops are constructed with gated D-type latches as in Fig, 6-5, then information present at a data 
(D) input is transferred to the Q output when the enable (CP) is 1, and the Q output follows the 
input data as long as the CP signal remains 1. When CP goes to 0, the information that was 
present at the data input just before the transition is retained at the Q output. In other words, the 
flip-flops are sensitive to the pulse duration, and the register is enabled for as long as CP = 1. A 
register that responds to the pulse duration is commonly called a gated latch, and the CP input is 
frequently labeled with the variable G (instead of CP). Latches are suitable for use as temporary 
storage of binary information that is to be transferred to an external destination. They should not 
be used in the design of sequential circuits that have feedback connections.

As explained in Section 6-3, a flip-flop can be used in the design of clocked sequential cir-
cuits provided it is sensitive to the pulse transition rather than the pulse duration. This means that 
the flip-flops in the register must be of the edge-triggered or master-slave type. Normally, it is not 
possible to distinguish from a logic diagram whether a flip-flop is a gated latch, edge-triggered, 
or master-slave, because the graphic symbols for all three are the same. The distinction must be 
made from the name given to the unit. A group of flip-flops sensitive to pulse duration is usually 
called a latch, whereas a group of flip-flops sensitive to pulse transition is called a register.* A 
register can always replace a latch, but the converse should be done with caution to make sure 
that outputs from a latch never go to other flip-flop inputs that are triggered with the same com-
mon clock pulse. In subsequent discussions, we will always assume that any group of flip-flops 

*For example, IC type 7475 is a 4-bit latch, whereas type 74175 is a 4-bit register.

Q
D

Q

A4 A3 A2 A1

l4

CP

l3 l2 l1

D
Q
D

Q
D

Figure 7-1 4-bit register
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drawn constitutes a register and that all flip-flops are of the edge-triggered or master-slave type. 
If the register is sensitive to the pulse duration, it will be referred to as a latch.

7.2.1 Register with Parallel Load

The transfer of new information into a register is referred to as loading the register. If all the 
bits of the register are loaded simultaneously with a single clock pulse, we say that the loading 
is done in parallel. A pulse applied to the CP input of the register of Fig. 7-1 will load all four 
inputs in parallel. In this configuration, the clock pulse must be inhibited from the CP terminal if 
the content of the register must be left unchanged. In other words, the CP input acts as an enable 
signal which controls the loading of new information into the register. When CP goes to 1, the 
input information is loaded into the register. If CP remains at 0, the content of the register is not 
changed. Note that the change of state in the outputs occurs at the positive edge of the pulse. If a 
flip-flop changes state at the negative edge, there will be a small circle under the triangle symbol 
in the CP input of the flip-flop.

Most digital systems have a master-clock generator that supplies a continuous train of clock 
pulses. All clock pulses are applied to all flip-flops and registers in the system. The master-clock 
generator acts like a pump that supplies a constant beat to all parts of the system. A separate 
control signal then decides what specific clock pulses will have an effect on a particular register. 
In such a system, the clock pulses must be ANDed with the control signal, and the output of the 
AND gate is then applied to the CP terminal of the register shown in Fig. 7-1. When the control 
signal is 0, the output of the AND gate is 0, and the stored information in the register remains 
unchanged. Only when the control signal is a 1 does the clock pulse pass through the AND gate 
and into the CP terminal for new information to be loaded into the register. Such a control vari-
able is called a load control input.

Inserting an AND gate in the path of clock pulses means that logic is performed with clock 
pulses. The insertion of logic gates produces propagation delays between the master-clock gen-
erator and the clock inputs of flip-flops. To fully synchronize the system, we must ensure that all 
clock pulses arrive at the same time to all inputs of alt flip-flops so that they can all change simul-
taneously. Performing logic with clock pulses inserts variable delays and may throw the system 
out of synchronism. For this reason, it is advisable (but not necessary, as long as the delays are 
taken into consideration) to apply clock pulses directly to all flip-flops and control the operation 
of the register with other inputs, such as the R and S inputs of an RS flip-flop.

A 4-bit register with a load control input using RS flip-flops is shown in Fig. 7-2. The CP 
input of the register receives continuous synchronized pulses which are applied to ail flip-flops. 
The inverter in the CP path causes all flip-flops to be triggered by the negative edge of the incom-
ing pulses. The purpose of the inverter is to reduce the loading of the master-clock generator. 
This is because the CP input is connected to only one gate (the inverter) instead of the four-gate 
inputs that would have been required if the connections were made directly into the flip-flop 
clock inputs (marked with small triangles).

The clear input goes to a special terminal in each, flip-flop through a noninverting buffer 
gate. When this terminal goes to 0, the flip-flop is cleared asynchronously. The clear input is 
useful for clearing the register to all 0’s prior to its clocked operation. The clear input must be 
maintained at 1 during normal clocked operations (see Fig. 6-14).

The load input goes through a buffer gate (to reduce loading) and through a series of AND 
gates to the R and S inputs of each flip-flop. Although clock pulses are continuously present, it is 
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the load input that controls the operation of the register. The two AND gates and the inverter as-
sociated with each input I determine the values of R and S. If the load input is 0, both R and S are 
0, and no change of state occurs with any clock pulse. Thus, the load input is a control variable 
which can prevent any information change in the register as long as its input is 0. When the load 
control goes to 1, inputs I

1
, through I

4
 specify what binary information is loaded into the register 

on the next clock pulse. For each I that is equal to 1, the corresponding flip-flop inputs are S = 1, 
R = 0. For each I that is equal to 0, the corresponding flip-flop inputs are S = 0, R = 1, Thus, the 
input value is transferred into the register provided the load input is 1, the clear input is 1, and a 
clock pulse goes from 1 to 0. This type of transfer is called a parallel-load transfer because all 
bits of the register are loaded simultaneously. If the buffer gate associated with the load input 
is changed to an inverter gate, then the register is loaded when the load input is 0 and inhibited 
when the load input is 1.

A register with parallel load can be constructed with D flip-flops as shown in Fig. 7-3. 
The clock and clear inputs are the same as before. When the load input is 1, the I inputs are  
transferred into the register on the next clock pulse. When the load input is 0, the circuit inputs 
are inhibited and the D flip-flops are reloaded with their present value, thus maintaining the con-

S

R

A1

A2

A3

A4

l1

Load

l2

l3

l4

Q

S

R

Q

S

R

Q

S

R

Q

CP

Clear

Figure 7-2 4-bit register with parallel load
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tent of the register. The feedback connection in each Flip-flop is necessary when D type is used 
because a D flip-flop does not have a “no-change” input condition. With each clock pulse, the D 
input determines the next state of the output. To leave the output unchanged, it is necessary to 
make the D input equal to the present Q output in each flip-flop.

7.2.2 Sequential Logic Implementation

We saw in Chapter 6 that a clocked sequential circuit consists of a group of flip-flops and com-
binational gates. Since registers are readily available as MSI circuits, it becomes convenient at 
times to employ a register as part of the sequential circuit. A block diagram of a sequential circuit 
that uses a register is shown in Fig. 7-4. The present state of the register and the external inputs 
determine the next state of the register and the values of external outputs. Part of the combinatio-
nal circuit determines the next state and the other part generates the outputs. The next state value 
from the combinational circuit is loaded into the register with a clock pulse. If the register has a 
load input, it must be set to I; otherwise, if the register has no load input (as in Fig. 7-1), the next 
state value will be transferred automatically every clock pulse.

D A1

A2

A3

A4

l1

Load

l2

l3

l4

Q

D Q

D Q

D Q

CP

Clear

Figure 7-3 Register with parallel load using D flip-flops
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The combinational circuit part of a sequential circuit can be implemented by any of the 
methods discussed in Chapter 5. It can be constructed with SSI gates, with ROM, or with a 
programmable logic array (PLA). By using a register, it is possible to reduce the design of a 
sequential circuit to that of a combinational circuit connected to a register.

EXAMPLE 7-1: Design the sequential circuit whose state table is listed in Fig, 7-5(a).
The state table specifies two flip-flops A

1
 and A

2
, one input x, and one output y. The next 

state and output information is obtained directly from the table:

   A
1
(t + 1) = ∑(4,6)

   A
2
(t + 1) = ∑(1, 2, 5, 6)

y(A
1
, A

2
, x) = ∑ (3, 7)

The minterm values are for variables A
1
, A

2
, and x, which are the present state and input vari-

ables. The functions for the next state and output can be simplified by means of maps to give:

A
1
(t + 1) = A

1
x’

A
2
(t + 1) = A

2 
⊕ x

           y = A
2
x

The logic diagram is shown in Fig. 7-5(b).

EXAMPLE 7-2: Repeat Example 7-1, but now use a ROM and a register.
The ROM can be used to implement the combinational circuit and the register will 

provide the flip-flops. The number of inputs to the ROM is equal to the number of flip-flops 
plus the number of external inputs. The number of outputs of the ROM is equal to the number 
of flip-flops plus the number of external outputs. In this case we have three inputs and three 
outputs for the ROM; so its size must be 8 × 3. The implementation is shown in Fig. 7-6. The 
ROM truth table is identical to the state table with “present state” and “inputs” specifying the 
address of ROM and “next state” and “outputs” specifying the ROM outputs. The next state 
values must be connected from the ROM outputs to the register inputs.

Next state value

Register

Inputs Outputs

CP
Combinational
      circuit

Figure 7-4 Block diagram of a sequential circuit
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7.3 Shift Registers

A register capable of shifting its binary information either to the right or to the left is called a shift 
register. The logical configuration of a shift register consists of a chain of flip-flops connected in 
cascade, with the output of one flip-flop connected to the input of the next flip-flop. All flip-flops 
receive a common clock pulse which causes the shift from one stage to the next.

The simplest possible shift register is one that uses only flip-flops, as shown in Fig. 7-7. The 
Q output of a given flip-flop is connected to the D input of the flip-flop at its right. Each clock 
pulse shifts the contents of the register one bit position to the right. The serial input determines 

A1 A2 A1 A2 yx

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
1
0
1
0

0
1
1
0
0
1
1
0

0
0
0
1
0
0
0
1

state Input
Present

Output
  Next
  state

A1

A2

y
x

                       (a) State Table       (b) Logic Diagram

Figure 7-5 Example of sequential-circuit implementation
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0
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0
1
0
1
0
1
0
1

0
0
0
0
1
0
1
0

0
1
1
0
0
1
1
0

0
0
0
1
0
0
0
1

Address Outputs

ROM truth table

A1

 8×3
ROMA2

1

2

3

1

2

3 yx

Figure 7-6 Sequential circuit using a register and a ROM 

D Q D Q D Q D Q
SO

CP

Serial
output

Serial
input

Sl

Figure 7-7 Shift register
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what goes into the leftmost flip-flop during the shift. The serial output is taken from the output of 
the rightmost flip-flop prior to the application of a pulse. Although this register shifts its contents 
to the right, if we turn the page upside down, we find that the register shifts its contents to the left. 
Thus a unidirectional shift register can function either as a shift-right or as a shift-left register.

The register in Fig. 7-7 shifts its contents with every clock pulse during the negative edge 
of the pulse transition. (This is indicated by the small circle associated with the clock input in all 
flip-flops.) If we want to control the shift so that it occurs only with certain pulses but not with 
others, we must control the CP input of the register. It will be shown later that the shift opera-
tions can be controlled through the D inputs of the flip-flops rather than through the CP input. 
If, however, the shift register in Fig. 7-7 is used, the shift can easily be controlled by means of an 
external AND gate as shown below.

7.3.1 Serial Transfer

A digital system is said to operate in a serial mode when information is transferred and manipu-
lated one bit at a time. The content of one register is transferred to another by shifting the bits 
from one register to the other. The information is transferred one bit at a time by shifting the bits 
out of the source register into the destination register.

The serial transfer of information from register A to register B is done with shift registers, 
as shown in the block diagram of Fig. 7-8(a). The serial output (SO) of register A goes to the se-
rial input (SI) of register B. To prevent the loss of information stored in the source register, the 
A register is made to circulate its information by connecting the serial output to its serial input 

SOSO SlSl
Shift register A Shift register B

CP
Clock
Shift
control

(a) Block diagram

T1 T2 T3 T4
CP

Clock

Shift
control

Word-time

(b) Timing diagram

Figure 7-8 Serial transfer from register A to register B
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terminal. The initial content of register B is shifted out through its serial output and is lost unless 
it is transferred to a third shift register. The shift-control input determines when and by how many 
times the registers are shifted. This is done by the AND gate that allows clock pulses to pass into 
the CP terminals only when the shift-control is 1.

Suppose the shift registers have four bits each. The control unit that supervises the transfer 
must be designed in such a way that it enables the shift registers, through the shift-control signal, 
for a fixed time duration equal to four clock pulses. This is shown in the timing diagram of Fig. 
7-8(b). The shift-control signal is synchronized with the clock and changes value just after the 
negative edge of a clock pulse. The next four clock pulses find the shift-control signal in the I 
state, so the output of the AND gate connected to the CP terminals produces the four pulses T

1
, 

T
2
, T

3
, and T

4
. The fourth pulse changes the shift control to 0 and the shift registers are disabled.

Assume that the binary content of A before the shift is 1011 and that of B, 0010. The serial 
transfer from A to B will occur in four steps as shown in Table 7-1. After the first pulse T

1
, the 

rightmost bit of A is shifted into the leftmost bit of B and, at the same time, this bit is circulated 
into the leftmost position of A. The other bits of A and B are shifted once to the right. The previ-
ous serial output from B is lost and its value changes from 0 to 1. The next three pulses perform 
identical operations, shifting the bits of A into S, one at a time. After the fourth shift, the shift 
control goes to 0 and both registers A and B have the value 1011. Thus, the content of A is trans-
ferred into B while the content of A remains unchanged.

The difference between serial and parallel modes of operation should be apparent from this 
example. In the parallel mode, information is available from all bits of a register and all bits can 
be transferred simultaneously during one clock pulse. In the serial mode, the registers have a 
single serial input and a single serial output. The information is transferred one bit at a time while 
the registers are shifted in the same direction.

Computers may operate in a serial mode, a parallel mode, or in a combination of both. Se-
rial operations are slower because of the time it takes to transfer information in and out of shift 
registers. Serial computers, however, require less hardware to perform operations because one 
common circuit can be used over and over again to manipulate the bits coming out of shift regis-
ters in a sequential manner. The time interval between clock pulses is called the bit time, and the 
time required to shift the entire contents of a shift register is called the word time. These timing 
sequences are generated by the control section of the system. In a parallel computer, control 
signals are enabled during one clock pulse interval. Transfers into registers are in parallel, and 
they occur upon application of a single clock pulse. In a serial computer, control signals must 
be maintained for a period equal to one word time. The pulse applied every bit time transfers the 

Timing pulse Shift register A  Shift register B Serial output of B

Initial value           1          0          1          1          0          0          1          0 0

After T
1

          1          1          0          1          1          0          0          1 1

After T
2

          1          1          1          0          1          1          0          0 0

After T
1

          0          1          1          1          0          1          1          0 0

After T
4

          1          0          1          1          1          0          1          1 1

Table 7-1 Serial transfer example
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result of the operation, one at a time, into a shift register. Most computers operate in a parallel 
mode because this is a faster mode of operation.

7.3.2 Bidirectional Shift Register with Parallel Load

Shift registers can be used for convening serial data to parallel data, and vice versa. If we have 
access to all the flip-flop outputs of a shift register, then information entered serially by shifting 
can be taken out in parallel from the outputs of the flip-flops. If a parallel load capability is added 
to a shift register, then data entered in parallel can be taken out in serial fashion by shifting the 
data stored in the register.

Some shift registers provide the necessary input and output terminals for parallel transfer. 
They may also have both shift-right and shift-left capabilities. The most general shift register has 
all the capabilities listed below. Others may have only some of these functions, with at least one 
shift operation.

1. A clear control to clear the register to 0.

2. A CP input for clock pulses to synchronize all operations.

3. A shift-right control to enable the shift-right operation and the serial input and output lines 
associated with the shift-right.

4. A shift-left control to enable the shift-left operation and the serial input and output lines 
associated with the shift-left.

5. A parallel-bad control to enable a parallel transfer and the n input lines associated with the 
parallel transfer.

6. n parallel output lines.

7. A control state that leaves the information in the register unchanged even though clock 
pulses are continuously applied.

A register capable of shifting both right and left is called a bidirectional shift register. One 
that can shift in only one direction is called a unidirectional shift register. If the register has both 
shift and parallel-load capabilities, it is called a shift register with parallel load.

The diagram of a shift register that has all the capabilities listed above is shown in  
Fig. 7-9.† It consists of four D flip-flops, although RS flip-flops could be used provided an inverter 
is inserted between the S and R terminals. The four multiplexers (MUX) are part of the register 
and are drawn here in block diagram form. (See Fig. 5-16 for the logic diagram of the multi-
plexer.) The four multiplexers have two common selection variables, s

1
 and s

0
. Input 0 in each 

MUX is selected when s
1
s

0
 = 00, input 1 is selected when s

1
s

0
 = 01, and similarly for the other 

two inputs to the multiplexers.
The s

1
 and s

0 
inputs control the mode of operation of the register as specified in the function 

entries of Table 7-2. When s
1
s

0
 = 00. the present value of the register is applied to the D inputs of 

the flip-flops. This condition forms a path from the output of each flip-flop into the input of the 
same flip-flop. The next clock pulse transfers into each flip-flop the binary value it held previ-
ously, and no change of state occurs. When s

1
s

0
 = 01, terminals 1 of the multiplexer inputs have 

a path to the D inputs of the flip-flops. This causes a shift-right operation, with the serial input 

†This is similar to IC type 74194.
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transferred into flip-flop A
4
. When s

1
s

0
= 10, a shift-left operation results, with the other serial 

input going into flip-flop A
1
. Finally, when s

1
s

0
 = 11, the binary information on the parallel input 

lines is transferred into the register simultaneously during the next clock pulse.
A bidirectional shift register with parallel load is a general-purpose register capable of per-

forming three operations: shift left, shift right, and parallel load. Not all shift registers available 
in MSI circuits have all these capabilities. The particular application dictates the choice of one 
MSI shift register over another.

7.3.3 Serial Addition

Operations in digital computers are mostly done in parallel because this is a faster mode of op-
eration. Serial operations are slower but require less equipment. To demonstrate the serial mode 
of operation, we present here the design of a serial adder. The parallel counterpart was discussed 
in Section 5-2.

The two binary numbers to be added serially are stored in two shift registers. Bits are added 
one pair at a time, sequentially, through a single full-adder (FA) circuit, as shown in Fig. 7-10. 
The carry out of the full-adder is transferred to a D flip-flop. The output of this flip-flop is then 
used as an input carry for the next pair of significant bits. The two shift registers are shifted to the 
right for one word-time period. The sum bits from the S output of the full-adder could be trans-
ferred into a third shift register. By shifting the sum into A white the bits of A are shifted out, it 
is possible to use one register for storing both the augend and the sum bits. The serial input (SI) 
of register B is able to receive a new binary number while the addend bits are shifted out during 
the addition.

The operation of the serial adder is as follows. Initially, the A register holds the augend, the 
B register holds the addend, and the carry flip-flop is cleared to 0. The serial outputs (SO) of A 
and B provide a pair of significant bits for the full-adder at x and y. Output Q of the flip-flop gives 
the input carry at z. The shift-right control enables both registers and the carry flip-flop; so at the 
next clock pulse, both registers are shifted once to the right, the sum bit from S enters the leftmost 
flip-flop of A, and the output carry is transferred into flip-flop Q. The shift-right control enables 
the registers for a number of clock pulses equal to the number of bits in the registers. For each 
succeeding clock pulse, a new sum bit is transferred to A, a new carry is transferred to Q, and both 
registers are shifted once to the right. This process continues until the shift-right control is dis-
abled. Thus, the addition is accomplished by passing each pair of bits together with the previous 
carry through a single full-adder circuit and transferring the sum, one bit at a time, into register A.

If a new number has to be added to the contents of register A, this number must be first 
transferred serially into register B. Repeating the process once more will add the second number 
to the previous number in A.

Table 7-2 Function table for the register of Fig. 7-9

Mode control Register operation

s
1
 s

0

0 0

0 1

1 0

1 1

No change 

Shirt right 

Shift left 

Parallel load
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Comparing the serial adder with the parallel adder described in Section 5-2, we note the 
following differences. The parallel adder must use registers with parallel-load capability, whereas 
the serial adder uses shift registers. The number of full-adder circuits in the parallel adder is 
equal to the number of bits in the binary numbers, whereas the serial adder requires only one 
full-adder circuit and a carry flip-flop. Excluding the registers, the parallel adder is a purely 
combinational circuit, whereas the serial adder is a sequential circuit. The sequential circuit in 
the serial adder consists of a full-adder circuit and a flip-flop that stores the output carry. This is 
typical in serial operations because the result of a bit-time operation may depend not only on the 
present inputs but also on previous inputs.

To show that bit-time operations in serial computers may require a sequential circuit, we 
will redesign the serial adder by considering it a sequential circuit.

EXAMPLE 7-3: Design a serial adder using a sequential-logic procedure.
First, we must stipulate that two shift registers are available to store the binary numbers 

to be added serially. The serial outputs from the registers are designated by variables x and y. 
The sequential circuit to be designed will not include the shift registers; they will be inserted 
later to show the complete unit. The sequential circuit proper has two inputs, x and y, that 
provide a pair of significant bits, an output S that generates the sum bit, and flip-flop Q for 
storing the carry. The present state of Q provides the present value of the carry. The clock 
pulse that shifts the registers enables flip-flop Q to load the next carry. This carry is then used 
with the next pair of bits in x and y. The state table that specifies the sequential circuit is given 
in Table 7-3.

DQ

Clear

SI
SO

x

y

z

S

C

SO
SI

CP
Shift-register A

Shift-register B

Shift-right

External
  input

Figure 7-10 Serial adder
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The present state of Q is the present value of the carry. The present carry in Q is added 
together with inputs x and y to produce the sum bit in output S. The next state of Q is equiva-
lent to the output carry. Note that the state table entries are identical to the entries in a full-
adder truth table, except that the input carry is now the present state of Q and the output carry 
is now the next state of Q.

If we use a D flip-flop for Q, we obtain the same circuit as in Fig. 7-10 because the input 
requirements of the D input are the same as the next state values. If we use a JK flip-flop for 
Q, we obtain the input excitation requirements listed m Table 7-3. The three Boolean func-
tions of interest are the flip-flop input functions for JQ and KQ and output S. These functions 
are specified in the excitation table and can be simplified by means of maps:

 JQ = xy
KQ = x¢y¢ = (x + y)’
    S = x ⊕ y ⊕ Q

As shown in Fig. 7-11, the circuit consists of three gates and a JK flip-flop. The two shift reg-
isters are also included in the diagram to show the complete serial adder. Note that output S is 
a function not only of x and y but also of the present state of Q, The next state of Q is a func-
tion of the present values of x and y that come out of the serial outputs of the shift registers.

7.4 RIPPLE COUNTERS

MSI counters come in two categories: ripple counters and synchronous counters. In a ripple 
counter, the flip-flop output transition serves as a source for triggering other flip-flops. In other 
words, the CP inputs of all flip-flops (except the first) are triggered not by the incoming pulses 
but rather by the transition that occurs in other flip-flops. In a synchronous counter, the input 
pulses are applied to all CP inputs of all flip-flops. The change of state of a particular flip-flop 
is dependent on the present state of other flip-flops. Synchronous MSI counters are discussed in 
the next section. Here we present some common MSI ripple counters and explain their operation.

Table 7-3 Excitation table for serial adder

Present state Inputs Next state Output Flip-flop inputs

Q x y Q S JQ KQ

0 0 0 0 0 0 X

0 0 1 0 1 0 X

0 1 0 0 1 0 X

0 1 1 1 0 1 X

1 0 0 0 1 X 1

1 0 1 1 0 X 0

1 1 0 1 0 X 0

1 1 1 1 1 X 0
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7.4.1 Binary Ripple Counter

A binary ripple counter consists of a series connection of complementing flip-flops (T or JK 
type), with the output of each flip-flop connected to the CP input of the next higher-order flip-
flop. The flip-flop holding the least significant bit receives the incoming count pulses. The dia-
gram of a 4-bit binary ripple counter is shown in Fig. 7-12. All J and K inputs are equal to 1. 
The small circle in the CP input indicates that the flip-flop complements during a negative-going 
transition or when the output to which it is connected goes from 1 to 0. To understand the opera-
tion of the binary counter, refer to its count sequence given in Table 7-4. It is obvious that the 
lowest-order bit A

1
 must be complemented with each count pulse. Every time A

1
 goes from 1 to 

0, it complements A
2
. Every time A

2
 goes from 1 to 0, it complements A

3
, and so on. For example, 

take the transition from count 0111 to 1000. The arrows in the table emphasize the transitions in 
this case, A

1
 is complemented with the count pulse. Since A

1
 goes from 1 to 0, it triggers A

2
 and 

complements it. As a result, A
2
 goes from 1 to 0, which in turn complements A

3
, A

3
 now goes 

from 1 to 0, which complements A
4
. The output transition of A

4
, if connected to a next stage, will 

not trigger the next flip-flop since it goes from 0 to 1. The flip-flops change one at a time in rapid 
succession, and the signal propagates through the counter in a ripple fashion. Ripple counters are 
sometimes called asynchronous counters.

Q

K

J

Clear

SI
SO = x

SO = y
SI

S
CP

Shift-register A

Shift-register B

Shift-right

External
  input

Figure 7-11 Second form of a serial adder

A4 A3 A2 A1

Q J

K K K K

Q1 J Q J Q J

Count
pulses

To next
  stage

1

1

1

1

1

1

1

Figure 7-12 4-bit binary ripple counter
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A binary counter with a reverse count is called a binary down-counter. In a down-counter, 
the binary count is decremented by 1 with every input count pulse. The count of a 4-bit down-
counter starts from binary 15 and continues to binary counts 14, 13, 12, .... 0 and then back to 15. 
The circuit of Fig. 7-12 will function as a binary down-counter if the outputs are taken from the 
complement terminals Q’ of all flip-flops. If only the normal outputs of flip-flops are available, 
the circuit must be modified slightly as described below.

A list of the count sequence of a count-down binary counter shows that the lowest-order bit 
must be complemented with every count pulse. Any other bit in the sequence is complemented 
if its previous lower-order bit goes from 0 to 1. Therefore, the diagram of a binary down-counter 
looks the same as in Fig. 7-12, provided all flip-flops trigger on the positive edge of the pulse. 
(The small circles in the CP inputs must be absent.) If negative-edge-triggered flip-flops are 
used, then the CP input of each flip-flop must be connected to the Q’ output of the previous flip-
flop. Then when Q goes from 0 to 1. Q’ will go from 1 to 0 and complement the next flip-flop as 
required.

7.4.2 BCD Ripple Counter

A decimal counter follows a sequence of ten states and returns to 0 after the count of 9. Such a 
counter must have at least four flip-flops to represent each decimal digit, since a decimal digit is 
represented by a binary code with at least four bits. The sequence of states in a decimal counter 
is dictated by the binary code used to represent a decimal digit. If BCD is used, the sequence of 
states is as shown in the state diagram of Fig. 7-13. This is similar to a binary counter, except that 
the state after 1001 (code for decimal digit 9) is 0000 (code for decimal digit 0).

The design of a decimal ripple counter or of any ripple counter not following the binary 
sequence is not a straightforward procedure. The formal tools of logic design can serve only as a 
guide. A satisfactory end product requires the ingenuity and imagination of the designer.

Table 7-4 Count sequence for a binary ripple counter

Count sequence Conditions for complementing flip-flops

A
4

A
3

A
2

A
1

0 0 0 0 Complement A
1

0 0 0 1 Complement A
1

A
1 
will go from 1 to 0 and complement  A

2

0 0 1 0 Complement A
1

0 0 1 1 Complement A
1

A
1 
will go from 1 to 0 and complement A

2
;

A
2 
will go from 1 to 0 and complement A

3

0 1 0 0 Complement A
1

0 1 0 1 Complement A
1

A
1 
will go from 1 to 0 and complement  A

2

0 1 1 0 Complement A
1

0 1 1 1 Complement A
1

A
1 
will go from 1 to 0 and complement A

2
;

A
2 
will go from 1 to 0 and complement A

3
;

A
3 
will go from 1 to 0 and complement A

4

1 0 0 0 and so on…
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The logic diagram of a BCD ripple counter is shown in Fig, 7-14.‡ The four outputs are 
designated by the letter symbol Q with a numeric subscript equal to the binary weight of the 
corresponding bit in the BCD code. The flip-flops trigger on the negative edge, i.e., when the CP 
signal goes from 1 to 0. Note that the output of Q

1
, is applied to the CP inputs of both Q

2
 and Q

8
 

and the output of Q
2
 is applied to the CP input of Q

4
. The J and K inputs are connected either to 

a permanent 1 signal or to outputs of flip-flops, as shown in the diagram.
A ripple counter is an asynchronous sequential circuit and cannot be described by Boolean 

equations developed for describing clocked sequential circuits. Signals that affect the flip-flop 
transition depend on the order in which they change from 1 to 0. The operation of the counter can 
be explained by a list of conditions for flip-flop transitions. These conditions are derived from 
the logic diagram and from knowledge of how a JK flip-flop operates. Remember that when the 
CP input goes from 1 to 0, the flip-flop is set if J = 1, is cleared if K = 1, is complemented if J 
= K = 1. and is left unchanged if J = K = 0. The following are the conditions for each flip-flop 
state transition:

1. Q
1
 is complemented on the negative edge of every count pulse.

2. Q
2
 is complemented if Q

8
 = 0 and Q

1
 goes from 1 to 0. Q

2
 is cleared if Q

8
 = 1 and Q

1
 goes 

from 1 to 0.

‡This circuit is similar to IC type 7490.

1001

0000

1000

0001

0111

0010

0110

0011

0101

0100

Figure 7-13 State diagram of a decimal BCD counter

Q J

KQ´

Count
pulses

Q J

K

Q J

KK

Q J

K1 1 1 1

11

Q8 Q4 Q2 Q1

Figure 7-14 Logic diagram of a BCD ripple counter
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3. Q
4
 is complemented when Q

2
 goes from 1 to 0.

4. Q
8
 is complemented when Q

4
Q

2
 = 11 and Q

1
 goes from 1 to 0. Q

8
 is cleared if either Q

4
 or 

Q
2
 is 0 and Q

1
 goes from 1 to 0.

To verify that these conditions result in the sequence required by a BCD ripple counter, it 
is necessary to verify that the flip-flop transitions indeed follow a sequence of states as specified 
by the state diagram of Fig. 7-13. Another way to verify the operation of the counter is to derive 
the timing diagram for each flip-flop from the conditions listed above. This diagram is shown in  
Fig. 7-15 with the binary states listed after each clock pulse. Q

1
 changes state after each clock 

pulse. Q
2
 complements every time Q

1
 goes from 1 to 0 as long as Q

8
 = 0. When Q

8 
becomes 1, 

Q
2
 remains cleared at 0. Q

4
 complements every time Q

2
 goes from 1 to 0. Q

8
 remains cleared as 

long as Q
2
 or Q

1 
is 0. When both Q

2
 and Q

4
 become 1’s, Q

8
 complements when Q

1
 goes from 1 to 

0. Q
8
 is cleared on the next transition of Q

1
.

The BCD counter of Fig. 7-14 is a decade counter, since it counts from 0 to 9. To count in 
decimal from 0 to 99, we need a two-decade counter. To count from 0 to 999, we need a three-
decade counter. Multiple-decade counters can be constructed by connecting BCD counters in 
cascade, one for each decade. A three-decade counter is shown in Fig. 7-16. The inputs to the 
second and third decades come from Q

8 
of the previous decade. When Q

8
 in one decade goes 

from 1 to 0, it triggers the count for the next higher-order decade while its own decade goes from 
9 to 0. For instance, the count after 399 will be 400.

Count
pulses

Q1
0 01 01 01 01 01

Q4

Q8

0 0 00 0 0 0 1 1 1 1

Q2
0 0 1 1 0 0 0 0 01 1

0 0 0 0 0 0 0 0 01 1

Figure 7-15 Timing diagram for the decimal counter of Fig. 7-14

Q1

BCD
Counter

BCD
Counter

BCD
Counter

Count
pulses

Q4Q8 Q2 Q1Q4Q8

102 digit 101 digit 100 digit

Q2 Q1Q4Q8 Q2

Figure 7-16 Block diagram of a 3-decade decimal BCD counter

www.youseficlass.ir



Registers, Counters, and the Memory Unit 247 

7.5 Synchronous-counters

Synchronous counters are distinguished from ripple counters in that clock pulses are applied to 
the CP inputs of all flip-flops. The common pulse triggers all the flip-flops simultaneously, rather 
than one at a lime in succession as in a ripple counter. The decision whether a flip-flop is to be 
complemented or not is determined from the values of the J and K inputs at the time of the pulse. 
If J = K = 0, the flip-flop remains unchanged. If J = K = 1, the flip-flop complements.

A design procedure for any type of synchronous counter was presented in Section 6-8. The 
design of a 3-bit binary counter was carried out in detail and is illustrated in Fig. 6-30. In this 
section, we present some typical MSI synchronous counters and explain their operation. It must 
be realized that there is no need to design a counter if it is already available commercially in IC 
form.

7.5.1 Binary Counter

The design of synchronous binary counters is so simple that there is no need to go through a 
rigorous sequential-logic design process. In a synchronous binary counter, the flip-flop in the 
lowest-order position is complemented with every pulse.

This means that its J and K inputs must be maintained at logic-1. A flip-flop in any other 
position is complemented with a pulse provided all the bits in the lower-order positions are equal 
to 1, because the lower-order bits (when all l’s) will change to 0’s on the next count pulse. The 
binary count dictates that the next higher-order bit be complemented. For example, if the present 
state of a 4-bit counter is A

4
A

3
A

2
A

1
 = 0011, the next count will be 0100. A

1
 is always comple-

mented. A
1
 is complemented because the present state of A

1
 = 1. A

3
 is complemented because the 

present state of A
2
A

1
 = 11. But A

4
 is not complemented because the present state of A

3
A

2
A

1
= 011, 

which does not give an all-1’s condition.
Synchronous binary counters have a regular pattern and can easily be constructed with 

complementing flip-flops and gates. The regular pattern can be clearly seen from the 4-bit coun-
ter depicted in Fig. 7-17. The CP terminals of all flip-flops are connected to a common clock-
pulse source. The first stage A

1
 has its J and K equal to 1 if the counter is enabled. The other J and 

K inputs are equal to 1 if all previous low-order bits are equal to 1 and the count is enabled. The 
chain of AND gates generates the required logic for the J and K inputs in each stage. The counter 
can be extended to any number of stages, with each stage having an additional flip-flop and an 
AND gate that gives an output of 1 if all previous flip-flop outputs are 1’s.

Note that the flip-flops trigger on the negative edge of the pulse. This is not essential here 
as it was with the ripple counter. The counter could also be triggered on the positive edge of the 
pulse.

7.5.2 Binary Up-Down Counter

In a synchronous count-down binary counter, the flip-flop in the lowest-order position is comple-
mented with every pulse. A flip-flop in any other position is complemented with a pulse provided 
all the lower-order bits are equal to 0. For example, if the present state of a 4-bit count-down 
binary counter is A

4
A

3
A

2
A

1
 = 1100, the next count will be 1011, A

1
 is always complemented. A

2
 

is complemented because the present state of A
1
 = 0. A

3
 is complemented because the present 

state of A
2
A

1
 = 00. But A

4
 is not complemented because the present state of A

3
A

2
A

1 
= 100, which 

is not an all-0’s condition.
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A count-down binary counter can be constructed as shown in Fig. 7-17, except that the 
inputs to the AND gates must come from the complement outputs Q’ and not from the normal 
outputs Q of the previous flip-flops. The two operations can be combined in one circuit. A binary 
counter capable of counting either up or down is shown in Fig. 7-18. The T flip-flops employed 
in this circuit may be considered as JK flip-flops with the J and K terminals tied together. When 
the up input control is 1, the circuit counts up, since the T inputs are determined from the previ-
ous values of the normal outputs in Q. When the down input control is 1, the circuit counts down, 
since the complement outputs Q’ determine the states of the T inputs. When both the up and down 
signals are 0’s, the register does not change state but remains in the same count.

7.5.3 BCD Counter

A BCD counter counts in binary-coded decimal from 0000 to 1001 and back to 0000. Because 
of the return to 0 after a count of 9, a BCD counter does not have a regular pattern as in a straight 
binary count. To derive the circuit of a BCD synchronous counter, it is necessary to go through a 
design procedure as discussed in Section 6-8.

The count sequence of a BCD counter is given in Table 7-5. The excitation for the T flip-
flops is obtained from the count sequence. An output y is also shown in the table. This output 
is equal to 1 when the counter present state is 1001. In this way, y can enable the count of the 
next-higher-order decade while the same pulse switches the present decade from 1001 to 0000.

The flip-flop input functions from the excitation table can be simplified by means of maps. 
The unused states for minterms 10 to 15 are taken as don’t-care terms. The simplified functions 
are listed below:

TQ
1
 = 1

TQ
2
 = Q

8
Q

1

TQ
4
 = Q

2
Q

1

TQ
8
 = Q

8
Q

1
 + Q

4
Q

2
Q

1

    y = Q
8
Q

1

The circuit can he easily drawn with four T flip-flops, five AND gates, and one OR gate.
Synchronous BCD counters can be cascaded to form a counter for decimal numbers of any 

length. The cascading is done as in Fig. 7-16, except that output y must be connected to the count 
input of the next-higher-order decade.

7.5.4 Binary Counter with Parallel Load

Counters employed in digital systems quite often require a parallel-load capability for transfer-
ring an initial binary number prior to the count operation. Figure 7-19 shows the logic diagram 
of a register that has a parallel-load capability and can also operate as a counter.§ The input load 
control, when equal to 1, disables the count sequence and causes a transfer of data from inputs 
I

1
 through I

4
 into flip-flops A

1
 through A

4
, respectively. If the load input is 0 and the count input 

control is 1, the circuit operates as a counter. The clock pulses then cause the state of the flip-
flops to change according to the binary count sequence. If both control inputs are 0, clock pulses 
do not change the state of the register.

§This is similar but not identical to IC type 74161.
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The carry-out terminal becomes a 1 if all flip-flops are equal to 1 while the count input is 
enabled. This is the condition for complementing the flip-flop holding the next-higher-order bit. 
This output is useful for expanding the counter to more than four bits. The speed of the counter 
is increased if this carry is generated directly from the outputs of all four flip-flops instead of 
going through a chain of AND gates. Similarly, each flip-flop is associated with an AND gate 
that receives all previous flip-flop outputs directly to determine when the flip-flop should he 
complemented.

The operation of the counter is summarized in Table 7-6. The four control inputs: clear, CP, 
load, and count determine the next output state. The clear input is asynchronous and, when equal 
to 0, causes the counter to be cleared to all 0’s, regardless of the presence of clock pulse’s or other 
inputs. This is indicated in the table by the X entries, which symbolize don’t-care conditions for 
the other inputs, so their value can be either 0 or 1. The clear input must go to the 1 state for the 
clocked operations listed in the next three entries in the table. With the load and count inputs 
both at 0, the outputs do not change, whether a pulse is applied in the CP terminal or not. A load 
input of 1 causes a transfer from inputs I

1
 - I

4
 into the register during the positive edge of an input 

pulse. The input information is loaded into the register regardless of the value of the count input, 
because the count input is inhibited when the load input is 1. If the load input is maintained at 
0, the count input controls the operation of the counter. The outputs change to the next binary 
count on the positive-edge transition of every clock pulse, but no change of state occurs if the 
count input is 0.

The 4-bit counter shown in Fig. 7-19 can be enclosed in one IC package. Two ICs are neces-
sary for the construction of an 8-bit counter; four ICs for a 16-bit counter; and so on. The carry 
output of one IC must be connected to the count input of the IC holding the four next-higher-
order bits of the counter.

Counters with parallel-load capability having a specified number of bits are very useful in 
the design of digital systems. Later we will refer to them as registers with load and increment 

Table 7-5 Excitation table for a BCD counter

Count sequence Flip-flop inputs Output carry

Q
8

Q
4

Q
2

Q
1

TQ
8

TQ
4

TQ
2

TQ
1

y

0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 1 1 0

0 0 1 0 0 0 0 1 0

0 0 1 1 0 1 1 1 0

0 1 0 0 0 0 0 1 0

0 1 0 1 0 0 1 1 0

0 1 1 0 0 0 0 1 0

0 1 1 1 1 1 1 1 0

1 0 0 0 0 0 0 1 0

1 0 0 1 1 0 0 1 1
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l3
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Carry-out
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Figure 7-19 4-bit binary counter with parallel load

Table 7-6 Function table for the counter of Fig. 7-19

Clear CP Load Count Function

0 X X X Clear to 0

1 X 0 0 No change

1 ↑ 1 X Load inputs

1 ↑ 0 1 Count next binary state
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capabilities. The increment function is an operation that adds 1 to the present content of a regis-
ter. By enabling the count control during one clock pulse period, the content of the register can 
be incremented by 1.

A counter with parallel load can be used to generate any desired number of count sequenc-
es. A modulo- N (abbreviated mod N) counter is a counter that goes through a repeated sequence 
of N counts. For example, a 4-bit binary counter is a mod-16 counter. A BCD counter is a mod-10 
counter. In some applications, one may not be concerned with the particular N states that a mod-
N counter uses. If this is the case, then a counter with parallel load can be used to construct any 
mod-N counter, with N being any value desired. This is shown in the following example.

EXAMPLE 7-4: Construct a mod-6 counter using the MSI circuit specified in Fig. 7-19.
Figure 7-20 shows four ways in which a counter with parallel load can be used to gen-

erate a sequence of six counts. In each case the count control is set to 1 to enable the count 
through the pulses in the CP input. We also use the facts that the load control inhibits the 
count and that the clear operation is independent of other control inputs.

The AND gate in Fig. 7-20(a) detects the occurrence of state 0101 in the output. When 
the counter is in this state, the load input is enabled and an all-0’s input is loaded into the 
register. Thus, the counter goes through binary states 0, 1, 2, 3, 4, and 5 and then returns to 0. 
This produces a sequence of six counts.

The clear input of the register is asynchronous, i.e., it does not depend on the clock. In 
Fig. 7-20(b), the NAND gate detects the count of 0110, but as soon as this count occurs, the 
register is cleared. The count 0110 has no chance of staying on for any appreciable time be-
cause the register goes immediately to 0. A momentary spike occurs in output A

2
 as the count 

goes from 0101 to 0110 and immediately to 0000. This momentary spike may be undesirable 
and for this reason this configuration is not recommended. If the counter has a synchronous 
clear input, it would be possible to clear the counter with the clock after an occurrence of the 
0101 count.

Instead of using the first six counts, we may want to choose the last six counts from 10 
to 15. In this case it is possible to take advantage of the output carry to load a number in the 
register. In Fig. 7-20(c), the counter starts with count 1010 and continues to 1111. The out-
put carry generated during the last state enables the load control, which then loads the input 
which is set at 1010.

It is also possible to choose any intermediate count of six states. The mod-6 counter of 
Fig. 7-20(d) goes through the count sequence 3, 4, 5, 6, 7, and 8. When the last count 1000 
is reached, output A

4
 goes to 1 and the load control is enabled. This loads into the register the 

value of 0011, and the binary count continues from this state.

7.6 Timing Sequences

The sequence of operations in a digital system are specified by a control unit. The control unit 
that supervises the operations in a digital system would normally consist of timing signals that 
determine the time sequence in which the operations are executed. The timing sequences in the 
control unit can be easily generated by means of counters or shift registers. This section demon-
strates the use of these MSI functions in the generation of timing signals for a control unit.
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7.6.1 Word-time Generation

First, we demonstrate a circuit that generates the required timing signal for serial mode of opera-
tion. Serial transfer of information was discussed in Section 7-3, with an example depicted in 
Fig. 7-8. The control unit in a serial computer must generate a word-time signal that stays on for 
a number of pulses equal to the number of bits in the shift registers. The word-time signal can be 
generated by means of a counter that counts the required number of pulses.

Assume that the word-time signal to be generated must stay on for a period of eight clock 
pulses. Figure 7-21(a) shows a counter circuit that accomplishes this task. Initially, the 3-bit 
counter is cleared to 0. A start signal will set flip-flop Q. The output of this flip-flop supplies the 
word-time control and also enables the counter. After the count of eight pulses, the flip-flop is re-
set and Q goes to 0. The timing diagram of Fig. 7-21(b) demonstrates the operation of the circuit. 
The start signal is synchronized with the clock and stays on for one clock pulse period. After Q 
is set to 1, the counter starts counting the clock pulses. When the counter reaches the count of 7 
(binary 111), it sends a stop signal to the reset input of the flip-flop. The stop signal becomes a 1 
after the negative-edge transition of pulse 7. The next clock pulse switches the counter to the 000 
state and also clears Q. Now the counter is disabled and the word-time signal stays at 0. Note that 
the word-time control stays on for a period of eight pulses. Note also that the stop signal in this 

A1

  Counter
of Fig. 7-19

A3A4 A2

Load
Count = 1

Clear = 1

Inputs = 0

CP

A1

  Counter
of Fig. 7-19

A3A4 A2

Clear
Count = 1

Load = 0

Inputs have no effect

CP

              (a) Binary states 0, 1, 2, 3, 4, 5.    (b) Binary states 0, 1, 2, 3, 4, 5.

A1

  Counter
of Fig. 7-19

A3A4

1 0 1 0

A2

l1l3l4 l2
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Count = 1
Carry-out

Clear = 1

CP

A1

  Counter
of Fig. 7-19

A3A4

0 0 1 1

A2

l1l3l4 l2
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Count = 1

Clear = 1
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            (c) Binary states 10, 11, 12, 13, 14, 15.  (d) Binary states 3, 4, 5, 6, 7, 8.

Figure 7-20 Four ways to achieve a mod-6 counter using a counter with parallel load 
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circuit can be used to start another word-count control in another circuit just as the start signal 
is used in this circuit.

7.6.2 Timing Signals

In a parallel mode of operation, a single clock pulse can specify the time at which an operation 
should be executed. The control unit in a digital system that operates in the parallel mode must 
generate timing signals that stay on for only one clock pulse period, but these timing signals must 
be distinguished from each other.

Timing signals that control the sequence of operations in a digital system can be generated 
with a shift register or a counter with a decoder. A ring counter is a circular shift register with 
only one flip-flop being set at any particular lime; all others are cleared. The single bit is shifted 
from one flip-flop lo the other to produce the sequence of timing signals. Figure 7-22(a) shows 
a 4-bit shift register connected as a ring counter. The initial value of the register is 1000, which 
produces the variable T

0
. The single bit is shifted right with every clock pulse and circulates back 

from T
3
 to T

0
. Each flip-flop is in the 1 state once every four clock pulses and produces one of 

the four timing signals shown in Fig. 7-22(c). Each output becomes a 1 after the negative-edge 
transition of a clock pulse and remains 1 during the next clock pulse.

The liming signals can be generated also by continuously enabling a 2-bit counter that goes 
through four distinct states. The decoder shown in Fig. 7-22(b) decodes the four states of the 
counter and generates the required sequence of timing signals.

The liming signals, when enabled by the clock pulses, will provide multiple-phase clock 
pulses. For example, if T

0
 is ANDed with CP, the output of the AND gate will generate clock 

pulses at one-fourth the frequency of the master-clock pulses. Multiple-phase clock pulses can 
be used for controlling different registers with different time scales.

Q

R

S

CP

CP
Count enable

Word-time
   control

3-bit-counter

Start

Stop

(a) Circuit diagram

Stop

CP
1 2 3 4 5 6 7 0

Start

Word-time=8 pulsesQ

(b) Timing diagram

Figure 7-21 Generation of a word-time control for serial operations
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To generate 2n timing signals, we need either a shift register with 2n flip-flops or an n-bit 
counter together with an n-to-2n line decoder. For example, 16 timing signals can be generated 
with a 16-bit shift register connected as a ring counter or with a 4-bit counter and a 4-to-16 line 
decoder, in the first case, we need 16 flip-flops. In the second case, we need four flip-flops and 
16 4-input AND gates for the decoder. It is also possible to generate the timing signals with a 
combination of a shift register and a decoder. In this way, the number of flip-flops is less than in a 
ring counter, and the decoder requires only 2-input gates. This combination is sometimes called 
a Johnson counter.

7.6.3 Johnson Counter

A k-bit ring counter circulates a single bit among the flip-flops to provide k distinguishable states. 
The number of states can be doubled if the shift register is connected as a switch-tail ring counter. 
A switch-tail ring counter is a circular shift register with the complement output of the last flip-
flop connected to the input of the first flip-flop. Figure 7-23(a) shows such a shift register. The 

T0
Shift
right T1 T2 T3

          

T0 T1 T2 T3

   2 ¥ 4
decoder

2-bit counter
Count
enable

                  (a) Ring-counter (initial value = 1000)           (b) Counter and decoder

CP

T0

T1

T2

T3

(c) Sequence of four timing signals

Figure 7-22 Generation of timing signals
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circular connection is made from the complement output of the rightmost flip-flop to the input 
of the leftmost flip-flop. The register shifts us contents once to the right with every clock pulse, 
and at the same time, the complement value of the E flip-flop is transferred into the A flip-flop. 
Starting from a cleared state, the switch-tail ring counter goes through a sequence of eight states 
as listed in Fig. 7-23(b). In general, a k-bit switch-tail ring counter will go through a sequence 
of 2k states. Starting from all 0’s, each shift operation inserts 1’s from the left until the register 
is filled with all 1’s. In the following sequences, 0’s are inserted from the left until the register is 
again filled with all 0’s.

A Johnson counter is a k-bit switch-tail ring counter with 2k decoding gates to provide out-
puts for 2k timing signals. The decoding gates are not shown in Fig. 7-23 but are specified in the 
last column of the table. The eight AND gates listed in the table, when connected to the circuit, 
will complete the construction of the Johnson counter. Since each gate is enabled during one 
particular state sequence, the outputs of the gates generate eight timing sequences in succession.

The decoding of a k-bit switch-tail ring counter to obtain 2k timing sequences follows a 
regular pattern. The all-0’s state is decoded by taking the complement of the two extreme flip-flop 
outputs. The all-l’s state is decoded by taking the normal outputs of the two extreme flip-flops. 
All other states are decoded from an adjacent 1, 0 or 0, 1 pattern in the sequence. For example, 
sequence 7 has an adjacent 0, 1 pattern in flip-flops B and C. The decoded output is then obtained 
by taking the complement of B and the normal output of C, or B’C.

One disadvantage of the circuit in Fig. 7-23(a) is that, if it finds itself in an unused state, 
it will persist in moving from one invalid state to another and never find its way to a valid state. 
This difficulty can be corrected by modifying the circuit to avoid this undesirable condition. One 
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Figure 7-23 Construction of a Johnson counter
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correcting procedure is to disconnect the output from flip-flop B that goes to the D input of flip-
flop C, and instead enable the input of flip-flop C by the function:¶

DC = (A + C)B

where DC is the flip-flop input function for the D input of flip-flop C.
Johnson counters can be constructed for any number of timing sequences. The number of 

flip-flops needed is one-half the number of timing signals. The number of decoding gates is equal 
to the number of timing signals and only 2-input gates are employed.

7.7 The Memory Unit

The registers in a digital computer may be classified as either operational or storage type. An 
operational register is capable of storing binary information in its flip-flops and, in addition, 
has combinational gates capable of data-processing tasks. A storage register is used solely for 
temporary storage of binary information. This information cannot be altered when transferred in 
and out of the register. A memory unit is a collection of storage registers together with the associ-
ated circuits needed to transfer information in and out of the registers. The storage registers in a 
memory unit are called memory registers.

The bulk of the registers in a digital computer are memory registers, to which information 
is transferred for storage and from which information is available when needed for processing. 
Comparatively few operational registers are found in the processor unit. When data processing 
takes place, the information from selected registers in the memory unit is first transferred to the 
operational registers in the processor unit. Intermediate and final results obtained in the opera-
tional registers are transferred back to selected memory registers. Similarly, binary information 
received from input devices is first stored in memory registers; information transferred to output 
devices is taken from registers in the memory unit.

The component that forms the binary cells of registers in a memory unit must have certain 
basic properties, the most important of which are: (1). It must have a reliable two-state property 
for binary representation. (2) It must be small in size. (3) The cost per bit of storage should be as 
low as possible. (4) The time of access to a memory register should be reasonably fast. Examples 
of memory unit components are magnetic cores, semiconductor ICs, and magnetic surfaces on 
tapes, drums, or disks.

A memory unit stores binary information in groups called words, each word being stored 
in a memory register. A word in memory is an entity of n bits that moves in and out of storage 
as a unit. A memory word may represent an operand, an instruction, a group of alphanumeric 
characters, or any binary-coded information. The communication between a memory unit and its 
environment is achieved through two control signals and two external registers. The control sig-
nals specify the direction of transfer required, that is, whether a word is to be stored in a memory 
register or whether a word previously stored is to be transferred out of a memory register. One 
external register specifies the particular memory register chosen out of the thousands available; 
the other specifies the particular bit configuration of the word in question. The control signals and 
the registers are shown in the block diagram of Fig. 7-24.

The memory address register specifies the memory word selected. Each word in memory is 
assigned a number identification starting from 0 up to the maximum number of words available. 

¶This is the way it is done in IC type 4022.
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To communicate with a specific memory word its location number, or address, is transferred to 
the address register. The internal circuits of the memory unit accept this address from the register 
and open the paths needed to select the word called. An address register with n bits can specify up 
to 2n memory words. Computer memory units can range from 1024 words, requiring an address 
register of 10 bits, to 1,048,576 = 220 words, requiring a 20-bit address register.

The two control signals applied to the memory unit are called read and write. A write signal 
specifies a transfer-in function; a read signal specifies a transfer-out function. Each is referenced 
from the memory unit. Upon accepting one of the control signals, the internal control circuits 
inside the memory unit provide the desired function. Certain types of storage units, because of 
their component characteristics, destroy the information stored in a cell when the bit in that cell 
is read out. Such a unit is said to be a destructive read-out memory, as opposed to a nondestruc-
tive memory where the information remains in the cell after it is read out. In either case, the old 
information is always destroyed when new information is written. The sequence of internal con-
trol in a destructive read-out memory must provide control signals that will cause the word to be 
restored into its binary cells if the application calls for a nondestructive function.

The information transfer to and from registers in memory and the external environment is 
communicated through one common register called the memory buffer register (other names are 
information register and storage register). When the memory unit receives a write control signal, 
the internal control interprets the contents of the buffer register to be the bit configuration of the 
word to be stored in a memory register. With a read control signal, the internal control sends the 
word from a memory register into the buffer register. In each case the contents of the address 
register specify the particular memory register referenced for writing or reading.

Let us summarize the information transfer characteristics of a memory unit by an example. 
Consider a memory unit of 1024 words with eight bits per word. To specify 1024 words, we need 

MEMORY UNIT

Memory address
       register

Input address

In out

Information

Control
Signals

read

write

n words
m bits per world

Memory buffer
       register

Figure 7-24 Block diagram of a memory unit showing communication with environment
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an address of ten bits, since 210 = 1024. Therefore, the address register must contain ten flip-flops. 
The buffer register must have eight flip-flops to store the contents of words transferred into and 
out of memory. The memory unit has 1024 registers with assigned address numbers from 0 to 
1023.

Figure 7-25 shows the initial contents of three registers; memory address register (MAR), 
memory buffer register (MBR), and the memory register addressed by MAR. Since the equiva-
lent binary number in MAR is decimal 42, the memory register addressed by MAR is the one 
with address number 42.

The sequence of operations needed to communicate with the memory unit for the purpose 
of transferring a word out to the MBR is:

1. Transfer the address bits of the selected word into MAR.

2. Activate the read control input.

The result of the read operation is depicted in Fig. 7-26(a). The binary information presently 
stored in memory register 42 is transferred into MBR.

The sequence of operations needed to store a new word into memory is:

1. Transfer the address bits of the selected word into MAR.

2. Transfer the data bits of the word into MBR.

3. Activate the write control input.

The result of the write operation is depicted in Fig. 7-26(b), The data bits from MBR are 
stored in memory register 42.

In the above example, we assumed a memory unit with nondestructive read-out property. Such 
memories can be constructed with semiconductor ICs. They retain the information in the memo-
ry register when the register is sampled during the reading process so that no loss of information 

Memory unit

Memory address
register (MAR)

Memory buffer register (MAR)

Address
0-1023

1 0 0 1 0 0 1 0

0 1 1 0 1 1 1 00 0 0 0 1 0 1 0 1 0 42

41

40

43

Figure 7-25 Initial values of registers
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occurs. Another component commonly used in memory units is the magnetic core. A magnetic 
core characteristically has destructive read-out, i.e., it loses the stored binary information dur-
ing the reading process. Examples of semiconductor and magnetic-core memories are presented  
in Section 7-8.

Because of its destructive read-out property, a magnetic-core memory must provide addi-
tional control functions to restore the word into the memory register.

A read control signal applied to a magnetic-core memory transfers the content of the ad-
dressed word into an external register and, at the same time, the memory register is automatically 
cleared. The sequence of internal control in a magnetic-core memory then provides appropriate 
signals to cause the restoration of the word into the memory register. The information transfer 
in a magnetic-core memory during a read operation is depicted in Fig. 7-27. A destructive read 
operation transfers the selected word into MBR but leaves the memory register with all 0’s. Nor-
mal memory operation requires that the content of the selected word remain in memory after a 
read operation. Therefore, it is necessary to go through a restore operation that writes the value 
in MBR into the selected memory register. During the restore operation, the contents of MAR 
and MBR must remain unchanged.

A write control input applied to a magnetic-core memory causes a transfer of information 
as depicted in Fig. 7-28. To transfer new information into a selected register, the old information 

Memory unit

MAR = 42

MBR

0 1 1 0 1 1 1 0

0 1 1 0 1 1 1 0

Memory unit

MAR = 42

MBR

1 0 0 1 0 0 1 0

1 0 0 1 0 0 1 0

     (a) Read operation      (b) Write operation

Figure 7-26 Information transfer during read and write operations
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Destructive read

0 0 0 0 0 0 0 0

Memory unit

Restore contents

0 1 1 0 1 1 1 0
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Memory unit

Figure 7-27 Information transfer in a magnetic-core memory during a read operation
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must first be erased by clearing all the bits of the word to 0. After this is done, the content of MBR 
can be transferred to the selected word. MAR must not change during the operation to ensure that 
the same selected word that is cleared is the one that receives the new information.

A magnetic-core memory requires two half-cycles either for reading or writing. The time it 
takes for the memory to go through both half-cycles is called the memory-cycle time.

The mode of access of a memory system is determined by the type of components used. In 
a random-access memory, the registers may be thought of as being separated in space, with each 
register occupying one particular spatial location as in a magnetic-core memory. In a sequential-
access memory, the information stored in some medium is not immediately accessible but is 
available only at certain intervals of time. A magnetic-tape unit is of this type. Each memory 
location passes the read and write heads in turn, but information is read out only when the 
requested word has been reached. The access time of a memory is the time required to select a 
word and either read or write it. In a random-access memory, the access time is always the same 
regardless of the word’s particular location in space. In a sequential memory, the access time de-
pends on the position of the word at the time of request. If the word is just emerging from storage 
at the time it is requested, the access time is just the time necessary to read or write it. But, if the 
word happens to be in the last position, the access time also includes the time required for all the 
other words to move past the terminals. Thus, the access time in a sequential memory is variable.

Memory units whose components lose stored information with time or when the power is 
turned off are said to be volatile. A semiconductor memory unit is of this category since its binary 
cells need external power to maintain the needed signals. In contrast, a nonvolatile memory unit, 
such as magnetic core or magnetic disk, retains its stored information after removal of power. 
This is because the stored information in magnetic components is manifested by the direction of 
magnetization, which is retained when power is turned off. A nonvolatile property is desirable in 
digital computers because many useful programs are left permanently in the memory unit. When 
power is turned off and then on again, the previously stored programs and other information are 
not lost but continue to reside in memory.

7.8 Examples of Random-access Memories

The internal construction of two different types of random-access memories are presented dia-
gramatically in this section. The first is constructed with flip-flops and gates and the second with 
magnetic cores. To be able to include the entire memory unit in one diagram, a limited storage 

0 1 1 0 1 1 1 0

1 0 0 1 0 0 1 0

Memory unit

Initial

MAR = 42

MBR

0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0

Memory unit

Clear word

1 0 0 1 0 0 1 0

1 0 0 1 0 0 1 0

Memory unit

Write word

Figure 7-28 Information transfer in a magnetic-core memory during a write operation
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capacity must be used. For this reason, the memory units presented here have a small capacity 
of 12 bits arranged in four words of three bits each. Commercial random-access memories may 
have a capacity of thousands of words and each word may range somewhere between 8 and 64 
bits. The logical construction of large-capacity memory units would be a direct extension of the 
configuration shown here.

7.8.1 Integrated-circuit Memory

The internal construction of a random-access memory of m words with n bits per word consists 
of m × n binary storage cells and the associated logic for selecting individual words. The binary 
storage cell is the basic building block of a memory unit. The equivalent logic of a binary cell 
that stores one bit of information is shown in Fig. 7-29. Although the cell is shown to include 
gates and a flip-flop, internally it is constructed with two transistors having multiple inputs. A 
binary storage cell must be very small in order to be able to pack as many cells as possible in the 
small area available in the integrated-circuit chip. The binary cell has three inputs and one output. 
The select input enables the cell for reading or writing. The read/write input determines the cell 
operation when it is selected. A 1 in the read/write input forms a path from the flip-flop to the 
output terminal. The information in the input terminal is transferred into the flip-flop when the 
read/write control is 0. Note that the flip-flop operates without clock pulses and that its purpose 
is to store the information bit in the binary cell.

Integrated-circuit memories sometimes have a single line for the read and write control. 
One binary state in the single line specifies a read operation and the other state specifies a write 
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OutputInput

Read /write
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(a) Logic diagram
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Figure 7-29 Memory cell

www.youseficlass.ir



264 Chapter 7

operation. In addition, one or more enable lines are included to provide means for selecting the 
IC and for expanding several packages into a memory unit with a larger number of words. The 
logical construction of an IC RAM is shown in Fig. 7-30. It consists of 4 words of 3 bits each, for 
a total of 12 binary cells. The small boxes labeled BC represent a binary cell, and the three inputs 
and one output in each BC are as specified in the diagram of Fig. 7-29.

The two address input lines go through an internal 2-to-4 line decoder. The decoder is en-
abled with the memory-enable input. When the memory enable is 0, all the outputs of the decoder 
are 0 and none of the memory words are selected. With the memory enable at 1, one of the four 
words is selected, depending on the value of the two address lines. Now, with the read/write con-
trol at 1, the bits of the selected word go through the three OR gates to the output terminals. The 
nonselected binary cells produce 0’s in the inputs of the OR gates and have no effect on the out-
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Figure 7-30 Integrated-circuit memory
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puts. With the read/write control at 0, the information available on the input lines is transferred 
into the binary cells of the selected word. The nonselected binary cells in the other words are 
disabled by their selection inputs and their previous values remain unchanged. With the memory-
enable control at 0, the contents of all cells in the memory remain unchanged, regardless of the 
value of the read/write control.

IC RAMs are constructed internally with cells having a wired-OR capability. This elimi-
nates the need for the OR gates in the diagram. The external output lines can also form wired 
logic to facilitate the connection of two or more IC packages to form a memory unit with a larger 
number of words.

7.8.2 Magnetic-core Memory

A magnetic-core memory uses magnetic cores to store binary information. A magnetic core is 
a doughnut-shaped toroid made of magnetic material. In contrast to a semiconductor flip-flop 
that needs only one physical quantity such as voltage for its operation, a magnetic core employs 
three physical quantities; current, magnetic flux, and voltage. The signal that excites the core is a 
current pulse in a wire passing through the core. The binary information stored is represented by 
the direction of magnetic flux within the core. The output binary information is extracted from a 
wire linking the core in the form of a voltage pulse.

The physical property that makes a magnetic core suitable for binary storage is its hyster-
esis loop, shown in Fig. 7-31(c). This is a plot of current vs magnetic flux, and it has the shape 
of a square loop. With zero current, a flux which is either positive (counter clockwise direction) 
or negative (clockwise direction) remains in the magnetized core. One direction, say counter 
clockwise magnetization, is used to represent a 1 and the other to represent a 0.

A pulse of current applied to the winding through the core can shift the direction of 
magnetization. As shown in Fig. 7-31(a), current in the downward direction produces flux in the 
clockwise direction, causing the core to go to the 0 state. Figure 7-31(b) shows the current and 
flux directions for storing a 1. The path that the flux takes when the current pulse is applied is 
indicated by arrows in the hysteresis loop.

Reading out the binary information stored in the core is complicated by the fact that flux 
cannot be detected when it is not changing. However, if flux is changing with respect to time, it 
induces a voltage in a wire that links the core. Thus, read-out could be accomplished by applying 
a current in the negative direction as shown in Fig. 7-32. If the core is in the 1 state, the current 

Negative
  flux

Negative
  current

Positive
  flux

Positive
  current

Flux

1

0

Current

         (a) Store 0                (b) Store 1           (c) Hysteresis loop

Figure 7-31 Storing a bit into a magnetic core
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reverses the direction of magnetization, and the resulting change of flux produces a voltage pulse 
in the sense wire. If the core is already in the 0 state, the negative current leaves the core magne-
tized in the same direction, causing a very slight disturbance of magnetic flux which results in a 
very small output voltage in the sense wire. Note that this is a destructive read-out, since the read 
current always returns the core to the 0 state. The previously stored value is lost.

Figure 7-33 shows the organization of S magnetic-core memory containing four words with 
three bits each. Comparing it with the IC memory unit of Fig. 7-30, we note that the binary cell 
now is a magnetic core and the wires linking it. The excitation of the core is accomplished by 
means of a current pulse generated in a driver (DR). The output information goes through a sense 
amplifier (SA) whose outputs set corresponding flip-flops in the buffer register. Three wires link 
each core. The word wire is excited by a word driver and goes through the three cores of a word. 
A bit wire is excited by a bit driver and goes through four cores in the same bit position. The 
sense wire links the same cores as the bit wire and is applied to a sense amplifier that shapes the 
voltage pulse when a 1 is read and rejects the small disturbance when a 0 is read.

During a read operation, a word-driver current pulse is applied to the cores of the word se-
lected by the decoder. The read current is in the negative direction (Fig. 7-32) and causes all cores 
of the selected word to go to the 0 state, regardless of their previous state. Cores which previously 
contained a 1 switch their flux and induce a voltage into their sense wire. The flux of cores which 
already contained a 0 is not changed. The voltage pulse on a sense wire of cores with a previous 
1 is amplified in the sense amplifier and sets the corresponding flip-flop in the buffer register.

During a write operation, the buffer register holds the information to be stored in the word 
specified by the address register. We assume that all cores in the selected word are initially 
cleared, i.e., all are in the 0 state so that cores requiring a 1 need to undergo a change of state. A 
current pulse is generated simultaneously in the word driver selected by the decoder and in the bit 
driver, whose corresponding buffer register flip-flop contains a 1. Both currents are in the posi-
tive direction, but their magnitude is only half that needed to switch the flux to the 1 state. This 
half-current by itself is too small to change the direction of magnetization. But the sum of two 
half-currents is enough to switch the direction of magnetization to the 1 state. A core switches to 
the 1 state only if there is a coincidence of two half-currents from a word driver and a bit driver. 
The direction of magnetization of a core does not change if it receives only half-current from 
one of the drivers. The result is that the magnetization of cores is switched to the 1 state only if 
the word and bit wires intersect, that is only in the selected word and only in the bit position in 
which the buffer register is a 1.

Read
current

Sense
wire

Volts

Read 0

Read 1

Time
Output of sense wire

Figure 7-32 Reading a bit from a magnetic core
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The read and write operations described above are incomplete, because the information 
stored in the selected word is destroyed by the reading process and the write operation works 
properly only if the cores are initially cleared. As mentioned in Section 7-7, a read operation 
must be followed by another cycle that restores the values previously stored in the cores. A write 
operation is preceded by a cycle that clears the cores of the selected word.
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The restore operation during a read cycle is equivalent to a write operation which, in effect, 
writes the previously read information from the buffer register back into the word selected. The 
clear operation during a write cycle is equivalent to a read operation which destroys the stored 
information but prevents the read information from reaching the buffer register by inhibiting the 
sense amplifier. Restore and clear cycles are normally initiated by the memory internal control, 
so that the memory unit appears to the outside as having a nondestructive read-out property.
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PROBLEMS

7-1. The register of Fig. 7-1 transfers the input information into the flip-flops when the CP input goes 
through a positive-edge transition. Modify the circuit so that the input information is transferred into 
the register when a clock pulse goes through a negative-edge transition, provided a load input control 
is equal to binary 1.

7-2. The register of Fig. 7-3 loads the inputs during a negative transition of a clock pulse. What internal 
changes are necessary for the inputs to be loaded during the positive edge of a pulse?

7-3. Verify the circuit of Fig. 7-5 using maps to simplify the next-state equations.

7-4. Design a sequential circuit whose state diagram is given in Fig. 6-27 using a 3-bit register and a  
16 × 4 ROM.

7-5. The content of a 4-bit shift register is initially 1101. The register is shifted six times to the right, with 
the serial input being 101101. What is the content of the register after each shift?

7-6. What is the difference between serial and parallel transfer? What type of register is used in each 
case?

7-7.  The 4-bit bidirectional shift register of Fig. 7-9 is enclosed within one IC package. 

(a)  Draw a block diagram of the IC showing all inputs and outputs. 

(b)  Draw a block diagram using three ICs to produce a 12-bit bidirectional shift register.

7-8. The serial adder of Fig. 7-10 uses two 4-bit shift registers. Register A holds the binary number 0101 
and register B holds 0111. The carry flip-flop Q is initially cleared. List the binary values in register 
A and flip-flop Q after each shift.

7-9. What changes are needed in the circuit of Fig. 7-11 to convert it to a circuit that subtracts the content 
of B from the content of A?

7-10. Design a serial counter; in other words, determine the circuit that must be included externally with a 
shift register in order to obtain a counter that operates in a serial fashion.
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7-11. A flip-flop has a 20-ns delay from the time its CP input goes from 1 to 0 to the tune the output is 
complemented. What is the maximum delay in a 10-bit binary ripple counter that uses these flip-
flops? What is the maximum frequency the counter can operate at reliably?

7-12. How many flip-flops must be complemented in a 10-bit binary ripple counter to reach the next count 
after 0111111111?

7-13. Draw the diagram of a 4-bit binary ripple down-counter using flip-flops that trigger on the (a) posi-
tive-edge transition and (b) negative-edge transition.

7-14. Draw a timing diagram similar to that in Fig. 7-15 for the binary ripple counter of Fig. 7-12.

7-15. Determine the next state for each of the six unused states in the BCD ripple counter of Fig. 7-14. Is 
the counter self-starting?

7-16. The ripple counter shown in Fig. P7-18 uses flip-flops that trigger on the negative-edge transition of 
the CP input. Determine the count sequence of the counter. Is the counter self-starting?

 

Q

A B C

J 1

1KQ´ Q´

Q J

K

Q

Count
pulses

J

K

Figure P7-18 Ripple counter

7-17. What happens to the counter of Fig. 7-18 if both the up and down inputs are equal to 1 at the same 
time? Modify the circuit so that it will count up if this condition occurs.

7-18. Verify the flip-flop input functions of the synchronous BCD counter specified in Table 7-5. Draw the 
logic diagram of the BCD counter and include a count-enable control input.

7-19. Show the external connections of four IC binary counters with parallel load (Fig. 7-19) to produce a 
16-bit binary counter. Use a block diagram for each IC.

7-20. Construct a BCD counter using the MSI circuit of Fig. 7-19.

7-21. Construct a mod-12 counter using the MSI circuit specified in Fig. 7-19. Give four alternatives.

7-22. Using two MSI circuits as specified in Fig. 7-19, construct a binary counter that counts from 0 to 
binary 64.

7-23. Using the stop variable from Fig. 7-21 as a start signal, construct a second word-time control that 
stays on for a period of 16 clock pulses.

7-24. Show that an n-bit binary counter connected to an n-to-2n line decoder if equivalent to a ring counter 
with 2n flip-flops. Draw the block diagrams of both circuits for n = 3. How many timing signals are 
generated?

7-25. Include an enable input to the decoder of Fig. 7-22(b) and connect it to the clock pulses. Draw the 
timing signals that are now generated at the outputs of the decoder.

7-26. Complete the design of the Johnson counter of Fig. 7-23, showing the outputs of the eight timing 
signals.

7-27. (a) List the eight unused states in the switch-tail ring counter of Fig. 7-23. Determine the next state 
for each unused state and show that, if the circuit finds itself in an invalid state, it does not return to a 
valid state, (b) Modify the circuit as recommended in the text and show that (1) the circuit produces 
the same sequence of states as listed in Fig. 7-23(b), and (2) the circuit reaches a valid state from any 
one of the unused states.
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7-28. Construct a Johnson counter with ten timing signals.

7-29. (a)     The memory unit of Fig. 7-24 has a capacity of 8192 words of 32 bits per word. How many 
flip-flops are needed for the memory address register and memory buffer register? 

 (b)   How many words will the memory unit contain if the address register has 15 bits?

7-30. When the number of words to be selected in a memory is too large, it is convenient to use a binary 
storage cell with two select inputs; one X (horizontal) and one Y (vertical) select input. Both X and Y 
must be enabled to select the cell.

(a) Draw a binary cell similar to that in Fig. 7-29 with X and Y select inputs.

(b) Show how two 4 × 16 decoders can be used to select a word in a 256-word memory.

7-31. (a)   Draw a block diagram of the 4 × 3 memory of Fig. 7-30, showing all inputs and outputs.

 (b)   Construct an 8 × 3 memory using two such units. Use a block diagram construction.

7-32. It is required to construct a memory with 256 words, 16 bits per word, organized as in Fig. 7-33. 
Cores are available in a matrix of 16 rows and 16 columns.

(a) How many matrices are needed?

(b) How many flip-flops are in the address and buffer registers?

(c) How many cores receive current during a read cycle?

(d) How many cores receive at least half-current during a write cycle?

7-33. Differentiate between Ripple counter and synchronous counter.

7-34. Write short notes on

(a) Registers

(b) Johnson counter

(c) Ring counter

(d) Random access memory

(e) Parallel in Serial Out (PISO) Shift registrar

7-35. Design a synchronous counter up-down with JK flip-flop which counts the odd number from 1 to 15 
in binary.

7-36. Design a sequential circuit whose table is given bellow

Present
Sate Input

A
1
 A

2
 x

Next
State

A
1
 A

2

Out put
y

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 1
1 1
1 0
1 1
1 1
0 1
1 0
0 0

0
0
1
1
1
0
0
0

7-37. Repeat the problem 4 with ROM and a register.

7-38. Design a MOD 10 synchronous binary up counter using T flip-flop and other necessary logic gates. 
Draw the timing diagram.

7-39. Design a 4-bit up/ down asynchronous counter using JK flip-flops and other necessary logic gates. 
Use one directional control input. If P = 0, the counter will count up and for P = 1, the counter will 
count down.
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register-transfer Logic

8.1 Introduction

A digital system is a sequential logic system constructed with flip-flops and gates. It was shown 
in previous chapters that a sequential circuit can be specified by means of a state table. To specify 
a large digital system with a state table would be very difficult, if not impossible, because the 
number of states would be prohibitively large. To overcome this difficulty, digital systems are 
invariably designed using a modular approach. The system is partitioned into modular subsys-
tems, each of which performs some functional task. The modules are constructed from such 
digital functions as registers, counters, decoders, multiplexers, arithmetic elements, and control 
logic. The various modules are interconnected with common data and control paths to form a 
digital computer system. A typical digital system module would be the processor unit of a digital 
computer.

The interconnection of digital functions to form a digital system module cannot be de-
scribed by means of combinational or sequential logic techniques. These techniques were devel-
oped to describe a digital system at the gate and flip-flop level and are not suitable for describing 
the system at the digital function level. To describe a digital system in terms of functions such 
as adders, decoders, and registers, it is necessary to employ a higher-level mathematical nota-
tion. The register-transfer logic method fulfills this requirement. In this method, the registers are 
selected to be the primitive components in the digital system, rather than the gates and flip-flops 
as in sequential logic. In this way it is possible to describe, in a concise and precise manner, 
the information flow and processing tasks among the data stored in the registers. The register-
transfer logic method uses a set of expressions and statements which resemble the statements 
used in programming languages. This notation provides the necessary tools for specifying a 
prescribed set of interconnections between various digital functions. An important characteristic 
of the register-transfer logic method of presentation is that it is closely related to the way people 
would prefer to specify the operations of a digital system.

The basic components of this method are those that describe a digital system from the op-
erational level. The operation of a digital system is best described by specifying:

1. The set of registers in the system and their functions.

2. The binary-coded information stored in the registers.

3. The operations performed on the information stored in the registers.

4. The control functions that initiate the sequence of operations.
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These four components form the basis of the register-transfer logic method for describing 
digital systems.

A register, as defined in the register-transfer logic notation, not only implies a register as 
defined in Chapter 7, but also encompasses all other types of registers, such as shift registers, 
counters, and memory units. A counter is considered to be a register whose function is to incre-
ment by 1 the information stored within it. A memory unit is considered to be a collection of 
storage registers where information can be stored. A flip-flop standing alone is taken to be a 1-bit 
register. In fact, the flip-flops and associated gates of any sequential circuit are called a register 
by this method of designation.

The binary information stored in registers may be binary numbers, binary-coded decimal 
numbers, alphanumeric characters, control information, or any other binary-coded information. 
The operations that are performed on the data stored in registers depend on the type of data 
encountered. Numbers are manipulated with arithmetic operations, whereas control information 
is usually manipulated with logic operations such as setting and clearing specified bits in the 
register.

The operations performed on the data stored in registers are called microoperations. A mi-
crooperation is an elementary operation that can be performed in parallel during one clock pulse 
period. The result of the operation may replace the previous binary information of a register or 
may be transferred to another register. Examples of microoperations are shift, count, add, clear, 
and load. The digital functions introduced in Chapter 7 are registers that implement microop-
erations. A counter with parallel load is capable of performing the microoperations increment 
and load. A bidirectional shift register is capable of performing the shift-right and shift-left mi-
crooperations. The combinational MSI functions introduced in Chapter 5 can be used in some 
applications to perform microoperations. A binary parallel adder is useful for implementing the 
add microoperation on the contents of two registers that hold binary numbers. A microoperation 
requires only one clock pulse for execution if the operation is done in parallel. In serial comput-
ers, a microoperation requires a number of pulses equal to the word time in the system. This is 
equal to the number of bits in the shift registers that transfer the information serially while a 
microoperation is being executed.

The control functions that initiate the sequence of operations consist of timing signals that 
sequence the operations one at a time. Certain conditions which depend on results of previous 
operations may also determine the state of control functions. A control function is a binary vari-
able that, when in one binary state, initiates an operation and, when in the other binary state, 
inhibits the operation.

The purpose of this chapter is to introduce the components of the register-transfer logic 
method in some detail. The chapter introduces a symbolic notation for representing registers, 
for specifying operations on the contents of registers, and for specifying control functions. This 
symbolic notation is sometimes called a register-transfer language or computer hardware de-
scription language. The register-transfer language adopted here is believed to be as simple as 
possible. It should be realized, however, that no standard symbology exists for a register-transfer 
language, and different sources adopt different conventions.

A statement in a register-transfer language consists of a control function and a list of mi-
crooperations. The control function (which may be omitted sometimes) specifies the control 
condition and timing sequence for executing the listed micro-operations. The microoperations 
specify the elementary operations to be performed on the information stored in registers. The 
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types of microoperations most often encountered in digital systems can be classified into four  
categories:

1. Interregister-transfer microoperations do not change the information content when the 
binary information moves from one register to another.

2. Arithmetic microoperations perform arithmetic on numbers stored in registers.

3. Logic microoperations perform operations such as AND and OR on individual pairs of 
bits stored in registers.

4. Shift microoperations specify operations for shift registers.

Sections 8-2 through 8-4 define a basic set of microoperations. Special symbols are as-
signed to the microoperations in the set, and each symbol is shown to be associated with cor-
responding digital hardware that implements the stated microoperation. It is important to realize 
that the register-transfer logic notation is directly related to, and cannot be separated from, the 
registers and the digital functions that it defines.

The microoperations performed on the information stored in registers depend on the type 
of data that reside in the registers. The binary information commonly found in registers of digital 
computers can be classified into three categories:

1. Numerical data such as binary numbers or binary-coded decimal numbers used in arith-
metic computations.

2. Nonnumerical data such as alphanumeric characters or other binary-coded symbols used 
for special applications.

3. Instruction codes, addresses, and other control information used to specify the data-
processing requirements in the system.

Sections 8-5 through 8-9 discuss the representation of numerical data and their relationship 
to the arithmetic microoperations. Section 8-10 explains the use of logic microoperations for 
processing nonnumerical data. The representation of instruction codes and their manipulation 
with microoperations are presented in Sections 8-11 and 8-12.

8.2 Interregister Transfer

The registers in a digital system are designated by capital letters (sometimes followed by numer-
als) to denote the function of the register. For example, the register that holds an address for 
the memory unit is usually called the memory address register and is designated MAR. Other 
designations for registers are A, B, R1, R2. and IR. The cells or flip-flops of an n-bit register are 
numbered in sequence from 1 to n (or from 0 to n − 1) starting either from the left or from the 
right. Figure 8-1 shows four ways to represent a register in block diagram form. The most com-
mon way to represent a register is by a rectangular box with the name of the register inside, as 
shown in Fig. 8-1(a). The individual cells can be distinguished as in (b), with each cell assigned a 
letter with a subscript number. The numbering of cells from right to left can be marked on top of 
the box as in the 12-bit register MBR in (c). A 16-bit register is partitioned into two parts in (d). 
Bits 1 through 8 are assigned the symbol letter L (for low) and bits 9 through 16 are assigned the 
symbol letter H (for high). The name of the 16-bit register is PC. The symbol PC(H) refers to the 
eight high-ordered cells and PC(L) refers to the eight low-ordered cells of the register.
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Registers can be specified in a register-transfer language with a declaration statement. For 
example, the registers of Fig. 8-1 can be defined with declaration statements such as:

DECLARE REGISTER     A(8), MBR(12), PC(16)
DECLARE SUBREGISTER     PC(L) = PC(1−8), PC(H) = PC(9−16)

However, in this book we will not use declaration statements to define registers; instead, the 
registers will be shown in block diagram form as in Fig. 8-1. Registers shown in a block diagram 
can be easily converted into declaration statements for simulation purposes.

Information transfer from one register to another is designated in symbolic form by means 
of the replacement operator. The statement:

A ← B

denotes the transfer of the contents of register B into register A. It designates a replacement of 
the contents of A by the contents of B. By definition, the contents of the source register B do not 
change after the transfer.

A statement that specifies a register transfer implies that circuits are available from the out-
puts of the source register to the cell inputs of the destination register. Normally, we do not want 
this transfer to occur with every clock pulse, but only under a predetermined condition. The con-
dition that determines when the transfer is to occur is called a control junction. A control func-
tion is a Boolean function that can be equal to 1 or 0. The control function is included with the  
statement as follows:

x′T
1
: A ← B

The control function is terminated with a colon. It symbolizes the requirement that the transfer 
operation be executed by the hardware only when the Boolean function x′T

1
 = 1, i.e., when vari-

able x = 0 and timing variable T
1
= 1.

Every statement written in a register-transfer language implies a hardware construction for 
implementing the transfer. Figure 8-2 shows the implementation of the statement written above. 
The outputs of register B are connected to the inputs of register A, and the number of lines in this 
connection is equal to the number of bits in the registers. Register A must have a load control 
input so that it can be enabled when the control function is 1. Although not shown, it is assumed 
that register A has an additional input that accepts continuous synchronized clock pulses. The 
control function is generated by means of an inverter and an AND gate. It is also assumed that the 
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         (a) Register A                                 (b) Showing individual cells

        12                                              1       16                   9  8                    1
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  (c) Numbering of cells                       (d) Portions of a register

Figure 8.1 Block diagram of registers
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control unit that generates the timing variable T
1
, is synchronized with the same clock pulses that 

are applied to register A. The control function stays on during one clock pulse period (when the 
timing variable is equal to 1), and the transfer occurs during the next transition of a clock pulse.

The basic symbols of the register-transfer logic are listed in Table 8-1. Registers are de-
noted by capital letters, and numerals may follow the letters. Subscripts are used to distinguish 
individual cells of the register. Parentheses are used to define a portion of a register. The arrow 
denotes a transfer of information and the direction of transfer. A colon terminates a control func-
tion, and the comma is used to separate two or more operations that are executed at the same 
time. The statement:

T
3
: A ← B,       B ← A

denotes an exchange operation that swaps the contents of two registers during one common clock 
pulse. This simultaneous operation is possible in registers with master-slave or edge-triggered 
flip-flops.

The square brackets are used in conjunction with memory transfer. The letter M designates 
a memory word, and the register enclosed inside the square brackets provides the address for the 
memory. This is explained in more detail below.

There are occasions when a destination register receives information from two sources, but 
evidently not at the same time. Consider the two statements:

T
1
: C ← A

T
5
: C ← B

Register B

Load
T1

Control
x

Register A

Figure 8.2 Hardware implementation of the statement x′T1: A ← B

Table 8-1 Basic symbol for register-transfer logic

Symbol Description Examples

Letters (and numerals) Denotes a register A, MBR, R2

Subscript Denotes a bit of a register A
2
, B

6

Parentheses ( ) Denotes a portion of a register PC(H), MBR(OP)

Arrow ← Denotes transfer of information A ← B

Colon : Terminates a control function x′T
0
:

Comma , Separates two microoperations A ← B, B ← A

Square brackets [ ] Specifies an address for memory transfer MBR ← M[MAR]
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The first line states that the contents of register A are to be transferred to register C when timing 
variable T

1
 occurs. The second statement uses the same destination register as the first, but with a 

different source register and a different timing variable. The connection of two source registers to 
the same destination register cannot be done directly, but requires a multiplexer circuit to select 
between two possible paths. The block diagram of the circuit that implements the two statements 
is shown in Fig. 8-3. For registers with four bits each, we need a quadruple 2-to-l line multiplexer, 
similar to the one previously given in Fig. 5-17, in order to select either register A or register B. 
When T

5
 = 1, register B is selected, but when T

1
 = 1, register A is selected (because T

5
 must be 

0 when T
1
 is 1). The multiplexer and the load input of register C are enabled every time T

1
 or T

5 

occurs. This causes a transfer of information from the selected source register into the destina-
tion register.

8.2.1 Bus Transfer

Quite often a digital system has many registers, and paths must be provided to transfer informa-
tion from one register to another register. Consider, for example, the requirement for transfer 
among three registers as shown in Fig. 8-4. There are six data paths, and each register requires a 
multiplexer to select between two sources. If each register consists of n flip-flops, there is a need 
for 6n lines and three multiplexers. As the number of registers increases, the number of intercon-
nection lines and multiplexers increases. If we restrict the transfer to one at a time, the number 
of paths among the registers can be reduced considerably. This is shown in Fig. 8-5, where the 

Register B

Quad 2×1
      MUX
   (Fig. 5-17)

Register A

Register C

Select

Enable

Load
T1

T5

14

1

01

414

Figure 8.3 Use of a multiplexer to transfer information from two sources into a single  
destination

R1 R2 R3

Figure 8.4 Transfer among three registers
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output and input of each flip-flop is connected to a common line through an electronic circuit that 
acts like a switch. All the switches are normally open until a transfer is required. For a transfer 
from F

1
 to F

3
, for example, switches S

1 
and S

4
 are closed to form the required path. This scheme 

can be extended to registers with n flip-flops, and it requires n common lines.
A group of wires through which binary information is transferred one at a time among reg-

isters is called a bus. For parallel transfer, the number of lines in the bus is equal to the number 
of bits in the registers. The idea of a bus transfer is analogous to a central transportation system 
used to bring commuters from one point to another. Instead of each commuter using private 
transportation to go from one location to another, a bus system is used, and the commuters wait 
in line until transportation is available.

A common-bus system can be constructed with multiplexers, and a destination register for 
the bus transfer can be selected by means of a decoder. The multiplexers select one source regis-
ter for the bus, and the decoder selects one destination register to transfer the information from 
the bus. The construction of a bus system for four registers is depicted in Fig. 8-6. The four bits 
in the same significant position in the registers go through a 4-to-l line multiplexer to form one 
line of the bus. Only two multiplexers are shown in the diagram: one for the low-order significant 
bits and one for the high-order significant bits. For registers of n bits, n multiplexers are needed 
to produce an n-line bus. The n lines in the bus are connected to the n inputs of ail registers. The 
transfer of information from the bus into one destination register is accomplished by activating 
the load control of that register. The particular load control activated is selected by the outputs of 
the decoder when enabled. If the decoder is not enabled, no information will be transferred, even 
though the multiplexers place the contents of a source register onto the bus.

To illustrate with a particular example, consider the statement:

C ← A

The control function that enables this transfer must select register A for the bus and register C for 
the destination. The multiplexers and decoder select inputs must be:

Select source = 00  (MUXs select register A)

Select destination = 10  (decoder selects register C)

Decoder enable = 0  (decoder is enabled)

On the next clock pulse, the contents of A, being on the bus, are loaded into register C.

8.2.2 Memory Transfer

The operation of a memory unit was described in Section 7-7. The transfer of information from 
a memory register to the outside environment is called a read operation. The transfer of new 

S3

S4

S2

S5

S1

S6

F1 F2 F3

Figure 8.5 Transfer through one common line
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information into a memory register is called a write operation. In both operations, the memory 
register selected is specified by an address.

A memory register or word is symbolized by the letter M. The particular memory regis-
ter among the many available in a memory unit is selected by the memory address during the 
transfer. It is necessary to specify the address of M when writing memory-transfer statements. In 

0
1
2
3

0
1
2
3

Select

4⋅1
MUX
No. 1
(Fig.
5-16)

4⋅1
MUX
No. 1
(Fig.
5-16)

Load
Register A

Register B

Register C

Register D

Line No. n

n BUS LINES
   Line NO. 1

D1
Dn

C1
Cn

B1
Bn

A1
An

0 1

Select

Enable

Destination
   decoder

2 3

Figure 8.6 Bus system for four registers
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some applications, only one address register is connected to the address terminals of the memory. 
In other applications, the address lines form a common-bus system to allow many registers to 
specify an address. When only one register is connected to the memory address, we know that 
this register specifies the address and we can adopt a convention that will simplify the notation. 
If the letter M stands by itself in a statement, it will always designate a memory register selected 
by the address presently in MAR. Otherwise, the register that specifies the address (or the address 
itself) will be enclosed within square brackets after the symbol M.

Consider a memory unit that has a single address register, MAR, as shown in Fig. 8-7. The 
diagram also shows a single memory buffer register MBR used to transfer data into and out of 
memory. There are two memory-transfer operations: read and write. The read operation is a 
transfer from the selected memory register M into MBR. This is designated symbolically by the 
statement:

R: MBR ← M

R is the control function that initiates the read operation. This causes a transfer of information 
into MBR from the selected memory register M specified by the address in MAR. The write 
operation is a transfer from MBR to the selected memory register M. This is designated by the 
statement:

W: M ← MBR

W is the control function that initiates the write operation. This causes a transfer of information 
from MBR into the memory register M selected by the address presently in MAR.

The access time of a memory unit must be synchronized with the master clock pulses in 
the system that triggers the processor registers. In fast memories, the access time may be shorter 
than or equal to a clock pulse period. In slow memories, it may be necessary to wait for a number 
of clock pulses for the transfer to be completed. In magnetic-core memories, the processor reg-
isters must wait for the memory cycle time to be completed. For a read operation, the cycle time 
includes the restoration of the word after reading. For a write operation, the cycle time includes 
the clearing of the memory word prior to writing.

In some systems, the memory unit receives addresses and data from many registers con-
nected to common buses. Consider the case depicted in Fig. 8-8. The address to the memory unit 
comes from an address bus. Four registers are connected to this bus and any one may supply an 
address. The output of the memory can go to any one of four registers which are selected by a de-
coder. The data input to the memory comes from the data bus, which selects one of four registers. 
A memory word is specified in such a system by the symbol M followed by a register enclosed in 

Memory unit
Read
Write

MBR

MAR

Figure 8.7 Memory unit that communicates with two external registers
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square brackets. The contents of the register within the square brackets specify the address for M. 
The transfer of information from register B2 to a memory word selected by the address in register 
A1 is symbolized by the statement:

W: M[A1]← B2

This is a write operation, with register A1 specifying the address. The square brackets after the 
letter M give the address register used for selecting the memory register M. The statement does 
not specify the buses explicitly. Nevertheless, it implies the required selection inputs for the two 
multiplexers that form the address and data buses.

The read operation in a memory with buses can be specified in a similar manner. The state-
ment:

R: B0 ← M[A3]

Memory
   unitMUX

Outputs

Select

Select

Select

Load

Data bus

Inputs

Read

A0

A1

A2

A3

Write

Address bus

MUX

Destination
   decoder

B0

B1

B2

B3

Figure 8.8 Memory unit that communicates with multiple registers
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symbolizes a read operation from a memory register whose address is given by A3. The binary 
information coming out of memory is transferred to register B0. Again, this statement implies 
the required selection inputs for the address multiplexer and the selection variables for the des-
tination decoder.

8.3 Arithmetic, Logic, and Shift Microoperations

The interregister-transfer microoperations do not change the information content when the bi-
nary information moves from the source register to the destination register. All other microop-
erations change the information content during the transfer. Among all possible operations that 
can exist in a digital system, there is a basic set from which all other operations can be obtained. 
In this section, we define a set of basic microoperations, their symbolic notation, and the digital 
hardware that implements them. Other microoperations with appropriate symbols can be defined 
if necessary to suit a particular application.

8.3.1 Arithmetic Microoperations

The basic arithmetic microoperations are add, subtract, complement, and shift. Arithmetic shifts 
are explained in Section 8-7 in conjunction with the type of binary data representation. All other 
arithmetic operations can be obtained from a variation or a sequence of these basic microopera-
tions.

The arithmetic microoperation defined by the statement:

F ← A + B

specifies an add operation. It states that the contents of register A are to be added to the contents 
of register B, and the sum transferred to register F. To implement this statement, we require three 
registers, A, B, and F, and the digital function that performs the addition operation, such as a par-
allel adder. The other basic arithmetic operations are listed in Table 8-2. Arithmetic subtraction 
implies the availability of a binary parallel subtractor composed of full-subtractor circuits con-
nected in cascade. Subtraction is most often implemented through complementation and addition 
as specified by the statement:

F ← A + B  + 1

Table 8-2 Arithmetic microoperations

Symbolic designation Description

F ← A + B Contents of A plus B transferred to F

F ← A − B Contents of A minus B transferred to F

B ← B Complement register B (1’s complement)

B ← B + 1 Form the 2’s complement of the contents of register B

F ← A + B + 1 A plus the 2’s complement of B transferred to F

A ← A + 1 Increment the contents of A by 1 (count up)

A ← A − 1 Decrement the contents of A by 1 (count down)
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B is the symbol for the 1’s complement of B. Adding 1 to the 1’s complement gives the 2’s 
complement of B. Adding A to the 2’s complement of B produces A minus B.

The increment and decrement microoperations are symbolized by a plus-one or minus-one 
operation executed on the contents of a register. These microoperations are implemented with an 
up-counter or down-counter, respectively.

There must be a direct relationship between the statements written in a register-transfer 
language and the registers and digital functions which are required for their implementation. To 
illustrate this relationship, consider the two statements:

T
2
: A ← A + B

T
5
 A ← A +1

Timing variable T
2
 initiates an operation to add the contents of register B to the present con-

tents of A. Timing variable T
5
 increments register A. The incrementing can be easily done with a 

counter, and the sum of two binary numbers can be generated with a parallel adder. The transfer 
of the sum from the parallel adder into register A can be activated with a load input in the register. 
This dictates that the register be a counter with parallel-load capability. The implementation of 
the above two statements is shown in block diagram form in Fig. 8-9. A parallel adder receives 
input information from registers A and B. The sum bits from the parallel adder are applied to the 
inputs of A, and timing variable T

2
 loads the sum into register A. Timing variable T

5
 increments 

the register by enabling the increment input (or count input, as in Fig. 7-19).
Note that the arithmetic operations multiply and divide are not listed in Table 8-2. The mul-

tiplication operation can be represented by the symbol *, and the division by a /. These two opera-
tions are valid arithmetic operations but are not included in the basic set of microoperations. The 
only place where these operations can be considered as microoperations is in a digital system 
where they are implemented by means of combinational circuits. In such a case, the signals that 
perform these operations propagate through gates, and the result of the operation can be trans-
ferred into a destination register by a clock pulse as soon as the output signals progagate through 
the combinational circuit. In most computers, the multiplication operation is implemented with a 
sequence of add and shift microoperations. Division is implemented with a sequence of subtract 
and shift microoperations. To specify the hardware implementation in such a case requires a list 
of statements that use the basic microoperations of add, subtract, and shift.

Register B

Load

Sum

T2

T5
Increment

Parallel adder
    (Fig. 5-1)

Register A
(Fig. 7-19)

Figure 8.9 Implementation for the add and increment microoperations
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8.3.2 Logic Microoperations

Logic microoperations specify binary operations for a string of bits stored in registers. These 
operations consider each bit in the registers separately and treat it as a binary variable. As an il-
lustration, the exclusive-OR microoperation is symbolized by the statement:

F ← A ⊕ B

It specifies a logic operation that considers each pair of bits in the registers as binary variables. 
If the content of register A is 1010 and that of register B 1100, the information transferred to 
register F is 0110:

1010 content of A

1100 content of B

0110 content of F ← A ⊕ B

There are 16 different possible logic operations that can be performed with two binary 
variables. These logic operations are listed in Table 2-6. All 16 logic operations can be expressed 
ill terms of the AND, OR, and complement operations. Special symbols will be adopted for 
these three microoperations to distinguish them from the corresponding symbols used to express 
Boolean functions. The symbol ∨  will be used to denote an OR microoperation and the symbol 
∧  to denote an AND microoperation. The complement microoperation is the same as the 1’s 
complement and uses a bar on top of the letter (or letters) that denotes the register. By using 
these symbols, it will be possible to differentiate between a logic microoperation and a control 
(or Boolean) function. The symbols for the four logic microoperations are summarized in Table 
8-3. The last two symbols are for the shift microoperations discussed below.

A more important reason for adopting a special symbol for the OR microoperation is to 
differentiate the symbol +, when used as an arithmetic plus, from a logic OR operation. Although 
the + symbol has two meanings, it will be possible to distinguish between them by noting where 
the symbol occurs. When this symbol occurs in a microoperation, it denotes an arithmetic plus. 
When it occurs in a control (or Boolean) function, it denotes a logic OR operation. For example, 
in the statement:

T
1
 + T

2
: A←A+B, C ← D ∨ F

Table 8-3 Logic and shift microoperations

Symbolic designation Description

A ← A Complement all bits of register A

F ← A ∨ B Logic OR microoperation

F ← A ∧ B Logic AND microoperation

F ← A ⊕ B Logic exclusive-OR microoperation

A ← shl A Shift-left register A

A ← shr A Shift-right register A
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the + between T
1
 and T

2
 is an OR operation between two timing variables of a control function. 

The + between A and B specifies an add microoperation. The OR microoperation is designated 
by the symbol ∨ between registers D and F.

The logic microoperations can be easily implemented with a group of gates. The comple-
ment of a register of n bits is obtained from n inverter gates. The AND microoperation is obtained 
from a group of AND gates, each of which receives a pair of bits from the two source registers. 
The outputs of the AND gates are applied to the inputs of the destination register. The OR micro-
operation requires a group of OR gates arranged in a similar fashion.

8.3.3 Shift Microoperations

Shift microoperations transfer binary information between registers in serial com puters. They 
are also used in parallel computers for arithmetic, logic, and control operations. Registers can be 
shifted to the left or to the right. There are no conventional symbols for the shift operations. In 
this book, we adopt the symbols shl and shr for the shift-left and shift-right operations, respec-
tively, For example:

A ← shl A,      B ← shr B

are two microoperations that specify a l-bit shift to the left of register A and a 1-bit shift to the 
right of register B. The register symbol must be the same on both sides of the arrow as in the 
increment operation.

While the bits of a register are shifted, the extreme flip-flops receive information from the 
serial input. The extreme flip-flop is in the leftmost position of the register during a shift-right 
operation and in the rightmost position during a shift-left operation. The information transferred 
into the extreme flip-flops is not specified by the shl and shr symbols. Therefore, a shift microop-
eration statement must be accompanied with another microoperation that specifies the value of 
the serial input for the bit transfer into the extreme flip-flop. For example:

A ← shl A,  A
1
 ← A

n

is a circular shift chat transfers the leftmost bit from A
n
 into the rightmost flip-flop A

1
 Similarly:

A ← shr A,  A
n
 ← E

is a shift-right operation with the leftmost flip-flop A
n
 receiving the value of the 1-bit register E.

8.4 Conditional Control Statements

It is sometimes convenient to specify a control condition by a conditional statement rather than a 
Boolean control function. A conditional control statement is symbolized by an if-then-else state-
ment in the following manner:

P: If (condition) then [microoperation(s)] else [microoperation(s)]

The statement is interpreted to mean that if the control condition stated within the parentheses 
after the word if is true, then the microoperation (or microoperations) enclosed within the paren-
theses after the word then is executed. If the condition is not true, the microoperation listed after 
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the word else is executed. In any case, the control function P must occur for anything to be done. 
If the else part of the statement is missing, then nothing is executed if the condition is not true.

The conditional control statement is more of a convenience than a necessity. It enables the 
writing of clearer statements that are easier for people to interpret. It can always be rewritten in 
a conventional statement without an if-then-else form. As an example, consider the conditional 
control statement:

T
2
: If (C = 0) then (F ← 1) else (F ← 0)

F is assumed to be a 1-bit register (flip-flop) that can be set or cleared. If register C is a 1-bit 
register, the statement is equivalent to the following two statements:

C′T
2
: F ← 1

CT
2
: F ← 0

Note that the same timing variable can occur in two separate control functions. The variable C 
can be either 0 or 1; therefore, only one of the microoperations will be executed during T

2
, de-

pending on the value of C.
If register C has more than one bit, the condition C = 0 means that all bits of C must be 0. 

Assume that register C has four bits C
1
, C

2
, C

3
, and C

4
. The condition for C = 0 can be expressed 

with a Boolean function:

x = C′
1
C′

2
C′

3
C′

4
 = (C

1
 + C

2
 + C

3
 + C

4
)′

Variable x can be generated with a NOR gate. Using the definition of x as above, the conditional 
control statement is now equivalent to the two statements;

xT
2
:           F ← 1

x′T
2
:           F ← 0

Variable x = 1 if C = 0 but is equal to 0 if C ≠ 0.
When writing conditional control statements, one must realize that the condition stated 

after the word if is part of the control function and not part of a microoperation statement. The 
condition must be clearly stated and must be implementable with a combinational circuit,

8.5 Fixed-point Binary Data

The binary information found in registers represents either data or control infor mation. Data 
are operands and other discrete elements of information operated on to achieve required results. 
Control information is a bit or group of bits that specify the operations to be done. A unit of 
control information stored in digital computer registers is called an instruction and is a binary 
code that specifies the operations to be performed on the stored data. Instruction codes and their 
representation in registers are presented in Section 8-11. Some commonly used types of data and 
their representation in registers are presented in this and the following sections.

8.5.1 Sign and Radix-Point Representation

A register with n flip-flops can store a binary number of n bits; each flip-flop represents one bi-
nary digit. This represents the magnitude of the number but does not give information about its 
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sign or the position of the binary point. The sign is needed for arithmetic operations, as it shows 
whether the number is positive or negative. The position of the binary point is needed to represent 
integers, fractions, or mixed integer-fraction numbers.

The sign of a number is a discrete quantity of information having two values: plus and mi-
nus. These two values can be represented by a code of one bit. The convention is to represent a 
plus with a 0 and a minus with a 1. To represent a sign binary number in a register, we need n = 
k + 1 flip-flops, k flip-flops for the magnitude and one for storing the sign of the number.

The representation of the binary point is complicated by the fact that it is characterized by 
a position between two flip-flops in the register. There are two possible ways of specifying the 
position of the binary point in a register: by giving it a fixed-point position or by employing a 
floating-point representation. The fixed-point method assumes that the binary point is always 
fixed in one position. The two positions most widely used are (1) a binary point in the extreme 
left of the register to make the stored number a fraction, and (2) a binary point in the extreme 
right of the register to make the stored number an integer. In both cases, the binary point is not 
physically visible but is assumed from the fact that the number stored in the register is treated 
as a fraction or as an integer. The floating-point representation uses a second register to store a 
number that designates the position of the binary point in the first register. Floating-point repre-
sentation is explained in Section 8-9.

8.5.2 Signed Binary Numbers

When a fixed-point binary number is positive, the sign is represented by 0 and the magnitude by 
a positive binary number. When the number is negative, the sign is represented by 1 and the rest 
of the number may be represented in any one of three different ways. These are:

1. Sign-magnitude.

2. Sign-1’s complement.

3. Sign-2’s complement.

In the sign-magnitude representation, the magnitude is represented by a positive binary number. 
In the other two representations, the number is in either 1’s or 2’s complement. If the number is 
positive, the three representations are the same.

As an example, the binary number 9 is written below in the three representations. It is as-
sumed that a 7-bit register is available to store the sign and the magnitude of the number.

    + 9  − 9
Sign-magnitude  0 001001 1 001001
Sign-1’s complement 0 001001 1 110110
Sign-2’s complement 0 001001 1 110111

A positive number in any representation has a 0 in the leftmost bit for a plus, followed by a posi-
tive binary number. A negative number always has a 1 in the leftmost bit for a minus, but the 
magnitude bits are represented differently. In the sign-magnitude representation, these bits are 
the positive number; in the 1’s-complement representation, these bits are the complement of the 
binary number; and in the 2’s-complement representation, the number is in its 2’s-complement 
form.
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The sign-magnitude representation of − 9 is obtained from +9 (0 001001) by complement-
ing only the sign bit. The sign-1’s-complement representation of − 9 is obtained by complement-
ing all the bits of 0 001001 (+ 9), including the sign bit. The sign-2’s-complement representation 
is obtained by taking the 2’s complement of the positive number, including its sign bit.

8.5.3 Arithmetic Addition

The reason for using the sign-complement representation for negative numbers will become ap-
parent after we consider the steps involved in forming the sum of two signed numbers. The sign-
magnitude representation is the one used in everyday calculations. For example, +23 and −35 are 
represented with a sign, followed by the magnitude of the number. To add these two numbers, it 
is necessary to subtract the smaller magnitude from the larger magnitude and to use the sign of 
the larger number for the sign of the result, i.e., ( + 23) + (− 35) = − (35 − 23) = − 12. The process 
of adding two signed numbers when negative numbers are represented in sign-magnitude form 
requires that we compare their signs. If the two signs are the same, we add the two magnitudes. 
If the signs are not the same, we compare the relative magnitudes of the numbers and then sub-
tract the smaller from the larger. It is necessary also to determine the sign of the result. This is a 
process that, when implemented with digital hardware, requires a sequence of control decisions 
as well as circuits that can compare, add, and subtract numbers.

Now compare the above procedure with the procedure that forms the sum of two signed 
binary numbers when negative numbers are in l’s- or 2’s-complement representation. These pro-
cedures are very simple and can be stated as follows:

Addition with sign-2’s-complement representation. The addition of two signed binary num-
bers with negative numbers represented by their 2’s complement is obtained from the 
addition of the two numbers including their sign bits. A carry in the most significant 
(sign) bit is discarded.

Addition with sign-1’s-complement representation. The addition of two signed binary num-
bers with negative numbers represented by their 1’s complement is obtained from the 
addition of the two numbers, including their sign bits. If there is a carry out of the most 
significant (sign) bit, the result is incremented by 1 and its carry is discarded.

Numerical examples for addition with negative numbers represented by their 2’s comple-
ment are shown below. Note that negative numbers must be initially in 2’s-complement represen-
tation and that the sum obtained after addition is always in the required representation.

+ 6 0 000110 − 6 1 111010

+ +

+ 9 0 001001 + 9 0 001001

+ 15 0 001111 + 3 0 000010

+ 6 0 000110 + − 9 1 110111
+

− 9 1 110111 − 9 1 110111

− 3 1 111101 − 18 1 101110
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The two numbers in the four examples are added, including their sign bits. Any carry out 
of the sign bit is discarded, and negative results are automatically in their 2’s-complement form.

The four examples are repeated below with negative numbers represented by their l’s 
complement. The carry out of the sign bit is returned and added to the least significant bit  
(end-around carry).

+ 6 0 000110 −  6 1 111001

+ +

+ 9 0 001001 +  9 0 001001

+ 15 0 001111 10 000010
+

1

+  3 0 000011

+ 6 0 000110 + −  9 1 110110
+

− 9 1 110110 −  9 1 110110

− 3 1 111100 11 101100
+

1

−  18 1 101101

The advantage of the sign-2’s-complement representation over the sign-1’s-complement 
form (and the sign-magnitude form) is that it contains only one type of zero. The other two rep-
resentations have both a positive zero and a negative zero. For example, adding + 9 to − 9 in the 
1’s-complement representation, one obtains:

+ 9 0 001001
− 9 1 110110

− 0 1 111111

and the result is a negative zero, i.e., the complement of 0 000000 (positive zero). A zero with 
an associated sign bit will appear in a register in one of the following forms, depending on the 
representation used for negative numbers:

+ 0 − 0

In sign-magnitude 0 0000000 1  0000000

In sign-1’s complement 0 0000000 1  1111111

In sign-2’s complement 0 0000000 none

Both the sign-magnitude and the 1’s-complement representations have associated with them 
the possibility of a negative zero. The sign-2’s-complement representation has only a posi-
tive zero. This occurs because the 2’s complement of 0 000000 (positive zero) is 0 000000 and 
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may be obtained from the 1’s complement plus 1 (i.e., 1 111111 + 1) provided the end carry is  
discarded.

The range of binary integer numbers that can be accommodated in a register of n = k + 1 
bits is ± (2k − 1), where k bits are reserved for the number and one bit for the sign. A register 
with 8 bits can store binary numbers in the range of ± (27 − 1) = ± 127. However, since the 
sign-2’s-complement representation has only one zero, it should accommodate one more num-
ber than the other two representations. Consider the representation of the largest and smallest  
numbers:

sign-1’s complement sign-2’s complement

+ 126 = 0 1111110 − 126 = 1 0000001 1  0000010

+ 127 = 0 1111111 − 127 = 1 0000000 1  0000001
+ 128 (impossible) − 128 (impossible) 1  0000000

In the sign-2’s-complement representation, it is possible to represent −128 with eight bits. 
In general, the sign-2’s-complement representation can accommodate numbers in the range  
+ (2k − 1) to −2k, where k = n − 1 and n is the number of bits in the register.

8.5.4 Arithmetic Subtraction

Subtraction of two signed binary numbers when negative numbers are in the 2’s-complement 
form is very simple and can be stated as follows: Take the 2’s complement of the subtrahend (in-
cluding the sign bit) and add it to the minuend (including sign bit). This procedure uses the fact 
that a subtraction operation can be changed to an addition operation if the sign of the subtrahend 
is changed. This is demonstrated by the following relationships (B is the subtrahend):

(± A) − (− B) = (± A) + (+ B)

(± A) − (+ B) = (± A) + (− B)

But changing a positive number to a negative number is easily done by taking its 2’s complement 
(including the sign bit). The reverse is also true because the complement of the complement 
restores the number to its original value.

The subtraction with l’s-complement numbers is similar except for the end-around carry. 
Subtraction with sign-magnitude requires that only the sign bit of the subtrahend be comple-
mented. Addition and subtraction of binary numbers in sign-magnitude representation is demon-
strated in Section 10-3.

Because of the simple procedure for adding and subtracting binary numbers when negative 
numbers are in sign-2’s-complement form, most computers adopt this representation over the 
more familiar sign-magnitude form. The reason 2’s complement is usually chosen over the 1’s 
complement is to avoid the end-around carry and the occurrence of a negative zero.

8.6 Overflow

When two numbers of n digits each are added and the sum occupies n + 1digits, we say that an 
overflow occurs. This is true for binary numbers or decimal numbers whether signed or unsigned. 
When one performs the addition with paper and pencil, an overflow is not a problem, since we 
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are not limited by the width of the page to write down the sum. An overflow is a problem in a 
digital computer because the lengths of all registers, including memory registers, are of finite 
length. A result of n + 1 bits cannot be accommodated in a register of standard length n. For this 
reason, many computers check for the occurrence of an overflow, and when it occurs, they set an 
overflow flip-flop for the user to check.

An overflow cannot occur after an addition if one number is positive and the other is nega-
tive, since adding a positive number to a negative number produces a result (positive or nega-
tive) which is smaller than the larger of the two original numbers. An overflow may occur if 
the two numbers are added and both are positive or both are negative. When two numbers in 
sign-magnitude representation are added, an overflow can be easily detected from the carry out 
of the number bits. When two numbers in sign-2’s-complement representation are added, the 
sign bit is treated as part of the number and the end carry does not necessarily indicate an  
overflow.

The algorithm for adding two numbers in sign-2’s-complement representation, as previ-
ously stated, gives an incorrect result when an overflow occurs. This arises because an overflow 
of the number bits always changes the sign of the result and gives an erroneous n-bit answer. To 
see how this happens, consider the following example. Two signed binary numbers, 35 and 40, 
are stored in two 7-bit registers. The maximum capacity of the register is (26 − 1) = 63 and the 
minimum capacity is −26 = −64. Since the sum of the numbers is 75, it exceeds the capacity of the 
register. This is true if the numbers are both positive or both negative. The operations in binary 
are shown below together with the last two carries of the addition:

         carries: 0 1                 carries: 1 0

+ 35 0 100011 − 35 1 011101

+ 40 0 101000 − 40 1 011000

+ 75 1 001011 − 75 0 110101

In either case, we see that the 7-bit result that should have been positive is negative, and vice 
versa. Obviously, the binary answer is incorrect and the algorithm for adding binary numbers 
represented in 2’s complement as stated previously fails to give correct results when an overflow 
occurs. Note that if the carry out of the sign-bit position is taken as the sign for the result, then 
the 8-bit answer so obtained will be correct.

An overflow condition can be detected by observing the carry into the sign-bit position 
and the carry out of the sign-bit position. If these two carries are not equal, an overflow condi-
tion is produced. This is indicated in the example above where the two carries are explicitly 
shown. The reader can try a few examples of numbers that do not produce an overflow to see 
that these two carries will always come out to be either both 0’s or both 1’s. If the two carries 
are applied to an exclusive-OR gate, an overflow would be detected when the output of the gate  
is 1.

The addition of two signed binary numbers when negative numbers are represented in sign-
2’s-complement form is implemented with digital functions as shown in Fig. 8-10. Register A 
holds the augend, with the sign bit in position A

n
. Register B holds the addend, with the sign bit 

in B
n
. The two numbers are added by means of an n-bit parallel adder. The full-adder (FA) circuit 

in stage n (the sign bits) is shown explicitly. The carry going into this full-adder is C
n
. The carry 
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out of the full-adder is C
n + 1

. The exclusive-OR of these two carries is applied to an overflow 
flip-flop V. If, after the addition, V = 0, then the sum loaded into A is correct. If V = 1, there is an 
overflow and the n-bit sum is incorrect. The circuit shown in Fig. 8-10 can be specified by the 
following statement:

T: A←A + B,          V ← C
n
 + C

n +
 
l

The variables in the statement are defined in Fig. 8-10. Note that variables C
n
 and C

n + 1
 do not 

represent registers; they represent output carries from a parallel adder.

8.7 Arithmetic Shifts

An arithmetic shift is a microoperation that shifts a signed binary number to the left or right. An 
arithmetic shift-left multiplies a signed binary number by 2. An arithmetic shift-right divides the 
number by 2. Arithmetic shifts must leave the sign unchanged because the sign of the number 
remains the same when it is multiplied or divided by 2.

The leftmost bit in a register holds the sign bit, and the remaining bits hold the number. 
Figure 8-11 shows a register of n bits. Bit A

n
 in the leftmost position holds the sign bit and is 

designated by A(S). The number bits are stored in the portion of the register designated by A(N). 
A

1
 refers to the least significant bit, A

n - 1
 refers to the most significant position in the number bits, 

and A refers to the entire register.

Register 
Load

TV

Register 

Parallel adder
Cn+1 FA

An

Bn

Cn

A

B

Figure 8.10 Addition of sign-2’s-complement numbers

A(S)

n 1n×1

Number bitsSign
bit

A(N)

       

1n

Register A

Figure 8.11 Defining register A for arithmetic shifts
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Binary fixed-point numbers can be represented in three different ways. The manner of shift-
ing the number stored in a register is different for each representation.

Consider first the arithmetic shift-right that divides a number by 2. This can be symbolized 
by one of the following statements:

A(N) ← shr A(N), A
n - 1

 ←  0  for sign-magnitude

A ← shr A,   A(A) ← A(S)  for sign-1’s or sign-2’s complement

In the sign-magnitude representation, the arithmetic shift-right requires a shift of the number bits 
with 0 inserted into the most significant position. The sign bit is not affected. In the sign-1’s- or 
2’s-complement representation, the entire register is shifted while the sign bit remains unaltered. 
This is because a positive number must insert a 0 in the most significant position but a negative 
number must insert a 1. The following numerical examples demonstrate the procedure.

Positive number +12: 0 01100 +6: 0 00110

Sign-magnitude −12: 1 01100 −6: 1 00110

Sign-1’s complement −12: 1 10011 −6: 1 11001

Sign-2’s complement −12: 1 10100 −6: 1 11010

In each case the arithmetic shift-right of 12 produces a 6 without altering the sign.
For positive numbers, the result is the same in all three representations. A number in sign-

magnitude, whether positive or negative, when shifted, receives a 0 in the most significant posi-
tion. In the two sign-complement representations, the most significant position receives the sign 
bit. The latter case is sometimes called shifting with sign extension.

Consider now the arithmetic shift-left that multiplies a number by 2. This can be symbol-
ized by one of the following statements:

A(N) ← shl A(N),  A
1
 ← 0  for sign-magnitude

A ← shl A,  A
1
 ← A(S)  for sign-1’s complement

A ← shl A,  A
1
 ← 0  for sign-2’s complement

In the sign-magnitude representation, the number bits are shifted left with 0 inserted in the least 
significant position. In the sign-l’s complement, the entire register is shifted and the sign bit 
is inserted into the least significant position. The sign-2’s complement is similar, except that 
0 is shifted into the least significant position. Consider the number 12 shifted to the left to  
produce 24:

Positive number    0 01100 0 11000

Sign-magnitude    1 01100 1 11000

Sign-1’s complement   1 10011 1 00111

Sign-2’s complement   1 10100 1 01000
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A number shifted to the left may cause an overflow to occur. An overflow will occur after 
the shift if the following condition exists before the shift:

A
n − 1

 = 1       for sign-magnitude

A
 n
 ⊕ A

n − 1
 = 1        for sign-1’s or sign-2’s complement

In the sign-magnitude case, a 1 in the most significant position will be shifted out and lost. In the 
sign-complement case, overflow will occur if the sign bit A

 n
 = A(S) is not the same as the most 

significant bit. Consider the following numerical example with sign-1’s-complement numbers:

Initial value     9:  0 1001      Initial value  − 9: 1 0110

shift-left       − 2:  1 0010      Shift-left  +2: 0 1101

The shift-left should produce 18, but since the original sign is lost, we obtain an incorrect result 
with a sign reversal. If the sign bit after the shift is not the same as the sign bit before the shift, an 
overflow occurs. The correct result would be a number of n + 1 bits, with the (n + l)th bit position 
containing the original sign of the number which is lost after the shift.

8.8 Decimal Data

The representation of decimal numbers in registers is a function of the binary code used to 
represent a decimal digit. A four-bit decimal code, for example, requires four flip-flops for each 
decimal digit. The representation of +4385 in BCD requires at least 17 flip-flops: one flip-flop 
for the sign and four for each digit. This number is represented in a register with 25 flip-flops as  
follows:

0 30 584+

 0    0    0    0   0   0    0    0     0     0     1     0     0      0    0    1    1      1     0     0    0    0    1     0    1

By representing numbers in decimal, we waste a considerable amount of storage space 
since the number of flip-flops needed to store a decimal number in a binary code is greater 
than the number of flip-flops needed for its equivalent binary representation. Also, the circuits 
required to perform decimal arithmetic are much more complex. However, there are some ad-
vantages in the use of decimal representation, mostly because computer input and output data are 
generated by people that always use the decimal system. A computer that uses binary representa-
tion for arithmetic operations requires data conversion from decimal to binary prior to perform-
ing calculations. Binary results must be converted back to decimal for output. This procedure is 
time consuming; it is worth using provided the amount of arithmetic operations is large, as is the 
case with scientific applications. Some applications, such as business data processing, require 
small amounts of arithmetic calculations. For this reason, some computers perform arithmetic 
calculations directly on decimal data (in binary code) and thus eliminate the need for conversion 
to binary and back to decimal. Large-scale computer systems usually have hardware for perform-
ing arithmetic calculations both in binary and in decimal representation. The user can specify by 
programmed instructions whether the computer is to perform calculations on binary or decimal 
data. A decimal adder was introduced in Section 5-3.
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There are three ways to represent negative fixed-point decimal numbers. They are similar to 
the three representations of a negative binary number except for the radix change:

1. Sign-magnitude.

2. Sign-9’s complement.

3. Sign-10’s complement.

For all three representations, a positive decimal number is represented by 0 (for plus) followed by 
the magnitude of the number. It is in regard to negative numbers that the representations differ. 
The sign of a negative number is represented by 1, and the magnitude of the number is positive 
in sign-magnitude representation. In the other two representations, the magnitude is represented 
by the 9’s or 10’s complement.

The sign of a decimal number is sometimes taken as a 4-bit quantity to conform with the 
4-bit representation of digits. It is customary to represent a plus with four O’s and a minus with 
the BCD equivalent of 9, i.e., 1001. In this way all procedures developed for sign-2’s-comple-
ment numbers apply also to the sign-10’s-complement numbers. The addition is done by adding 
all digits, including the sign digit, and discarding the end carry. For example, +375 + (− 240) is 
done with sign-10’s-complement representation as follows:

     0 375
+
     9 760
     0 135

The 9 in the second number represents a minus, and 760 is the 10’s complement of 240. An 
overflow is detected in this representation from the exclusive-OR of the carries into and out of 
the sign digits position.

Decimal arithmetic operations may employ the same symbols as binary operations provided 
the base of the numbers is understood to be 10 instead of 2. The statement:

A ← A + B +1

can be used to express the addition of the decimal number stored in register A to the 10’s comple-
ment of the decimal number in register B. B in this case denotes the 9’s complement of the deci-
mal number. The arithmetic shifts are also applicable to decimal numbers, except that a shift-left 
corresponds to a multiplication by 10 and a shift-right to a division by 10. The sign-9’s comple-
ment is similar to the sign-1’s complement, and the sign-magnitude representation in both radix 
representations have similar arithmetic procedures.

If the adoption of similar symbols for binary and decimal operations were not acceptable, it 
would be necessary to formulate different symbols for the operations with decimal data. Some-
times the register-transfer operations are used to simulate the system by means of a computer 
program. In that case the two types of data can be specified by declaration statements as is done 
in programming languages.

8.9 Floating-point Data

Floating-point representation of numbers needs two registers. The first represents a signed fixed-
point number and the second, the position of the radix point. For example, the representation of 
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the decimal number +6132.789 is as follows:

sign

0 0 4

(exponent)

sign

(coefficient)

0 6 1 3 2 7 8 9

Initial decimal point

first region second region

The first register has a 0 in the most significant flip-flop position to denote a plus. The magnitude 
of the number is stored in a binary code in 28 flip-flops, with each decimal digit occupying 4 
flip-flops. The number in the first register is considered a fraction, so the decimal point in the 
first register is fixed at the left of the most significant digit. The second register contains the 
decimal number +4 (in binary code) to indicate that the actual position of the decimal point is 
four decimal positions to the right. This representation is equivalent to the number expressed by a 
fraction times 10 to an exponent, i.e., +6132.789 is represented as +.6132789 × 10+4. Because of 
this analogy, the contents of the first register are called the coefficient (and sometimes mantissa or 
fractional part) and the contents of the second register are called the exponent (or characteristic).

The position of the actual decimal point may be outside the range of digits of the coefficient 
register. For example, assuming sign-magnitude representation, the following contents:

coefficient

0 2 6 0 1 0 0 0 1 0 4

exponent

represent the number +.2601000 × 10−4 = + .000026010000, which produces four more 0’s on the 
left. On the other hand, the following contents:

coefficient

1 2 6 0 1 0 0 0 0 1 2

exponent

represent the number −.2601000 × 1012 = − 260100000000, which produces five more 0’s on the 
right.

In these examples, we have assumed that the coefficient is a fixed-point fraction. Some 
computers assume it to be an integer, so the initial decimal point in the coefficient register is to 
the right of the least significant digit.

Another arrangement used for the exponent is to remove its sign bit altogether and consider 
the exponent as being “biased.” For example, numbers between 10+49 and 10−50 can be represented 
with an exponent of two digits (without sign bit) and a bias of 50. The exponent register always 
contains the number E + 50, where E is the actual exponent. The subtraction of 50 from the con-
tents of the register gives the desired exponent. This way, positive exponents are represented in 
the register in the range of numbers from 50 to 99. The subtraction of 50 gives the positive values 
from 00 to 49. Negative exponents are represented in the register in the range of 00 to 49. The 
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subtraction of 50 gives the negative values in the range of −50 to −1.
A floating-point binary number is similarly represented with two registers, one to store the 

coefficient and the other, the exponent. For example, the number + 1001.110 can be represented 
as follows:

sign sign

coefficient

0 1 0 0 1 1 1 0 0 0   0 0 1 0 0

exponent

Initial binary point

The coefficient register has ten flip-flops: one for sign and nine for magnitude. Assuming that 
the coefficient is a fixed-point fraction, the actual binary point is four positions to the right, so 
the exponent has the binary value +4. The number is represented in binary as .100111000 × 10100 
(remember that 10100 in binary is equivalent to decimal 24).

Floating-point is always interpreted to represent a number in the following form:

c ⋅ re

where c represents the contents of the coefficient register and e, the contents of the exponent 
register. The radix (base) r and the radix-point position in the coefficient are always assumed. 
Consider, for example, a computer that assumes integer representation for the coefficient and 
base 8 for the exponent. The octal number + 17.32 = + 1732 × 8−2 will look like this:

Initial octal point

signsign

coefficient

0 1 7 3 2 1 0 0

exponent

When the octal representation is converted to binary, the binary value of the registers becomes:

coefficient

0 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 0

exponent

A floating-point number is said to be normalized if the most significant position of the co-
efficient contains a nonzero digit. In this way, the coefficient has no leading zeros and contains 
the maximum possible number of significant digits. Consider, for example, a coefficient register 
that can accomodate five decimal digits and a sign. The number +.00357 × 103 = 3.57 is not 
normalized because it has two leading zeros and the unnormalized coefficient is accurate to three 
significant digits. The number can be normalized by shifting the coefficient two positions to the 
left and decreasing the exponent by 2 to obtain: +.35700 × 101 = 3.5700, which is accurate to five 
significant digits.

Arithmetic operations with floating-point number representation are more complicated than 
arithmetic operations with fixed-point numbers and their execution takes longer and requires 
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more complex hardware. However, floating-point representation is more convenient because of 
the scaling problems involved with fixed-point operations. Many computers have a built-in capa-
bility to perform floating-point arithmetic operations. Those that do not have this hardware are 
usually programmed to operate in this mode.

Adding or subtracting two numbers in floating-point representation requires first an align-
ment of the radix point, since the exponent part must be made equal before the coefficients are 
added or subtracted. This alignment is done by shifting one coefficient while its exponent is ad-
justed until it is equal to the other exponent. Floating-point multiplication or division requires no 
alignment of the radix point. The product can be formed by multiplying the two coefficients and 
adding the two exponents. Division is accomplished from the division with the coefficients and 
the subtraction of the divisior exponent from the exponent of the dividend.

8.10 Nonnumeric Data

The types of data considered thus far represent numbers that a computer uses as operands for 
arithmetic operations. However, a computer is not a machine that only stores numbers and does 
high-speed arithmetic. Very often, a computer manipulates symbols rather than numbers. Most 
programs written by computer users are in the form of characters, i.e., a set of symbols com-
prised of letters, digits, and various special characters. A computer is capable of accepting char-
acters (in a binary code), storing them in memory, and performing operations on and transfer-
ring characters to an output device. A computer can function as a character-string-manipulating 
machine. By a character string is meant a finite sequence of characters written one after another.

Characters are represented in computer registers by a binary code. In Table 1-5, we listed 
three different character codes in common use. Each member of the code represents one character 
and consists of either six, seven, or eight bits, depending on the code. The number of characters 
that can be stored in one register depends on the length of the register and the number of bits used 
in the code. For example, a computer with a word length of 36 bits that uses a character code of 6 
bits can store six characters per word. Character strings are stored in memory in consecutive loca-
tions. The first character in the string can be specified from the address of the first word. The last 
character of the string may be found from the address of the last word, or by specifying a character 
count, or by a special mark designating end of character string. The manipulation of characters is 
done in the registers of the processor unit, with each character representing a unit of information.

Various other symbols can be stored in computer registers in binary-coded form. A binary 
code can be adopted to represent musical notes for the production of music by computer. Special 
binary codes are needed to represent speech patterns for an automatic speech-recognition sys-
tem. The display of characters through a dot matrix in a CRT (cathode-ray tube) screen requires 
a binary-coded representation for each symbol that is displayed. Status information to supervise 
the operation of a controlled process or a power-distribution system uses predetermined binary-
coded information. The chess board and pieces to run a chess game by computer require some 
form of binary-coded information representation.

The operations mostly done on nonnumerical data are transfers, logic, shifts, and control 
decisions. The transfer operations can prepare the binary-coded information in some required or-
der in memory and transfer the information to and from external units. Logic and shift operations 
provide a capability to perform data manipulation tasks that help in the decision-making process.

Logic microoperations are very useful for manipulating individual bits stored in a register 
or a group of bits that comprise a given binary-coded symbol. Logic operations can change bit 
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values, delete a group of bits, or insert new bit values into a register. The following examples 
show how the bits of one register are manipulated by logic and shift microoperations as a func-
tion of logic operands that are prestored in memory.

The OR microoperation can be used to set a bit or a selected group of bits in a register. The 
Boolean relations x + 1 = 1 and x + 0 = x dictate that the binary variable x, when ORed with a 1, 
produces a 1 regardless of the binary value of x; but, when ORed with a 0, it does not change the 
value of x. By ORing a given bit A

1
 in a register with a 1, it is possible to set bit A

1
 to 1 regardless 

of its previous value. Consider the following specific example:

0101  0101 A
1111  0000 B
1111  0101 A ← A ∨ B

The logic operand in B has 1’s in the four high-order bit positions. By ORing this value with 
the present value of A, it is possible to set the four high-order bits of A to 1’s but leave the four 
low-order bits unchanged. Thus, the OR microoperation can be used to selectively set bits of a 
register.

The AND microoperation can be used to clear a bit or a selected group of bits in a register. 
The Boolean relationships x ⋅ 0 = 0 and x ⋅ 1 = x dictate that binary variable x, when ANDed 
with a 0, produces a 0 regardless of the binary value of x; but, when ANDed with a 1, it does not 
change the value of x. A given bit A

i
 in register A can be cleared to 0 if it is ANDed with a 0. Con-

sider a logic operand B = 0000 1111. When this operand is ANDed with the contents of a register, 
it will clear the four high-order bits of the register but leave the four low-order bits unchanged:

0101  0101 A

0000  1111 B

0000  0101 A ← A ∧ B

The AND microoperation can be used to selectively clear bits of a register. The AND operation 
is sometimes called a mask operation because it masks or removes all l’s from a selected portion 
of a register.

The AND operation followed by an OR operation can be used to change a bit or a group 
of bits from a given value to a new desired value. This is done by first masking the bits in ques-
tion and then ORing the new value. For example, suppose an A register contains eight bits, 0110 
0101. To replace the four high-order bits by the value 1100, we first mask the four unwanted bits:

0110   0101 A
0000   1111 B1
0000   0101 A ← A L B1

and then insert the new value:

0000   0101 A
1100   0000 B2
1100   0101 A ← A L B1

The mask operation is an AND microoperation and the insert operation is an OR microoperation.
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The XOR (exclusive-OR) microoperation can be used to complement a bit or a selected 
group of bits in a register. The Boolean relationships x ⊕ 1 = x’ and x ⊕ 0 = x dictate that the 
binary variable x be complemented when XORed with a 1 and remain unchanged otherwise. By 
XORing a given bit in a register with a 1, it is possible to complement the selected bit. Consider 
the numerical example:

1101   0101 A
1111   0000 B
0010   0101 A ← A ⊕ B

The four high-order bits of A are complemented after the exclusive-OR operation with operand 
B. The XOR microoperation can be used to selectively complement bits of a register. If the op-
erand B has all 1’s, the XOR operation will complement all the bits of A. If the contents of A are 
XORed with their own value, the register will be cleared, since x ⊕ x = 0:

0101   0101 A

0101   0101 B
0000   0000 A ← A ⊕ A

The value of individual bits in a register can be determined by first masking all bits, except 
the one in question, and then checking if the register is equal to 0 Suppose we want to determine 
if bit 4 in register A is 0 or 1:

101 x 010 A

0001000 B
000 x 000 A ← B L A

The bit marked x can be 0 or 1. When all other bits are masked with the operand in B, register A 
will contain all 0’s if bit 4 was a 0. If bit 4 was originally a 1, this bit will remain a 1. By checking 
if the contents of A are 0 or not, we determine whether bit 4 was 0 or 1.

If each bit in a register must be checked for 0 or 1, it is more convenient to shift the register 
to the left and transfer the high-order bit into a special 1-bit register which is usually called the 
carry flip-flop. After every shift, the carry can be checked for 0 or 1 and a decision made depend-
ing on the outcome.

Shift operations are useful for packing and unpacking binary-coded information. Packing 
of binary-coded information such as characters is an operation that groups two or more charac-
ters in one word. Unpacking is a reverse operation that separates two or more characters stored in 
one word into individual characters. Consider the packing of BCD digits that are first entered as 
ASCII characters. The ASCII character code for digits 5 and 9 are obtained from Table 1-5. Each 
contains seven bits and a 0 is inserted in the high-order position as shown below. The character 
5 is transferred to register A, and 9 to register B. The four high-order bits are of no use for BCD 
representation, so they are masked out. The packing of the two BCD digits into register A con-
sists of shifting register A four times to the left (with 0’s inserted in the low-order bit positions) 
and then ORing the contents of the registers;
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           A         B

ASCII 5 =  0011 0101 0011 1001 = ASCII 9

AND with 0000 1111 0000 0101 0000 1001

Shift A left four times 0101 0000

A ← A ∨ B  0101 1001 = BCD 59

A shift operation with 0 inserted in the extreme bit is considered a logical shift microoperation.
The binary information available in a register during logical operations is called a logical 

word. A logical word is interpreted to be a bit string as opposed to character strings or numeri-
cal data. Each bit in a logical word functions in exactly the same way as every other bit; in other 
words, the unit of information of a logical word is a bit.

8.11 Instruction Codes

The internal organization of a digital system is defined by the registers it employs and the se-
quence of microoperations it performs on data stored in the registers. In a special-purpose digital 
system, the sequence of microoperations is fixed and the system performs the same specific task 
over and over again. A digital computer is a general-purpose digital system capable of executing 
various operations and, in addition, can be instructed as to what specific sequence of operations 
it must perform. The user of a computer can control the process by means of a. program, i.e., a 
set of instructions that specify the operations, operands, and the sequence in which processing 
has to occur. The data-processing task may be altered simply by specifying a new program with 
different instructions or by specifying the same instructions with different data. Instruction codes, 
together with data, are stored in memory. The control reads each instruction from memory and 
places it in a control register. The control then interprets the instruction and proceeds to execute 
it by issuing a sequence of control functions. Every general-purpose computer has its own unique 
instruction repertoire. The ability to store and execute instructions, the stored-program concept, 
is the most important property of a general-purpose computer.

An instruction code is a group of bits that tell the computer to perform a specific operation. 
It is usually divided into parts, each having its own particular interpretation. The most basic part 
of an instruction code is its operation part. The operation code of an instruction is a group of 
bits that define an operation such as add, subtract, multiply, shift, and complement. The set of 
machine operations formulated for a computer depends on the processing it is intended to carry 
out. The total number of operations thus obtained determines the set of machine operations. The 
number of bits required for the operation part of the instruction code is a function of the total 
number of operations used. It must consist of at least n bits for a given 2n (or less) distinct op-
erations. The designer assigns a bit combination (a code) to each operation. The control unit of 
the computer is designed to accept this bit configuration at the proper time in a sequence and to 
supply the proper command signals to the required destinations in order to execute the specified 
operation. As a specific example, consider a computer using 32 distinct operations, one of them 
being an ADD operation. The operation code may consist of five bits, with a bit configuration 
10010 assigned to the ADD operation.

When the operation code 10010 is detected by the control unit, a command signal is applied 
to an adder circuit to add two numbers.
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The operation part of an instruction code specifies the operation to be performed. This op-
eration must be executed on some data, usually stored in computer registers. An instruction code, 
therefore, must specify not only the operation but also the registers where the operands are to be 
found as well as the register where the result is to be stored. These registers may be specified in 
an instruction code in two ways. A register is said to be specified explicitly if the instruction code 
contains special bits for its identification. For example, an instruction may contain not only an 
operation part but also a memory address. We say that the memory address specifies explicitly 
a memory register. On the other hand, a register is said to be specified implicitly if it is included 
as part of the definition of the operation, i.e., if the register is implied by the operation part of 
the code.

8.11.1 Instruction-Code Formats

The format of an instruction is usually depicted in a rectangular box symbolizing the bits of the 
instruction as they appear in memory words or in a control register. The bits of the instruction are 
sometimes divided into groups that subdivide the instruction into parts. Each group is assigned 
a symbolic name, such as operation-code part or address part. The various parts specify differ-
ent functions for the instruction, and when shown together they constitute the instruction-code 
format. 

Consider, for example, the three instruction-code formats specified in Fig. 8-12. The in-
struction format in (a) consists of an operation code which implies a register in the processor 
unit. It can be used to specify operations such as “clear a processor register,” or “complement a 
register,” or “transfer the contents of one register to a second register.” The instruction format in 
(b) has an operation code followed by an operand. This is called an immediate operand instruc-
tion because the operand follows immediately after the operation-code part of the instruction. It 
can be used to specify operations such as “add the operand to the present contents of a register” 
or “transfer the operand to a processor register,” or it can specify any other operation to be done 
between the contents of a register and the given operand. The instruction format specified in Fig. 
8-12(c) is similar to the one in (b) except that the operand must be extracted from memory at the 
location specified by the address part of the instruction. In other words, the operation specified 
by the operation code is done between a processor register and an operand which can be stored in 
memory anywhere. The address of this operand in memory is included in the instruction.

Let us assume that we have a memory unit with 8 bits per word and that an operation code 
contains 8 bits. The placement of the three instruction codes in memory is depicted in Fig. 8-13. 
At address 25, we have an implied instruction that specifies an operation: “transfer the contents 
of processor register R into processor register A.” This operation can be symbolized by the state-
ment:

A ← R

In memory addresses 35 and 36, we have an immediate operand instruction that occupies 
two words. The first word at address 35 is the operation code for the instruction, “transfer the 
operand to register A,” symbolized as:

A ← operand

The operand itself is stored immediately after the operation code at address 36.
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In addresses 45 and 46, there is a direct address instruction that specifies the operation:

A ← M[address]

This symbolizes a memory-transfer operation of an operand which is specified by the address 
part of the instruction. The second word of the instruction at address 46 contains the address, and 
its value is binary 70. Therefore, the operand to be transferred to register A is the one stored in 
address 70, and its value is shown to be binary 28. Note that the instruction is stored in memory 
at some address. This instruction has an address part which gives the address of the operand. 
To avoid the confusion of saying the word “address” so many times, it is customary to refer to a 
memory address as a “location.” Thus the direct address instruction is stored in locations 45 and 
46. The address of the operand is in location 46, and the operand is available from location 70.

It must be realized that the placing of instructions in memory as shown in Fig, 8-13 is only 
one of many possible alternatives. Only very small computers have 8-bit words. Large computers 
may have from 16 to 64 bits per word. In most computers, the entire instruction can be placed in 
one word, and in some, even two or more instructions can be placed in a single memory word.

The instruction formats shown in Fig. 8-12 are three of many possible formats that can be 
formulated for digital computers. They are presented here just as an example and should not be 
considered the only possibilities. Subsequent chapters, especially Chapters 11 and 12, present 
and discuss other instructions and instruction-code formats.

At this point we must recognize the relationship between an operation and a microoperation 
as applied to a digital computer. An operation is specified by an instruction stored in computer 
memory. It is a binary code that tells the computer to perform a specific operation. The control 
unit receives the instruction from memory and interprets the operation-code bits. It then issues a 
sequence of control functions that perform microoperations in internal computer registers.

For every instruction in memory that specifies an operation, the control issues a sequence 
of microoperations which are needed for the hardware implementation of the specified opera-
tion code. An operation is specified by a user in the form of an instruction to the computer. A 
microoperation is an elementary operation which is constrained by the available hardware inside 
the computer.

8.11.2 Macrooperations versus Microoperations

There are occasions when it is convenient to express a sequence of microoperations with a single 
statement. A statement that requires a sequence of microoperations for its implementation is 

Operation-code    (a) Implied

Operation-code Operand  (b) Immediate operand

Operation-code Address of operand  (c) Direct address

Figure 8.12 Three possible instruction formats
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called a macrooperation. A statement in the register-transfer method of notation that defines an 
instruction is a macrooperation statement, although macrooperation statements can be used on 
other occasions as well. The register-transfer method can be used to define the operation speci-
fied by a computer instruction because all instructions specify some register-transfer operation 
which must be executed by computer hardware.

One cannot tell from looking at an isolated register-transfer statement whether it represents 
a macro- or microoperation, since both types of statements denote some register-transfer state-
ment. The only way to distinguish between them is to recognize from the context and the internal 
hardware of the system in question whether the statement is executed with one control function 
or not. If the statement can be executed with a single control function, it represents a microopera-
tion. If the hardware execution of the statement requires two or more control functions, the state-
ment is taken to be a macrooperation. Only if one knows the hardware constraints of the system 
can this question be answered.

Consider, for example, the instruction in Fig. 8-13 symbolized by the statement:

A ← operand

This statement is a macrooperation because it specifies a computer instruction. To execute the 
instruction, the control unit must issue control functions for the following sequence of microop-
erations:

1. Read the operation code from address 35.

2. Transfer the operation code to a control register.

3. The control decodes the operation code and recognizes it as an immediate operand in-
struction, so it reads the operand from address 36.

4. The operand read from memory is transferred into register A.

Memory OperationAddress

00000001 op-code=1 A←R

A←Operand

A←M(Address)

op-code=2

operand=44

op-code=3

address=70

operand=28

00000010

00101100

00011100

00000011

01000110

25

35

36

45

46

70

Figure 8.13 Memory representation of instructions
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The microoperation in step 4 executes the instruction, but steps 1 through 3 are needed prior to 
it for the control to interpret the instruction itself. The statement that symbolizes the instruction:

A ← R

is also a macrooperation because the control has to first read the operation code at address 25 to 
decode and recognize it. The interregister transfer itself is executed with a second control func-
tion.

The register-transfer method is suitable for describing the operations among the registers 
in a digital system. It can be used at different levels of presentation provided one interprets the 
statements properly. Specifically, it can be used for the following tasks:

1. To define computer instructions concisely by macrooperation statements.

2. To express any desired operation by means of a macrooperation statement without being 
concerned with specific hardware implementation.

3.  To define the internal organization of digital systems by means of control functions and 
microoperations.

4.  To design a digital system by specifying the hardware components and their interconnec-
tions.

The set of instructions for a given computer can be explained in words, but when defined 
with macrooperation statements, the definition can be stated precisely and with a minimum of 
ambiguity. The use of other macrooperation statements may facilitate the initial specifications 
of a system and can be used to simulate the system when it is desired to check its intended 
operation. The internal organization of a digital system is best described by a set of control 
functions and microoperations. The list of register-transfer statements that describe the organi-
zation of the system can be used to derive the digital functions from which the system can be  
designed.

The next section shows by example how the register-transfer method is used in each of the 
four tasks listed above. This is done by defining and designing a very simple computer.

8.12 Design of a Simple Computer

The block diagram of a simple computer is shown in Fig. 8-14. The system consists of a memory 
unit, seven registers, and two decoders. The memory unit has 256 words of 8 bits each, which 
is very small for a real computer, but sufficient for demonstrating the basic operations found in 
most computers. Instructions and data are stored in the memory unit, but all information process-
ing is done in the registers. The registers are listed in Table 8-4, together with a brief description 
of their function and the number of bits they contain.

The memory address register, MAR, holds the address for the memory. The memory buffer 
register, MBR, holds the contents of the memory word read from or written into memory. Regis-
ters A and R are general-purpose processor registers.

The program counter PC, the instruction register IR, and the timing counter T are part of 
the control unit. The IR receives the operation code of instructions. The decoder associated with 
this register supplies one output for each operation code encountered. Thus q

1
 = 1 if the operation 

code is binary 1, q
2
 = 1 if the operation code is binary 2, and so on. The T counter is also decoded 
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to supply eight timing variables, t
0
 through t

7
 (see Section 7-6). This counter is incremented with 

every clock pulse, but it can be cleared at any time to start a new sequence from t
0
.

The PC goes through a step-by-step counting sequence and causes the computer to read 
successive instructions previously stored in memory. The PC always holds the address of the 
next instruction in memory. To read an instruction, the contents of PC are transferred into MAR 
and a memory-read cycle is initiated. The PC is then incremented by 1 so it holds the next ad-
dress in the sequence of instructions. An operation code read from memory into MBR is then 
transferred into IR. If the memory-address part of an instruction is read into MBR, this address is  

PC

MAR

MBR

Operation
  decoder

Memory unit
  256 × 8

Timing
decoder

IR

A

R

T

t0

q1q2q3

t7

Figure 8.14 Block diagram of a simple computer

Table 8-4 List of registers for the simple computer

Symbol Number of bits Name of register Function

MAR 8 Memory address register Holds address for memory

MBR 8 Memory buffer register Holds contents of memory word

A 8 A register Processor register

R 8 R register Processor register

PC 8 Program counter Holds address of instruction

IR 8 Instruction register Holds current operation code

T 3 Timing counter Sequence generator
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transferred into MAR to read the operand. Thus, MAR can receive addresses either from PC or from  
MBR.

The three instructions defined in the previous section are specified again in Table 8-5. Since 
there are eight bits in the operation code, it is possible to specify up to 256 different operations. 
To simplify the presentation, we consider here only the three listed instructions. The mnemonic 
associated with each instruction can be used by programmers to specify the instructions with 
symbolic names. The mnemonic MOV stands for the corresponding binary operation code and 
symbolizes a “move” instruction. The R symbol following the MOV indicates that the contents 
of R are moved to register A. The mnemonic LDI symbolizes a “load immediate” instruction. 
The OPRD following LDI stands for an actual operand that the programmer must specify with 
this instruction. LDA is an abbreviation for “load into A,” and the ADRS following it stands for 
an address number that the programmer must specify with this instruction. The actual OPRD and 
ADRS values, together with their corresponding operation codes, will be stored in memory as 
in Fig. 8-13.

Table 8-5 gives a word description for each instruction. This word description is not precise. 
The statements listed under the function column give a concise and precise definition of each 
instruction.

A computer with only three instructions is not very useful. We must assume that this com-
puter has many more instructions, even though only three of them are considered here. A pro-
gram written for the computer is stored in memory. This program consists of many instructions, 
but once in a while the instruction used will be one of the three listed. We now consider the 
internal operations needed to execute the instructions that arc stored in memory.

8.12.1 Instruction Fetch Cycle

Program counter PC must be initialized to contain the first address or the program stored in 
memory. When, a “start” switch is activated, the computer sequence follows a basic pattern. An 
operation code whose address is in PC is read from memory into MBR. The PC is incremented 
by 1 to prepare it for the next address in sequence. The operation code is transferred from MBR to 
IR, where it is decoded by the control. This sequence is called the instruction fetch cycle, since it 
fetches the operation code from memory and places it in a control register. The timing variables, 
t
0
, t

1
, and t

2
, out of the timing decoder are used as control functions to sequence the microopera-

tions for reading an operation code (op-code) and placing it into IR:

t
0
: MAR ← PC transfer op-code address

t
1
: MBR ← M, PC ← PC + 1 read op-code, increment PC

t
2
: IR ← MBR transfer op-code to IR

Table 8-5 Three instructions for a simple computer

Operation code Mnemonic Description Function

00000001 MOV  R Move R to A A ← R

00000010 LDI   OPRD Load OPRD into A A ← OPRD

00000011 LDA  ADRS Load operand specified by ADRS into A A ← M[ADRS]
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It is assumed that the timing counter, T, starts from a value 000 which produces a t
0
 timing 

variable out of the decoder. The T register is incremented with every clock pulse and automati-
cally produces the next timing variable in sequence. The first three timing variables execute the 
microoperation sequence which may be symbolized with the macrooperation statement:

IR ← M[PC], PC ← PC + 1

This states that the memory word specified by the address in PC is transferred into IR and then 
the PC is incremented. The hardware constraint in the simple computer is that only MAR and 
MBR can communicate with the memory. Since PC and IR cannot communicate directly with the 
memory, the above macrooperation must be executed with a sequence of three microoperations. 
Another hardware constraint is that the PC cannot be incremented while its value is being used 
to supply the address for a memory read. Only after the read operation is completed can the PC 
be incremented. By transferring the contents of PC into MAR, the PC can be incremented while 
the memory reads the word addressed by MAR.

The fetch cycle is common to all instructions. The microoperations and control functions 
that follow the fetch cycle are determined in the control section from the decoded operation code. 
This is available from outputs q

i
, i = 1, 2, 3,…. in the operation decoder.

8.12.2 Execution of Instructions

During timing variable t
3
, the operation code is in IR and one output of the operation decoder is 

equal to 1. The control uses the q
i
 variables to determine the next microoperations in sequence. 

The MOV R instruction has an operation code that makes q
1
 = 1. The execution of this instruc-

tion requires the microoperation:

q
1
t
3
: A ← R, T ← 0

Thus, when q
i
 = 1 at time t

3
, the-contents of R are transferred into register A and the tim-

ing register T is cleared. By clearing T, control goes back to produce timing variable t
0
, and 

thus starts the fetch cycle again to read the operation code of the next instruction in sequence. 
Remember that PC was incremented during time t

1
, so now it holds the address of the next in-

struction in sequence.
The LDI OPRD instruction has an operation code that makes q

2
 = 1. The microoperations 

that execute this instruction are:

q
2
t
3
:    MAR ← PC      transfer operand address

q
2
t
4
:    MBR ← M, PC ← PC +1 read operand, increment PC

q
2
t
5
:    A ← MBR, T ← 0  transfer operand, go to fetch cycle.

The three timing variables that follow the fetch cycle while q
2
 = 1 read the operand from memory 

and transfer it into register A. Since the operand is in a memory location following the operation 
code, it is read from memory from the address specified in PC, The operand read into MBR is 
then transferred to A. Note that PC is incremented once again to prepare it for the address of the 
next operation code before going back to the fetch cycle.
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The LDA ADRS instruction has an operation code that makes q
3
 = 1. The microoperations 

needed to execute this instruction are listed below:

q
3
t
3
: MAR ← PC transfer next instruction address

q
3
t
4
: MBR ← M, PC ← PC + 1 read ADRS, increment PC

q
3
t
5
: MAR ← MBR transfer operand address

q
3
t
6
: MBR ← M read operand

q
3
t
7
: A ← MBR, T ← 0 transfer operand to A, go to fetch cycle

The address of the operand, symbolized by ADRS, is placed in memory right after the 
operation code. Since PC was incremented at t

1
 during the fetch cycle, it now holds the address 

where ADRS is stored. The value of ADRS is read from memory at time t
4
. PC is incremented at 

this time to prepare it for the fetch cycle of the next instruction. At time t
5
, the value of ADRS is 

transferred from MBR to MAR. Since ADRS specifies the address of the operand, a memory read 
during time t

6
 causes the operand to be placed in MBR. The operand from MBR is transferred to 

register A and control goes back to the fetch cycle.
The control functions and microoperations for the simple computer are summarized in 

Table 8-6. The first three timing variables constitute the fetch cycle which reads the operation 
code into IR. The microoperations that are executed during time t

3
 depend on the operation-code 

value in IR. There are three control functions that are a function of t
3
, but either q

1 
or q

2
 or q

3
 

can be equal to 1 at this time. The particular microoperation executed at time t
3
 is the one whose 

corresponding control function has a q variable that is equal to 1. The same can be said for the 
other timing variables.

A practical computer has many instructions, and each instruction requires a fetch cycle 
for reading its operation code. The microoperations needed for the execution of the particular 
instructions are specified by the timing variables and by the particular q

i
, i = 0, 1, 2. 3,…, 255, 

Table 8-6 Register-transfer statements for a simple computer

FETCH t
0
: MAR ← PC

t
1
: MBR ← M, PC ← PC + 1

t
2
: IR ← MBR

MOV q
1
t
3
: A ← R, T ← 0

LDI q
2
t
3
: MAR ← PC

q
2
t
4
: MBR ← M, PC ← PC + 1

q
2
t
5
: A ← MBR, T ← 0

LDA q
3
t
3
: MAR ← PC

q
3
t
4
: MBR ← M, PC ← PC + 1

q
3
t
5
: MAR ← MBR

q
3
t
6
: MBR ← M

q
3
t
7
: A ← MBR, T ← 0
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which happens to be in the 1-state at that time. The list of control functions and microoperations 
for a practical computer would be much longer than the one shown in Table 8-6. Obviously, the 
simple computer is not a practical device, but by using only three instructions, the basic functions 
of a digital computer can be clearly demonstrated. The extension of this principle to a computer 
with more instructions and more processor registers should be apparent from this example. In 
Chapter 11, we use the principles presented here to design a more realistic computer.

8.12.3 Design of Computer

It was shown previously that the register-transfer logic is suitable for defining the operations 
specified by computer instructions. We have just shown that the register-transfer logic is a con-
venient method for specifying the sequence of internal control functions in a digital computer, 
together with the microoperations they execute. It will be shown now that the list of control 
functions and microoperations for a digital system is a convenient starting point for the design 
of the system. The list of microoperations specifies the types of registers and associated digital 
functions that must be incorporated in the system. The list of control functions specifies the logic 
gates required for the control unit. To demonstrate this procedure, we will go through the design 
of the simple computer from the list of register-transfer statements given in Table 8-6.

The first step in the design is to scan the register-transfer statements listed in Table 8-6 
and retrieve all those statements that perform the same microoperation on the same register. For 
example, the microoperation MAR ← PC is listed in the first line with control function t

0
, in the 

fifth line with control function q
2
t
3
, and in the eighth line with control function q

3
t
3
. The three 

lines are combined into one statement:

t
0
 + q

2
t
3
 + q

3
t
3
: MAR ← PC

Remember that a control function is a Boolean function. The + between the control functions 
denotes a Boolean OR operation, and the absence of an operator between q

2
 and t

3 
denotes a 

Boolean AND operation. The above statement combines all the control conditions for the trans-
fer from PC into MAR. The hardware implementation of the above statement is depicted in Fig. 
8-15. The control function can be manipulated as a Boolean function to give:

x
1
 = t

0
 + q

2
t
3
+ q

3
t
3
 = t

0
 + (q

2 
+ q

3
)t

3

The binary variable x
1
 is applied to the load input of MAR and the outputs from PC are applied 

to the inputs of MAR. When x
1
 = 1, the next clock pulse transfers the contents of PC into MAR. 

The binary variables that cause x
1
 to be a 1 come from the operation and timing decoders in the 

control unit.

MAR
Load

PC

x1

t0

t3

q2

q3

Figure 8.15 Implementation of x1 : MAR ← PC
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There are eight different microoperations listed in Table 8-6. For each distinct microop-
eration, we accumulate the associated control functions and OR them together. The result is 
as shown in Table 8-7. The combined control functions obtained for each microoperation are 
equated to a binary variable x

1
, i = 1, 2,..., 8. The eight x variables can be easily generated with 

AND and OR gates, and will not be done here.
The design of the simple computer can be now obtained from the register-transfer infor-

mation given in Table 8-7. The block diagram design is shown in Fig. 8-16. Here we again 
have the seven registers, the memory unit, and two decoders. In addition, there is a box labeled 
“combinational circuit.” The combinational-circuit block generates the eight control functions, x

1
 

through x
8
, according to the list of control functions in the table. The control functions enable the 

load and increment inputs of the various registers. A register that receives information from two 
sources needs a multiplexer to select between the two. For example, MAR receives information 
from MBR or from PC. The multiplexer associated with MAR transfers the contents of PC when 
its select line is a 1 (x

1
 = 1) but transfers the contents of MBR when the select line is 0. This is 

because x
1
 = 0 when x

2
 = 1, but x

2
 initiates the load input of MAR so that the contents of MBR 

go through the multiplexer into MAR. Timing counter T is incremented with every clock pulse; 
however, when x

7
 = 1, it is cleared to zero.

The registers and other digital functions specified in Fig. 8-16 can be designed individually 
by means of combinational and sequential logic procedures. If the system is constructed with 
integrated circuits, one can readily find commercial MSI circuits for all registers and digital 
functions. The combinational circuit for the control can be constructed with SSI gates. In a large 
computer, this part would be more efficiently implemented with a programmable logic array.
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Table 8-7 Hardware specification for a simple computer

x
1
 = t

0
 + q

2
t
3
+q

3
t
3
: MAR ← PC

x
2
 = q

3
t
5
: MAR ← MBR

x
3
 = t

1
 + q

2
t
4
+q

3
t
4
: PC ← PC + 1

x
4
 = x

3
+q

3
t
6
: MBR ← M

x
5
 = q

2
t
5
+q

3
t
7
: A ← MBR

x
6
 = q

1
t
3
: A ← R

x
7
 = x

5
+x

6
: T ← 0

x
8
 = t

2
: IR ← MBR
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5. Hill, F., and G. Peterson, Digital Systems: Hardware Organization and Design. New York: John Wiley 
& Sons, 1973.

6. Bartee, T. C, I. L. Lebow, and I. S. Reed, Theory and Design of Digital Machines. New York: McGraw-
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1974).

8. Computer, Special Issue on Hardware Description Language Applications, Vol. 10, No, 16 (June, 
1977).

PROBLEMS

8-1.  Show the block diagram that executes the statement:

 xT
3
: A ← B, B ← A

8-2.  A constant value can be transferred to a register by applying to each input a binary signal equivalent 
to logic-1 or logic-0. Show the implementation of the transfer:

 T: A ← 11010110

8-3. An 8-bit register A has one input x. The register operation is described symbolically as:

 P: A
8
 ← x,    A

i
 ← A

i + 1    
i = 1.2, 3,….,7

 What is the function of the register? The cells are numbered from right to left.

8-4.  Show the hardware implementation for the following statements. The registers are 4-bits in length:

  T
0
: A ← R0

  T
1
: A ← R1

  T
2
: A ← R2

  T
3
: A ← R3

8-5.  Let s
1
 , s

0
 be the selection variables for the multiplexer of Fig. 8-6, and let d

1
d

0
 be the selection 

variables for the destination decoder. Variable e is used to enable the decoder.

(a) State the transfers that occur when the selection variables s
1
s

0
d

1
d

0
e are equal to: (1) 00010; (2) 

O1000; (3) 11100; (4) 01101.

(b) Give the values of the selection variables for the following transfers: (1) A ← B; (.2) B ← C; (3) 
D ← A.

8-6.  A memory unit has two control inputs labeled enable and read/write (as explained in conjunction 
with Pig. 7-30). The memory data inputs and outputs are connected to an MBR register as in Fig. 8-7. 
The MBR can receive information either from an external register EXR or from the memory unit after 
a read operation. The MBR provides the data for the memory-write operation. Draw a block diagram 
using multiplexers and gates that shows the connection of MBR to memory. The system must have a 
capability of implementing the following three transfers:

  W: M ← MBR  write into memory

  R: MBR ← M  read from memory

  E: MBR ← EXR  load MBR from EXR

www.youseficlass.ir



Register-Transfer Logic 313 

8-7.  The following memory transfers are specified for the system of Fig. 8-8.

(a) M [A2] ← B3

(b) B2 ← M [A3]

 Specify the memory operation and determine the binary selection variables for the two multiplexers 
and the destination decoder.

8-8.  Using the quadruple 2-to-1 line multiplexers of Fig. 5-17 and four inverters, draw a block diagram 
for implementing the statements:

  T
1
: R2 ← R1

  T
2
: R2 ← R2

  T
3
: R2 ← 0

8-9.  Consider a 4-bit register A with bit A
4
 being in the most significant position. What is the operation 

specified by the following statement:

     A′
4
C:  A ← A + 1

     A
4
:  A ← 0

 Show the implementation of the system using a counter with parallel load.

8-10.  Show the hardware required to implement the following logic microoperations:

(a) T
1
:   F ← A ∧ B

(b) T
2
:   G ← C ∨ D

(c) T
3
:   E ← E

8-11.  What is the difference between these two statements?

 A + B:     F ← C ∨ D

 and

 C + D:     F ← A + B

8-12.  Specify the serial transfer depicted in Fig. 7-8 in symbolic form. Let S be the shift control function. 
Assume that S is enabled for a period of four pulses.

8-13.  Show the hardware that implements the following statement. Include the logic gates for the control 
function.

 xy′T
0
 + T

1
 + x′yT

2
:       A ← A + B

8-14.  A digital system has three registers: AR, BR, and PR. Three flip-flops provide the control functions 
for the system: S is a flip-flop which is enabled by an external signal to start the system’s operation; F 
and R are used for sequencing the microoperations. A fourth flip-flop, D, is set by the digital system 
when the operation is completed. The function of the system is described by the following register-
transfer operations:

S:  PR ← 0,     S ← 0,     D ← 0,     F ← 1

F:  F ← 0,     if (AR = 0) then (D ← l) else (R ← l)

R:  PR ← PR + BR,     AR ← AR − 1,     R ← 0,     F ← 1

 What is the function that the system performs?
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8-15.  The binary numbers listed below have a sign bit in the leftmost position and, if negative, are in 2’s-
complement form. Perform the arithmetic operations indicated using the algorithms for addition and 
subtraction stated in the text. Check your results by doing the arithmetic with equivalent decimal 
numbers.

(a) 001110 + 110010  (e) 010101 − 000111

(b) 010101 +000011   (d) 001010 − 111001

(c) 111001 + 001010  (g) 111001 − 001010

(d) 101011 + 111000  (h) 101011 − 100110

8-16.  (a)     Show the contents of an 8-but register that stores the numbers +36 and −36 in binary and in 
three different representations, i.e., sign-magnitude, sign-1’s com plement, and sign-2’s com-
plement, (b) Show the contents of the register after the numbers arc shifted arithmetically one 
position to the right (in all three repre sentations). (c) Repeat (b) for arithmetic shift-left.

8-17.  Two numbers in sign-2’s-compkment representation are added as shown in Fig. 8-10, and the sum is 
transferred to register A. Show that the arithmetic right-shift symbolized by

A ← shr A,      A
n
 ← A

n
 ⊕ V

 will always produce the correct sum divided by 2 whether or not there was an overflow in the original 
sum.

8-18.  The algorithms for adding and subtracting decimal numbers in sign-10’s-complement representation 
is similar to the algorithms for binary numbers in sign-2’s-complement representation.

(a) State the algorithms for decimal addition and subtraction in sign- 10’s-comple-ment represen-
tation. A positive sign is represented by a 0 and a negative sign is represented by a 9 in the most 
significant position.

(b) Apply the algorithms for the decimal computations (− 638) + (785) and (− 638) − (185).

8-19.  A 36-bit floating-point binary number has 8 bits plus sign for the-exponent. The coefficient is assu-
med to be a normalized fraction. The numbers in the coefficient and exponent are in sign-magnitude 
form. What are the largest and smallest positive quantities that can be accommodated, excluding 
zero?

8-20.  A 30-bit register holds a decimal floating-point number represented in BCD, The coefficient occu-
pies 21 bits of the register and is assumed to be a normalized integer. The numbers in the coefficient 
and exponent are assumed to be in sign-magnitude representation. What are the largest and smallest 
positive quantities that can be accommodated, excluding zero?

8-21.  Represent the number (+ 31.5)
10

 with a normalized integer coefficient of 13 bite and an exponent of 
7 bits as:

(a) A binary number (assumed base of 2).

(b) A binary-coded octal number (assumed base of 8).

(c) A binary-coded hexadecimal number (assumed base of 16).

8-22.  A digital computer has a memory unit with 24 bits per word. The instruction set consists of 190 
different operations. Each instruction is stored in one word of memory and consists of an operation-
code pan and an address part.

(a) How many bits are needed for the operation code?

(b) How many bits are left for the address part of the instruction?

(c) How many words can be accommodated in the memory unit?

(d) What is the largest signed fixed-point binary number that can be stored in one word of memory?
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8-23.  Specify an instruction format for a computer that performs the following operation:

 A ← M[address] + R

 where R can be any one of eight possible registers in the processor.

8-24.  Assume that the memory unit of Fig. 8-14 has 65,536 words of 8 bite each.

(a) What should be the number of bits in the first five registers listed in Table 8-4?

(b) How many words of memory are required to store the instruction:

LDA       APRS

 as specified in Table 8-5?

(c)  List the sequence of microoperations needed to execute the instruction. Register R can be used 
to temporarily hold part of an address.

8-25.  An immediate instruction for the simple computer defined in Fig. 8-14 has an operation code 
00000100. The instruction is specified as follows:

LRI OPRD (Load OPRD into R) R ← OPRD

 List the sequence of microoperations for executing this instruction.

8-26.  Repeat the design of the simple computer presented in Section 8-12. Replace the instructions in 
Table 8-5 by the following instructions:

Operation code Mnemonic Description Function

00000001 ADD R Add R to A A ← A + R

00000010 ADI OPRD Add operand to A A ← A + OPRD
00000011 ADA ADRS Add direct to A A ← A + M[ADRS]

8-27.  Draw a block diagram showing the hardware implementation of the system specified in problem 
8-14. Include a start input to set flip-flop S and a done output from flip-flop D.

8-28.  Write short notes on

(a) Interregister transfer.

(b) Bus transfer.

(c) Memory transfer.

8-29.  Differentiate between 

(a) Decimal data and Floating point data.

(b) Logic Microoperation and Shift microoperations.

(c) Implied and  Immediate operand instruction code

8-30.  What is meant by overflow? Briefly discuss with proper example. Explain the circuit of addition of 
sign-2’s complement numbers related to overflow.

8-31.  Perform arithmetic operations (+33) + (−12) and (+33) − (−12) using

(a) Sign-1’s competent representation.

(b) Sign-2’s competent representation.

(c) Sign-9’s competent representation

(d) Sign-10’s competent representation
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8-32.  What is the range of numbers that can be accommodated in a 24-bit register when the binary num-
bers are represented in :

(a) Sign-magnitude.

(b) Sign-2’s complement.

 Give the answers in equivalent decimal representation.

8-33.  Represent +169 and −156 in BCD using sign-10’s complement representation. Use one bit for the 
sign. Add the two BCD numbers, including the sign bit, and interpret the answer obtained

8-34.  Register A holds the binary information 10101110. Determine the B operand and the logic microo-
perations to be performed between A and B to change the value in A to:

(a) 01101101

(b) 11011011

8-35.  Determine  the logic operation that will selectively set bits in register A in those positions where 
there are 0’s in the bits of register B.

8-36.  For memory configured as in figure, if immediate addressing is allowed what is the maximum value 
of number (in decimal) can be loaded through instruction fetch?

 

7                      5     4                                   0

   Opcode Address

8-37.  What is the minimum size required for MAR if memory addressed has size 1K × 16?
8-38.  For a more complex computer design, 75 different instructions are required. What size of IR would 

you likely to choose?
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processor Logic Design

9.1 Introduction

A processor unit is that part of a digital system or a digital computer that implements the opera-
tions in the system. It is comprised of a number of registers and the digital functions that imple-
ment arithmetic, logic, shift, and transfer microoperations. The processor unit, when combined 
with a control unit that supervises the sequence of microoperations, is called a central processor 
unit or CPU. This chapter is concerned with the organization and design of the processor unit. 
The next chapter deals with the logic design of the control unit. In Chapter 11, we demonstrate 
the organization and design of a computer CPU.

The number of registers in a processor unit may vary from just one processor register to as 
many as 64 registers or more. Some older computers came with only one processor register. In 
some cases a special-purpose digital system may employ a single processor register. However, 
since registers and other digital functions are inexpensive when constructed with integrated cir-
cuits, all recent computers employ a large number of processor registers and route the informa-
tion among them through common buses.

An operation may be implemented in a processor unit either with a single microoperation 
or with a sequence of microoperations. For example, the multiplication of two binary numbers 
stored in two registers may be implemented with a combinational circuit that performs the op-
eration by means of gates. As soon as the signals propagate through the gates, the product is 
available and can be transferred to a destination register with a single clock pulse. Alternatively, 
the multiplication operation may be performed with a sequence of add and shift microopera-
tions. The method chosen for the implementation dictates the amount and type of hardware in 
the processor unit.

All computers, except the very large and fast ones, implement the involved operations by 
means of a sequence of microoperations. In this way, the processor unit need only have circuits 
that implement simple, basic microoperations such as add and shift. Other operations, such as 
multiplication, division, and floating-point arithmetic, are generated in conjunction with the con-
trol unit. The processor unit by itself is designed to implement basic microoperations of the type 
discussed in Chapter 8. The control unit is designed to sequence the microoperations to achieve 
other operations which are not included in the basic set.

The digital function that implements the microoperations on the information stored in pro-
cessor registers is commonly called an arithmetic logic unit or ALU. To perform a microopera-
tion, the control routes the source information from registers into the inputs of the ALU. The 
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ALU receives the information from the registers and performs a given operation as specified by 
the control. The result of the operation is then transferred to a destination register. By definition, 
the ALU is a combinational circuit; thus the entire register-transfer operation can be performed 
during one clock pulse interval. All register-transfer operations, including interregister transfers, 
in a typical processor unit are performed in one common ALU; otherwise, it would be necessary 
to duplicate the digital functions for each register. The shift microoperations are often performed 
in a separate unit. The shift unit is usually shown separately, but sometimes this unit is implied to 
be part of the overall arithmetic and logic unit.

A computer CPU must manipulate not only data but also instruction codes and addresses 
coming from memory. The register that holds and manipulates the operation code of instructions 
is considered to be part of the control unit. The registers that hold addresses are sometimes in-
cluded as part of the processor unit, and the address information is manipulated by the common 
ALU. In some computers, the registers that hold addresses are connected to a separate bus and 
the address information is manipulated with separate digital functions.

This chapter presents a few alternatives for the organization and design of a processor unit. 
The design of a particular arithmetic logic unit is undertaken to show the design process involved 
in formulating and implementing a common digital function capable of performing a large num-
ber of microoperations. Other digital functions considered and designed in this chapter are a 
shifter unit and a general-purpose processor register, commonly called an accumulator.

9.2 Processor Organization

The processor part of a computer CPU is sometimes referred to as the data path of the CPU 
because the processor forms the paths for the data transfers between the registers in the unit. The 
various paths are said to be controlled by means of gates that open the required path and close 
all others. A processor unit can be designed to fulfill the requirements of a set of data paths for 
a specific application. The design of a special-purpose processor was demonstrated in Section 
8-12. Figure 8-16 showed the various data paths for a particular, very limited processor. The gat-
ing of the data paths is achieved through the decoders and combinational circuit which comprise 
the control section of the unit.

In a well-organized processor unit, the data paths are formed by means of buses and other 
common lines. The control gates that formulate the given path are essentially multiplexers and 
decoders whose selection lines specify the required path. The processing of information is done 
by one common digital function whose data path can be specified with a set of common selection 
variables. A processor unit that has a well-structured organization can be used in a wide variety 
of applications. If constructed within an integrated circuit, it becomes available to many users, 
each of which may have a different application.

In this section, we investigate a few alternatives for organizing a general-purpose processor 
unit. All organizations employ a common ALU and shifter. The differences in organizations are 
mostly manifested in the organization of the registers and their common path to the ALU.

9.2.1 Bus Organization

When a large number of registers are included in a processor unit, it is most efficient to connect 
them through common buses or arrange them as a small memory having very fast access time. 
The registers communicate with each other not only for direct data transfers, but also while 
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performing various microoperations. A bus organization for four processor registers is shown in 
Fig. 9-1. Each register is connected to two multiplexers (MUX) to form input buses A and B. The 
selection lines of each multiplexer select one register for the particular bus. The A and B buses 
are applied to a common arithmetic logic unit. The function selected in the ALU determines 
the particular operation that is to be performed. The shift microoperations are implemented in 

Load

Decoder
MUX MUX

Enable

Destination
  select

Arithmatic-logic
  unit (ALU) 

Shifter

B select

Function
  select

Shift
select

Input
data

A select

A bus B bus

S bus

R 0

R 1

R 2

R 3

Output data

Figure 9-1 Processor registers and ALU connected through common busts
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the shifter. The result of the microoperation goes through the output bus S into the inputs of all  
registers. The destination register that receives the information from the output bus is selected 
by a decoder. When enabled, this decoder activates one of the register load inputs to provide a 
transfer path between the data on the S bus and the inputs of the selected destination register.

The output bus S provides the terminals for transferring data to an external destination. One 
input of multiplexer A or B can receive data from the outside environment when it is necessary 
to transfer external data into the processor unit.

The operation of the multiplexers, the buses, and the destination decoder is explained in 
Section 8-2 in conjunction with Fig. 8-6. The ALU and shifter are discussed later in this chapter.

A processor unit may have more than four registers. The construction of a bus-organized 
processor with more registers requires larger multiplexers and decoder; otherwise, it is similar to 
the organization depicted in Fig. 9-1.

The control unit that supervises the processor bus system directs the information flow 
through the ALU by selecting the various components in the unit. For example, to perform the 
microoperation:

R1 ← R2 + R3

the control must provide binary selection variables to the following selector inputs:

1. MUX A selector: to place the contents of R2 onto bus A.

2. MUX B selector: to place the contents of R3 onto bus B.

3. ALU function selector: to provide the arithmetic operation A + B.

4. Shift selector: for direct transfer from the output of the ALU onto output bus S (no shift).

5. Decoder destination selector: to transfer the contents of bus S into R 1.

The five control selection variables must be generated simultaneously and must be available 
during one common clock pulse interval. The binary information from the two source registers 
propagates through the combinational gates in the multiplexers, the ALU, and the shifter, to the 
output bus, and into the inputs of the destination register, all during one clock pulse interval. 
Then, when the next clock pulse arrives, the binary information on the output bus is transferred 
into R1. To achieve a fast response time, the ALU is constructed with carry look-ahead circuits 
and the shifter is implemented with combinational gates.

When enclosed in an IC package, a processor unit is sometimes called a register and arith-
metic logic unit or RALU. It is also called by some vendors a bit-slice microprocessor. The prefix 
micro refers to the small physical size of the integrated circuit in which (he processor is enclosed. 
Bit-slice refers to the fact that the processor can be expanded to a processor unit with a larger 
number of bits by using a number of ICs. For example, a 4-bit-stice microprocessor contains reg-
isters and ALU for manipulating 4-bit data. Two such ICs can be combined lo construct an 8-bit 
processor unit. For a 16-bit processor, it is necessary to use four ICs and connect them in cascade. 
The output carry from one ALU is connected to the input carry of the next higher-order ALU, and 
the serial output and input lines of the shifters are also connected in cascade. A bit-slice micro-
processor should be distinguished from another type of IC called a microprocessor. The former 
is a processor unit, whereas a microprocessor refers to an entire computer CPU enclosed in one 
IC package. Microprocessors and associated equipment are discussed in Chapter 12.

www.youseficlass.ir



Processor Logic Design 321 

9.2.2 Scratchpad Memory

The registers in a processor unit can be enclosed within a small memory unit. When included in 
a processor unit, a small memory is sometimes called a scratchpad memory. The use of a small 
memory is a cheaper alternative to connecting processor registers through a bus system. The dif-
ference between the two systems is the manner in which information is selected for transfer into 
the ALU. In a bus system, the information transfer is selected by the multiplexers that form the 
buses. On the other hand, a single register in a group of registers organized as a small memory 
must be selected by means of an address to the memory unit. A memory register can function 
just as any other processor register as long as its only function is to hold binary information to 
be processed in the ALU.

A scratchpad memory should be distinguished from the main memory of the computer. 
Contrary to the main memory which stores instructions and data, a small memory in a processor 
unit is merely an alternative to connecting a number of processor registers through a common 
transfer path. The information stored in the scratchpad memory would normally come from the 
main memory by means of instructions in the program.

Consider, for example, a processor unit that employs eight registers of 16 bits each. The 
registers can be enclosed within a small memory of eight words of 16 bits each, or an 8 × 16 
RAM. The eight memory words can be designated R0 through R7, corresponding to addresses 0 
through 7, and constitute the registers for the processor.

A processor unit that uses a scratchpad memory is shown in Fig. 9-2. A source register 
is selected from memory and loaded into register A. A second source register is selected from 
memory and loaded into register B. The selection is done by specifying the corresponding word 
address and activating the memory-read input. The information in A and B is manipulated in the 
ALU and shifter. The result of the operation is transferred to a memory register by specifying its 
word address and activating the memory-write input control. The multiplexer in the input of the 
memory can select input data from an external source.

Assume that the memory has eight words, so that an address must be specified with three 
bits. To perform the operation:

R1 ← R2 + R3

the control must provide binary selection variables to perform the following sequence of three 
microoperations:

T
1
: A ← M [010]  read R2 into register A

T
2
: B ← M [011]  read R3 into register B

T
3
: M [001] ← A + B  perform operation in ALU

    and transfer result to R 1

Control function T
1
, must supply an address of 010 to the memory and activate the read and load 

A inputs. Control function T
2
 must supply an address 011 to the memory and activate the read 

and load B inputs. Control function T
3
 must supply the function code to the ALU and shifter to 

perform an add operation (with no shift), apply an address 001 to the memory, select the output 
of the shifter for the MUX, and activate the memory write input. The symbol M[xxx] designates 
a memory word (or register) specified by the address given in the binary number xxx.
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The reason for a sequence of three microoperations, instead of just one as in a bus-orga-
nized processor, is due to the limitation of the memory unit. Since the memory unit has only one 
set of address terminals but two source registers are to be accessed, two accesses to memory are 
needed to read the source information. The third microoperation is needed to address the desti-
nation register. If the destination register is the same as the second source register, the control 
could activate the read input to extract the second-source information, followed by a write signal 
to activate the destination transfer, without having to change the address value.

Some processors employ a 2-port memory in order to overcome the delay caused when 
reading two source registers. A 2-port memory has two separate address lines to select two words 
of memory simultaneously. In this way, the two source registers can be read at the same time. If 
the destination register is the same as one of the source registers, then the entire microoperation 
can be done within one clock pulse period.

The organization of a processor unit with a 2-port scratchpad memory is shown in  
Fig. 9-3.* The memory has two sets of addresses, one for port A and the other for port B. Data 
from any word in memory are read into the A register by specifying an A address. Likewise, 
data from any word in memory are read into the B register by specifying a B address. The same  

*This organization is similar to the 4-bit slice microprocessor, type 2901.
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Figure 9-2 Processor unit employing a scratchpad memory
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address can be applied to the A address and the B address, in which case the identical word will 
appear in both A and B registers. When enabled by the memory enable (ME) input, new data 
can be written into the word specified by the B address. Thus the A and B addresses specify two 
source registers simultaneously, and the B address always specifies the destination register. Fig-
ure 9-3 does not show a path for external input and output data, but they can be included as in 
previous organizations.

The A and B registers are, in effect, latches that accept new information as long as the clock 
pulse, CP, is in the 1-state. When CP goes to 0, the latches are disabled, and they hold the infor-
mation that was stored when CP was a 1. This eliminates any possible race conditions that could 
occur while new information is being written into memory. The clock input controls the memory 
read and write operations through the write enable (WE) input. It also controls the transfers into 
the A and B latches. The waveform of one clock pulse interval is shown in the diagram.

When the clock input is 1, the A and B latches are open and accept the information com-
ing from memory. The WE input is also in the 1-state. This disables the write operation and 
enables the read operation in the memory. Thus, when CP = 1, the words selected by the A and 
B addresses are read from memory and placed in registers A and S, respectively. The operation 
in the ALU is performed with the data stored in A and B. When the clock input goes to 0, the 
latches are closed and they retain the last data entered. If the ME input is enabled while WE = 0, 
the result of the microoperation is written into the memory word defined by the B address. Thus, 
a microoperation:

R1← R 1 + R2

can be done within one clock pulse period. Memory register R1 must be specified with the B ad-
dress, and R2 with the A address.

Scratchpad
 memory

ALU and shifter

A address B address

Memory
enable

A B

WE ME

CP

Figure 9-3 Processor unit with a 2-port memory
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9.2.3 Accumulator Register

Some processor units separate one register from all others and call it an accumulator register, 
abbreviated AC or A register. The name of this register is derived from the arithmetic addition 
process encountered in digital computers. The process of adding many numbers is carried out by 
initially storing these numbers in other processor registers or in the memory unit of the computer 
and clearing the accumulator to 0. The numbers are then added to the accumulator one at a time, 
in consecutive order. The first number is added to 0, and the sum transferred to the accumula-
tor. The second number is added to the contents of the accumulator, and the newly formed sum 
replaces its previous value. This process is continued until all numbers are added and the total 
sum is formed. Thus, the register “accumulates” the sum in a step-by-step manner by performing 
sequential additions between a new number and the previously accumulated sum.

The accumulator register in a processor unit is a multipurpose register capable of perform-
ing not only the add microoperation, but many other microoperations as well. In fact, the gates 
associated with an accumulator register provide all the digital functions found in an ALU.

Figure 9-4 shows the block diagram of a processor unit that employs an accumulator reg-
ister. The A register is distinguished from all other processor registers. In some cases the entire 
processor unit is just the accumulator register and its associated ALU. The register itself can 
function as a shift register to provide the shift microoperations. Input B supplies one external 
source information. This information may come from other processor registers or directly from 
the main memory of the computer. The A register supplies the other source information to the 

ALU

Processor registers
          or
   memory unit

Accumulator
register (A)

Select
B source

A B

Output data

Input data

Figure 9-4 Processor with an accumulator register
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ALU at input A. The result of an operation is transferred back to the A register and replaces its 
previous content. The output from the A register may go to an external destination or into the 
input terminals of other processor registers or memory unit.

To form the sum of two numbers stored in processor registers, it is necessary to add them in 
the A register using the following sequence of microoperations:

T
1
: A ← 0 clear A

T
2
: A ← A + R1 transfer R1 to A

T
3
: A ← A + R2 add R2 to A

Register A is first cleared. The first number in R1 is transferred into the A register by adding it 
to the present zero content of A. The second number in R2 is then added to the present value of 
A. The sum formed in A may be used for other computations or may be transferred to a required 
destination.

9.3 Arithmetic Logic Unit

An arithmetic logic unit (ALU) is a multioperation, combinational-logic digital function. It can 
perform a set of basic arithmetic operations and a set of logic operations. The ALU has a num-
ber of selection lines to select a particular operation in the unit. The selection lines are decoded 
within the ALU so that k selection variables can specify up to 2k distinct operations.

Figure 9-5 shows the block diagram of a 4-bit ALU. The four data inputs from A are com-
bined with the four inputs from B to generate an operation at the F outputs. The mode-select 
input s

2
 distinguishes between arithmetic and logic operations. The two function-select inputs s

1
 

and s
0
 specify the particular arithmetic or logic operation to be generated. With three selection 

variables, it is possible to specify four arithmetic operations (with s
2
 in one state) and four logic 

operations (with s
2
 in the other state). The input and output carries have meaning only during an 

arithmetic operation.
The input carry in the least significant position of an ALU is quite often used as a fourth 

selection variable that can double the number of arithmetic operations. In this way, it is possible 
to generate four more operations, for a total of eight arithmetic operations.

Arithmetic logic unit
           (ALU)

A B

A

A4 A3 B4A1A2 B3 B1B2

F4 F3 F1F2

Cout

Cin

s2

s0

s1

(Mode-select)

(Output carry)

(Function-select)

(Input carry)

Figure 9-5 Block diagram of a 4-bit ALU
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The design of a typical ALU will be carried out in three stages. First, the design of the 
arithmetic section will be undertaken. Second, the design of the logic section will be considered. 
Finally, the arithmetic section will be modified so that it can perform both arithmetic and logic 
operations.

9.4 Design of Arithmetic Circuit

The basic component of the arithmetic section of an ALU is a parallel adder. A parallel adder is 
constructed with a number of full-adder circuits connected in cascade (see Section 5-2). By con-
trolling the data inputs to the parallel adder, it is possible to obtain different types of arithmetic 
operations. Figure 9-6 demonstrates the arithmetic operations obtained when one set of inputs to 

Cout Cin = 0 

A B

F = A + B

Parallel adder

               

Cout Cin = 1 

A B

Parallel adder

F = A + B + 1

  (a) Addition       (b) Addition with carry

Cout Cin = 0 

A

Parallel adder

B

F = A + B                

Cout Cin = 1 

A

Parallel adder

B

F = A + B + 1

   (c) A plus 1’s complement of B (d) Subtraction

Cout Cin = 0 

A

Parallel adder

0

F = A                

Cout Cin = 1 

A

Parallel adder

0

F = A + 1

  (e) Transfer A           (f) Increment A

Cout Cin = 0 

A

Parallel adder

All 1’s

F = A – 1                

Cout Cin = 1 

A

Parallel adder

All 1’s

F = A

           (g) Decrement A         (h) Transfer A

Figure 9-6 Operations obtained by controlling one set of inputs to a parallel adder
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a parallel adder is controlled externally. The number of bits in the parallel adder may be of any 
value. The input carry C

in
 goes to the full-adder circuit in the least significant bit position. The 

output carry C
out

 comes from the full-adder circuit in the most significant bit position.
The arithmetic addition is achieved when one set of inputs receives a binary number A, the 

other set of inputs receives a binary number B, and the input carry is maintained at 0. This is 
shown in Fig. 9-6(a). By making C

in
 = 1 as in Fig. 9-6(b), it is possible to add 1 to the sum in F. 

Now consider the effect of complementing all the bits of input B. With C
in
 = 0, the output pro-

duces F = A + B, which is the sum of A plus the 1’s complement of B. Adding 1 to this sum by 
making C

in
 = 1, we obtain F = A + B + 1, which produces the sum of A plus the 2’s complement 

of B. This operation is similar to a subtraction operation if the output carry is discarded. If we 
force all 0’s into the B terminals, we obtain F = A + 0 = A, which transfers input A into output 
F. Adding 1 through C

in
 as in Fig. 9-6(f), we obtain F = A + 1, which is the increment operation.

The condition illustrated in Fig. 9-6(g) inserts all 1’s into the B terminals. This produces 
the decrement operation F = A - 1. To show that this condition is indeed a decrement operation, 
consider a parallel adder with n full-adder circuits. When the output carry is 1, it represents the 
number 2n because 2n in binary consists of a 1 followed by n 0’s. Subtracting 1 from 2n, we obtain 
2n - 1, which in binary is a number of n 1’s. Adding 2n - 1 to A, we obtain F = A + 2n - 1 = 2n + 
A - 1. If the output carry 2n is removed, we obtain F = A - 1.

To demonstrate with a numerical example, let n = 8 and A = 9. Then:

              A = 0000 1001 = (9)
10

             2n =1 0000 0000 = (256)
10

      2n - 1 = 1111 1111 = (255)
10

A + 2n - 1 = 1 0000 1000 = (256 + 8)
10

Removing the output carry 2n = 256, we obtain 8 = 9 - 1. Thus, we have decremented A by 1 by 
adding to it a binary number with all 1’s.

The circuit that controls input B to provide the functions illustrated in Fig. 9-6 is called a 
true/complement, one/zero element. This circuit is illustrated in Fig. 9-7. The two selection lines 
s

1
 and s

0
 control the input of each B terminal. The diagram shows one typical input designated 

by B, and an output designated by Y
i
. In a typical application, there are n such circuits for i = 1, 

2, …, n. As shown in the table of Fig. 9-7, when both s
1
 and s

0
 are equal to 0, the output Y

i
 = 0, 

regardless of the value of B
i
. When s

1
s

0
 = 01, the top AND gate generates the value of B, while the 

bottom gate output is 0; so Y
i
 = B

i
. With s

1
s

0
 = 10, the bottom AND gate generates the comple-

ment of B
i
 to give Y

i
 = B′

i
. When s

1
s

0
 = 11, both gates are active and Y

i 
= B

i
 + B′

i
 = 1.

s0

s1

Bi

Yi

      

s
1

s
0

Y
i

0 0 0

0 1 B
i

1 0 B′
i

1 1 1

Figure 9-7 True/complement, one/zero circuit
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A 4-bit arithmetic circuit that performs eight arithmetic operations is shown in Fig. 9-8, 
The four full-adder (FA) circuits constitute the parallel adder. The carry into the first stage is the 
input carry. The carry out of the fourth stage is the output carry. All other carries are connected 
internally from one stage to the next. The selection variables are s

1
 s

0
, and C

in
. Variables s

1
 and s

0
 

control all of the B inputs to the full-adder circuits as in Fig. 9-7. The A inputs go directly to the 
other inputs of the full adders.

The arithmetic operations implemented in the arithmetic circuit are listed in Table 9-1. The 
values of the Y inputs to the full-adder circuits are a function of selection variables s

1
 and s

0
. Add-

ing the value of Y in each case to the value of A plus the C
in
 value gives the arithmetic operation 

in each entry. The eight operations listed in the table follow directly from the function diagrams 
illustrated in Fig. 9-6.

This example demonstrates the feasibility of constructing an arithmetic circuit by means of 
a parallel adder. The combinational circuit that must be inserted in each stage between the exter-
nal inputs A

i
 and B

i
 and the inputs of the parallel adder X

i
 and Y

i
 is a function of the arithmetic 

operations that are to be implemented. The arithmetic circuit of Fig. 9-8 needs a combinational 
circuit in each stage specified by the Boolean functions:

X
i
 = A

i

Y
i
 = B

i
s

0
 + B′

i
s

i
       i = 1, 2, .... n

where n is the number of bits in the arithmetic circuit. In each stage i, we use the same common 
selection variables s

1
 and s

0
. The combinational circuit will be different if the circuit generates 

different arithmetic operations.

9.4.1 Effect of Output Carry

The output carry of an arithmetic circuit or ALU has special significance, especially after a sub-
traction operation. To investigate the effect of the output carry, we expand the arithmetic circuit 
of Fig. 9-8 to n bits so that C

out
 = 1 when the output of the circuit is equal to or greater than 2n. 

Table 9-2 lists the conditions for having an output carry in the circuit. The function F = A will 

Table 9-1 Function table for the arithmetic circuit of Fig. 9-8

Function select Y equals Output equals Function

s
1

s
0

C
in

0 0 0 0 F = A Transfer A

0 0 1 0 F = A + 1 Increment A

0 1 0 B F = A + B Add B to A

0 1 1 B F = A + B + 1 Add B to A plus 1

1 0 0 B F = A + B Add 1’s complement of B to A

1 0 1 B F = A + B + 1 Add 2’s complement of B to A

1 1 0 All 1’s F = A - 1 Decrement A

1 1 1 All 1’s F = A Transfer A
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always have the output carry equal to 0. The same applies to the increment operation F = A + 1, 
except when it goes from an all-1’s condition to an all-0’s condition, at which time it produces 
an output carry of 1. An output carry of 1 after an addition operation denotes an overflow condi-
tion. It indicates that the sum is greater than or equal to 2n and that the sum consists of n + 1 bits.

The operation F = A + B adds the l’s complement of B to A. Remember from Section 1-5 
that the complement of B can be expressed arithmetically as 2n - 1 - B. The arithmetic result in 
the output will be:

F = A + 2n - 1 - B = 2n + A - B - 1

If A > B, then (A - B) > 0 and F > (2n - 1), so that C
out

 = 1. Removing the output carry 2n from 
this result gives:

F = A - B - 1

s0

s1

Cin

B1

A1

B2

A2

B3

A3

B4

A4

C2

FA

FA

FA

FA

C2

Cout

F1

Y1

X1

X2

X3

X4

Y2

Y3

Y4

F2

F3

F4

C3

C4

C5

Figure 9-8 Logic diagram of arithmetic circuit
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which is a subtraction with borrow. Note that if A  B, then (A - B)  0 and F  (2n - 1), so that 
C

out
 = 0. For this condition it is more convenient to express the arithmetic result as:

F = (2n - 1) - (B - A)

which is the l’s complement of B - A.
The condition for output carry when F = A + B  + 1 can be derived in a similar manner. B 

+ 1 is the symbol for the 2’s complement of B. Arithmetically, this is an operation that produces 
a number equal to 2n - B. The result of the operation can be expressed as:

F = A + 2n - B = 2n + A - B

If A  B, then (A – B)  0 and F  2n, so that C
out

 = 1. Removing the output carry 2n, we obtain:

F = A - B

which is a subtraction operation. If, however, A < B, then (A - B) < 0 and F < 2n, so that C
out

 = 0. 
The arithmetic result for this condition can be expressed as:

F = 2n - (B - A)

which is the 2’s complement of B - A. Thus, the output of the arithmetic subtraction is correct as 
long as A  B. The output should be B - A if B >A, but the circuit generates the 2’s complement 
of this number.

The decrement operation is obtained from F = A + (2n - l) = 2n + A - 1. The output carry is 
always 1 except when A = 0. Subtracting 1 from 0 gives - 1, and - 1 in 2’s complement is 2n - 1, 
which is a number with all l’s. The last entry in Table 9-2 generates F = (2n - 1) + A + 1 = 2n + 
A. This operation transfers A into F and gives an output carry of 1.

Table 9-2 Effect of output carry in the arithmetic circuit of Fig. 9-8

Function  
select

Arithmetic 
function

C
out

 = 1 Comments

if

s
1

s
0

C
in

0 0 0 F = A C
out

 is always 0

0 0 1 F = A + 1 A = 2n - 1 C
out

 = 1 and F = 0 if A = 2n - 1

0 1 0 F = A + B (A + B)  2n Overflow occurs if C
out

 = 1

0 1 1 F = A + B + 1 (A + B)  (2n - 1) Overflow occurs if C
out

 = 1

1 0 0 F = A - B - 1 A > B If C
out

 = 0, then A < B and 
F = 1’s complement of (B - A)

1 0 1 F = A - B A  B If C
out

 = 0, then A < B and 
F = 2’s complement of (B - A)

1 1 0 F = A - 1 A ≠ 0 C
out

 = l, except when A = 0

1 1 1 F = A C
out

 is always 1
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9.4.2 Design of Other Arithmetic Circuits

The design of any arithmetic circuit that generates a set of basic operations can be undertaken 
by following the procedure outlined in the previous example. Assuming that all operations in the 
set can be generated through a parallel adder, we start by obtaining a function diagram as in Fig. 
9-6. From the function diagram, we obtain a function table that relates the inputs of the full-adder 
circuit to the external inputs. From the function table, we obtain the combinational gates that 
must be added to each full-adder stage. This procedure is demonstrated in the following example.

EXAMPLE 9-1: Design an adder/subtractor circuit with one selection variable s and two 
inputs A and B. When s = 0 the circuit performs A + B. When s = 1 the circuit performs A - B 
by taking the 2’s complement of B.

The derivation of the arithmetic circuit is illustrated in Fig. 9-9. The function diagram is 
shown in Fig. 9-9(a). For the addition part, we need C

in
 = 0. For the subtraction part, we need 

the complement of B and C
in
 = 1. The function table is listed in Fig. 9-9(b). When s = 0, X

i
 and 

Y
i
 of each full adder must be equal to the external inputs A

i
 and B

i
, respectively. When s = 1, 

we must have X
i
 = A, and Y

i
 = B’

i
. The input carry must be equal to the value of s. The diagram 

in (b) shows the position of the combinational circuit in one typical stage of the arithmetic 
circuit. The truth table in (c) is obtained by listing the eight values of the binary input vari-
ables. Output X

i
 is made to be equal to input A

i
 in all eight entries. Output Y

i
 is equal to B

i
 for 

the four entries when s = 0. It is equal to the complement of B
i
 for the last four entries where  

s = 1. The simplified output functions for the combinational circuit are:

X
i 
= A

i

Y
i
 = B

i 
⊕ s

The diagram of the 4-bit adder/sub tractor circuit is shown in Fig. 9-10. Each input B
i
 requires 

an exclusive-OR gate. The selection variable s goes to one input of each gate and also to the 
input carry of the parallel adder. The 4-bit adder/subtractor can be constructed with two ICs. 
One IC is the 4-bit parallel adder and the other is a quadruple exclusive-OR gates.

9.5 Design of Logic Circuit

The logic microoperations manipulate the bits of the operands separately and treat each bit as 
a binary variable. Table 2-6 listed 16 logic operations that can be performed with two binary 
variables. The 16 logic operations can be generated in one circuit and selected by means of four 
selection lines. Since all logic operations can be obtained by means of AND, OR, and NOT 
(complement) operations, it may be more convenient to employ a logic circuit with just these 
operations. For three operations, we need two selection variables. But two selection Lines can 
select among four logic operations, so we choose also the exclusive-OR (XOR) function for the 
logic circuit to be designed in this and the next section.

The simplest and most straightforward way to design a logic circuit is shown in Fig. 9-11. 
The diagram shows one typical stage designated by subscript i. The circuit must be repeated 
n times for an n-bit logic circuit. The Four gates generate the four logic operations OR. XOR, 
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AND, and NOT. The two selection variables in the multiplexer select one of the gates for the out-
put. The function table lists the output logic generated as a function of the two selection variables.

The logic circuit can be combined with the arithmetic circuit to produce one arithmetic 
logic unit. Selection variables s

1
 and s

0
 can be made common to both sections provided we use 

a third selection variable, s
2
, to differentiate between the two. This configuration is illustrated in 

Fig. 9-12. The outputs of the logic and arithmetic circuits in each stage go through a multiplexer 
with selection variable s

2
. When s

2
 = 0, the arithmetic output is selected, but when s

2
 = 1, the logic 

output is selected. Although the two circuits can be combined in this manner, this is not the best 
way to design an ALU.

Cin = 0 

A

Parallel adder

B

F = A + B

Cin = 1

A

Parallel adder

B

F = A + B + 1 =  A – B 

(a) Function specification

Ci
B

Xi

Yi

Fi

Ci + 1

s
Ai
Bi

FACombinational
       circuit

Ai
Ai

Bi
B’i

s Xi Yi Cin

0
1 1

0

(b) Specifying combinational circuit

s Ai Bi Xi Yi

0 0 0 0 0

0 0 1 0 1 Xi = Ai

0 1 0 1 0 Yi = Bi ⊕ s

0 1 1 1 1 Cin = s

1 0 0 0 1

1 0 1 0 0

1 1 0 1 1

1 1 1 1 0

(c) Truth table and simplified equations

Figure 9.9 Derivation of an adder/subtractor circuit
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X1

Y1

F1FA

X2

Y2

F2FA

X3

Y3

F3FA

X4

Y4

F4FA

C1

Cout

A1

B1

s

A2

B2

A3

B3

A4

B4

Figure 9-10 4-bit adder/subtractor circuit

Ai

Fi

s1
s0

Bi

1

0

2

Select

MUX

3

(a) Logic diagram

s1 s0 Output Operation

0 0 Fi = Ai + Bi OR

0 1 Fi = Ai ⊕ Bi
XOR

1 0 Fi = AiBi AND

1 1 Fi = A′i NOT

(b) Function table

Figure 9-11 One stage of logic circuit
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A more efficient ALU can be obtained if we investigate the possibility of generating logic 
operations in an already available arithmetic circuit. This can be done by inhibiting all input  
carries into the full-adder circuits of the parallel adder. Consider the Boolean function that gener-
ates the output sum in a full-adder circuit:

F
i
 = X

i
 ⊕ Y

i
 ⊕ C

i

The input carry C
i
 in each stage can be made to be equal to 0 when a selection variable s

2
 is equal 

to 1. The result would be:

F
i
 = X

i
 ⊕ Y

i

This expression is valid because of the property of the exclusive-OR operation x ⊕ 0 = x. Thus, 
with the input carry to each stage equal to 0, the full-adder circuits generate the exclusive-OR 
operation.

Now consider the arithmetic circuit of Fig. 9-8. The value of Y, can be selected by means of 
the two selection variables to be equal to either 0, B

i
, B′

i
 or 1.

The value of X
i
 is always equal to input A

i
. Table 9-3 shows the four logic operations ob-

tained when a third selection variable s
2
 = 1. This selection variable forces C

i
 to be equal to 

Ai

Bi

0

Ci

s2

s0

s1

Ci + 1

Fi

1

  One stage of
arithmetic circuit

One stage of
logic circuit

MUX

Select

Figure 9-12 Combining logic and arithmetic circuits

Table 9-3 Logic operations in one stage of arithmetic circuit

s
2
 s

1
 s

0
X

i
 Y

i
  C

i
F

i
 = X

i
 ⊕ Y

i
Operation

Required
operation

1 0 0 A
i
 0 0 F

i
 = A

i
Transfer A OR

1 0 1 A
i
 B

i
 0 F

i
 = A

i
 ⊕ B

i
XOR XOR

1 1 0 A
i
 B′

i
 0 F

i
 = A

i
 B

i
Equivalence AND

1 1 1 A
i
 1 0 F

i
 = A′

i
NOT NOT
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0 while s
1
 and s

0
 choose a particular value for Y

i
. The four logic operations obtained by this 

configuration are transfer, exclusive-OR, equivalence, and complement. The third entry is the 
equivalence operation because:

A
i
 ⊕ B′

i
 = A

i 
B

i
 + A′

i 
B′

i
 = A

i
  B

i

The last entry in the table is the NOT or complement operation because:

A
i
 ⊕ 1 = A′

i

The table has one more column which lists the four logic operations we want to include 
in the ALU. Two of these operations, XOR and NOT, are already available. The question that 
must be answered is whether it is possible to modify the arithmetic circuit further so that it will 
generate the logic functions OR and AND instead of the transfer and equivalence functions. This 
problem is investigated in the next section.

9.6 Design of Arithmetic Logic Unit

En this section, we design an ALU with eight arithmetic operations and four logic operations. 
Three selection variables s

2
, s

1
 and s

0
 select eight different operations, and the input carry C

in
 is 

used to select four additional arithmetic operations. With s
2
 = 0, selection variables s

1
 and s

0
 to-

gether with C
in
 will select the eight arithmetic operations listed in Table 9-1. With s

2
 = 1, variables 

s
1
 and s

0
 will select the four logic operations OR, XOR, AND, and NOT.

The design of an ALU is a combinational-logic problem. Because the unit has a regular 
pattern, it can be broken into identical stages connected in cascade through the carries. We can 
design one stage of the ALU and then duplicate it for the number of stages required. There are 
six inputs to each stage: A

i
, B

i
, C

i
, s

2
, s

1
, and s

0
. There are two outputs in each stage: output F

i
 and 

the carry out C
i +

 
1
. One can formulate a truth table with 64 entries and simplify the two output 

functions.
Here we choose to employ an alternate procedure that uses the availability of a parallel 

adder.
The steps involved in the design of an ALU are as follows:

1. Design the arithmetic section independent of the logic section.

2. Determine the logic operations obtained from the arithmetic circuit in step 1, assuming 
that the input carries to all stages are 0.

3. Modify the arithmetic circuit to obtain the required logic operations.

The third step in the design is not a straight forward procedure and requires a certain amount of 
ingenuity on the part of the designer. There is no guarantee that a solution can be found or that 
the solution uses the minimum number of gates. The example presented here demonstrates the 
type of logical thinking sometimes required in the design of digital systems.

It must be realized that various ALUs are available in EC packages. In a practical situation, 
all that one must do is search for a suitable ALU or processor unit among the ICs that are avail-
able commercially. Yet, the internal logic of the IC selected must have been designed by a person 
familiar with logic design techniques.

The solution to the first design step is shown in Fig. 9-8. The solution to the second design 
step is presented in Table 9-3. The solution of the third step is carried out below.
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From Table 9-3, we see that when s
2
 = 1, the input carry C

i
 in each stage must be 0. With 

s
1 
s

0
 = 00, each stage as it stands generates the function F

i
 = A

i
. To change the output to an OR 

operation, we must change the input to each full-adder circuit from A
i
, to A

i
 + B

i
. This can be ac-

complished by ORing B
i
 and A

i
 when s

2 
s

1 
s

0
 = 100.

The other selection variables that give an undesirable output occur when s
2 
s

1 
s

0
 = 110. The 

unit as it stands generates an output F
i
 = A

i
  B

i
 but we want to generate the AND operation F

i
 

= A
i
B

i
. Let us investigate the possibility of ORing each input A

i
 with some Boolean function K

i
. 

The function so obtained is then used for X
i
 when s

2 
s

1 
s

0
 = 110:

F
i
 = X

i
 ⊕ Y

i
 = (A

i
 ⊕ K

i
) ⊕ B′

i
 = A

i
 B

i
 + K

i
B

i
 + A′

i
K′

i
B′

i

Careful inspection of the result reveals that if the variable K
i
 = B′

i
, we obtain an output:

F
i
 = A

i 
B

i
 + B′

i 
B

i
 + A

i 
B

i 
B′

i
 = A

i 
B

i 

Two terms are equal to 0 because B
i 
B′

i
 = 0. The result obtained is the AND operation as required. 

The conclusion is that, if A
i
 is ORed with B′

i
 when s

2
s

1
s

0
 = 110, the output will generate the AND 

operation.
The final ALU is shown in Fig. 9-13. Only the first two stages are drawn, but the diagram 

can be easily extended to more stages. The inputs to each full-adder circuit are specified by the 
Boolean functions:

X
i
 = A

i
 + s

2
s′

1
s′

0
B

i
 + s

2
s

1
s′

0
B′

i

Y
i
 = s

0
B

i
 + s

1
B′

i

Z
i
 = s

2
C′

i

When s
2
 = 0, the three functions reduce to;

X
i
 = A

i

Y
i
 = s

0
B

i
 + s

1
B′

i

Z
i
 = C′

i

which are the functions for the arithmetic circuit of Fig. 9-8. The logic operations are generated 
when s

2
 = 1. For s

2
s

1
s

0
 = 101 or 111, the functions reduce to:

X
i
 = A

i

Y
i
 = s

0
B

i
 + s

1
B′

i

C
i
 = 0

Output F
i
 is then equal to X

i
 ⊕ Y

i
 and produces the exclusive-OR and complement operations as 

specified in Table 9-3. When s
2
s

1
s

0
 = 100, each A

i
 is ORed with B

i
 to provide the OR operation 

as discussed above. When s
2
s

1
s

0
 = 110, each A

i
 is ORed with B′

i
 to provide the AND operation as 

explained previously.
The 12 operations generated in the ALU are summarized in Table 9-4. The particular func-

tion is selected through s
2
, s

1
, s

0
, and C

in
. The arithmetic operations are identical to the ones listed 

for the arithmetic circuit. The value of C
in
 for the four logic functions has no effect on the opera-

tion of the unit and those entries are marked with don’t-care X’s.
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Figure 9-13 Logic diagram of arithmetic logic unit (ALU)
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9.7 Status Register

The relative magnitudes of two numbers may be determined by subtracting one number from 
the other and then checking certain bit conditions in the resultant difference. If the two numbers 
are unsigned, the bit conditions of interest are the output carry and a possible zero result. If the 
two numbers include a sign bit in the highest-order position, the bit conditions of interest are 
the sign of the result, a zero indication, and an overflow condition. It is sometimes convenient to 
supplement the ALU with a status register where these status-bit conditions are stored for further 
analysis. Status-bit conditions are sometimes called condition-code bits or flag bits.

Figure 9-14 shows the block diagram of an 8-bit ALU with a 4-bit status register. The four 
status bits are symbolized by C, S, Z, and V. The bits are set or cleared as a result of an operation 
performed in the ALU.

1. Bit C is set if the output carry of the ALU is 1. It is cleared if the output carry is 0.

2. Bit S is set if the highest-order bit of the result in the output of the ALU (the sign bit) is 
1. It is cleared if the highest-order bit is 0.

3. Bit Z is set if the output of the ALU contains all 0’s, and cleared otherwise. Z = 1 if the 
result is zero, and Z = 0 if the result is nonzero.

4. Bit V is set if the exclusive-OR of carries C
8
 and C

9
 is 1, and cleared otherwise. This is 

the condition for overflow when the numbers are in sign-2’s-complement representation 
(see Section 8-6). For the 8-bit ALU, V is set if the result is greater than 127 or less than 
- 128.

The status bits can be checked after an ALU operation to determine certain relationships 
that exist between the values of A and B. If bit V is set after the addition of two signed numbers, 
it indicates an overflow condition. If Z is set after an exclusive-OR operation, it indicates that  

Table 9-4 Function table for the ALU of Fig. 9-13

Selection
Outputs

2
s

1
s

0
C

in
Function

0 0 0 0 F = A Transfer A

0 0 0 1 F = A + 1 Increment A

0 0 1 0 F = A + B Addition

0 0 1 1 F = A + B + 1 Add with carry

0 1 0 0 F = A - B - 1 Subtract with borrow

0 1 0 1 F = A - B Subtraction

0 1 1 0 F = A - 1 Decrement A

0 1 1 1 F = A Transfer A

1 0 0 X F = A ∨ B OR

1 0 1 X F = A ⊕ B XOR

1 1 0 X F = A ∧ B AND

1 1 1 X F = A Complement A
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A = B. This is so because x ⊕ x = 0, and the exclusive-OR of two equal operands gives an all-0’s 
result which sets the Z bit. A single bit in A can be checked to determine if it is 0 or 1 by masking 
all bits except the bit in question and then checking the Z status bit. For example, let A = 101 x 
1100, where x is the bit to be checked. The AND operation of A with B = 00010000 produces a 
result 000 x 0000. If x = 0, the Z status bit is set, but if x = 1, the Z bit is cleared since the result 
is not zero.

The compare operation is a subtraction of B from A, except that the result of the operation is 
not transferred into a destination register, but the status bits are affected. The status register then 
provides the information about the relative magnitudes of A and B. The status bits to consider 
depend on whether we take the two numbers to be unsigned or signed and in 2’s-complement 
representation.

Consider the operation A - B done with two unsigned binary numbers. The relative magni-
tudes of A and B can be determined from the values transferred to the C and Z status bits. If  
Z = 1, then we know that A = B, since A - B = 0. If Z = 0, then we know that A ≠ B. From Table 
9-2, we have that C = 1 if A > B and C = 0 if A < B. These conditions are listed in Table 9-5. The 
table lists two other conditions. For A to be greater than but not equal to B (A > B), we must have 
C = 1 and Z = 0. Since C is set when the result is 0, we must check Z to ensure that the result is 
not 0. For A to be less than or equal to B(A ≤ B), the C bit must be 0 (for A < B) or the Z bit must 
be 1 (for A = B). Table 9-5 also lists the Boolean functions that must be satisfied for each of the 
six relationships.

Some computers consider the C bit to be a borrow bit after a subtraction operation A - B. 
An end borrow does not occur if A ≥ B, but an extra bit must be borrowed when A < B. The con-

C8

A B

Select
8-bit
ALU

F

CSZV

C9 = Cout

Status
register

C –  Carry

Z –  Zero
V –  Overflow

S –  Sign

Figure 9-14 Setting bits in a status register
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dition for a borrow is the complement of the output carry obtained when the subtraction is done 
by taking the 2’s complement of B. For this reason, a processor that considers the C bit to be a 
borrow after a subtraction will complement the C bit after a subtraction or compare operation 
and denote this bit as a borrow.

Now consider the operation A - B done with two signed binary numbers when negative 
numbers are in 2’s-complement form. The relative magnitudes of A and B can be determined 
from the values transferred to the Z, S, and V status bits. If Z = 1, then we know that A = B; when 
Z = 0, we have that A′ ≠ B. If S = 0, the sign of the result is positive, so A must be greater than 
B. This is true if there was no overflow and V = 0. If the result overflows, we obtain an errone-
ous result. It was shown in Section 8-5 that an overflow condition changes the sign of the result. 
Therefore, if S = 1 and V = 1, it indicates that the result should have been positive and therefore 
A must be greater than B.

Table 9-6 lists the six possible relationships that can exist between A and B and the cor-
responding values of Z, S, and V in each case. For A - B to be greater than but not equal to zero  
(A > B), the result must be positive and nonzero. Since a zero result gives a positive sign, we must 
ensure that the Z bit is 0 to exclude the possibility of A = B. For A ≥ B. it is sufficient to check 
for a positive sign when no overflow occurs or a negative sign when an overflow occurs. For  
A < B, the result must be negative. If the result is negative or zero, we have that A ≤ B. The Bool-
ean functions listed in the table express the status-bit conditions in algebraic form.

Table 9-5 Status bits after the subtraction of unsigned numbers (A - B)

Relation Condition of status bits Boolean function

A > B C = 1 and Z = 0 CZ’

A ≥ B C = 1 C

A <B C = 0 C’

A ≤ B C = 0 and Z = 1 C’ + Z

A = B Z = 1 Z

A ≠ B Z = 0 Z’

Table 9-6 Status bits after the subtraction of sign-2’s complement numbers (A - B)

Relation Condition of status bits Boolean function

A > B Z = 0 and (S = 0, V = 0 or S = 1, V = 1) Z′(S  V) 

A  B S = 0, V = 0 or S = 1, V = 1 S  V 

A < B S = 1, V = 0 or S = 0, V = 1 S ⊕ V 

A  B S = 1, V = 0 or S = 0, V = 1 o r  Z  =  1 (S ⊕ V) + Z

A = B Z = 1 Z

A ≠ B Z = 0 Z′
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9.8 Design of Shifter

The shift unit attached to a processor transfers the output of the ALU onto the output bus. The 
shifter may transfer the information directly without a shift, or it may shift the information to the 
right or left. Provision is sometimes made for no transfer from the ALU to the output bus. The 
shifter provides the shift microoperations commonly not available in an ALU.

An obvious circuit for a shifter is a bidirectional shift-register with parallel load. The infor-
mation from the ALU can be transferred to the register in parallel and then shifted to the right or 
left. In this configuration, a clock pulse is needed for the transfer to the shift register, and another 
pulse is needed for the shift. These two pulses are in addition to the pulse required to transfer the 
information from the shift register to a destination register.

The transfer from a source register to a destination register can be done with one clock 
pulse if the shifter is implemented with a combinational circuit. In a combinational-logic shifter, 
the signals from the ALU to the output bus propagate through gates without the need for a clock 
pulse. Hence, the only clock pulse needed in the processor system is for loading the data from 
the output bus into the destination register.

A combinational-logic shifter can be constructed with multiplexers as shown in Fig. 9-15. 
The two selection variables, H

1
 and H

0
, applied to all four multiplexers select the type of opera-

tion in the shifter. With H
1
H

0
 = 00, no shift is executed and the signals from F go directly to the 

S lines. The next two selection variables cause a shift-right operation and a shift-left operation. 
When H

1
H

0
 = 11, the multiplexers select the inputs attached to 0 and as a consequence the S 

outputs are also equal to 0, blocking the transfer of information from the ALU to the output bus. 
Table 9-7 summarizes the operation of the shifter.

The diagram of Fig. 9-15 shows only four stages of the shifter. The shifter, of course, must 
consist of n stages in a system with n parallel lines. Inputs I

R
 and I

L
 serve as serial inputs for the 

IR

Serial
output

MUX MUX MUXMUX
H0

H1

S1S2S3S4

F1F4 F3 F2

Serial
output

IL

0 321 0 321 0 321 0 321

0

Figure 9-15 4-bit combinational-logic shifter
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last and first stages during a shift-right or shift-left, respectively. Another selection variable may 
be employed to specify what goes into I

R
 or I

L
 during the shift. For example, a third selection vari-

able, H
2
, when in one state can select a 0 for the serial input during the shift. When H

2
 is in the 

other state, the information can be circulated around together with the value of the carry status 
bit. In this way, a carry produced during an addition operation can be shifted to the right and into 
the most significant bit position of a register.

9.9 Processor Unit

The selection variables in a processor unit control the microoperations executed within the pro-
cessor during any given clock pulse. The selection variables control the buses, the ALU, the 
shifter, and the destination register. We will now demonstrate by means of an example how the 
control variables select the microoperations in a processor unit. The example defines a processor 
unit together with all selection variables. Then we will discuss the choice of control variables for 
some typical microoperations.

A block diagram of a processor unit is shown in Fig 9-16(a). It consists of seven registers 
R1 through R7 and a status register. The outputs of the seven registers go through two multiplex-
ers to select the inputs to the ALU. Input data from an external source are also selected by the 
same multiplexers. The output of the ALU goes through a shifter and then to a set of external 
output terminals. The output from the shifter can be transferred to any one of the registers or to 
an external destination.

There are 16 selection variables in the unit, and their function is specified by a control word 
in Fig. 9-16(b). The 16-bit control word, when applied to the selection variables in the processor, 
specifies a given microoperation. The control word is partitioned into six fields, with each field 
designated by a letter name. All fields, except C

in
, have a code of three bits. The three bits of A 

select a source register for the input to left side of the ALU. The B field is the same, but it selects 
the source information for the right input of the ALU. The D field selects a destination register. 
The F field, together with the bit in C

in
, selects a function for the ALU. The H field selects the 

type of shift in the shifter unit.
The functions of all selection variables are specified in Table 9-8. The 3-bit binary code 

listed in the table specifies the code for each of the five fields A, B, D, F, and H. The register se-
lected by A, B, and D is the one whose decimal number is equivalent to the binary number in the 
code. When the A or B field is 000, the corresponding multiplexer selects the input data. When 
D = 000, no destination register is selected. The three bits in the F field, together with the input 
carry C

in
, provide the 12 operations of the ALU as specified in Table 9-4. Note that there are two 

possibilities for F = A. In one case the carry bit C is cleared, and in the other case it is set to 1 
(see Table 9-2).

Table 9-7 Function table for shifter

H
1

H
0

Operation Function

0 0 S ← F Transfer F to S (no shift)

0 1 S ← shr F Shift-right F into S

I 0 S ← shl F Shift-left F into S

1 I S ← 0 Transfer 0’s into S
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The first four entries for the code in the H field specify the shift operations of Table 9-7. A 
third selection variable is used to specify either a 0 for the serial inputs I

R
 and I

L
 or a circular shift 

with the carry bit C. For convenience, we designate a circular right-shift with carry by crc and a 
circular left-shift with carry, by clc. Thus, the statement:

R ← crc R

is an abbreviation for the statement:

R ← shr R,         R
n
 ← C,       C ← R

1

V CSZ

1

10

5

6

7
8

9

4

3
2

15
14

13

12
11

16

A B

F

H

Cin

ALU

Shifter

D
Destination
   select

Status register

Output data

Input data

Register
   file
R1 to R7

Bus A
select

Bus B
select

(a) Block diagram

A Cin HFDB

1 105 6 7 8 9432 15 1614131211

(b) Control word

Figure 9-16 Processor unit with control variables
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R is shifted to the right, its least significant bit R
1
, goes to C, and the value of C goes into the most 

significant bit position R
n
.

A control word of 16 bits is needed to specify a microoperation for the processor unit. The 
most efficient way to generate control words with so many bits is to store them in a memory 
unit which functions as a control memory where all control words are stored. The sequence of 
control words is then read from the control memory, one word at a time, to initiate the desired 
sequence of microoperations. This type of control organization is called microprogramming and 
is discussed in more detail in Chapter 10.

The control word for a given microoperation can be derived directly from the selection 
variables defined in Table 9-8. The subtract microoperation:

R1 ← R1 - R2

specifies R1 for the left input of the ALU, R2 for the right input of the ALU, A - B for the ALU 
operation, no shift for the shifter, and R1 for the destination register. From Table 9-8, we derive 
the control word for this operation to be 0010100010101000:

A B D F C
in
 H

001 010 001 010 1 000

The control words for this microoperation and a few others are listed in Table 9-9.
The compare operation is similar to the subtract microoperation, except that the difference 

is not transferred to a destination register; only the status bits are affected. The destination field 
D for this case must be 000. The transfer of R4 into R5 requires an ALU operation F = A. The 
source A is 100 and the destination D is 101. The B selection code could be anything because the 
ALU does not use it. This field is marked with 000 in the table for convenience, but any other 
3-bit code could be used.

To transfer the input data into R6, we must have A = 000 to select the external input and D = 
110 to select the destination register. Again the value of B does not matter and the ALU function 

Table 9-8 Functions of control variables for the processor of Fig. 9-16

Binary code

Function of selection variables

A B D
F with  
C

in
 = 0

F with  
C

in
 = 1 H

0 0 0 Input data Input data None A, C ← 0 A + 1 No shift

0 0 1 R1 R1 R1 A + B A + B + 1 Shift-right, I
R
 = 0

0 1 0 R2 R2 R2 A - B - 1 A - B Shift-left, I
L
 = 0

0 1 1 R3 R3 R3 A - 1 A, C ← 1 0’s to output bus

1 0 0 R4 R4 R4 A ∨ B — —

1 0 1 R5 R5 R5 A ⊕ B — Circulate-right with C

1 1 0 R6 R6 R6 A ∧ B — Circulate-left with C

1 1 1 R7 R7 R7 A — —
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is F = A. To output data from R7, we make A = 111 and D = 000 (or 111). The ALU operation F 
= A places the information from R7 into the output bus.

It is sometimes necessary to clear or set the carry bit before a circular-shift operation. 
This can be done with an ALU select code 0000 or 0111. With the first select code the C bit is 
cleared, and with the second code the C bit is set. The transfer R1 ← R1, C ← 0 does not change 
the contents of the register, but it clears C and V. The Z and S status bits are affected in the usual 
manner. If R 1 = 0, then Z is set to 1; otherwise, it is cleared. The S bit is set lo the value of the 
sign bit in R1.

The clock pulse that triggers the destination register also transfers the status bits from the 
ALU into the status register. The status bits are affected after the arithmetic operations. The C and 
V status bits are left unchanged during a logic operation, since these bits have no meaning for the 
logic operations. In some processors, it is customary not to change the value of carry bit C after 
an increment or decrement operation as well.

If we want to place the contents of a register into the shifter without changing the carry bit, 
we can use the OR logic operation with the same register selected for both ALU inputs A and B. 
The operation:

R ← R ∨ R

does not change the value of register R. However, it does place the contents of R into the inputs 
of the shifter, and it does not change the values of status bits C and V.

The examples in Table 9-9 discussed thus far use the shift-select code 000 for the H field 
to indicate a no-shift operation. To shift the contents of a register, the value of the register must 
be placed into the shifter without any change through the ALU. The shift-left microoperation 
statement:

R3 ← shl R3

specifies the code for the shift select but not the code for the ALU. The contents of R3 can 
be placed into the shifter by specifying an OR operation between R3 and itself. The shifted  

Table 9-9 Examples of microoperations for processor

Control word

Microoperation A B D F C
in

H Function

R1 ← R1 - R2 001 010 001 010 1 000 Subtract R2 from R1

R3 - R4 011 100 000 010 1 000 Compare R3 and R4

R5 ← R4 100 000 101 000 0 000 Transfer R4 to R5

R3 ← Input 000 000 110 000 0 000 Input data to R6

Output ← R7 111 000 000 000 0 000 Output data from R7

R1 ← R1, C ← 0 001 000 001 000 0 000 Clear carry bit C

R3 ← shl R3 011 011 011 100 0 010 Shift-left R3 with I
L
 = 0

R1 ← crc R1 001 001 001 100 0 101 Circulate-right R1 with carry

R2 ← 0 000 000 010 000 0 011 Clear R2
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information returns to R3 if R3 is specified as the destination register. This requires that select 
fields A, B, and D have the code 011 for R3, that the ALU function code be 1000 for the OR 
operation, and that the shift-select H be 010 for the shift-left.

The circular shift-right with carry of register R1 is symbolized by the statement:

R1 ← crc R1

This statement specifies the code for the shifter, but not the code for the ALU. To place the con-
tents of R3 into the output terminals of the ALU without affecting the C bit, we use the OR op-
eration as before. In this way, the C bit is not affected by the ALU operation but may be changed 
because of the circular shift.

The last example in Table 9-9 shows the control word for clearing a register to 0. To clear 
register R2, the output bus is made to contain al 0’s, with H = 011. The destination field D is made 
equal to the code for register R2.

It is obvious from these examples that many more microoperations can be generated in the 
processor unit. A processor unit with a complete set of microoperations is a general-purpose 
device that can be adapted for many applicants. The register-transfer method is a convenient 
tool for specifying the operations in symbolic form in a digital system that employs a general-
purpose processor unit. The system is first defined with a sequence of microoperation statements 
in the register-transfer method of notation or in any other suitable equivalent notation. A control 
function here is represented not by a Boolean function, but rather by a string of binary variables 
called a control word. The control word for each microoperation is derived from the function 
table of the processor

The sequence of control words for the system is stored in a control memory. The output of 
the control memory is applied to the selection variables of the processor. By reading consecutive 
control words from memory, it is possible to sequence the micro-operations in the processor. 
Thus, the entire design can be done by means of the register-transfer method which, in this 
particular case, is referred to as the microprogramming method. This method of controlling the 
processor unit is demonstrated in Section 10-5.

9.10 Design of Accumulator

Some processor units distinguish one register from all others and call it an accumulator register. 
The organization of a processor unit with an accumulator register is shown in Fig. 9-4. The ALU 
associated with the register may be constructed as a combinational circuit of the type discussed 
in Section 9-5. In this configuration, the accumulator register is essentially a bidirectional shift 
register with parallel load which is connected to an ALU. Because of the feedback connection 
from the output of the register to one of the inputs in the ALU, the accumulator register and its 
associated logic, when taken as one unit, constitute a sequential circuit. Because of this prop-
erty, an accumulator register can be designed by sequential-circuit techniques instead of using a 
combinational-circuit ALU.

The block diagram of an accumulator that forms a sequential circuit is shown in Fig. 9-17, 
The A register and the associated combinational circuit constitute a sequential circuit. The com-
binational circuit replaces the ALU but cannot be separated from the register, since it is only the 
combinational-circuit part of a sequential circuit. The A register is referred to as the accumulator 
register and is sometimes denoted by the symbol AC. Here, accumulator refers to both the A reg-
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ister and its associated combinational circuit. The external inputs to the accumulator are the data 
inputs from B and the control variables that determine the microoperations for the register. The 
next state of register A is a function of its present state and of the external inputs.

In Chapter 7, we considered various registers that perform specific functions such as paral-
lel load, shift operations, and counting. The accumulator is similar to these registers but is more 
general, since it can perform not only the above functions, but also other data-processing opera-
tions. An accumulator is a multifunction register that, by itself, can be made to perform all of the 
microoperations in a processor unit. The microoperations included in an accumulator depend on 
the operations that must be included in the particular processor. To demonstrate the logic design 
of a multipurpose operational register such as an accumulator, we will design the circuit with 
nine microoperations. The procedure outlined in this section can be used to extend the register 
to other microoperations.

The set of microoperations for the accumulator is given in Table 9-10. Control variables p
1
 

through p
9
 are generated by control logic circuits and should be considered as control functions 

Register A

Control variablesCombinational
      circuit

Data inputs
B

Figure 9-17 Block diagram of accumulator

Table 9-10 List of microoperations for an accumulator

Control variable Microoperation Name

p
1 A ← A + B Add

p
2 A ← 0 Clear

p
3 A ← A Complement

p
4 A ← A L B AND

p
5 A ← A \/ B OR

p
6 A ← A ⊕ B Exclusive-OR

p
7 A ← shr A Shift-right

p
8 A ← shl A Shift-left

p
9 A ← A + 1 Increment

If (A = 0) then (Z = 1) Check for zero
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that initiate the corresponding register-transfer operations. Register A is a source register in all 
the listed microoperations. In essence, this represents the present state of the sequential circuit. 
The B register is used as a second source register for microoperations that need two operands. 
The B register is assumed to be connected to the accumulator and supplies the inputs to the 
sequential circuit. The destination register for all microoperations is always register A. The new 
information transferred to A constitutes the next state of the sequential circuit. The nine control 
variables are also considered as inputs to the sequential circuit. These variables are mutually ex-
clusive and only one variable must be enabled when a clock pulse occurs. The last entry in Table 
9-10 is a conditional control statement. It produces a binary 1 in an output variable Z when the 
content of register A is 0, i.e., when all flip-flops in the register are cleared.

9.10.1 Design Procedure

The accumulator consists of n stages and n flip-flops, A
1
, A

2
, …., A

n
, numbered consecutively 

starting from the rightmost position. It is convenient to partition the accumulator into n similar 
stages, with each stage consisting of one flip-flop denoted by A

i
, one data input denoted by B

i
, 

and the combinational logic associated with the flip-flop. In the design procedure that follows, 
we consider only one typical stage i with the understanding that an n-bit accumulator consists of 
n stages for i = 1, 2, ..., n. Each stage A

i
 is interconnected with the neighboring stage A

i - 1
 on its 

right and stage A
i + 1

 on its left. The first stage, A
1
, and the last stage, A

n
, have no neighbors on one 

side and require special attention. The register will be designed using JK-type flip-flops.
Each control variable p

j
, j = 1, 2,..., 9, initiates a particular microoperation. For the opera-

tion to be meaningful, we must ensure that only one control variable is enabled at any given time. 
Since the control variables are mutually exclusive, it is possible to separate the combinational 
circuit of a stage into smaller circuits, one for each microoperation. Thus, the accumulator is to 
be partitioned into n stages, and each stage is to be partitioned into those circuits that are needed 
for each microoperation. In this way, we can simplify the design process considerably. Once the 
various pieces are designed separately, it will be possible to combine them to obtain one typical 
stage of the accumulator and then to combine the stages into a complete accumulator.

Add B to A (p
1
): The add microoperation is initiated when control variable p

1
 is 1. This part 

of the accumulator can use a parallel adder composed of full-adder circuits as was done with the 
ALU. The full-adder in each stage i will accept as inputs the present state of A

i
, the data input B

i
, 

and a previous carry bit C
i
. The sum bit generated in the full-adder must be transferred to flip-flop 

A
1
, and the output carry C

i + 1
, must be applied to the input carry of the next stage.

The internal construction of a full-adder circuit can be simplified if we consider that it oper-
ates as part of a sequential circuit. The state table of a full-adder, when considered as a sequential 
circuit, is shown in Fig. 9-18. The value of flip-flop A

i
 before a clock pulse specifies the present 

state in the sequential circuit. The value of A
i
 after the application of a clock pulse specifies the 

next state. The next state of A
i
 is a function of its present state and inputs B

i
 and C

i
. The pres-

ent state and inputs in the state table correspond to the inputs of a full-adder. The next state and 
output C

i + 1
 correspond to the outputs of a full-adder. But because it is a sequential circuit, A

i
 ap-

pears in both the present and next-state columns. The next state of A
i
 gives the sum bit that must 

be transferred to the flip-flop.
The excitation inputs for the JK flip-flop are listed in columns JA

i
 and KA

i
. These values are 

obtained by the method outlined in Section 6-7. The flip-flop input functions and the Boolean 
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function for the output are simplified in the maps of Fig. 9-18. The J input of flip-flop A
i
, desig-

nated by JA
i
, and the K input of flip-flop A

i
, designated by KA

i
, do not include the control variable 

p
1
. These two equations should affect the flip-flop only when p

1
 is enabled; therefore, they should 

be ANDed with control variable p
1
. The part of the combinational circuit associated with the add 

microoperation can be expressed with three Boolean functions:

JA
i
 = B

i
C′

i 
p

1
 + B

i
′C

i 
p

1

KA
i
 = B

i
C′

i 
p

1
 + B

i
′C

i 
p

1

C
i + 1

 = A
i 
B

i
 + A

i
C

i
 + B

i
C

i

The first two equations are identical, and they specify a condition for complementing A,. The 
third equation generates the carry for the next stage.

Clear (p
2
): Control variable p

2
 clears all flip-flops in register A. To cause this transition in 

a JK flip-flop, we need only apply control variable p
2
 to the K input of the flip-flop. The J input 

Present  
state

Inputs Next 
state

Flip-flop 
inputs

Output

A
i

B
i

C
i

A
i

JA
i

KA
i

C
i + 1

0 0 0 0 0 X 0

0 0 1 1 1 X 0

0 1 0 1 1 X 0

0 1 1 0 0 X 1

1 0 0 1 X 0 0

1 0 1 0 X 1 1

1 1 0 0 X 1 1

1 1 1 1 X 0 1

1

s2

Bi

1

1111

1

1

X

X X X X

X X X

Ai

Ci

JAi  = BiC’i + B’iCi KAi  = BiC’i + B’iCi Ci + 1  = AiBi + AiCi + BiCi

Figure 9-18 Excitation table for add microoperation
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will be assumed to be 0 if nothing is applied to it. The input functions for the clear microopera-
tion are:

JA
i
 = 0

KA
i
 = p

2

Complement (p
3
): Control variable p

3
 complements the state of register A. To cause this 

transition in a JK flip-flop, we need to apply p
3
 to both the J and K inputs:

JA
i
 = p

3

KA
i
 = p

3

AND (p
4
): The AND microoperation is initiated with control variable p

4
. This operation 

forms the logic AND operation between A
i
 and B

i
 and transfers the result to A

i
. The excitation 

table for this operation is given in Fig. 9-19(a). The next state of A
i
 is 1 only when both B

i 
and 

the present state of A
i
 are equal to 1. The flip-flop input functions which are simplified in the two 

maps dictate that the K input of the flip-flop be enabled with the complement value of B
i
. This 

result can be verified from the conditions listed in the state table. If B
i
 = 1, the present state and 

next state of A
i
 are the same, so the flip-flop does not have to undergo a change of state. If B

i
 = 0, 

the next state of A
i
 must go to 0, and this is accomplished by enabling the K input of the flip-flop. 

The input functions for the AND microoperation must include the control variable that initiates 
this microoperation:

JA
i
 = 0

KA
i
 = B′

i 
p

4

OR (p
5
): Control variable p

5
 initiates the logic OR operation between A

i
 and B

i
, with the 

result transferred to A
i
. Figure 9-19(b) shows the derivation of the flip-flop input functions for 

this operation. The simplified equations in the maps dictate that the J input be enabled when  
B

i
 = 1. This result can be verified from the state table. When B

i
 = 0, the present state and next 

state of A
i
 are the same. When B

i
 = 1, they input is enabled and the next state of A

i
 becomes 1. 

The input functions for the OR microoperation are:

JA
i
 = B

i 
p

5

KA
i
 = 0

Exclusive-OR (p
6
): This operation forms the logic exclusive-OR between A

i
 and B

i
 and 

transfers the result to A
i
. The pertinent information for this operation is shown in Fig. 9-19(c). 

The flip-flop input functions are:

JA
i
 = B

i 
p

6

KA
i
 = B

i 
p

6

Shift-right (p
7
): This operation shifts the contents of the A register one position to the right. 

This means that the value of flip-flop A
i + 1

, which is one position to the left of stage i, must be 
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transferred into flip-flop A
i
. This transfer is expressed by the input functions:

JA
i
 = A

i + 1 
p

7

KA
i
 = A′

i + 1 
p

7

Shift-left (p
8
): This operation shifts the A register one position to the left. For this case, the 

value of A
i - 1

, which is one position to the right of stage i, must be transferred to A
i
. This transfer 

is expressed by the input functions:

JA
i
 = A

i - 1 
p

8

KA
i
 = A′

i - 1 
p

8

1

Bi

X X

X XAi

KAi  = B’i

Bi

Ai

JAi  = 0

Present 
state Input

Next 
state

Flip-flop 
inputs

A
i

B
i

A
i

JA
i

KA
i

0 0 0 0 X

0 1 0 0 X

1 0 0 X 1

1 1 1 X 0

(a) AND

1

Bi

X X

X XAi

KAi  = 0

Bi

Ai

JAi  = Bi

Present 
state Input

Next 
state

Flip-flop 
inputs

A
i

B
i

A
i

JA
i

KA
i

0 0 0 0 X

0 1 1 1 X

1 0 1 X 0

1 1 1 X 0

(b) OR

1

Bi

X X

X XAi

KAi  = Bi

Bi

Ai

JAi  = Bi

1

Present 
state Input

Next 
state

Flip-flop 
inputs

A
i

B
i

A
i

JA
i

KA
i

0 0 0 0 X

0 1 1 1 X

1 0 1 X 0

1 1 0 X 1

(c) Exclusive-OR

Figure 9-19 Excitation tables for logic microoperations
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Increment (p
9
): This operation increments the contents of the A register by one; in other 

words, the register behaves like a synchronous binary counter with p
9
 enabling the count. A 3-bit 

synchronous counter is shown in Fig. 9-20. It is similar to the counter in Fig. 7-17 of Section 7-5, 
where the operation of synchronous binary counters are discussed in detail. From the diagram, 
we see that each stage is complemented when an input carry E

i
= 1. Each stage also generates an 

output carry, E
i + l

, for the next stage on its left. The first stage is an exception, since it is comple-
mented with the count-enable p

9
. The Boolean functions for a typical stage can be expressed as 

follows:

  JA
i
 = E

i

 KA
i
 = E

i

E
i + 1

 = EA
i 

i = 1, 2,…, n

   E
i
 = p

9

The input carry, E
i
, into the stage is used to complement flip-flop A

i
. Each stage generates a carry 

for the next stage by ANDing the input carry with A
i
. The input carry into the first stage is E

1
, and 

must be equal to control variable p
9
 which enables the count.

Check for Zero (Z): Variable Z is an output from the accumulator used to indicate a zero 
content in the A register. This output is equal to binary 1 when all the flip-flops are cleared. When 
a flip-flop is cleared, its complement output, Q′, is equal to 1. Figure 9-21 shows the first three 
stages of the accumulator that checks for a zero content. Each stage generates a variable z

i + 1
 by 

ANDing the complement output of A
i
 to an input variable z

i
. In this way, a chain of AND gates 

through all stages will indicate if all flip-flops are cleared. The Boolean functions for a typical 

Stage 3

A1

J

CP

K

Q

E1 = p9

A2

JK

Q

E2

A3

JK

Q

E3

E4

Figure 9-20 3-bit synchronous binary counter
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stage can be expressed as follows:

z
i + 1

 = z
1
A′

i  
i = 1, 2,…, n

    z
i
 = 1

z
n + 1

 = Z

Variable Z becomes 1 if the output signal from the last stage, z
n + 1

, is 1.

9.10.2 One Stage of Accumulator

A typical accumulator stage consists of all the circuits that were derived for the individual micro-
operations. Control variables p

1
 through p

9
 are mutually exclusive; therefore, the corresponding 

logic circuits can be combined with an OR operation. Combining all the input functions for the J 
and the K inputs of flip-flop A

i
 produces a composite set of input Boolean functions for a typical 

stage:

JA
i
 = B

i
C′

i 
p

1
 + B′

i
C

i 
p

1
 + p

3
 + B

i 
p

5 
+ B

i 
p

6
 + A

i + 1 
p

7
 + A

i - 1 
p

8
 + E

i

KA
i
 = B

i
C′

i 
p

1
 + B′

i
C

i 
p

1
 + p

2
 + p

3
 + B′

i 
p

4
 + B

i 
p

6
 + A′

i + 1 
p

7
 + A′

i - 1 
p

8
 + E

i

Each stage in the accumulator must also generate the carries for the next stage:

C
i + 1

 = A
i
B

i
 + A

i
C

i
 + B

i
C

i

E
i + 1

 = E
i 
A

i

z
i + 1

 = z
i 
A′

i

The logic diagram of one typical stage of the accumulator is shown in Fig. 9-22. It is a 
direct implementation of the Boolean functions listed above. The diagram is a composite circuit 
that includes the individual circuits associated with each microoperation. The various circuits are 
combined with two OR gates in the J and K inputs of flip-flop A

i
.

Q

A3

z4

Q’

Stage 3

Q

A2

z3

Q’ Q

A1

z2

Q’

z1 = 1

Figure 9-21 Chain of AND gates for checking the zero content of a register
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Each accumulator stage has eight control inputs, p
1
 through p

8
, that initiate one of eight 

possible microoperations. Control variable p
9
 is applied only to the first stage to enable the incre-

ment operation through input E
i
. There are six other inputs in the circuit. B

i
 is the data bit from 

the B terminals that provide the inputs to the accumulator. C
i
 is the input carry from the previous 

stage on the right. A
i - 1

 comes from the output of the flip-flop one position to the right, and A
i + 1

 

zi

CP

p1

Bi

Ci

p2
p3

p4

p5

p6

p7

p8

Ai – 1

Ei

Ai + 1

Add

Complement

AND

Clear

OR

Exclusive-OR

Shift-right

Shift-left

Increment

zi + 1

Q’

Ei + 1

Ci + 1

Ai

Q
JK

Figure 9-22 One typical stage of the accumulator
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comes from the flip-flop one position to the left, E
i
 is the carry input for the increment operation, 

and z
i
 is used to form the chain for zero detection. The circuit has four outputs: A

i
 is the output of 

the flip-flop, C
i + 1

 is a carry for the next stage, E
i + 1

 is the increment carry for the next stage, and  
z

i + 1
 is for the next stage on the left to form the chain for zero detection.

9.10.3 Complete Accumulator

An accumulator with n bits requires n stages connected in cascade, with each stage having the 
circuit shown in Fig. 9-22. All control variables, except p

9
, must be applied to each stage. The 

other inputs and outputs in each stage must be connected in cascade to form a complete accu-
mulator.

The interconnection among stages to form a complete accumulator is illustrated in the 
4-bit accumulator shown in Fig. 9-23. Each block in the diagram represents the circuit of Fig. 
9-22. The number on top of each block represents the bit position in the accumulator. All blocks 
receive eight control variables, p

1
 through p

8
, and the clock pulses from CP. The other six inputs 

and four outputs in each block are identical to those of a typical stage, except that subscript i is 
now replaced by the particular number in each block.

The circuit has four B inputs. The zero-detect chain is obtained by connecting the z vari-
ables in cascade, with the first block receiving a binary constant 1. The last stage in this chain 
produces the zero-detect variable Z. The carries for the arithmetic addition are connected in 
cascade as in full-adder circuits. The serial input for the shift-left operation goes to input A

0
, 

which corresponds to input A
i - 1

 in the first stage. The serial input for the shift-right operation 
goes to input A

5
, which corresponds to A

i + 1
 in the fourth and last stage. The increment operation 

B4
4

C5

A4

E5

A5

E4

A3

C4

z4z5

B3
3

C4

A3

E4

A4

E3

A2

C3

z3z4

B2
2

C3

A2

E3

A3

E2

A1

C2

z2z3

B1
1

C2

A1

E2

A2

E1

A0

C1

z1z2

B4 B3 B2 B1

IZ

Input carry

Serial input

p9

Output carry

Serial input

Increment
  carry

p1 to p8

CP

Figure 9-23 4-bit accumulator constructed with four stages
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is enabled with control variable p
9
 in the first stage. The other blocks receive the increment carry 

from the previous stage.
The total number of terminals in the 4-bit accumulator is 25, including terminals for the A 

outputs. Incorporating two more terminals for power supply, the circuit can be enclosed within 
one IC package having 27 or 28 pins. The number of terminals for the control variables can be 
reduced from nine to four if a decoder is inserted in the IC. In such a case, the IC pin count can 
be reduced to 22 and the accumulator can be extended to 16 microoperations without adding 
external pins.
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PROBLEMS

9-1. Modify the processor unit of Fig. 9-1 so that the selected destination register is always the same 
register that is selected for the A bus. How does this effect the number of multiplexers and the num-
ber of selection lines used?

9-2. A bus-organized processor as in Fig. 9-1 consists of 15 registers. How many selection lines are there 
in each multiplexer and in the destination decoder?

9-3. Assume that each register in Fig. 9-1 is 8 bits long. Draw a detailed block diagram for the box labeled 
MUX that selects the register for the A bus. Show that the selection can be done with eight 4-to-1 line 
multiplexers.

9-4. A processor unit employs a scratchpad memory as in Fig. 9-2. The processor consists of 64 registers 
of eight bits each.

(a) What is the size of the scratchpad memory?

(b) How many lines are needed for the address?

(c) How many lines are there for the input data?

(d)  What is the size of the MUX that selects between the input data and the output of the shifter?

9-5. Show a detailed block diagram for the processor unit of Fig. 9-4 when the B inputs come from:

(a) Eight processor registers forming a bus system.

(b) A memory unit with address and buffer registers.

9-6. The 4-bit ALU of Fig. 9-5 is enclosed within one IC package. Show the connections among three 
such ICs to form a 12-bit ALU. Designate the input and output carries in the 12-bit ALU.

9-7. TTL IC type 7487 is a 4-bit true /complement, zero/one element. One stage of this IC is shown in 
Fig. P9-7.
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s0

s1

Bi
Yi

Figure P9-7 True/complement, one/zero circuit

(a) Derive the Boolean function for output Y
i
 as a function of inputs B

i
, s

1
, and s

0
.

(b) Draw the truth table for the circuit.

(c) Draw a function table (similar to the one shown in Fig. 9-7) and verify the circuit operation.

9-8. Modify the arithmetic circuit of Fig. 9-8 by including a third selection variable, s
2
. When s

2
 = 1, the 

modified circuit is identical to the original circuit. When s
2
 = 0, all the A inputs to the full-adders are 

inhibited and 0’s are inserted instead.

(a) Draw the logic diagram of one stage of the modified circuit

(b) Go over an analysis similar to that in Fig 9-6 to determine die eight operations obtained when  
s

2
 = 0.

(c) List the new output functions in tabular form.

9-9. Determine the arithmetic operations obtained in the eight blocks of Fig. 9-6 if, in each case, input A 
is changed to A (complement of A).

9 10. Design an arithmetic circuit with one selection variable s and two data inputs A and B. When s = 0, 
the circuit performs the addition operation F = A + B. When s = 1, the circuit performs the increment 
operation F = A + 1.

9- 11. The straight binary subtraction F = A - B produces a correct difference if A ≥ B. What would be the 
result if A < B? Determine the relationship between the result obtained in F and a borrow in the most 
significant position.

9-12. Design an arithmetic circuit with two selection variables, s
1
, and s

0
, that generates the following 

arithmetic operations. Draw the logic diagram of one typical stage.

s
1

s
0

C
in
 = 0 C

in
 = 1

0 0 F = A + B F = A + B + 1

0 1 F = A F = A + 1

1 0 F = B
–
  F = B

–
   + 1

1 1 F = A + B
–

  F = A + B
–
   + 1

9-13. Design an arithmetic circuit with two selection variables, s
1 
and s

0
 that generates the following arith-

metic operations. Draw the logic diagram of one typical stage.

s
1

s
0

C
in
 = 0 C

in
 = 1

0 0 F = A F = A+ 1

0 1 F = A - B - 1 F = A - B

1 0 F = B - A - 1 F = B - A

1 1 F = A + B F = A + B + 1
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9-14. The following relationships of the exclusive-OR operation were used in deriving the logic operations 
of Table 9-3.

(a) x ⊕ 0 = x

(b) x ⊕ 1 - x′
(c) x ⊕ y′ = x  y

 Prove that these relationships are valid.

9-15. Derive a minimal combinational circuit that generates all 16 logic functions listed in Table 2-5. Use 
four selection variables. Hint: Try a 4 × 1 multiplexer in reverse, i.e., use the normal inputs of the 
multiplexer as the selection lines for the logic unit.

9-16. Modify the arithmetic circuit of Fig. 9-8 into an ALU with mode-select variable s
2
. When s

2
 = 0, 

the ALU is identical to the arithmetic circuit. When s
2
 = 1, the ALU generates the logic functions 

according to the following table:

s
2

s
1

s
0

Output Function

1 0 0 F = A ∧ B AND

1 0 1 F = A ⊕ B XOR

1 1 0 F = A ∨ B OR

1 1 1 F = A NOT

9-17. An arithmetic logic unit is similar to the one shown in Fig. 9-13 except that the inputs to each full-
adder circuit are according to the following Boolean functions:

 X
i
 = A

i 
B

i
 + (s

2 
s′

1 
s′

0
) A

i
 + s

2 
s

1 
s′

0 
B

i

 Y
i
 = s

0 
B

i
 + s

1 
B′

i
(s

2 
s

1 
s′

0
)′

 Z
1
= s′

2 
C

i

 Determine the 12 functions of the ALU.

9-18. The operation performed in an ALU is F = A + B
–
   (A plus 1’s complement of B).

(a) Determine the output value of F when A = B. Let this condition sec a status bit E.

(b) Determine the condition for C
out

 = 1. Let this condition set a status bit C.

(c) Derive a table for the six relationships listed in Table 9-5 in terms of the status bit conditions  
E and C defined above.

9-19. A processor unit has a status register of ten bits, one for each of the conditions listed in Tables 9-5 
and 9-6. (The equal and unequal conditions are common to both tables.) Draw a logic diagram 
showing the gates from the outputs of the ALU to the ten bits of the status register.

9-20. Two signed numbers are added in an ALU, and their sum transferred to register R. The status bits 5 
(sign) and V (overflow) are affected during the transfer. Prove that the sum can now be divided by 2 
according to the statement:

R ← shr R,       R
n
 ← S ⊕ V

 where R
n
 is the sign bit (leftmost position) of register R.
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9-21. Add another multiplexer to the shifter of Fig. 9-15 with two separate selection lines G
1
 and G

0
. This 

multiplexer is used to specify the serial input I
R
 during a shift-right operation in the following man-

ner:

G
1

G
0

Function

0 0 Insert 0 into I
R

0 1 Perform a circular shift

1 0 Perform a circular shift with carry

1 1 Insert the value o f  S  ⊕ V for arithmetic shift (see problem 9-20)

 Show the connection of the multiplexer between the status register and the shifter.

9-22. The shift-select H defined for the processor of Fig. 9-16 has three variables, H
2
, H

1
, and H

0
. The last 

two selection variables are used for the shifter specified in Table 9-7. Design the circuit associated 
with selection variable H

2
.

9-23. Specify the control word that must be applied to the processor of Fig. 9-16 to implement the fol-
lowing microoperations:

(a) R2 ← R1 + 1  (e) R1 ← shr R1

(b) R3 ← R4 + R5  (f) R2 ← clc R2

(c) R6 ← R6  (g) R3 ← R4 ⊕ R5

(d) R7 ← R7 - 1  (h) R7 ← R7

9-24. It is necessary to compute the average value of four unsigned binary numbers stored in registers R1, 
R2, R3, and R4 of the processor defined in Fig. 9-16. The average value is to be stored in register RS. 
The other two registers in the processor can be used for intermediate results. Care must be taken not 
to cause an overflow.

(a) List the sequence of microoperations in symbolic form.

(b) List the corresponding binary control words.

9-25. The following sequence of microoperations is performed in the accumulator defined in Section 9-10:

 p
3
: A ← A

 p
9
: A ← A + 1

 p
1
: A ← A + B

 p
3
: A ← A

 p
9
: A ← A + 1

(a) Determine the content of A after each microoperation if initially A = 1101 and the B input is 
0110.

(b) Repeat with initial A = 0110 and B = 1101.

(c) Repeat with initial A = 0110 and B = 0110.

(d) Prove that the above sequence of microoperations performs (A - B) if A > B, or the 2’s comple-
ment of (B - A) if A < B.

9-26. Using JK flip-flops, design one typical stage of an A register that performs the subtract microopera-
tion:

 p
10

: A ← A - B

 Use full-subtracter circuits (Section 4-4) with input, and output borrows K
i
 and K

i + 1
.
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9-27. Using JK flip-flops, design one typical stage of a register that performs the following logic microo-
perations:

 p
11

: A A B← ∨    NOR

 p
12

: A A B← ∧    NAND

 p
13

: A A B← 
  Equivalence

9-28. Derive the Boolean functions for a typical stage of a decrement microoperation:

 p
14

: A ← A - 1

9-29. Using T-type flip-flops, design a 4-bit register that performs the 2’s-complement microoperation:

 p: A ← A  + 1

 From the result obtained, show that a typical stage can be expressed by the following Boolean func-
tions:

   TA
i
 = PE

i
         i = 1, 2, 3,…,n

 E
i + 1

 = A
i
 + E

i

     E
i
 = 0

9-30 A 4-bit accumulator performs 15 microoperations with control variables p
1
 through p

15
. The circuit 

is enclosed in one IC package with only four terminals available for selecting a microoperation. 
Design the circuit (within the IC) that must be inserted between the four terminals and the 15 control 
variables. Include a no-operation condition.

9-31 Write short notes on

(a) Processor organization.

(b) Bus organization.

(c) Scratchpad Memory.

9-32 Differentiate between 

(a) Arithmetic unit and Logic unit.

(b) One stage accumulator and Complete accumulator.

9-33 Give the final content of ACC when following statements are executed

 T1 : ACC ACC ⊕ MDR
 T2 : ACC ← ACC′

9-34 State what the following statement performs for the computer described below

 T1 : ACC ← ACC + MDR

 CY & T2 : P ← ACC

 CY′ & T2 : Q ← ACC

9-35 What does LOAD
MAR

 = T
0
 + T

2
 mean?

9-36 Explain if there will be any problem if by mistake the control unit is developed on logic equation

 LOAD
MAR

 = T
0
 + T

2
 + T

4
.

9-37 How many clock cycles are required to execute program given for questions 9.33 and 9.34?

ExtRA SOLvED PROBLEMS

1. Write a program for this computer that adds two positive integers, available in memory locations 
addr1 and addr2, multiplies the sum by 5 and stores final result in location addr3. Consider, the 
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numbers are small enough not to cause any overflow i.e. data at every stage require less than 8-bits 
for its representation.

 Soln: Addition of two numbers is straightforward and can be done using LDA and ADD instructions. 
For multiplication with 5 we have to use an indirect technique. Two left shift give multiplication by 
4 and one addition will make it multiplication by 5. Alternatively, 5 ADD operations will also give 
multiplication by 5. The program can be written as follows.

LDA addr1

ADD addr2

STA addr3

SHL

SHL

ADD addr3

STA addr3

HLT

2. Write a program for this computer that performs bit-wise Ex-OR operation on two numbers available 
in memory locations addr1 and addr2. The result is to be stored in location addr3.

 Soln: Our designed computer can perform only two kind of logic operations AND and NOT. There-
fore, we break Ex-OR logic of two numbers say A and B in such a way that there is only AND and 
NOT operator.

 Y = A ⊕ B = AB′ + A′B = ((AB′)′.(A′B)′)′ [From DeMorgan’s Theorem]
 Thus the program can be written as shown next. The logic operation performed by each instruction 

is shown as comment after semicolon.
             LDA addr1              ; A

     NOT               ; A′
     AND addr2           ; A′B
                NOT             ; (A′B)′
        STA addr3

         LDA addr2           ; B

       NOT             ; B′
     AND addr1           ; AB′
                NOT             ; (AB′)′
    AND addr3             ; (AB′)′.(A′B)′
     NOT             ; ((AB′)′.(A′B)′)′
      STA addr3

          HLT
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Control Logic Design

10.1 Introduction

The process of logic design is a complex undertaking. Many installations develop various com-
puter-automated design techniques to facilitate the design process. However, the specifications 
for the system and the development of algorithmic procedures for achieving the required data-
processing tasks cannot be automated and require the mental reasoning of a human designer.

The most challenging and creative part of the design is the establishment of design objec-
tives and the formulation of algorithms and procedures for achieving the stated objectives. This 
task requires a considerable amount of experience and ingenuity on the part of the designer. An 
algorithm is a procedure for obtaining a solution to a problem. A design algorithm is a procedure 
for implementing the problem with a given piece of equipment. The development of a design 
algorithm cannot start until the designer is certain of two things. First, the problem at hand must 
be thoroughly understood. Second, an initial configuration of equipment must be assumed for 
implementing the procedure. Starting from the problem statement and equipment availability, a 
solution is then found and an algorithm formed. The algorithm is stated by a finite number of 
well-defined procedural steps.

The binary information found in a digital system is stored in processor or memory registers, 
and it can be either data or control information. Data are discrete elements of information that are 
manipulated by microoperations. Control information provides command signals for specifying 
the sequence of microoperations. The logic design of a digital system is a process for deriv-
ing the digital circuits that perform data processing and the digital circuits that provide control  
signals.

The timing for all registers in a synchronous digital system is controlled by a master-clock 
generator. The clock pulses are applied to all flip-flops and registers in the system, including the 
flip-flops and registers in the control unit. The continuous clock pulses do not change the state of 
a register unless the register is enabled by a control signal. The binary variables that control the 
selection variables and enable inputs of registers are generated in the control unit. The outputs 
of the control unit select and enable the data-processor part of the system and also determine the 
next state of the control unit itself.

The relationship between the control and the data processor in a digital system is shown in 
Fig. 10-1. The data processor part may be a general-purpose processor unit, or it may consist of 
individual registers and associated digital functions. The control initiates all microoperations in 
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the data processor. The control logic that generates the signals for sequencing the microopera-
tions is a sequential circuit whose internal states dictate the control functions for the system. At 
any given time, the state of the sequential control initiates a prescribed set of microoperations. 
Depending on status conditions or other inputs, the sequential control goes to the next state to ini-
tiate other microoperations. Thus, the digital circuit that acts as the control logic provides a time 
sequence of signals for initiating the microoperations in the data-processor part of the system.

The design of a digital system that requires a control sequence starts with the assumption of 
the availability of timing variables. We designate each timing variable in the sequence by a state 
and then form a state diagram or an equivalent representation for the transition between states. 
Concurrent with the development of the control sequence, we develop a list of microoperations 
to be initiated for each control state. If the system is too complicated for a state diagram, it may 
be convenient to specify the system entirely in the register-transfer method by means of control 
functions and microoperation statements.

The control sequence and register-transfer relationships may be derived directly from the 
word specification of the problem. However, it is sometimes convenient to use an intermediate 
representation to describe the needed sequence of operations for the system. Two representations 
which are helpful in the design of systems that need a control are timing diagrams and flowcharts.

A timing diagram clarifies the timing sequence and other relationships among the various 
control signals in the system. In a clocked sequential circuit, the clock pulses synchronize all 
operations, including signal transitions in control variables. In an asynchronous system, a sig-
nal transition in one control variable may cause a change of another control variable. A timing 
diagram is very useful in asynchronous control because it provides a pictorial representation of 
required changes and transitions of all control variables.

A flowchart is a convenient way to specify the sequence of procedural steps and decision 
paths for an algorithm. A flowchart for a design algorithm would normally use the variable names 
of registers defined in the initial equipment configuration. It translates an algorithm from its word 
statement to an information-flow diagram that enumerates the sequence of register-transfer op-
erations together with the conditions necessary for their execution.

Control
  logic

External
 inputs

Initiate

Micro-operations

Status conditions

Input data

  Data
processor

Output data

Figure 10-1 Control and data-processor interaction
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A flowchart is a diagram that consists of blocks connected by directed lines. Within the 
blocks, we specify the procedural steps for implementing the algorithm. The directed lines be-
tween blocks designate the path to be taken from one procedural step to the next. Two major types 
of blocks are used: A rectangular block designates a function block within which the microopera-
tions are listed. A diamond-shaped block is a decision block within which is listed a given status 
condition. A decision block has two or more alternate paths, and the path that is taken depends 
on the value of the status condition specified within the block.

A flowchart is very similar to a state diagram. Each function block in the flowchart is 
equivalent to a state in the state diagram. The decision block in the flowchart is equivalent to the 
binary information written along the directed lines that connect two states in a state diagram. As 
a consequence, it is sometimes convenient to express an algorithm by means of a flowchart from 
which the control state diagram may be readily derived.

In this chapter, we first present four possible configurations for a control unit. The various 
configurations are presented in block diagram form to emphasize the differences in organization. 
We then demonstrate the various procedures available for control logic design by going through 
specific examples.

The design of control logic cannot be separated from the algorithmic development neces-
sary for solving a design problem. Moreover, the control logic is directly related to the data 
processor part of the system that it controls. As a consequence, the examples presented in this 
chapter start with the development of an algorithm for implementing the given problem. The 
data-processing part of the system is then derived from the stated algorithm. Only after this is 
done can we proceed to show the design of the control that sequences the data processor accord-
ing to the steps specified by the algorithm.

10.2 Control Organization

Once a control sequence has been established, the sequential system that implements the control 
operations must be designed. Since the control is a sequential circuit, it can be designed by a 
sequential logic procedure as outlined in Chapter 6.

However, in most cases this method is impractical because of the large number of states 
that the control circuit may have. Design methods that use state and excitation tables can be used 
in theory, but in practice they are cumbersome and difficult to manage. Moreover, the control 
circuit obtained by this method usually requires an excessive number of flip-flops and gates, 
which implies the use of SSI circuits. This type of implementation is inefficient with respect to 
the number of IC packages used and the number of wires that must be interconnected. One major 
goal of control logic design should be the development of a circuit that implements the desired 
control sequence in a logical and straightforward manner. The attempt to minimize the number of 
circuits would tend to produce an irregular network which would make it difficult for anyone but 
the designer to recognize the sequence of events that the control undergoes. As a consequence, it 
may be difficult to service and maintain the equipment when it is in operation.

Because of the reasons cited above, experienced logic designers use specialized methods 
for control logic design which may be considered an extension of the classical sequential-logic 
method combined with the register-transfer method. In this section, we consider four methods of 
control organization:

1. One flip-flop per state method.

2. Sequence register and decoder method.
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3. PLA control.

4. Microprogram control.

The first two methods result in a circuit that must use SSI and MSI circuits for the im-
plementation. The various circuits are interconnected by wires to form the control network. A 
control unit implemented with SSI and MSI devices is said to be a hard-wired control. If any 
alterations or modifications are needed, the circuits must be rewired to fulfill the new require-
ments. This is in contrast to the PLA or microprogram control which uses an LSI device such as 
a programmable logic array or a read-only memory. Any alterations or modifications in a micro-
program control can be easily achieved without wiring changes by removing the ROM from its 
socket and inserting another ROM programmed to fulfill the new specifications.

We shall now explain each method in general terms. The subsequent sections of this chapter 
deal with specific examples that demonstrate the detailed design of control units by each of the 
four methods.

10.2.1 One Flip-Flop per State Method

This method uses one flip-flop per state in the control sequential circuit. Only one flip-flop is set 
at any particular time: all others are cleared. A single bit is made to propagate from one flip-flop 
to the other under the control of decision logic. In such an array, each flip-flop represents a state 
and is activated only when the control bit is transferred to it.

It is obvious that this method does not use a minimum number of flip-flops for the sequen-
tial circuit. In fact, it uses a maximum number of flip-flops. For example, a sequential circuit 
with 12 states requires a minimum of four flip-flops because 23 < 12 < 24. Yet by this method, the 
control circuit uses 12 flip-flops, one for each state.

The advantage of the one flip-flop per state method is the simplicity with which it can be 
designed. This type of controller can be designed by inspection from the state diagram that de-
scribes the control sequence. At first glance, it may seem that this method would increase system 
cost since more flip-flops are used. But the method offers other advantages which may not be 
apparent at first. For example, it offers a savings in design effort, an increase in operational sim-
plicity, and a potential decrease in the combinational circuits required to implement the complete 
sequential circuit.

Figure 10-2 shows the configuration of a four-state sequential control logic that uses four 
D-type flip-flops: one flip-flop per state T

i
, i = 0, 1,2, 3. At any given time interval between two 

clock pulses, only one flip-flop is equal to 1; all others are equal to 0. The transition from the 
present state to the next is a function of the present T

i
 that is a 1 and certain input conditions. 

The next state is manifested when the previous flip-flop is cleared and a new one is set. Each of 
the flip-flop outputs is connected to the data-processing section of the digital system to initiate 
certain microoperations. The other control outputs shown in the diagram are a function of the T’s 
and external inputs. These outputs may also initiate microoperations.

If the control circuit does not need external inputs for its sequencing, the circuit reduces 
to a straight shift register with a single bit shifted from one position to the next. If the control 
sequence must be repeated over and over again, the control reduces to a ring counter. A ring 
counter is a shift register with the output of the last flip-flop connected to the input of the first 
flip-flop. In a ring counter, the single bit continuously shifts from one position to the next in a 
circular manner. For this reason, the one flip-flop per state method is sometimes called a ring-
counter controller.

www.youseficlass.ir



366 Chapter 10

10.2.2 Sequence Register and Decoder Method

This method uses a register to sequence the control states. The register is decoded to provide 
one output for each state. For n flip-flops in the sequence register, the circuit will have 2n states 
and the decoder will have 2n outputs. For example, a 4-bit register can be in any one of 16 states.  
A 4 × 16 decoder will have 16 outputs, one for each state of the register. Both the sequence reg-
ister and decoder are MSI devices.

Figure 10-3 shows the configuration of a four-state sequential control logic. The sequence 
register has two flip-flops and the decoder establishes separate outputs for each state in the reg-
ister. The transition to the next state in the sequence register is a function of the present state 
and the external input conditions. Since the outputs of the decoder are available anyway, it is 
convenient to use them as present state variables rather than use the direct flip-flop outputs. Other 
outputs which are a function of the present-state and external inputs may initiate microoperations 
in addition to the decoder outputs.

If the control circuit of Fig. 10-3 does not need external inputs, the sequence register reduc-
es to a counter that continuously sequences through the four states. For this reason, this method is 

D Q

D Q

D Q

D Q

Other control outputs

External
  input
conditions

Decision
  logic

CP

T1

T2

T0

T3

Figure 10-2 Control logic with one flip-flop per state
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sometimes called a counter-decoder method. The counter-decoder method and the ring-counter 
method were explained in Chapter 7 in conjunction with Fig. 7-22.

10.2.3 PLA Control

The programmable logic array was introduced in Section 5-8. It was shown there that the PLA 
is an LSI device that can implement any complex combinational circuit. The PLA control is 
essentially similar to the sequence register and decoder method except that all combinational 
circuits are implemented with a PLA, including the decoder and the decision logic. By using a 
PLA for the combinational circuit, it is possible to reduce the number of ICs and the number of  
interconnection wires.

Figure 10-4 shows the configuration of a PLA controller. An external sequence register 
establishes the present state of the control circuit. The PLA outputs determine which microop-

Other control outputs

External
  input
conditions

T1

T0

Decision
  logic

Present state

Sequence
 register Decoder

T3

T2

Figure 10-3 Control logic with sequence register and decoder

External
  input
conditions

Sequence
 register

PLA

Initiate
  micro-
operations

Figure 10-4 PLA control logic
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erations should be initiated, depending on external input conditions and the present state of the 
sequence register. At the same time, other PLA outputs determine the next state of the sequence 
register.

The sequence register is external to the PLA if the unit implements only combinational cir-
cuits. However, some PLAs are available which include not only gates, but also flip-flops within 
the unit. This type of PLA can implement a sequential circuit by specifying the links that must be 
connected to the flip-flops in the same manner that the gate links are specified.

10.2.4 Microprogram Control

The purpose of the control unit is to initiate a series of sequential steps of microoperations. 
During any given time, certain operations are to be initiated while all others remain idle. Thus, 
the control variables at any given time can be represented by a string of 1’s and 0’s called a  
control word. As such, control words can be programmed to initiate the various components in 
the system in an organized manner. A control unit whose control variables are stored in a mem-
ory is called a microprogrammed control unit. Each control word of memory is called a microin-
struction, and a sequence of microinstructions is called a microprogram. Since alteration of the 
microprogram is seldom needed, the control memory can be a ROM. The use of a microprogram 
involves placing all control variables in words of the ROM for use by the control unit through 
successive read operations. The content of the word in the ROM at a given address specifies the 
microoperations for the system.

A more advanced development known as dynamic microprogramming permits a micro-
program to be loaded initially from the computer console or from an auxiliary memory such as 
a magnetic disk. Control units that use dynamic micro programming employ a writable control 
memory (WCM). This type of memory can be used for writing (to change the microprogram) 
but is used mostly for reading. A ROM, PLA, or WCM, when used in a control unit, is referred 
to as a control memory.

Figure 10-5 illustrates the general configuration of the microprogram control unit. The con-
trol memory is assumed to be a ROM, within which all control information is permanently 
stored. The control memory address register specifies the control word read from control memo-
ry. It must be realized that a ROM operates as a combinational circuit, with the address value as 
the input and the corresponding word as the output. The content of the specified word remains 
on the output wires as long as the address value remains in the address register. No read signal 
is needed as in a random-access memory. The word out of the ROM should be transferred to a 

External
  input
conditions

Initiate
  micro-
operations

    Next
 address
generator

Control
address
register

 Control
 memory
  (ROM)

Next address information

Figure 10-5 Microprogram control logic
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buffer register if the address register changes while the ROM word is still in use. If the change in 
address and ROM word can occur simultaneously, no buffer register is needed.

The word read from control memory represents a microinstruction. The microinstruction 
specifies one or more microoperations for the components of the system. Once these operations 
are executed, the control unit must determine its next address. The location of the next micro-
instruction may be the next one in sequence, or it may be located somewhere else in the control 
memory. For this reason, it is necessary to use some bits of the microinstruction to control the 
generation of the address for the next microinstruction. The next address may also be a function 
of external input conditions. While the microoperations are being executed, the next address is 
computed in the next-address generator circuit and then transferred (with the next clock pulse) 
into the control address register to read the next microinstruction. The detailed construction of 
the next address generator depends on the particular application.

The remainder of this chapter deals with specific examples of control logic design. The 
first example in Section 10-3 demonstrates the one flip-flop per state method, and Section 10-4 
presents the same example with a microprogram control. Section 10-6 uses a second example to 
demonstrate the sequence register and decoder method, and Section 10-7 implements the second 
example with a PLA. Sections 10-5 and 10-8 consider the microprogram control method in more 
detail.

10.3 Hard-wired Control — Example 1

This example demonstrates the development of a design algorithm. We start from the statement 
of the problem and proceed through the design to obtain the control logic for the system. The 
design is carried out in five consecutive steps.

1. The problem is stated.

2. An initial equipment configuration is assumed.

3. An algorithm is formulated.

4. The data-processor part is specified.

5. The control logic is designed.

An initial equipment configuration is necessary in order to formulate the design algorithm 
in terms of the register-transfer method. The algorithm is formulated by means of a flowchart that 
specifies the sequence of microoperations for the system. Once we have a list of microoperations, 
we can choose the digital functions necessary for their implementation. In essence, this supplies 
the data-processor part of the system. The control is then designed to sequence the required mi-
crooperations in the data processor.

The control logic derived in this section is a hard-wired control of the one flip-flop per state 
method. The digital system presented here is used again in the next section to demonstrate an 
example of microprogram control.

10.3.1 Statement of the Problem

In Section 8-5, an algorithm was stated for the addition and subtraction of binary fixed-point 
numbers when negative numbers are in sign-2’s-complement form. The problem here is to imple-
ment with hardware the addition and subtraction of two fixed-point binary numbers represented 
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in sign-magnitude form. Complement arithmetic may be used, provided the final result is in 
sign-magnitude form.

The addition of two numbers stored in registers of finite length may result in a sum that 
exceeds the storage capacity of the register by one bit. The extra bit is said to cause an overflow. 
The circuit must provide a flip-flop for storing a possible overflow bit.

10.3.2 Equipment Configuration

The two signed binary numbers to be added or subtracted contain n bits. The magnitudes of the 
numbers contain k = n - 1 bits and are stored in registers A and B. The sign bits are stored in flip-
flops A

s
 and B

s
. Figure 10-6 shows the registers and associated equipment. The ALU performs the 

arithmetic operations and the 1-bit register E serves as the overflow flip-flop. The output carry 
from the ALU is transferred to E.

It is assumed that the two numbers and their signs have been transferred to their respective 
registers and that the result of the operation is to be available in registers A and A

s
. Two input 

signals in the control specify the add (q
a
) and subtract (q

s
) operations. Output variable x indicates 

the end of the operation. The control logic communicates with the outside environment through 
the input and output variables. Control recognizes input signal q

a
 or q

s
 and provides the required 

operation. Upon completion of the operation, control informs the external environment with out-
put x that the sum or difference is in registers A and A

s
 and that the overflow bit is in E.

10.3.3 Derivation of the Algorithm

The representation of numbers by sign-magnitude is familiar because it is used for paper and 
pencil arithmetic calculations. The procedure for adding or subtracting two signed binary num-
bers with paper and pencil is simple and straightforward. A review of this procedure will be 
helpful for deriving the design algorithm.

We designate the magnitude of the two numbers by A and B. When the numbers are added 
or subtracted algebraically, we find that there are eight different conditions to consider, depend-
ing on the sign of the numbers and the operation performed. The eight conditions may be ex-
pressed in a compact form as follows:

(± A) ± (± B)

(Operation
terminated)

qs

qa

Bs

As

E

A register

B register

ALU Control
  logic

(Add)

(Subtract)

MagnitudeSign

Overflow

x

Figure 10-6 Register configuration for the adder-subtractor
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If the arithmetic operation specified is subtraction, we change the sign of B and add. This is evi-
dent from the relations:

(± A) - (+B) = (± A) + (- B)

(± A) - (-B) = (± A) + (+ B)

This reduces the number of possible conditions to four, namely:

(±A) + (±B)

When the signs of A and B are the same, we add the two magnitudes and the sign of the result 
is the same as the common sign. When the signs of A and B are not the same, we subtract the 
smaller number from the larger and the sign of the result is the sign of the larger number. This is 
evident from the following relationships:

If A  B If A < B

(+A) + (+B) = + (A + B)

(+A) + (-B) = +(A - B) = -(B - A)

(-A) + (+B) = -(A - B) = +(B - A)

(-A) + (-B) = - (A + B)

The flowchart of Fig. 10-7 shows how we can implement sign-magnitude addition and sub-
traction with the equipment of Fig. 10-6. An operation is initiated by either input q

s
 or input q

a
. 

Input q
s
 initiates a subtraction operation, so the sign of B is complemented. Input q

a
 initiates an 

add operation, and the sign of B is left unchanged. The next step is to compare the two signs. The 
decision block marked with A

s
 : B

s
 symbolizes this decision. If the signs are equal, we take the 

path marked by the symbol = ; otherwise, we take the path marked by the symbol ≠. For equal 
signs, the content of A is added to the content of B and the sum is transferred to A. The value of 
the end carry in this case is an overflow; so the E Flip-flop is made equal to the output carry C

out
. 

The circuit then goes to its initial state and output x becomes 1. The sign of the result in this case 
is the same as the original sign of A

s
; so the sign bit is left unchanged.

The two magnitudes are subtracted if the signs are not the same. The subtraction of the mag-
nitudes is done by adding A to the 2’s complement of B. No overflow can occur if the numbers are 
subtracted; so E is cleared to 0. A 1 in E indicates that A ≥ B and the number in A is the correct 
result. The sign of the result again is equal to the original value of A

s
 . A 0 in E indicates that  

A < B. For this case, it is necessary to form the 2’s complement of the value in A and comple-
ment the sign in A

s
. The 2’s complement of A can be done with one microoperation, A ← A  + 1. 

However, we want to use the ALU of Chapter 9 and this ALU does not have the 2’s complement 
operation. For this reason, the 2’s complement is obtained from the complement and increment 
operations which are available in the ALU.

10.3.4 Data Processor Specification

The flowchart algorithm lists all the microoperations for the data-processor part of the system. 
The operations between A and B can be done with the ALU. The operations with A

s
, B

s
, and E 

must be initiated with separate control variables. Figure 10-8(a) shows the data-processor with 
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the required control variables. As mentioned before, the ALU is from Chapter 9 and its function 
is specified in Table 9-4. This ALU has four selection variables, as shown in the diagram. The 
variable L loads the output of the ALU into register A and also the output carry into E. Variables 
y, z, and w complement B

s
 and A

s
 and clear E, respectively.

The block diagram of the control logic is shown in Fig. 10-8(b). The control receives five 
inputs: two from the external environment and three from the data-processor. To simplify the 
design, we define a new variable S:

S = A
s
 ⊕ B

s

This variable gives the result of the comparison between the two sign bits. The exclusive-OR 
operation is equal to 1 if the two signs are not the same, and it is equal to 0 if the signs are both 
positive or both negative.

qa = 1 

Initial state
  x = 1

qs = 1 

Bs ← Bs

As : Bs

E ← Cout E ← Cout

A ← A + B + 1 A ← A + B

A ← A

A ← A  + 1
As ← As

E ← 0 

= 0 = 1 E

A < B A ≥ B

=≠

Figure 10-7 Flowchart for sign-magnitude addition and subtraction
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The control provides an output x for the external circuit. It also selects the operations in the 
ALU through the four selection variables s

2
, s

1
, s

0
, and C

in
. The other four outputs go to registers 

in the data-processor as specified in the diagram. Although not shown in the diagram, the outputs 
of the control logic should be connected to the corresponding inputs in the data-processor. Now 
that the data-processor is specified, we can design the control logic for the system.

10.3.5 Control State Diagram

The design of a hard-wired control is a sequential-logic problem. As such, it may be convenient 
to formulate the state diagram of the sequential control. The function boxes in a flowchart may 
be considered as states of the sequential circuit, and the decision boxes as next-state conditions. 
The microoperations that must be executed at a given state are specified within the function box. 

As

Cout

E

 Bs
y

z

w

L (Load)

Cin

s0

s1

s2

B register

B register

     ALU
(Table 9-4)

(a) Data processor registers and ALU

As

E

 Bs
y (Complement Bs)

z (Complement As)

w (Clear E)

L (Load A and E from ALU)

Cin (Input carry)

s0

s1

s2

Control
  logic

(Function select)

(Mode select)

(Initial state)x

S

qa

qs

(b) Control block diagram

Figure 10-8 System block diagram
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The conditions for the next state transition are specified inside the decision box or in the directed 
lines between two function boxes. Although one can formulate this relationship between a flow-
chart and a state diagram, the conversion from one form to the other is not unique. Consequently, 
different designers may produce different state diagrams for the same flowchart, and each may be 
a correct representation of the system.

We start by assigning an initial state, T
0
, to the sequential controller. We then determine the 

transition to other states T
1
, T

2
, T

3
, and so on. For each state, we determine the microoperations 

that must be initiated by the control circuit. This procedure produces the state diagram for the 
controller, together with a list of register-transfer operations which are to be initiated while the 
control circuit is in each and every state.

The control state diagram and the corresponding register-transfer operations are derived 
in Fig. 10-9. The information for this design is taken directly from the flowchart of Fig. 10-7 
and the variables defined in the block diagram of Fig. 10-8. The initial control state is T

0
. While 

T1T0

T6

T7

T5

T2

T4

T3

qa = 0
qs = 0

qa
qs

Add
Subtract
Signs alike
Signs unlike
Output carry

S = 0

S = 0
S = 1
E

E = 1

qs = 1

E = 0

S = 1

q
a  = 1

(a) State diagram

Control outputs

x s
2

s
1

s
0

C
in

L y z w

T
0
: Initial state x = 1 1 0 0 0 0 0 0 0 0

T
1
: B

s 
← B

–
  

s
0 0 0 0 0 0 1 0 0

T
2
: nothing 0 0 0 0 0 0 0 0 0

T
3
: A ← A + B ,  E ← C

out
0 0 0 1 0 1 0 0 0

T
4
: A ← A + B

–
   +  1 ,  E ← C

out
0 0 1 0 1 1 0 0 0

T
5
: E ← 0 0 0 0 0 0 0 0 0 1

T
6
: A ← A 0 1 1 1 0 1 0 0 0

T
7
: A ← A + 1 ,  A

s
 ← As 0 0 0 0 1 1 0 1 0

(b) Sequence of register transfers

Figure 10-9 Control state diagram and sequence of microoperations
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the control is in this state, variable x is made equal to 1. This variable is 0 in all other states. As 
long as q

a
 and q

s
 are 0, the control stays in its initial state. If q

s
 becomes 1, the control performs 

a subtraction operation by going to state T
1
. In this state, sign bit B

s
 is complemented. Control 

then goes to state T
2
 to add the two numbers. If q

a
 becomes 1, control goes directly to state T

2
.

The next state after T
2
 depends on the relative values of the sign bits which are determined 

from input variable S. If the signs are alike, S is 0 and control goes to state T
3
. In this state, the two 

magnitudes are added and the overflow bit set. Once this is done, control goes back to the initial 
state. If the signs are unlike, S is 1 and control goes from state T

2
 to state T

4
. In this state, the two 

magnitudes are subtracted by taking the 2’s complement of B. The end carry is transferred to E 
during the subtraction, and control then goes to state T

5
.

It must be realized that the end carry from the ALU is transferred to E with a clock pulse. 
This happens with the same clock pulse that causes the control to go from state T

4
 to T

5
. Although 

we show the microoperation:

E ← C
out

with timing variable T
4
 this operation is not executed until a clock pulse occurs. Once this clock 

pulse executes the operation, control finds itself in state T
5
. Therefore, the value of E for an end 

carry should not be checked until control reaches state T
5
. The value of E is checked to deter-

mine the relative magnitudes of A and B. If E = 1, it indicates that A  B. For this case, E must 
be cleared and the operation is completed. If E = 0, it indicates that A < B. Control then goes to 
states T

6
 and T

7
 to complement A and A

s
. Note that E is cleared while the control is in state T

5
. 

This is done whether E is 1 or 0, since trying to clear a flip-flop that is already 0 leaves the flip-
flop in the 0 state anyway. Note also that E is cleared with the clock pulse that causes control to 
go out of state T

5
. It must be realized that clearing E and transferring control to state T

0
 or T

6
 is 

done with one common clock pulse without a conflict. The original value of E at time T
5
 deter-

mines the next state even though this flip-flop is cleared while the clock pulse goes through an 
edge transition.

It should be apparent from this example that the interpretation of a flowchart may result in 
a different state diagram for the same control logic. This is acceptable as long as the hardware 
constraints are taken into consideration and the system functions according to the specifications. 
For example, instead of checking E at time T

5
, we could have chosen to check C

out
 at time T

4
. If 

C
out

 is 1, control goes to state T
5
 to clear E. If it is 0, control can go directly to state T

6
, bypassing 

state T
5
; in this case.

10.3.6 Design of Hard-wired Control

The control outputs are a function of the control states and are listed in Fig. 10-9(b). These out-
puts are defined in the block diagram of Fig. 10-8(b). The values for the ALU selection variables 
are determined from Table 9-4. The L (load A) variable must be made equal to 1 every time the 
output of the ALU is transferred to register A. Otherwise, L is 0 and the ALU outputs have no 
effect on the register. To design the control for this system, we need to design the state diagram 
of Fig. 10-9(a) and provide the control outputs as specified in Fig. 10-9(b).

The control can be designed using the classical sequential-logic procedure. This procedure 
requires a state table with eight states, four inputs, and nine outputs. The sequential circuit to be 
derived from such a state table will not be easy to obtain because of the large number of vari-
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ables. The circuit obtained by using this method may have a minimum number of gates, but it will 
have an irregular pattern and will be difficult to analyze if a malfunction occurs. These difficulties 
are removed if the control is designed by the one flip-flop per state method.

A control organization that uses one flip-flop per state has the convenient characteristic that 
the circuit can be derived directly from the state diagram by inspection. No state or excitation 
tables are needed if D flip-flops are employed. Remember that the next state of a D flip-flop is 
a function of the D input and is independent of the present state. Since the method requires one 
flip-flop for each state, we choose eight D flip-flops and label their outputs T

0
, T

1
, T

2
,..., T

7
. The 

condition for setting a given flip-flop is specified in the state diagram. For example, flip-flop T
2
 is 

set with the next clock pulse if T
1
 = 1 or if T

0
 = 1 and q

a
 = 1. This condition can be defined with 

the Boolean function:

DT
2
 = q

a
T

0
 + T

1

where DT
2
 designates the D input of flip-flop T

2
. In fact, the condition for setting a flip-flop to 

1 is obtained from the condition specified in the directed lines going into a given flip-flop state 
ANDed with the previous flip-flop state. If there is more than one directed line going into a state, 
all conditions must be ORed. Using this procedure for the other flip-flops, we obtain the input 
functions given in Table 10-1.

Initially, flip-flop T
0
 is set and all others are cleared. At any given time, only one D input is 

in the 1 state while all others are maintained at 0. The next clock pulse sets the flip-flop whose D 
input is 1 and clears all others. For example, if presently T

0
 = 1, then if q

a
 = 0 and q

s
 = 0, the D 

input of T
0
 will be 1 and the next pulse will leave flip-flop T

0
 in the 1 state. If during the interval 

between two pulses q
s
 becomes a 1, the D input of T

0
 will change to 0; but the D input of T

1
 will 

be 1, so the next pulse will set T
1
 and clear T

0
. The flip-flop input functions are mutually exclusive 

and only one flip-flop can be set at any given time; all others are cleared because their D inputs 
are 0’s.

We now need to specify the control outputs as a function of flip-flop states. This is done 
with the Boolean functions given in Table 10-1. These Boolean functions are obtained by inspec-
tion from Fig. 10-9(b). For example, the L output must be 1 during state T

3
, T

4
, T

6
, or T

7
. These 

variables are available from outputs of flip-flops. What is needed here is a 4-input OR gate to 
generate output control L.

The circuit for the control logic is not drawn but can be easily obtained from the Boolean 
functions in Table 10-1. The circuit can be constructed with eight D flip-flops, seven AND gates, 
six OR gates, and four inverters. Note that five control outputs are taken directly from the flip-
flop outputs.

10.4 Microprogram Control

In a microprogram control, the control variables that initiate microoperations are stored in mem-
ory. The control memory is usually a ROM, since the control sequence is permanent and needs 
no alteration. The control variables stored in memory are read one at a time to initiate the se-
quence of microoperations for the system.

The words stored in a control memory are microinstructions, and each microinstruction 
specifies one or more microoperations for the components in the system. Once these microopera-
tions are executed, the control unit must determine its next address. Therefore, a few bits of the 
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microinstruction are used to control the generation of the address for the next microinstruction. 
Thus, a microinstruction contains bits for initiating microoperations and bits that determine the 
next address for the control memory itself.

In addition to the control memory, a microprogram control unit must include special cir-
cuits for selecting the next address as specified by the microinstruction. These circuits and the 
configuration of the microinstruction bits stored in memory vary from one unit to another. In-
stead of dwelling on all the possibilities encountered in different situations, we choose here to 
introduce the microprogram concept by means of a simple example.

The control logic to be designed is for the sign-magnitude adder-subtractor developed in 
the previous section. The hard-wired control designed in Section 10-3 will be replaced by a 
microprogram control to be designed subsequently. Realize, however, that the digital system 
considered here is too small for a microprogram controller and, in practice, a hard-wired control 
would be more efficient. The microprogram control organization is more efficient in large, com-
plicated systems.

A state in control memory is represented by the address of a microinstruction. An address 
for control memory specifies a control word within a microinstruction just as a state in a sequen-
tial circuit specifies a microoperation. The control we wish to design is specified in Fig. 10-9. 
Since there are eight states in the control, we choose a control memory with eight words having 
addresses 0 through 7. The address of the control memory corresponds to the subscript number 
under the T’s in the state diagram.

Inspection of the state diagram reveals that the address sequencing in the microprogram 
control must have the following capabilities.

1. Provision for loading an external address as a result of the occurrence of external signals 
q

a
 and q

s
.

2. Provision for sequencing consecutive addresses.

3. Provision for choosing between two addresses as a function of present values of the sta-
tus variables S and E.

Each microinstruction must contain a number of bits to specify the way that the next address is 
to be selected.

Table 10-1 Boolean functions for control

Flip-flop input functions Boolean functions for output control

DT
0
 = q′

a 
q′

s
T

0
 + T

3
 + ET

5 
+ T

7
x = T

0

DT
1
 = q

s
T

0
s

2
 = T

6

DT
2
 = q

a
T

0
 + T

1
s

1
 = T

4
 + T

6

DT
3
 = S′T

2
s

0
 = T

3
 + T

6

DT
4
 = ST

2
C

in
 = T

4
 + T

7

DT
5
 = T

4
L = T

3
 + T

4
 + T

6
 + T

7

DT
6
 = E’T

5
y = T

1

DT
7
 = T

6
z = T

7

w = T
5
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10.4.1 Hardware Configuration

The organization of the microprogram control unit is shown in Fig. 10-10. The control memory 
is an 8-word by 14-bit ROM. The first nine bits of a microinstruction word contain the control 
variables that initiate the microoperations. The last five bits provide information for selecting the 
next address. The control address register (CAR) holds the address for the control memory. This 
register receives an input value when its load control is enabled; otherwise, it is incremented by 
1. CAR is essentially a counter with parallel-load capability.

Bits 10, 11, and 12 of a microinstruction contain an address for CAR. Bits 13 and 14 select 
an input for a multiplexer. Bit 1 provides the initial state condition denoted by variable x and also 
enables an external address when q

s
 or q

a
 is equal to 1. We stipulate that when x = 1, the address 

field of the microinstruction must be 000. Then if q
s
 = 1, address 001 is available at the inputs 

of CAR, but if q
a
 = 1, address 010 is applied to CAR. If both q

s
 and q

a
 are 0’s, the zero address 

from bits 10, 11, and 12 are applied to the inputs of CAR. In this way, the control memory stays 
at address zero until an external variable is enabled.

The multiplexer (MUX) has four inputs that are selected with bits 13 and 14 of the micro-
instruction. The functions of the multiplexer select bits are tabulated in Fig. 10-10. If bits 13 
and 14 are 00, a multiplexer input that is equal to 0 is selected. The output of the multiplexer 
is 0, and the increment input to CAR is enabled. This configuration increments CAR to choose 
the next address in sequence. An input of 1 is selected by the multiplexer when bits 13 and 14 
are equal to 01. The output of the multiplexer is 1 and the external input is loaded into CAR. 
Status variable S is selected when bits 13 and 14 are equal to 10. If S = 1, the output of the mul-
tiplexer is 1 and the address bits of the microinstruction are loaded into CAR (provided x = 0). If  
S = 0, the output of the multiplexer is 0 and CAR is incremented. With bits 13 and 14 equal to 11,  
status variable E is selected and the address field is loaded into CAR if E = 1, but CAR is in-
cremented if E = 0. Thus, the multiplexer allows the control to choose between two addresses, 
depending on the value of the status bit selected.

10.4.2 The Microprogram

Once the configuration of a microprogram control unit is established, the designer’s task is to 
generate the microcode for the control memory. This code generation is called microprogram-
ming and is a process that determines the bit configuration for each and all words in control 
memory. To appreciate this process, we will derive the microprogram for the adder-subtractor 
example. The control memory has eight words and each word contains 14 bits. To microprogram 
the control memory, we must determine the bit values of each of the eight words.

The register-transfer method can be adopted for developing a microprogram. The microop-
eration sequence can be specified with register-transfer statements. There is no need for listing 
control functions with Boolean variables since, in this case, the control variables are the control 
words stored in control memory. Instead of a control function, we specify an address with each 
register-transfer statement. The address associated with each symbolic statement corresponds 
to the address where the microinstruction is to be stored in memory. The sequencing from one 
address to the next can be indicated by means of conditional control statements. This type of 
statement can specify the address to which control goes, depending on status conditions. Thus, 
instead of thinking in terms of the l’s and 0’s that must be inserted for each microinstruction, it is 
more convenient to think in terms of symbols in the register-transfer method. Once the symbolic 
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Figure 10-10 Microprogram control block diagram
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microprogram is established, it is possible to translate the register-transfer statements to their 
equivalent binary form.

The microprogram in symbolic form is given in Table 10-2. The eight addresses of the ROM 
are listed in the first column. In the second column, the microinstruction that must be stored at 
each address is given in symbolic form.

The comments are used to clarify the register-transfer statements. Address 0 is equivalent to 
the initial state and produces an output x = 1. The next address depends on the values of external 
variables q

s
 and q

a
. The three conditional control statements in this microinstruction use a go to 

statement after the word then. This is interpreted to mean that if the condition is satisfied, control 
goes to the address written after the words go to. Thus, if both q

s
 and q

a
 are 0, control stays in ad-

dress 0 to repeat the microinstruction. If q
s
 or q

a
 is 1, control goes to address 1 or 2, respectively.

The conditional control statements in the other microinstructions use the status variables 
S and E. The go to statement without a condition attached specifies an unconditional branch to 
the indicated address. For example, go to 0 means that control goes to address 0 after the present 
microinstruction is executed. If there is no go to statement in the microinstruction, it implies that 
the next microinstruction is taken from the next address in sequence. Also, if the condition after 
an if statement is not satisfied, control goes to the next address in sequence.

The microinstructions associated with the eight addresses are derived directly from the 
control specifications of Fig. 10-9. The microoperations listed are identical to the ones listed in 
Fig. 10-9(b). The conditional control statement specifies the address sequence as given by the 
state diagram of Fig. 10-9(a). Note that each address number is the same as the subscript number 
under the T’s in the state diagram. It should be obvious that the conditional control statements 
provide a different way to specify a state diagram. This shows that the register-transfer method 
can be used to specify a sequential circuit.

The microprogram in Table 10-2 could have been derived directly from the flowchart of  
Fig. 10-7. This flowchart was used to specify the algorithm for the system that we are attempting 
to design. Although the microprogram developed here seems to require many intermediate steps, 
it must be realized that this was done for explanatory purposes. Once the microprogram con-
cept is understood, there is no reason we could not specify the algorithm directly as a symbolic  

Table 10-2 Symbolic microprogram for control memory

ROM 
address Microinstruction Comments

0 x = 1, if (q
s
 = 1) then (go to 1), if (q

a
 = 1)

then (go to 2), if (q
s
 ∧ q

a
 = 0) then (go to 0)

Load 0 or external address

1 B
s
 ← B

–
  

s
q

s
 = 1, start subtraction

2 If (S = 1) then (go to 4) q
s
 = 1, start addition

3 A ← A + B, E ← C
out

, go to 0 Add magnitudes and return

4 A ← A + B
–
   + 1, E ← C

out
, Subtract magnitudes

5 If (E = 1) then (go to 0), E ← 0 Operation terminated if E = 1

6 A ← A E = 0, complement A

7 A ← A + 1, A
s
 ← A

s
, go to 0 Done, return to address 0
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microprogram without the need for a state diagram. Once the equipment configuration for the 
data processor and the microprogram control is established, the algorithm can be developed by 
means of a microprogram.

The symbolic designation is a convenient method for developing the microprogram in a 
way that people can read and understand. But this is not the way that the microprogram is stored 
in control memory. The symbolic microprogram must be translated to binary because this is the 
form that goes into memory. The translation is done by dividing the bits of each microinstruc-
tion into their functional parts called fields. Here we have three functional parts. Bits 1 through 
9 specify the control word for initiating the microoperations. Bits 10 through 12 specify an 
address field, and bits 13 and 14 select a multiplexer input. For each microinstruction listed 
in symbolic form, we must choose the appropriate bits in the corresponding microinstruction  
fields.

The equivalent binary form of the microprogram is given in Table 10-3. The addresses for 
the ROM control memory are listed in binary. The content of each word of ROM is also given in 
binary. This table constitutes the truth table needed for programming the ROM.

The first nine bits in each ROM word give the control word that initiates the specified 
microoperations. These bit values are taken directly from Fig. 10-9(b). The last five bits in each 
ROM word are derived from the conditional control statements in the symbolic program.

At address 000, we have 01 for the select field. This allows an external address to be loaded 
into CAR if q

s
 or q

a
 is equal to 1. Otherwise, address 000 is transferred to CAR. In address 001, 

the microinstruction select field is 01 and the address field is 010. From the table in Fig. 10-10, 
we find that the clock pulse that initiates the microoperation B

s
 ← B–

s
 (because y = 1) also trans-

fers the address field into CAR. The next microinstruction out of ROM will be the one stored in 
address 010. The select field at address 001 could have been chosen to be 00. This would have 
caused CAR to increment and go to address 010.

Inspection of the select field in bits 13 and 14 shows that when these two bits are equal to 
01, the address field is the next address. When these two bits are 10, status variable S is selected, 
and when they are 11, status variable E is selected. In the last two cases, the next address is the 

Table 10-3 Binary microprogram for control memory

ROM 
address

ROM outputs

x s
2

s
1

s
0

C
in

L y z w Address Select

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1

1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1

1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1

1 1 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1

1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1
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one specified in the address field if the selected status bit is equal to 1. If the selected status bit is 
equal to 0, the next address is the one next in sequence because CAR is incremented.

10.5 Control of Processor Unit

The hardware configuration of the microprogram control unit used in the preceding section is 
suitable for the particular example considered. In a practical situation, the hardware organization 
of a microprogram control unit must have a general-purpose configuration to suit a wide variety 
of situations. A general-purpose microprogram control unit must have a control memory large 
enough to store many microinstructions. Provisions must be made to include all possible control 
variables in the system—not only for controlling an ALU. The multiplexer and select bits must 
include all other possible status bits that one may want to check in the system. A provision must 
be available to accept an external address to initiate many operations rather than just two opera-
tions such as add and subtract.

The main advantage of the microprogram control is the fact that, once the hardware config-
uration is established, there should be no need for further hardware or wiring changes. If we want 
to establish a different control sequence for the system, all we need to do is specify a different set 
of microinstructions for the control memory. The hardware configuration should not change for 
different operations; the only change should be in the microprogram residing in control memory.

To show the general property of the microprogram organization, we will expand the hard-
ware configuration to include the control of an entire processor unit. A general-purpose proces-
sor unit was introduced in Section 9-9. Referring to Fig. 9-16, we note that the processor unit 
has seven registers, an ALU, a shifter, and a status register. A microoperation is selected with a 
control word of 16 bits. The bits for a given control word can be formulated from the binary code 
listed in Table 9-8.

A microprogram organization for controlling the processor unit is shown in Fig. 10-11. It 
has a control memory of 64 words, with 26 bits per word. To select 64 words, we need an address 
of 6 bits. To select 8 status bits, we need 3 selection lines for the multiplexer. One bit of the mi-
croinstruction selects between an external address and the address field of the microinstruction. 
Adding the 16 bits for selecting the microoperation in the processor requires a total of 26 bits for 
each microinstruction.

The processor unit is included in the diagram to show its connection to the microprogram 
control unit. The first 16 bits of the microinstruction select the microoperation for the processor. 
The other 10 bits select the next address for the control address register. The status bits from the 
processor are applied to the inputs of a multiplexer. Both the normal and complement values are 
used, except for the overflow bit V. Input 0 of MUX 2 is connected to a binary constant which is 
always 1. The load input to CAR is enabled when this input is selected by bits 18, 19, and 20 in 
the microinstruction. This causes a transfer of information from the output of MUX 1 into CAR. 
The input into CAR is a function of bit 17 in the microinstruction. If bit 17 is 1, CAR receives the 
address field of the microinstruction. If bit 17 is 0, an external address is loaded into CAR. The 
external address is for the purpose of initiating a new sequence of microinstructions which can 
be specified by the external environment. The status bit (or its complement) selected by bits 18, 
19, and 20 of the microinstruction may be equal to 1 or 0. The input address is loaded into CAR 
if the selected bit is 1, but CAR is incremented if the selected bit is 0.

To construct correct microprograms, it is necessary to specify exactly how the status bits 
are affected by each microoperation in the processor. The S (sign) and Z (zero) bits are affected 

www.youseficlass.ir



Control Logic Design 383 

by all operations. The C (carry) and V (overflow) bits do not change after the following ALU 
operations:

1. The four logic operations OR, AND, XOR, and complement.

2. The increment and decrement operations.

For all other operations, the output carry from the ALU goes into the C bit of the status register. 
The C bit is also affected after a circular shift with carry operation.

10.5.1 Microprogram Example

We now demonstrate by means of an example how a microprogram is written to implement a 
given macrooperation. A macrooperation initiates a sequence of microinstructions in control 
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Figure 10-11 Microprogram control for processor unit
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memory. This sequence constitutes a microprogram routine for executing the specified macro-
operation. A macrooperation is initiated by an external address that supplies the first address in 
control memory for the microinstruction routine. The routine is terminated with a microinstruc-
tion that loads a new external address to start executing the next macrooperation.

The macrooperation we wish to implement counts the number of 1’s presently stored 
in processor register R1 and sets processor register R2 to that number. For example, if R1 = 
00110101, the microprogram routine counts the four 1’s stored in the register and sets register 
R2 to the binary number 100.

Although the microprogram can be derived directly from the statement of the problem, 
it may be convenient to first construct a flowchart that shows the sequence of microoperations 
and decision paths. The flowchart for the microprogram is shown in Fig. 10-12. We assume that 
the microprogram routine starts at address 8. Register R2 and the C (carry) bit are first set to 0. 
The content of R1 is then examined. If it is 0, it signifies that there are no 1’s stored in it; so the 
microprogram routine terminates with R2 equal to 0. If the content of R1 is not 0, it indicates 
that there are some 1’s stored in it. Register R1, together with the carry, is shifted in a circular 
manner as many times as necessary until a 1 is transferred into C. For every 1 detected in C, we 
increment register R2 and then go back to check if R1 is equal to 0. This loop is repeated until 

C ← 0

R2 ← R2 + 1

C
= 0

≠ 0

Circulate R1 with carry

R2 ← 0

= 0

= 1

Start (address 8)

DoneR1

Figure 10-12 Flowchart for counting the number of 1’s in register R1
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all the 1’s in R1 are counted. Note that the value of C is always 0 when it is circulated with the 
content of R1.

The microprogram routine in symbolic form is presented in Table 10-4. The routine starts 
at address 8 by clearing register R2, The microinstruction in address 9 clears the C bit and sets 
the Z bit if R1 contains all 0’s. This is done by transferring the content of R1 into itself through 
the ALU. The microinstruction in address 10 checks the value of the Z bit. If it is 1, it indicates 
that R1 contains all 0’s, and the routine is terminated by accepting a new external address to start 
executing another macrooperation. If Z is not equal to 1, control continues with address 11. The 
circular night-shift with carry (crc) places the least significant bit of R1 into C. Next we check 
the value of C. If it is 0, control goes back to address 11 to circulate again until E becomes a 1. 
When C = 1, control goes to address 13 to increment R2 and then returns to address 9 to check 
the content of R1 for an all 0’s state.

The binary microprogram is given in Table 10-5. The 16 bits for the control word that se-
lects the processor microoperations are derived from Table 9-8. In fact, most of the control words 
listed were explained in Section 9-9 in conjunction with Table 9-9. The multiplexer select bits 
select the inputs to the two multiplexers. Bit 17 is 0 in address 10 for selecting an external ad-
dress. In all other cases, it is 1 to select the address field of the microinstruction. When bits 18, 
19, and 20 are 000, the next address is determined directly from the address field. When these bits 

Table 10-4 Symbolic microprogram to count the number of 1’s in R1

ROM address Microinstruction Comments

8 R2 ← 0 Clear R2 counter

9 R1← R1, C ← 0 Clear C, set status bits

10 If (Z = 1) then (go to external address) Done if R1 = 0

11 R1 ← crc R1 Circulate R1 right with carry

12 If (C = 0) then (go to 11) Circulate again if C = 0

13 R2 ← R2 + 1, go to 9 Carry = 1, increment R2

Table 10-5 Binary microprogram to count the number of 1’s in R1

ROM content

ROM 
address

Microoperation select MUX 
select

Address 
fieldA B D F H

1 16 17 20 21 26

001000 000 000 010 0000 011 1 0 0 0 0 0 1 0 0 1

001001 001 000 001 0000 000 1 0 0 0 0 0 1 0 1 0

001010 001 001 000 1000 000 0 0 1 1 0 0 0 0 0 0

001011 001 001 001 1000 101 1 0 0 0 0 0 1 1 0 0

001100 001 001 000 1000 000 1 0 1 0 0 0 1 0 1 1

001101 010 000 010 0001 000 1 0 0 0 0 0 1 0 0 1
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are 011, they select the Z bit for MUX 2. If Z = 1, an external address is transferred to CAR. If  
Z = 0, CAR is incremented and the next address is the next one in sequence. The microinstruction 
at address 12 selects the complement of the carry bit or C. If C = 0, then C′ = 1 and the address 
field (binary 1011) is transferred into CAR. If C = 1, then C¢ = 0 and CAR is incremented to give 
13 for the next address.

The reader familiar with machine- or assembly-language programming for a computer will 
realize that writing microprograms is very similar to writing machine-language programs for a 
computer. Thus, the microprogram concept is a systematic procedure for designing the control 
unit of a digital system. Once the microinstruction format is established, the design is done by 
writing a microprogram, which is similar to writing a program for a computer. For this reason, 
the microprogram method is sometimes referred to as firmware to distinguish it from the hard-
ware method (which we called a hard-wired control) and the software concept which constitutes 
a programming method.

10.6 Hard-wired Control—Example 2

The example presented in this section demonstrates the development of a second arithmetic 
algorithm and a different method for designing the control logic. As in the previous example, 
we first develop the design algorithm together with the hardware configuration for the processor 
part of the system. After this is done, we formulate the control logic specification for the system.

The control organization chosen for this example is the sequence register and decoder 
method. In the next section, we design the control logic by means of a PLA. This example dem-
onstrates the direct relationship that exists between the sequence register and decoder method 
and its corresponding PLA control implementation.

10.6.1 Statement of the Problem

We wish to design an arithmetic circuit that multiplies two fixed-point binary numbers in sign-
magnitude representation. The product obtained from the multiplication of two binary numbers 
whose magnitudes consist of k bits each can be up to 2k bits long. The sign of each number oc-
cupies one additional bit.

Multiplication of two fixed-point binary numbers in sign-magnitude representation is done 
with paper and pencil by successive additions and shifting. This process is best illustrated with a 
numerical example. Let us multiply the two binary numbers 10111 and 10011:

23     10111 multiplicand

×

19     10011 multiplier

    10111

   10111

  00000 +

 00000

10111

437 110110101 product
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The process consists of looking at successive bits of the multiplier, least significant bit first. 
If the multiplier bit is a 1, the multiplicand is copied down; otherwise, zeros are copied down. 
The numbers copied down in successive lines are shifted one position to the left from the previ-
ous number. Finally, the numbers are added; their sum forms the product.

The sign of the product is determined from the signs of the multiplicand and multiplier. If 
they are alike, the sign of the product is plus. If they are unlike, the sign of the product is minus.

When the above process is implemented in a digital machine, it is convenient to change 
the process slightly. First, instead of providing digital circuits to store and add simultaneously 
as many binary numbers as there are 1’s in the multiplier, it is convenient to provide circuits for 
the summation of only two binary numbers and successively accumulate the partial products in 
a register. Second, instead of shifting the multiplicand to the left, the partial product is shifted to 
the right, which results in leaving the partial product and the multiplicand in the required relative 
positions. Third, when the corresponding bit of the multiplier is a 0, there is no need to add all 
zeros to the partial product since it will not alter its value. The previous numerical example is 
repeated here to clarify the proposed multiplication process:

multiplicand: 
multiplier:

 10111 
 10011

1st multiplier bit = 1, copy multiplicand
   shift right to obtain 1st partial product
2nd multiplier bit = 1, copy multiplicand

 10111
 010111
 10111

add multiplicand to previous partial product
  shift right to obtain 2nd partial product
3rd multiplier bit = 0, shift right to obtain 3rd partial product
4th multiplier bit = 0, shift right to obtain 4th partial product
5th multiplier bit = 1, copy multiplicand

1000101
 1000101
 01000101
 001000101
 10111

   add multiplicand to previous partial product
  shift right to obtain 5th partial product = final product

 110110101
 0110110101

10.6.2 Equipment Configuration

The register configuration for the binary multiplier is shown in Fig. 10-13. The multiplicand is 
stored in register B, the multiplier is stored in register Q, and the partial product is formed in 

qm (Multiply)

Qs

As

Bs B register

A register Q register

P counter

Control
  logic

Multiplicand

Multiplier
Q1E

k

Product

Figure 10-13 Registers for binary multiplier
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register A. The sign of the multiplicand is in B
s
, the sign of the multiplier is in Q

s
, and the sign 

of the product is formed in A
s
. The E flip-flop stores the output carry after the addition of B to A. 

The two numbers to be multiplied consist of n bits. One of these bits holds the sign and the other 
k = n - 1 bits hold the magnitude of the number. The P counter is initially set to hold a binary 
number equal to the number of bits in the multiplier magnitude. This counter is decremented 
after the formation of each new partial product. When the contents of the counter reaches zero, 
the product is formed in registers A and Q and the process stops.

The control logic stays in an initial state until variable q
m
 becomes 1. The control then per-

forms the multiplication. The sum of A and B forms a partial product which is transferred to A. 
If there is a carry out of the addition, it is transferred to E. Both the partial product in A and the 
multiplier in Q are shifted to the right. After the right-shift of A and Q, one bit of the partial prod-
uct is transferred into Q while the multiplier bits in Q are shifted one position to the right. In this 
manner, the rightmost bit in register Q, designated by Q

1
, always holds the bit of the multiplier 

which must be inspected next.

10.6.3 Derivation of Algorithm

The flowchart for the binary multiplier is shown in Fig. 10-14. Initially, the multiplicand is in B 
and the multiplier in Q. Their corresponding signs are in B

s 
and Q

s
. The multiplication process 

is initiated when q
m
 = 1. The two signs are compared by means of an exclusive-OR gate. If the 

two signs are alike, the exclusive-OR operation produces a 0 which is transferred to A, to give a 
plus for the product. If the signs are unlike, a 1 is transferred to A

s
 to give a negative sign for the 

product. Registers A and E are cleared and the sequence counter P is set to a binary number k, 
which is equal to the number of bits in the multiplier.

Next we enter a loop that keeps forming the partial products. The multiplier bit in Q
1
 is 

checked, and if it is equal to 1, the multiplicand in B is added to the present partial product in A. 
Any carry from the addition is transferred to E. The partial product in A is left unchanged if Q

1
 

= 0. The P counter is decremented by 1 regardless of the value of Q
1
. Registers A, Q, and E are 

then shifted once to the right to obtain a new partial product. This shift operation is symbolized 
in the flowchart in compact form with the statement:

AQ ← shr EAQ, E ← 0

EAQ is a composite register made up of registers E, A, and Q. If we use the individual register 
symbols, the shift operation can be described by the following microoperations:

A ← shr A, Q ← shr Q, A
k
 ← E, Q

k
 ← A

1
, E ← 0

Both registers A and Q are shifted right. The leftmost position of A, designated by A
k
, receives 

the carry from E. The leftmost bit of Q, or Q
k
, receives the bit from the rightmost position of A in 

A
1
; and E is cleared. In essence, this is a long shift of the composite register EAQ with 0 inserted 

into the leftmost position, which is in E.
The value in the P counter is checked after the formation of each partial product. If P is 

not 0, the process is repeated and a new partial product is formed. The process stops after the kth 
partial product when P = 0. Note that the partial product formed in A is shifted into Q one bit at 
a time and eventually replaces the multiplier. The final product is available in A and Q, with A 
holding the most significant bits and Q holding the least significant bits. The sign of the product 
is in A

s
.
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10.6.4 Control Specifications

The design algorithm given in the flowchart can be specified more precisely by a state diagram 
and a list of register-transfer operations. It was mentioned previously that the conversion from a 
flowchart to a state diagram is not unique. The flowchart may be considered a preliminary formu-
lation of the algorithm. The control state diagram, together with a list of microoperations, is more 
precise since it takes into consideration the hardware constraints of the system.

The control sequence of operations is defined in Fig. 10-15. The control has four states, 
and the register-transfer operations for each state are listed below the state diagram. Control 
stays in an initial state T

0
 until q

m
 becomes 1. It then goes to state T

1
 to initialize registers A, E, 

and P and to form the sign of the product. Control then goes to state T
2
. In this state, register P is 

decremented and the contents of B are added to A if Q
1
 = 1; otherwise, A is left unchanged. The 

two control functions at time T
2
 are:

Q
1
T

2
:       A ← A + B, E ← C

out

     T
2
:      P ← P - 1

P ← P – 1

≠ 0 = 0

    

P

AQ ← shr EAQ, E ← 0

= 0 = 1

P ← P – 1
A ← A + B, E ← Cout

Q1

Initial state

P ← k
A ← 0, E ← 0
As ← Bs ⊕ Qs

qm = 1

Figure 10-14 Flowchart for binary multiplier
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The second statement is always executed when T
2
 = 1. The first statement is executed at 

time T
2
 only if Q

1
 = 1. Thus, a status variable (here Q

1
) can be included with a timing variable to 

form a control function. Note that it is convenient to decrement P at state T
2
 so that its new value 

can be checked at state T
3
.

Control goes to T
3 
after T

2
. At state T

3
, the composite register EAQ is shifted to the right and 

the contents of P are checked for zeros. The binary variable P
z
 is 1 if the P register contains all 

0’s; otherwise P
z
 is 0. If P

z
 = 1, the operation is terminated and control goes to the initial state. If 

P
z
 = 0, control goes to state T

2 
to form a new partial product. Note that P refers to the contents of 

the register, whereas P
z
 is a binary variable.

10.6.5 Data-Processor Specification

The data-processor part of the system can be derived from the microoperations list of Fig. 10-
15(b). A block diagram of the data processor is shown in Fig. 10-16. A parallel adder is inserted 
between registers A and B to form the sum, which is transferred to A. The sign of the product 
is formed by an exclusive-OR gate, and binary variable P

z
 is generated with a NOR gate. The 

outputs of the control logic initiate the microoperations for the data processor. Variable T
1
 loads 

the sign of the product into A
s
 and the number k into P, and it clears registers A and E. Variable T

2
 

decrements register P, and if Q
1
 = 1, it generates variable L which loads the sum from the parallel 

adder into A and E. Variable T
3
 shifts A and Q to the right and clears E. Variable T

0
 has no effect 

on the data processor since it only indicates that the system is in an initial state.
The inputs to the control logic are the external signal, q

m
, and the two status conditions, P

z
 

and Q
1
. The outputs are T

1
, T

2
, L, and T

3
. Although not shown in the diagram, these outputs should 

be connected to the corresponding inputs in the data processor. The AND gate that generates 
variable L is shown separately, although it is part of the control logic.

T1T0 T2 T3

pz = 1

qm = 0

pz = 0

qm = 1 pz = 0 if P ≠ 0
pz = 1 if P = 0
qm  Multiply

(a) State diagram

T0: Initial state

T1: As ← Bs ⊕ Qs, A ← 0, E ← 0, P ← k

Q1T2: A ← A + B, E ← Cout

T2: P ← P - 1

T3: AQ ← shr EAQ, E ← 0

(b) Sequence of register transfers

Figure 10-15 Control state diagram and sequence of microoperations for multiplier
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10.6.6 Design of Hard-wired Control

The control logic for the binary multiplier is specified in the state diagram of Fig. 10-15. 
The state diagram has four states and two inputs. To implement it by the sequence register and 
decoder method, two flip-flops and a 2 × 4 decoder are needed. Although this is a simple ex-
ample, the procedure outlined below applies to more complicated situations as well.

We start with the excitation table of the sequential circuit given in Fig. 10-17(a). The state 
table part is obtained directly from the state diagram. The flip-flop input conditions are for two 
JK flip-flops labeled G

1
 and G

2
. Note that the excitation table has don’t-care entries in most of 

the inputs. Note also that a present state is listed more than once if it has two or more next-state 
conditions. The variables T

0
 through T

3
 are listed along with the binary states for identification. 

The flip-flop input excitations are obtained directly from the excitation table of the JK flip-flop 
as shown in Table 6-8(b).

The sequential circuit can be designed from the excitation table by means of the classical 
procedure. This example has a small number of states and inputs; in most other control logic  

Q1

T2  (Decrement)

L  (Load sum)

Control
  logic

E

T0

kQs

Bs

As

T1  (Load)B register

A register Q register

Parallel adder

Sum

LoadClear

T1

Cout

T1  (Clear)

T3  (Shift-right)

qm

Pz
T2

T3

T1

Q1 Q1T2 = L

P register

Pz

Figure 10-16 Data processor tor binary multiplier
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applications, the number of states and inputs is much larger. The application of the classical 
method requires an excessive amount of work to obtain the simplified input functions for the 
flip-flops. The design can be simplified if we take into consideration the fact that the decoder 
outputs are available for use in the design. Instead of using the flip-flop outputs as the present-
state conditions, we might as well use the outputs of the decoder to supply this information. If the 
outputs of the decoder are designated by variables T

0
, T

1
, T

2
, and T

3
, these variables can be used 

to supply the present-state conditions for the circuit.

Present 
State Inputs Next state Flip-flop inputs

G2 G1 qm Pz G2 G1 JG2 KG2 JG1 KG1

T0 0 0 0 X 0 0 0 X 0 X

T0 0 0 1 X 0 1 0 X 1 X

T1 0 1 X X 1 0 1 X X 1

T2 1 0 X X 1 1 X 0 1 X

T3 1 1 X 0 1 0 X 0 X 1

T3 1 1 X 1 0 0 X 1 X 1

(a) Excitation table

    JG2 = T1                KG2 = T3Pz

JG1 = T0qm + T2  KG1 = 1

 (b) Flip-flop input functions

T1

T0

T2

L

T3

K

QJ

J Q

K

G2

G1

1

CP

Q1

Pz

qm

  2 × 4
decoder

(c) Logic diagram

Figure 10-17 Design of control for binary multiplier
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Instead of using maps for simplifying the flip-flop input functions, one can simply decide to 
obtain these functions directly from the excitation table. Although this may not result in a mini-
mal circuit, the possible waste of a few gates may be worth the time saved. For example, from the 
excitation table we note that the J input of G

2
 (designated by JG

2
 in the table) must receive a bi-

nary 1 only when the present output of the decoder is T
1
. The K input of G

2
 must receive a 1 when 

the decoder output is T
3
, provided P

z
 = 1. These observations can be written in algebraic form as:

JG
2
 = T

1

KG
2
 = T

3
P

z

In all other cases, both the J and K inputs of G
2
 will receive a 0 and the state of the flip-flop will 

not change. This is acceptable because all other entries under JG
2
 and KG

2
 have either 0’s or 

don’t-care X’s.
In a similar fashion, it is possible to derive the flip-flop input functions for G

1
, by inspection, 

from the excitation table. The input functions so obtained are:

JG
1
 = T

0
q

m
 + T

2

KG
1
 = 1

The reason for KG
1
 being always 1 is that all entries in the table for this input variable are 

either 1’s or X’s.
When deriving input functions by inspection from the excitation table, we cannot be sure 

that the functions have been simplified in the best way possible. For this reason, one should al-
ways analyze the circuit to ensure that the derived equations do indeed produce the required state 
transitions as specified in the state table.

The logic diagram of the control logic is drawn in Fig. 10-17(c). It consists of two flip-flops, 
G

1
 and G

2
, and a decoder. The outputs of the decoder are used to obtain the next state of the 

circuit according to the Boolean functions listed in Fig. 10-17(b). The outputs of the controller 
should be connected to the data-processor part of the system as shown in Fig. 10-16.

10.7 PLA Control

We have seen from the two examples presented in this chapter that the design of a control circuit 
is essentially a sequential-logic design problem. In Section 7-2 we showed that a sequential cir-
cuit can be constructed by means of a register connected to a combinational circuit. In Section 
5-8 we investigated the programmable logic array and showed that it can be used to implement 
any combinational circuit. By replacing the combinational circuit with a PLA, it is then possible 
to design a control circuit with a register connected to a PLA. The register operates as a sequence 
register that determines the state of the control. The PLA is programmed to provide the control 
outputs and the next state for the sequence register.

The design of a control unit with a PLA is very similar to the design using the sequence 
register and decoder methods. In fact, the sequence register in both methods is the same. The dif-
ference in the methods is in the way the combinational-logic part of the control is implemented. 
The PLA essentially replaces the decoder and all other decision logic circuits required in the 
hard-wired implementation.

The internal organization of the PLA was presented in Section 5-8. It was also shown there 
how to obtain the PLA program table. The reader is advised to review this section to make sure 
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that the meaning of a PLA program table is understood. The internal paths inside the PLA are 
“programmed” according to the specifications given in the program table.

The design of a PLA control requires that we obtain the state table for the circuit. The PLA 
method should be used if the state table contains many don’t-care entries; otherwise, it may be 
advantageous to use a ROM instead of a PLA. The state table gives essentially all the information 
required for obtaining the PLA program table (or the ROM truth table).

To demonstrate the procedure with an example, consider the control circuit for the binary 
multiplier presented in the previous section. The control specifications for the binary multiplier 
are given in Fig. 10-15. From this information, we obtain the state table of Table 10-6. The pres-
ent state is determined from flip-flops G

1
 and G

2
. The input variables for the control circuit are 

q
m
, P

z
, and Q

1
. The next state of G

1
 and G

2
 may be a function of one of the inputs or it may be 

independent of any inputs. If an input variable does not influence the next state, we mark it with 
a don’t-care X. If the next state is a function of a particular input, the present state is repeated in 
the table but the next states are assigned different binary values. The table also lists all control 
outputs as a function of the present state and input conditions. Note that input Q

1
 does not affect 

the next state but only determines the value of output L when output T
1
 is equal to 1.

The block diagram of the PLA control is shown in Fig. 10-18(a). The PLA is connected to 
a sequence register with two flip-flops G

1
 and G

2
. The inputs to the PLA are the values of the 

present state of the sequence register and the three external inputs. The outputs of the PLA pro-
vide the next state for the sequence register and the control output variables. At any given time, 
the present state of the sequence register, together with input conditions, determines the output 
values and the next state for the sequence register. The next clock pulse initiates the microopera-
tions specified by the outputs and transfers the next state into the sequence register. This provides 
a new control state and possible different input values. Thus, the PLA acts as the combinational-
logic part of a sequential circuit to provide the control outputs and the next state values for the 
sequence register.

A PLA is specified by the number of inputs, the number of product terms, and the number 
of outputs. For this case, we have five inputs and seven outputs. The number of product terms is 
a function of the circuit we wish to implement.

Table 10-6 State table for control circuit

Present 
state Input Next state Outputs

G
2
 G

1
q

m
P

z
Q

1
G

2
G

1
T

0
T

1
T

2
L T

3

0 0 0 X X 0 0 1 0 0 0 0

0 0 1 X X 0 1 1 0 0 0 0

0 1 X X X 1 0 0 1 0 0 0

1 0 X X 0 1 1 0 0 1 0 0

1 0 X X 1 1 1 0 0 1 1 0

1 1 X 0 X 1 0 0 0 0 0 1

1 1 X 1 X 0 0 0 0 0 0 1
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The PLA program table can be obtained directly from the state table without the need 
for simplification procedures. The PLA program table in Fig. 10-18(b) specifies seven product 
terms, one for each row in the state table. The input and output terminals are marked with num-
bers, and the variables applied to these numbered terminals are indicated in the block diagram. 
The comments are not part of the table but are included for clarification.

According to the rules established in Section 5-8, a no connection for a PLA path is indi-
cated by a dash (-) in the table. The X’s in the state table designate don’t-care conditions and 
imply no connection for the PLA. The CTs in the output columns also indicate no connections to 
the OR gates within the PLA. The translation from the state table to a PLA program table is very 
simple: The X’s in the input columns and the 0’s in the output columns are changed to dashes, 
and all other entries remain the same. Note that the inputs to the PLA are the same as the pres-
ent state and inputs in the state table. The outputs of the PLA are the same as the next state and 
outputs in the state table.

The procedure for designing control logic with a PLA should be evident from this example. 
From the specifications of the system, we first obtain a state table for the controller. The number 
of states determines the number of flip-flops for the sequence register. The PLA is then connected 

PLA T1

T0

1 1

6

5

4
3

2

3

4

5 7

T2

L

T3

2G1

G2

Q1

Pz

qm

(a) Block diagram

Product 
term

Inputs
1    2    3    4    5

Outputs
1    2    3    4    5    6    7

Comments

1 0    0    0    -    - -    -    1    -    -    -    - T0 = 1,  qm = 0

2 0    0    1    -    - -    1    1    -    -    -    - T0 = 1,  qm = 1

3 0    1    -    -    - 1    -    -    1    -    -    - T2 = 1

4 1    0    -    -    0 1    1    -    -    1    -    - T2 = 1,  Q1 = 0

5 1    0    -    -    1 1    1    -    -    1    1    - T2 = 1,  L = 1, Q1 = 1

6 1    1    -    0    - 1    -    -    -    -    -    1 T3 = 1,  Pz = 0

7 1    1    -    1    - -    -    -    -    -    -    1 T3 = 1,  Pz = 1

(b) PLA program table

Figure 10-18 PLA control for binary multiplier
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to the sequence register and to the input and output variables. The PLA program table is obtained 
directly from the state table.

The PLA unit in a PLA control may be visualized as a control memory that stores control 
information for the system. The outputs of the sequence register, together with external inputs, 
may be considered to be an address for such a control memory. The outputs provide a control 
word for the data processor, and the next-state information specifies a partial value for the next 
address in the control memory. From this point of view, a PLA control may be classified as a 
microprogram control unit with the PLA replacing the ROM for the control memory. However, 
the organization of the two methods is different, although there is a certain amount of similarity 
between the PLA and the microprogram control methods.

The control examples introduced in this chapter demonstrate four methods of control logic 
design. These should not be considered the only possible methods. A resourceful designer may 
be able to formulate a control configuration to suit a particular application. This configuration 
may consist of a combination of methods or may constitute a control organization other than the 
ones presented here.

The design of the control logic for a digital computer follows the same procedure as out-
lined in this chapter. The role of the microprogram control in the organization of a general-
purpose computer is presented in the next section. Chapter 11 presents the detailed design of a 
digital computer and shows how to implement its control unit by means of a hard-wired method, 
a PLA method, and a microprogram method.

10.8 Microprogram Sequencer

A microprogram control unit should be viewed as consisting of two parts: the control memory 
that stores the microinstructions and the associated circuits that control the generation of the next 
address. The address-generation part is sometimes called a microprogram sequencer, since it se-
quences the microinstructions in control memory. A microprogram sequencer can be constructed 
with MSI circuits to suit a particular application. However, just as general-purpose processor 
units are available in IC packages, so are general-purpose sequencers suited for the construction 
of microprogram control units. To guarantee a wide range of acceptability, an IC sequencer must 
provide an internal organization that can be adapted to a wide range of applications.*

A microprogram sequencer attached to a control memory inspects certain bits of the micro-
instruction, from which it determines the next address for control memory. A typical sequencer 
provides the following address-sequencing capabilities:

1. Increments the present address for control memory.

2. Branches to an address as specified by the address field of the microinstruction.

3. Branches to a given address if a specified status bit is equal to 1.

4. Transfers control to a new address as specified by an external source.

5. Has a facility for subroutine calls and returns.

In most cases the microinstructions are read from control memory in succession. This type 
of sequencing can be easily accomplished by incrementing the address register of the control 

* Some commercial microprogram sequencers are IC type 8X02 (Signetics), 9408 (Fairchild), and 2910 
(Advanced Micro Devices).
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memory. In some microinstruction formats, each microinstruction contains an address field even 
for sequential addresses. This eliminates the need to increment the control memory address reg-
ister, because the address field available in each microinstruction specifies the address of the 
next microinstruction. In any case, provision must be available for branching to an address out 
of normal sequence.

Once in a while, control must be transferred to a nonsequential microinstruction; thus, the 
sequencer must provide the capability for branching to any one of two addresses, depending on 
whether a status bit is 0 or 1. The simplest way to accomplish this is to branch to the address 
specified by the address field of the microinstruction if the status bit specified is equal to 1, but 
go to the next address in sequence if the status bit is equal to 0. This configuration requires the 
capability of incrementing the address register.

The sequencer transfers a new address for control memory to start executing a new macro-
operation. The external address transfers control to the first microinstruction in a microprogram 
routine that executes the specified macrooperation.

Subroutines are programs used by other routines to accomplish a particular task. Subrou-
tines can be called from any point within the main body of the microprogram. Frequently, many 
microprograms contain identical sections of code. Microinstructions can be saved by employing 
subroutines which use common sections of microcode. Microprograms that use subroutines must 
have a provision for storing the return address during a subroutine call and restoring the address 
during a subroutine return. This may be accomplished by placing the return address into a spe-
cial register and then branching to the beginning of the subroutine. This special register can then 
become the address source for setting the address register for the return to the main routine. The 
best way to organize a register file that stores addresses for subroutine calls and returns is to use 
a last-in, first-out (LIFO) stack. The stack organization and its use in subroutine calls and returns 
are explained in more detail in Section 12-5.

The block diagram of a microprogram sequencer is shown in Fig. 10-19. It consists of a 
multiplexer that selects an address from four sources and routes it into a control address register. 
The output from CAR provides the address for the control memory. The contents of CAR are 
incremented and applied to the multiplexer and to the stack register file. The register selected 
in the stack is determined by the stack pointer. Inputs I

0
, I

1
, and I

2
 specify the operation for the 

sequencer, and input T is a test point for a status bit. The address register can be cleared to zero 
to initialize the system and the clock pulses synchronize the loading into the registers.

The function table listed in the diagram specifies the operation of the sequencer. Inputs I
1
 

and I
0
 determine the selection variables for the multiplexer. An external address (EXA) is trans-

ferred into CAR when I
1
I

0
 = 00. The transfer from the stack register (SR) occurs when I

1
I

0
 = 01, 

and CAR is incremented when I
1
I

0
 = 10. The T and I

2
 inputs have no effect during these three op-

erations and they are marked with don’t-care X entries. When I
1
I

0
 = 11, the sequencer executes a 

conditional branch operation dependent on the value of the test bit in T. If I
2
 is also equal to 1, the 

operation is a conditional call to subroutine. In either case, CAR is incremented if the test bit T 
is 0. The branch address (BRA) is transferred to CAR if T = 1. Thus, with I

1
I

0
 = 11, the sequencer 

branches to the BRA if the status bit in T is equal to 1. but increments CAR if the status bit is 0. 
The branch address normally comes from the address field of the microinstruction.

The conditional subroutine call (I
2
 = 1) is similar to the conditional branch (I

2
 = 0), except 

that the former uses the stack and the latter does not. The address stored in the stack during a 
subroutine call is taken from the incrementer. This is the address next in sequence, and it is called 
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the return address. The return address is transferred back into CAR with a subroutine return 
operation (I

1
I

0
 = 01).

The operation of the stack register and stack pointer will be better understood after reading 
Section 12-5. A register (or memory) stack is similar to a memory unit, except that the address 
for the stack is determined from the value in the stack-pointer register. The access to the stack 
is in a last-in, first-out sequence and is controlled by incrementing or decrementing the stack 
pointer. Initially, the stack pointer is cleared and is said to point at address 0 in the stack. The 

I1

Push
I2

I0

Pop

Inc Dec

Stack pointer
register (SP)

Output address

Stack 
register
(SR)

Control address 
register (CAR) Incrementer

Read

Write

Clear

CP

T(test)

    Branch
address(BRA)

   External
address(EXA)

MUX
s1

s0

0 1 32

Function table

I2 I1 I0 T s1 s0 Operation Comments

X 0 0 X 0 0 CAR ← EX A Transfer external address

X 0 1 X 0 1 CAR ← SR Transfer from register stack

X 1 0 X 1 0 CAR ← CAR + 1 Increment address

0 1 1 0 1 0 CAR ← CAR + 1 Increment address

0 1 1 1 1 1 CAR ← BRA Transfer branch address

1 1 1 0 1 0 CAR ← CAR + 1 Increment address

1 1 1 1 1 1 CAR ← BRA, SR ← CAR + 1 Branch to subroutine

Figure 10-19 Typical microprogram sequencer organization
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write or the transfer of information into the stack is called push. It consists of writing the input 
information into the stack at the address specified by the stack pointer and then incrementing the 
stack-pointer register. In this way, information is transferred into the stack, and the stack pointer 
points at the next empty location in the stack. The read or the transfer of information out of the 
stack is called pop. It consists of first decrementing the stack-pointer register and then reading 
out the contents of the register (or word) specified by the new value in the stack pointer.

A call to subroutine is executed when I
2
I

1
I

0
 = 111 and T = 1. This causes a push-stack op-

eration and a branch to the address specified by BRA. This is implemented by first storing the 
incremented value from CAR into the stack. When clock pulse CP goes through a positive-edge 
transition, the BRA address is transferred to CAR and the write input to the stack is inhibited. The 
stack-pointer register is incremented later when CP goes through its negative-edge transition. 
This is illustrated in Fig. 10-20(a).

The return from subroutine is executed when I
1
I

0
 = 01. This causes a pop-stack operation 

and a branch to the address stored on top of the stack. This is implemented by first decrementing 
the stack-pointer register on the negative-edge transition of CP. The value in the stack, given by 
the address presently available in the stack pointer, is then read and transferred to CAR on the 
positive-edge transition of CP. This is illustrated in Fig. 10-20(b). Note that CAR is triggered 
during the positive edge and SP during the negative edge of a clock pulse. The stack pointer is 
incremented after the transfer into CAR and decremented prior to the transfer into CAR.

10.8.1 Microprogrammed CPU Organization

A digital computer consists of a central processor unit (CPU), a memory unit, and input-output 
devices. The CPU can be classified into two distinct but interactive functional sections. One 
section is the processing section and the other is the control section. A processor unit is a useful 
device for constructing the processor section of a CPU. The microprogram sequencer is a conve-
nient element for constructing a microprogram control for a CPU. We now develop a computer 
CPU to show the usefulness of the microprogram sequencer defined in Fig. 10-19.

CP

Write CAR + 1
  into stack

CAR ← BRA SP ← SP + 1

(a) Call subroutine (push stack) I2I1I0T = 1111

CP

Read from
   stack

CAR ← SR SP ← SP – 1

(b) Return from subroutine (pop stack) I1I0 = 01

Figure 10-20 Stack operations in microprogram sequencer
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A block diagram of a microprogrammed computer is shown in Fig. 10-21. It consists of a 
memory unit, two processor units, a microprogram sequencer, a control memory, and few other 
digital functions. This configuration may be compared with the simple computer that was de-
signed in Section 8-9 and whose block diagram is given in Fig. 8-16.

The memory unit stores the instructions and data supplied by the user through an input 
device. The data processor manipulates the data, and the address processor manipulates the ad-

Control memory
         (ROM)

Memory address
       register

Instruction register
       

Program counter

Address processor

Code transformation
          (PLA)

Microprogram
Sequencer
(Fig. 10-19)

   Data 
Processor

Memory
   unit

Address 

Read/write

MUX       

EXA
BRA

Pipeline Register

BRA

I0 – I2

T

I

I

MUX

SL MC PS DF

Status
 bits

I         – Sequence selector
SL      – MUX selector
BRA   – Branch address
MC     – Memory control
PS      – Processor selector
DF      – Data field

Figure 10-21 Microprogrammed computer organization
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dress information received from memory. The two processors can be combined into one unit, but 
sometimes it is convenient to separate them in order to provide a distinct bus for the memory 
address. An instruction extracted from memory during the fetch cycle goes into the instruction 
register. The instruction-code bits in the instruction register specify a macrooperation for control 
memory. A code transformation is sometimes needed to convert the operation-code bits of an 
instruction into a starting address for the control memory. This code transformation constitutes a 
mapping function and can be implemented with a ROM or a PLA. The mapping concept provides 
a flexibility for adding instructions or macrooperations for control memory as the need arises. 
The address generated in the code transformation mapping function is applied to the external 
address (EXA) input of the sequencer.

The microprogram control unit consists of the sequencer of Fig. 10-19, a control memory 
for storing the microinstructions, a multiplexer, and a pipeline register. The multiplexer selects 
one of many status bits and applies it to the T (test) input of the sequencer. One of the inputs to 
the multiplexer is always 1 to provide an unconditional branch operation. The pipeline register 
is not always necessary, because the outputs from control memory can go directly to the control 
inputs of the various units in the CPU. However, a pipeline register speeds up the control opera-
tion. It allows the next address to be generated and the output of control memory to change while 
the current control word in the pipeline register initiates the microoperations given by the present 
microinstruction.

A possible microinstruction format for the control memory is illustrated within the pipeline 
register. The 1 field consists of three bits and supplies the input information for the sequencer. 
The SL field selects a status bit for the multiplexer. The BRA field is the address field of the 
microinstruction and supplies a branch address (BRA) to the sequencer. These three fields of a 
microinstruction provide information to the sequencer to determine the next address for con-
trol memory. The sequencer generates the next address and the control memory reads the next 
microinstruction while the present microoperations are being executed in the other units of the  
CPU.

The other three fields in the microinstruction are for controlling the microop erations in the 
processor and memory units. The memory control (MC) field controls the address processor and 
the read and write operations in the memory unit. The processor select (PS) field controls the 
operations in the data processor unit. The last field is a data field (DF) used to introduce constants 
into the processor. The procedure of introducing data into the system from the control memory is 
a frequently used technique in many microprogrammed systems. Outputs from the data field may 
be used to set up control registers and introduce data in processor registers. For example, a con-
stant in the data field may be added to a processor register to increment its contents by a speci-
fied value. Another use of the data field is in setting a sequence counter to a constant value. The 
sequence counter is then used to count the number of times a microprogram loop is traversed, as 
is usually required in a multiply or divide routine.

Once the hardware configuration of a microprogrammed CPU is established, the designer 
can use it to construct any one of many possible computer configurations. First, the instruction 
set for the computer is formulated and then a microprogram is written for control memory. One 
can change the microprogram in control memory if a different computer with a different set of in-
structions is desired. No hardware changes are required if the computer’s specifications change; 
the change is only in the control memory ROM. This involves removing the present ROM from 
its socket and replacing it with another unit with a different microprogram.
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The construction of a CPU from LSI components as shown in Fig. 10-21 provides the 
freedom to define the instruction set for a computer system. It must be realized, however, that 
integrated circuits are available that contain a complete CPU within a single package. This type 
of CPU is called a microprocessor. If a microprocessor is used instead of a custom-made CPU, 
one must be satisfied with the fixed instruction set of the microprocessor chosen. In other words, 
a microprocessor is a ready-made CPU with a fixed set of computer instructions. A custom-made 
microprogrammed CPU is a flexible unit that allows the’ formulation of instructions suited to a 
particular application. Microprocessors are discussed in Chapter 12.
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PROBLEMS

10-1. (a) Show that the ring-counter control of Fig. 7-22(a) is a special case of the one flip-flop per state 
control depicted in Fig. 10-2. Indicate how the latter can be reduced to the former. (b) Show that the 
counter and decoder control of Fig. 7-22(b) is a special case of the sequence register and decoder 
control depicted in Fig. 10-3. Indicate how the latter can be reduced to the former.

10-2. The adder-sub tractor system designed in Section 10-3 employs an ALU. Redraw the system block 
diagram of Fig. 10-8 without using an ALU. Instead, use the adder-subtractor circuit of Fig. 9-10 
and a register with complement, increment, and load capabilities. Revise the control outputs of Fig. 
10-9(b).

10-3. Go over the flowchart of Fig. 10-7 to find out if a negative zero may result at the end of the compu-
tation. A negative zero occurs if A = 0 and A

s
= 1.

10-4. Design a digital system that adds and subtracts two binary fixed-point numbers represented in sign-
2’s-complement form. Include an overflow indication.

10-5. Revise the control state diagram of Fig. 10-9 if the value of C
out

 is checked at time T
4
, instead of 

checking the value of E at time T
5
.
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10-6. The number of states for the control of Fig. 10-9 can be reduced if the S variable is used together 
with q

a
 and q

s
 to determine the next state after the initial state. Also, register A can be complemented 

during the same state that E is cleared if E’ is included in the control function for the complement 
operation. Show that the adder-subtractor system can be implemented with six control states.

10-7. Design the control specified by the state diagram of Fig. 10-15(a) by the one flip-flop per state 
method. Draw the logic diagram using gates and four D flip-flops.

10-8. Obtain a second listing for the binary microprogram of Table 10-3 by using 00 for ROM bits 13 and 
14 every time that CAR is incremented unconditionally.

10-9. Redesign the input circuit of Fig. 10-10 by replacing the AND gates associated with q
a
 and q

s
 with a 

dual 2-to-1 line multiplexer with enable input.

10-10. The microprogram control unit of Fig. 10-10, together with the associated data processor of  
Fig. 10-8(a), is to be used for adding and subtracting two binary numbers in sign-2’s-complement 
representation. The sign bits reside in the leftmost bit position of registers A and B. Since the signs 
are included with A and B, there is no need for A

s
 and B

s
 and variable S. Instead, let S now be a flip-

flop that stores the carry C
n
 that goes into the sign-bit position, just as E stores the carry C

n + 1
 = C

out
 

coming out of the sign-bit position. Let variables y and z be two control signals that set and clear an 
overflow flip-flop V. If an overflow occurs, V is set with control variable y. If no overflow occurs, V 
is cleared with control variable z.

(a) Write the microprogram in symbolic form.

(b) List the ROM truth table in binary.

10-11. Give a microinstruction in binary form for the control memory of Fig. 10-11 that will keep the 
system in a no-operation loop as long as the external address is the same as the address where the 
microinstruction is located in memory. The values that go into the status register are not important.

10-12. Write a microprogram in symbolic form for the system of Fig. 10-11 that checks the sign of the 
number stored in register R1. The number is in sign-2’s complement representation. If the number 
is positive, it is divided by 2. If negative, it is multiplied by 2. If an overflow occurs, R1 is cleared to 
zero.

10-13. Write a microprogram that compares two unsigned binary numbers stored in R1 and R2. The register 
containing the smaller number is then cleared. If the two numbers are equal, both registers are clea-
red. Use the microprogram system of Fig. 10-11.

10-14. The processor of Fig. 9-16 is used for multiplying two unsigned binary numbers. The multiplicand 
is in R1, the multiplier is in R3, and the product is formed in R2 and R3. Register R4 holds a binary 
number equal to the number of bits in the multiplier. Derive the algorithm in flowchart form.

10-15. List the contents of registers E, A, Q, and P (Fig. 10-16) after each clock pulse during the process of 
multiplication of the two magnitudes 10111 (multiplicand) and 10011 (multiplier).

10-16. The control state diagram of Fig. 10-15(a) does not use variable Q
1
 as a condition for state transition. 

Instead, Q
1
 is used as part of a control function in the list of register transfers. Redesign the control 

so that Q
1
 appears as a condition in the state diagram and removed from the list of control functions. 

Show that for this case the state diagram must have at least five states.

10-17. Determine the time it takes to process the multiplication operation in the digital system described 
in Fig. 10-15. Assume that the Q register has k bits and the interval between two clock pulses is t 
seconds.

10-18. Design the control logic of Fig. 10-16 using two T flip-flops and a decoder.

10-19. Change the P register of Fig. 10-16 to an up-counter with parallel load. Input T
2 
will now increment 

the P register. What is the initial value that must be loaded into P at time T
1
?
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10-20. Prove that the multiplication of two n-digit numbers in any base r gives a product of no more than 
2n digits in length. Show that this statement implies that no overflow can occur in the multiplier 
designed in Section 10-6.

10-21. Design the control specified in Fig. 10-9 by the sequence register and decoder method. Use three JK 
flip-flops G

3
, G

2
, and G

1
.

10-22. Design the control specified in Fig. 10-9 using a sequence register and a PLA. List the PLA program 
table.

10-23. The register configuration and flowchart of a digital system that multiplies two unsigned binary 
numbers, by the repeated addition method is shown in Fig. P10-25.

(a) Convince yourself that the system multiplies the contents of A and B and places the product in 
register P.

 

qm = 1

x = 1

P ← 0

P ← P + B
A ← A – 1

A

P

AB

= 0

≠ 0

Initial state

Multiplicand Multiplier

Product

Control
  logic

qm

x

 Figure P10-25 Multiplication by successive additions

(b) Let A = 0100 and B = 0011. Going through the steps in the flowchart, show that the system 
returns to the initial state, with register P having the product 1100.

(c) Draw a state diagram for the control and List the register transfers to be executed in each control 
state.

(d) Draw the block diagram of the data-processor part.

(e) Design the control by the one flip-flop per state method.

10-24. The state diagram of a control unit is shown in Fig. P10-28. It has four states and two inputs x and y. 
Design the control by the sequence register and decoder method with two JK flip-flops G

2
 and G

1
.

(a) Use the decoder outputs as conditions for the present states.

(b) Use the flip-flop outputs as conditions for the present states. Compare the two results and com-
ment on the advantages and disadvantages in each case.
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T0

T2T3 x = 1x = 1
y = 0y = 1

y = 1

T1

x = 1, y = 0                    

x = 1, y = 1                    

y = 0

x = 1

x = 0x = 0

x = 0

Figure P16-26 Control state diagram for problem 10-28

10-25. The pipeline register in Fig. 10-21 has one additional output labeled P for controlling the polarity of 
the T input in the sequencer. When P = 0, the value of the status bit selected by SL is applied to the 
T input. When P = 1, the complement of the selected status bit is  applied to T.

(a) What does the polarity control P accomplish?

(b) Design the circuit that must be placed between the multiplexer selected by SL and the test  
input T.

10-26. The microprogrammed computer of Fig. 10-21 has a control address register (CAR) inside the 
sequencer and a pipeline register (PLR) in the output of control memory. The speed of operation can 
be improved if only one register is used. Compare the speed of operation by comparing the propaga-
tion delays encountered when the system uses:

(a) A CAR without a PLR.

(b) A PLR without a CAR.

10-27. Write short notes on

(a) Hard-wired control.

(b) Control of processor unit.

(c) Microprogram sequencer.

10-28. Differentiate between 

(a) PLA Control & Microprogram Control.

(b) One flip-flop per state method & sequence register and decoder method.

10-29. Derive expression of the input function for flip-flops B
s
, A

s
, and E of Fig. 10-8(a). Use SR flip-flops.

10-30. Design the control specified by the state diagram of Fig. 10.15(a) by sequence register and decoder 
method.

10-31. The following register-transfer operations specify a three-state control of the sequence register and 
decoder type, G is a 3-bit sequence register and T

0
, T

1
 and T

2
 are the outputs of the decoder

x To:  G ← 101

y To:  G ← 111

T1 + T2: G ← G + 1
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10-32. A control unit has two input x and y and five states. The control state diagram is shown in the Fig. 
given below

(a) Design the control using five T flip-flops.

(b) Design the control a register, a decoder, and a PLA

     

T0 T4

T3

T1

T2

x = 0

y = 1

y = 0
x = 1
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 Computer Design

11.1 Introduction

This chapter presents a small general-purpose digital computer starting from its functional speci-
fications and culminating in its design. Although the computer is small, it is far from useless. Its 
scope is quite limited when compared with commercial electronic data-processing systems, yet it 
encompasses enough functional capabilities to demonstrate the design process. It is suitable for 
construction in the laboratory with ICs, and the finished product can be a useful system capable 
of processing digital data.*

The computer consists of a central processor unit, a memory unit, and a teletypewriter 
input-output unit. The logic design of the central processor unit will be derived here. The other 
two units are assumed to be available as finished products with known external characteristics.

The hardware design of a digital computer may be divided into three interrelated phases: 
system design, logic design, and circuit design. System design is concerned with the specifica-
tions and general properties of the system. This task includes the establishment of design objec-
tive and design philosophy, the formulation of computer instructions, and the investigation of 
its economic feasibility. The specifications of the computer structure are translated by the logic 
designer to provide the hardware implementation of the system. The circuit design specifies the 
components for the various logic circuits, memory circuits, electromechanical equipment, and 
power supplies. The computer hardware design is greatly influenced by the software system, 
which is normally developed concurrently and which constitutes an integral part of the total 
computer system.

The design of a digital computer is a complicated task. One cannot expect to cover all as-
pects of the design in one chapter. Here we are concerned with the system and logic design of a 
small digital computer whose specifications are formulated somewhat arbitrarily in order to es-
tablish a minimum configuration for a very small, yet practical machine. The procedure outlined 
in this chapter can be useful in the logic design of more complicated systems.

The design process is divided into six phases:

1. The decomposition of the digital computer into registers which specify the general con-
figuration of the system.

*The instructions for the computer are a subset of the instructions in the PDP -8 computer.
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2. The specification of computer instructions.

3. The formulation of a timing and control network.

4. The listing of the register-transfer operations needed to execute all computer instruc-
tions.

5. The design of the processor section.

6. The design of the control section.

The design process is carried out by means of tabular listings that summarize the specifications 
and register-transfer operations in compact form. The processor section is defined by means of 
a block diagram consisting of registers and multiplexers. It is assumed that the reader has suf-
ficient information to replace the blocks in the diagram with MSI circuits. The control section is 
designed by each of the three methods outlined in Chapter 10.

11.2 System Configuration

The configuration of the computer is shown in Fig. 11-1. Each block represents a register, ex-
cept for the memory unit, the master-clock generator, and the control logic. This configuration 
is assumed to satisfy the final system structure. In a practical situation, the designer starts with 
a tentative system configuration and constantly modifies it during the design process. The name 
of each register is written inside the block, together with a symbolic designation in parentheses.

The master-clock generator is a common clock-pulse source, usually an oscillator, which 
generates a periodic train of pulses. These pulses are fanned out by means of amplifiers and 

Program Counter
         (PC)

Memory address
Register  (MAR)

Instruction
Register (I)

Memory Buffer Register
                (B)

Accumulator Register
              (A)

E

S

F
Control
  Logic

Memory unit
 4096 words
16 bits/word

Sequence
Register (G)

Input Register
        (N)

Output Register
         (U)

Master clock
  generator

Figure 11.1 Block diagram of digital computer
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distributed over the entire system. Each pulse must reach every flip-flop and register at the same 
time. Phasing delays may be needed intermittently so that the difference in transmission delays is 
uniform throughout. The frequency of the pulses is a function of the speed with which the system 
operates. We shall assume a frequency of 1 megahertz, which gives one pulse every microsecond. 
This pulse frequency is chosen for the sake of having a round number and to avoid problems of 
circuit propagation delays.

The memory unit has a capacity of 4096 words of 16 bits each. This capacity is large enough 
for meaningful processing. A smaller size may be used if the computer is to be constructed in the 
laboratory under economic restrictions. Twelve bits of an instruction are needed to specify the 
address of an operand, which leaves four bits for the operation part of the instruction. The access 
time of the memory is assumed to be less than 1 microsecond so that a word can be read or writ-
ten during the interval between two clock pulses.

The part of the digital computer to be designed is decomposed into register subunits. The 
following paragraphs explain why each register is needed and what function it performs. A list 
of the registers and a brief description of their functions is presented in Table 11-1. Registers that 
hold memory words are 16 bits long. Those that hold an address are 12 bits long. Other registers 
have different numbers of bits, depending on their function.

11.2.1 Memory Address and Memory Buffer Registers

The memory address register, MAR, is used to address specific memory locations. MAR is loaded 
from PC when an instruction is to be read from memory, and from the 12 least significant bits of 
the B register when an operand is to be read from memory. Memory buffer register B holds the 
word read from or written into memory. The operation part of an instruction word placed in B 
is transferred into the I register, and the address part is left in the B register for transfer to MAR. 
An operand word placed in the B register is accessible for operation with the A register. A word 
to be stored in memory must be loaded into the B register before a write operation is initiated.

Table 11-1 List of registers tor computer

Symbolic  
designation Name

Number 
of bits Function

A Accumulator register 16 Processor register

B Memory buffer register 16 Holds contents of memory word

PC Program counter 12 Holds address of next instruction

MAR Memory address register 12 Holds address of memory word

I Instruction register 4 Holds current operation-code

E Extension flip-flop 1 Accumulator extension

F Fetch flip-flop 1 Controls fetch and execute cycles

S Start-stop flip-flop 1 Starts and stops computer

G Sequence register 2 Provides timing signals

N Input register 9 Holds information from input device

U Output register 9 Holds information for output device
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11.2.2 Program Counter

Program counter PC holds the address of the next instruction to be read from memory. This reg-
ister goes through a step-by-step counting sequence and causes the computer to read successive 
instructions previously stored in memory. When the program calls for a transfer to another loca-
tion or for skipping the next instruction in sequence, the PC is modified accordingly, causing the 
program to continue from a memory location out of the counting sequence. To read an instruc-
tion, the contents of PC are transferred to MAR and a read operation is initiated. The program 
counter is always incremented by 1 while a memory write operation reads the present instruction. 
Therefore, the address of the next instruction, one higher than the one presently being executed 
in the processor, is always available in PC.

11.2.3 Accumulator Register

Accumulator register A is a processor register that operates on data previously stored in memory. 
This register is used to execute most instructions and for accepting data from the input device or 
transferring data to the output device. The A register, together with the B register, makes up the 
bulk of the processor unit for the computer. Although most data processing systems include more 
registers for the processor unit, we have chosen to include only one accumulator here in order 
not to complicate the design. With a single accumulator as the arithmetic element, it is possible 
to implement only the add operation. Other arithmetic operations such as subtraction, multiplica-
tion, and division must be implemented with a sequence of instructions that form a subroutine.

11.2.4 Instruction Register

Instruction register I holds the operation-code bits of the current instruction. This register has 
only four bits since the operation-code of instructions is four bits long. The operation-code bits 
are transferred to the I register from the B register, while the address part of the instruction is left 
in B. The operation-code part must be taken out of the B register because an operand read from 
memory into the B register will destroy the previously held instruction. The operation part of 
the instruction is needed by the control to determine what is to be done to the operand just read.

11.2.5 Sequence Register

Sequence register G is a counter that produces the timing signals for the computer. The G register 
is decoded to supply four timing variables for the control unit. The timing variables, together with 
other control variables, produce the control functions that initiate all the microoperations for the 
computer.

11.2.6 E, F, and S Flip-flops

Each of these flip-flops is considered a one-bit register. The E flip-flop is an extension of the A 
register. It is used during shifting operations, receives the end carry during addition, and other-
wise is a useful flip-flop that can simplify the data processing capabilities of the computer. The 
F flip-flop distinguishes between the fetch and execute cycles. When F is 0, the word read from 
memory is treated as an instruction. When F is 1, the word is treated as an operand. S is a start-
stop flip-flop that can be cleared by program control and manipulated manually. When S is 1, the 
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computer runs according to a sequence determined by the program stored in memory. When S is 
0, the computer stops its operation.

11.2.7 Input and Output Registers

The input-output (I/0) device is not shown in the block diagram of Fig. 11-1. It is assumed to be 
a teletypewriter unit with a keyboard and a printer. The teletypewriter sends and receives serial 
information. Each quantity of information has 8 bits of an alphanumeric code. The serial infor-
mation from the keyboard is shifted into the input register. The serial information for the printer 
is stored in the output register. These two registers communicate with the teletypewriter serially 
and with the accumulator register in parallel.

Input register N consists of nine bits. Bits 1 through 8 hold alphanumeric input informa-
tion; bit 9 is a control bit called an input flag. The flag bit is set when a new character is available 
from the input device and cleared when the character is accepted by the computer. The flag bit 
is needed to synchronize the slow rate by which the input device operates compared to the high-
speed circuits in the computer. The process of information transfer is as follows. Initially, the 
flag bit in N

9
 is cleared. When a key is struck on the keyboard, an 8-bit code is shifted into the 

input register (N
1 
- N

8
). As soon as the shift operation is completed, the flag bit in N

9
 is set to 1. 

The computer checks the flag bit; if it is 1, the character code from the N register is transferred 
in parallel into the A register and the flag bit is cleared. Once the flag is cleared, a new character 
can be shifted into the N register by striking another key.

Output register U works in a similar fashion, but the direction of information flow is re-
versed. Initially, the output flag in U

9
 is set to 1. The computer checks the flag bit; if it is I, a 

character code from the A register is transferred in parallel to the output register (U
1 
- U

8
) and 

the flag bit U
9
 is cleared to 0. The output device accepts the coded information and prints the 

corresponding character; when the operation is completed, it sets the flag bit to 1. The computer 
does not load a new character into the output register when the flag is 0, because this condition 
indicates that the output device is in the process of printing the previous character.

11.3 Computer Instructions

The number of instructions available in a computer and their efficiency in solving the problem 
at hand are a good indication of how well the system designer foresaw the intended application 
of the machine. Medium- to large-scale computing systems may have hundreds of instructions, 
while most small computers limit the list to less than 100. The instructions must be chosen 
carefully to supply sufficient capabilities to the system for solving a wide range of data process-
ing problems. The minimum requirements of such a list should include a capability for stor-
ing and loading words from memory, a sufficient set of arithmetic and logic operations, some 
address-modification capabilities, unconditional branching and branching under test conditions, 
register manipulation capabilities, and I/O instructions. The instruction list chosen for our com-
puter is believed to be close to the absolute minimum required for a restricted but practical data  
processor.

The formulation of a set of instructions for the computer goes hand in hand with the formu-
lation of the formats for data and instruction words. A memory word consists of 16 bits. A word 
may represent either a unit of data or an instruction. The formats of data words are shown in Fig. 
11-2. Data for arithmetic operations are represented by a 15-bit binary number, with the sign in 
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the 16th bit position. Negative numbers are assumed to be in their 2’s-complement equivalent. 
Logical operations are performed on individual bits of the word, with bit 16 treated as any other 
bit. When the computer communicates with the I/O device, the information transferred is con-
sidered to be 8-bit alphanumeric characters. Two such characters can be accommodated in one 
computer word.

The formats of instruction words are shown in Fig. 11-3. The operation part of the instruc-
tion contains four bits; the meaning of the remaining 12 bits depends on the operation-code 
encountered. A memory-reference instruction uses the remaining 12 bits to specify an address. A 
register-reference instruction implies an operation on, or a test of, the A or E register. An operand 

Sign Magnitude (negative numbers in 2’s complement)

10 9 8 7 6 5 4 3 2 1111213141516

(a) Arithmetic operand

Logical word

10 9 8 7 6 5 4 3 2 1111213141516

(b) Logical operand

Character

10 9 8 7 6 5 4 3 2 1111213141516

Character

(c) Input/output data

Figure 11.2 Data formats

Operation

10 9 8 7 6 5 4 3 2 1111213141516

Address

(a) Memory-reference instruction

Code 0110

10 9 8 7 6 5 4 3 2 1111213141516

Type of register operation or test

(b) Register- reference instruction

Code 0111

10 9 8 7 6 5 4 3 2 1111213141516

Type of input-output operation or test

(c) Input/output instruction

Figure 11.3 Instruction formats
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from memory is not needed; therefore, the 12 least significant bits are used to specify the opera-
tion or test to be executed. A register-reference instruction is recognized by the code 0110 in the 
operation part. Similarly, an input-output instruction does not need a reference to memory and is 
recognized by the operation code 0111. The remaining 12 bits are used to specify the particular 
device and the type of operation or test performed.

Only four bits of the instruction are available for the operation code. It would seem, then, 
that the computer is restricted to a maximum of 16 distinct operations. However, since register-
reference and input-output instructions use the remaining 12 bits as part of the operation-code, 
the total number of instructions can exceed 16. In fact, the total number of instructions chosen 
for the computer is 22.

Of the 16 distinct operations that can be formulated with four bits, only eight have been 
utilized by the computer because the leftmost bit of all instructions (bit 16) is always a 0. This 
leaves open the possibility of adding new instructions and extending the computer capabilities 
if desired.

The six memory-reference instructions for the computer are listed in Table 11-2. The sym-
bolic designation is a three-letter word and represents an abbreviation intended for use by pro-
grammers and users when writing symbolic programs for the computer. The hexadecimal code 
listed is an equivalent hexadecimal number of the binary code adopted for the operation-code. 
A memory-reference instruction uses one hexadecimal digit (4 bits) for the operation-code; the 
remaining three hexadecimal digits (12 bits) of the instruction represent an address designated 
by die letter m. Each instruction has a brief word description and is specified more precisely in 
the function column with a-macrooperation statement. A further clarification of each instruction 
is given below, together with an explanation of its use.

11.3.1 AND to A

This is a logic operation that performs the AND operation on corresponding pairs of bits in A, 
with the memory word M specified by the address part of the instruction. The result of the opera-
tion is left in register A, replacing its previous contents. Any computer must have a basic set of 
logic operations for manipulating nonnumerical data. The most common logic operations found 

Table 11-2 Memory-reference instructions

Symbol
Hexa-decimal 

code Description Function

AND 0 m* AND to A A ← A ∧ M* 

ADD 1 m Add to A A ← A + M, E ← Carry  

STO 2 m Store in A M ← A

ISZ 3 m Increment and skip if zero M ← M + l, if (M + 1 = 0) then
(PC ← PC + 1)

BSB 4 m Branch to subroutine M ← PC + 5000, PC ← m+ 1

BUN 5 m Branch unconditionally PC ← m

* m is the address part of the instruction. M is the memory word addressed by m.
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in computer instructions are AND, OR, exclusive-OR, and complement. Here we use only the 
AND and complement. The latter is included as a register-reference instruction. These two logic 
operations constitute a minimal set from which all other logic operations can be derived, because 
together the AND and the complement perform a NAND operation. In Section 4-7 we saw that 
this is a universal operation from which any other logic operation can be obtained.

11.3.2 ADD to A

This instruction adds the contents of the memory word M, specified by the address part of the 
instruction, to the present contents of register A. The addition is done assuming that negative 
numbers are in their 2’s-complement form. This requires that the sign bit be added in the same 
way as all other bits are added. The end-carry out of the sign-bit position is transferred to the E 
flip-flop. This instruction, together with the register-reference instructions, is sufficient for writ-
ing programs to implement all other arithmetic operations. Subtraction is achieved by comple-
menting and incrementing the subtrahend. Multiplication is achieved by adding and shifting. The 
increment and shift are register-reference instructions.

The ADD instruction must be used for loading a word from memory into the A register. This 
is done by first clearing the A register with the register-reference instruction CLA (defined in 
Table 11-3). The required word is then loaded from memory by adding it to the cleared A register.

11.3.3 STORE in A

This instruction stores the contents of the A register into the memory word specified by the 
instruction address. The first three memory-reference instructions are used to manipulate data 
between memory words and the A register. The next three instructions are control instructions 
that cause a change in normal program sequence.

11.3.4 Increment and Skip if Zero (ISZ)

The increment-and-skip instruction is useful for address modification and for counting the num-
ber of times a program loop is executed. A negative number previously stored in memory at 
address m is read by the ISZ instruction. This number is incremented by 1 and stored back into 
memory. If, after it is incremented, the number reaches 0, the next instruction is skipped. Thus, 
at the end of a program loop, one inserts an ISZ instruction followed by a branch uncondition-
ally (BUN) instruction to the beginning of the program loop. If the stored number does not reach 
0, the program returns to execute the loop again. If it reaches 0, the next instruction (BUN) is 
skipped and the program continues to execute instructions after the program loop.

11.3.5 Branch Unconditionally (BUN)

This instruction transfers control unconditionally to the instruction at the location specified by 
the address part m. Remember that the program counter holds the address of the next instruction 
to be read and executed. Normally, the PC is incremented to give the address of the next instruc-
tion in sequence. The programmer has the prerogative of specifying any other instruction out of 
sequence by using the BUN instruction. This instruction tells the computer to take the address 
part m and transfer it into PC. The address of the next instruction to be executed is now in PC 
and is the one which was previously the address part of the BUN instruction.
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The BUN instruction is listed with the memory-reference instructions because it needs an 
address part m. However, it does not need a reference to memory to access a memory word (des-
ignated by the symbol M), as is required by the other memory-reference instructions.

11.3.6 Branch to Subroutine (BSB)

This instruction is useful for branching to a subroutine portion of a program. When executed, the 
instruction stores the address of the next instruction in sequence which is presently held in PC 
(called the return address) into the memory word specified by the address part of the instruction. 
It also stores the operation code of BUN (hexadecimal 5) in the same memory location. The 
contents of the address part m plus 1 are transferred into PC to start executing the subroutine 
program at this location. After the subroutine is executed, control is transferred back to the call-
ing program by means of a BUN instruction placed at the end of the subroutine.

The process of branching to a subroutine and the return to the calling program is demon-
strated in Fig. 11-4 by means of a specific numerical example. The calling program is now in 
location 32. The subroutine program starts at location 65. The BSB instruction causes a transfer 
to the subroutine, and the last instruction in the subroutine causes a branch back to location 33 
in the calling program. The numerical example in Fig. 11-4 shows a BSB instruction in location 
32 with an address part m equal to binary 64. While this instruction is being executed, PC holds 
the address of the next instruction in sequence, which is 33. The BSB instruction performs the 
macrooperation (see Table 11-2):

M ← PC + 5000, PC ← m + 1

The contents of PC plus hexadecimal 5000 (code for BUN) are transferred into location 64. This 
transfer produces an instruction BUN 33. The address part of the instruction is incremented and 

0100 000001000000

0101 000000100001

0101 000001000000

MemoryAddress
  (dec)

m = 64 BUN 33

Subroutine

BSB 64

BUN 64

m + 1 = 65

32

33

Figure 11.4 Demonstration of branch-to-subroutine instruction
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placed in PC. PC now holds the binary equivalent of 65, so the computer starts executing the 
subroutine at this location. The last instruction in the subroutine is BUN 64. When this instruc-
tion is executed, control is transferred to the instruction in location 64. But in address 64, there 
is now an instruction that branches back to address 33. The address stored in location 64 by the 
BSB instruction will always have the proper return address no matter where the BSB instruction 
is located. In this way, the subroutine return is always to a location one higher than the location 
of the BSB instruction. Note that the address number of the BUN instruction placed at the end of 
the subroutine must always be equal to the address number where the return address is temporar-
ily stored, which is 64 in this case.

11.3.7 Register-reference Instructions

The 12 register-reference instructions for the computer are listed in Table 11-3. Each register-
reference instruction has an operation code 0110 (hexadecimal 6) and contains a single 1 in one 
of the remaining 12 bits of the instruction. These instructions are specified with four hexadecimal 
digits which represent all 16 bits of an instruction word. The first seven instructions perform 
an operation on the A or E register and are self-explanatory. The next four are skip instructions 
used for program control, conditioned on certain status bits. To skip the next instruction, the PC 
is incremented by 1 once again. The first increment occurs when the present instruction is read. 
In this way, the next instruction read from memory is two locations up from the location of the 
present (skip) instruction.

The status bits for the skip instructions are the sign bit in A, which is in flip-flop A
16

, and 
a zero condition for A or E. If the designated status condition is present, the next instruction in 
sequence is skipped; otherwise, the computer continues from the next instruction in sequence 
because PC is not incremented.

Table 11-3 Register-reference instructions

Symbol
Hexa-decimal 

code Description Function

CLA 6800 Clear A A ← 0

CLE 6400 Clear E E ← 0

CMA 6200 Complement A A ← A

CME 6100 Complement E E ← E

SHR 6080 Shift-rights A and E A ← shr A, A
16

 ← E, E ← A
1

SHL 6040 Shift-left A and E A ← shl A, A
1
 ← E, E ← A

16

INC 6020 Increment A A ← A+ 1

SPA 6010 Skip on positive A If (A
16

 = 0) then (PC ← PC + 1)

SNA 6008 Skip on negative A If (A
16

 = 1) then (PC ← PC + 1)

SZA 6004 Skip on zero A If (A = 0) then (PC ← PC + 1)

SZE 6002 Skip on zero E If (E = 0) then (PC ← PC + 1)

HLT 6001 Halt computer S ← 0
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The halt instruction is usually placed at the end of a program if one wishes to stop the com-
puter. Its execution clears the start-stop flip-flop, which prevents further operations.

11.3.8 Input-Output Instructions

The computer has four input-output instructions and they are listed In Table 11-4. These instruc-
tions have an operation code 0111 (hexadecimal 7), and each contains a 1 in only one of the 
remaining 12 bits of the instruction word. The input-output instructions are specified with four 
hexadecimal digits starting with 7.

The INP instruction transfers the input character from N to A and also clears the input 
flag in N

9
. The OUT instruction transfers an 8-bit character code from A into the output register 

and also clears the output flag in U
9
. The two skip instructions check the corresponding status 

flags and cause a skip of the next instruction if the flag bit is 1. The instruction that is skipped is 
normally a BUN instruction. The BUN instruction is not skipped if the flag bit is 0; this causes 
a branch back to the skip instruction to check the flag again. If the flag bit is 1, the BUN instruc-
tion is skipped and an input or output operation is executed. Thus, the computer stays in a two-
instruction loop (skip on flag and branch back to previous instruction) until the flag bit is set by 
the external device. The next instruction in sequence must be an input or output instruction.

11.4 Timing and Control

All operations in the computer are synchronized by the master-clock generator whose clock 
pulses are applied to all flip-flops in the system. In addition, a certain number of timing variables 
are available in the control unit to sequence the operation in the proper order. These timing vari-
ables are designated t

0
, t

1
, t

2
, and t

3 
and are shown in Fig. 11-5. The clock pulses occur once every 

microsecond (ms). Each timing variable is 1 ms long and occurs once every 4 ms. We assume that 
the triggering of flip-flops occurs during the negative edge of the clock pulses. By applying one 
of the timing variables to the enable input of a given register, we can control the specific clock 
pulse that triggers the register. The timing variables repeat continuously in such a way that t

0
 

always appears after t
3
. Four timing variables are sufficient for the execution of any instruction in 

the computer we are considering here. In other situations, it may be necessary to employ a differ-
ent number of timing variables.

We assume that the memory access time is less than 1 ms. A memory read or write operation 
can be initiated with one of the timing variables when it goes high. The memory operation will 
be completed by the time the next clock pulse arrives.

Table 11-4 Input-output instructions

Symbol
Hexadecimal 

code Description Function

SKI 7800 Skip on input flag If (N
9
 = 1) then (PC ← PC + 1)

INP 7400 Input to A A
1 - 8

 ← N
1 - 8

, N
9
 ← 0

SKO 7200 Skip on output flag If (U
9
 = 1) then (PC ← PC + 1)

OUT 7100 Output from A U
1 - 8

 ← A
1 - 8

, U
9
 ← 0
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The digital computer operates in discrete steps controlled by the timing signals. An instruc-
tion is read from memory and executed in registers by a sequence of microoperations. When the 
control receives an instruction, it generates the appropriate control functions for the required 
microoperations. A block diagram of the control logic is shown in Fig. 11-6. An instruction read 
from memory is placed in the memory buffer register B. The instruction has an operation code 
of 4 bits, designated by the symbol OP. If it is a memory-reference instruction, it has an address 
part designated by the symbol AD. The operation code is always transferred to the instruction 
register I. The operation code in I is decoded into eight outputs q

0
-q

7
, the subscript number being 

equal to the hexadecimal code for the operation. The G register is a 2-bit counter that continu-
ously counts the clock pulses as long as start-stop flip-flop S is set. The outputs of the G register 
are decoded into the four timing variables t

0
-t

3
. The F flip-flop distinguishes between the fetch 

and execute cycles. Other status conditions are sometimes needed to determine the sequence of 
control. The outputs of the control logic network initiate all microoperations for the computer. 
The block diagram of the control logic is helpful in visualizing the control unit of the computer 
when the register-transfer operations are derived during the logic design process.

The control logic network is a combinational circuit consisting of a random connection of 
gates. Its implementation constitutes a hard-wired control. We shall see in Section 11-7 that the 
control part of the computer can also be implemented with programmable logic arrays. The PLA 
configuration will replace the control logic network as well as the operation and timing decoders. 
It will also be shown in Section 11-7 that the control can be partially implemented with a micro-
program unit. The microprogram control configuration will replace the control logic network, the 
two decoders, and the I and G registers.

t0

Clock
pulses (CP)

1 µsec

t2

t1

t3

Figure 11 5 Computer timing signals
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11.5 Execution of Instructions

Up to this point, we have considered the system design of the computer. We have specified the 
register configuration, the set of computer instructions, a timing sequence, and the configuration 
of the control unit. In this section, we start with the logic design phase of the computer. The first 
step is to specify the microoperations, together with the control functions, needed to execute each 
machine instruction.

The register-transfer operations describe in concise form the process of information trans-
fer within the registers of the computer. Each statement in the description consists of a control 
function, followed by a colon, followed by one or more microoperations in symbolic notation. 
The control function is a Boolean function whose variables are the timing signals t

0
-t

3
, the de-

coded operation q
0
-q

7
, and certain status-bit conditions. The microoperations are specified in 

accordance with the symbolic notation defined in the register-transfer method.
Once a “start” switch is activated, the computer sequence follows a basic pattern. An in-

struction whose address is in PC is read from memory. Us operation part is transferred to reg-
ister I, and PC is incremented by 1 to prepare it for the address of the next instruction. If the 
instruction is a memory-reference type, it may be necessary to access the memory again to read 
an operand. Thus, words read from memory into the B register can be either instructions or data. 
The F flip-flop is used to distinguish between the two. When F = 0, the word read from memory 
is interpreted to be an instruction and the computer is said to be in an instruction fetch cycle, 
When F = 1, the word read from memory is taken as an operand and the computer is said to be 
in a data execute cycle.

16

t0 – t3

13 12 1

B(OP) B(AD)I Register

G Register

 Timing
decoder

 Control
   logic
network

Other status
  conditions

 Count

S

F

CP

Control functions
       to initiate
microoperations

Operation
decoder

q0 – q7

Figure 11.6 Block diagram of control logic
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11.5.1 Fetch Cycle

An instruction is read from memory during the fetch cycle. The register-transfer relations that 
specify this process are:

F’t
0
:  MAR ← PC

F’t
1
:  B ← M, PC ← PC +1

F’t
2
:  I ← B (OP)

When F = 0, liming signals t
0
, t

1
, and t

2
 initiate a sequence of operations that transfer the contents 

of PC into MAR, initiate a memory read, increment PC, and transfer the operation code of the 
instruction to the I register. All microoperations are executed when the control function is logic 1 
and when a clock pulse occurs. The microoperations in registers and the transfer of the memory 
word into B are executed during the negative edge of a clock pulse. This occurs just prior to the 
time that the specified timing variable goes to 0.

The operation code in the I register is decoded at time t
3
. The next step depends on the 

value of q
i
, i = 0, 1,...,7, that produces a 1 in the output of the decoder. If the decoded output is a 

memory-reference instruction, an operand may be needed. If not, the instruction can be executed 
during time t

3
.

The BUN instruction and the register-reference and input-output instructions do not need a 
second access to memory. When an operation code 0, 1, 2, 3, or 4 is encountered, the computer 
has to go to an execute cycle to access the memory again. This condition is detected from the 
operation decoder which causes a transfer to the execute cycle by selling F to 1:

F’(q
0
 + q

1
 + q

2
 + q

3
 + q

4
) t

3
: F ← 1

The register-transfer operations common to all instructions during the fetch cycle are listed in 
Table 11-5.

The BUN instruction has an operation code 5, and its corresponding output from the op-
eration decoder is q

5
. This instruction does not need an operand from memory, even though 

it is listed as a memory-reference instruction. It merely specifies that the next instruction be 
taken from a location given by the address part m. The address part of the instruction is in 
B(AD) at time t

3
 of the fetch cycle. The instruction can be executed during the fetch cycle at this  

time:

q
5
t
3
: PC ← B(AD)

There is no need to include F in the control function because the only time that q
5
 can be 1 is 

during the fetch cycle. The microoperation that executes the instruction specifies a transfer of 
bits 1 through 12 of register B into the PC. The next timing variable after t

3
 is always t

0
. Since F 

remains 0 for this instruction, the computer returns to the beginning of the fetch cycle to read the 
instruction given by PC.

The register-reference instructions are recognized from the decoder output q
6
, and the in-

put-output instructions from q
7
. Since these instructions require only one more microoperation 

for their execution, they can be terminated at time t
3
 during the fetch cycle. This fact is indicated 

in Table 11-5. The specific microoperations are listed in later tables.
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11.5.2 Execute Cycle

Flip-flop F is equal to 1 during the execute cycle. The four timing variables that occur during this 
cycle perform the microoperations for executing one of the memory-reference instructions. The 
instruction to be executed is specified by variable q

i
, i = 0, 1,2, 3, 4, available from the operation 

decoder. At the end of the fetch cycle, the address part of the instruction is in bits 1 through 12 
of register B, symbolized by B(AD). This address is transferred to MAR at the beginning of the 
execute cycle to serve as the memory address for the subsequent memory word:

Ft
0
: MAR ← B(AD)

The instructions that need an operand from memory are the AND (q
0
) ADD (q

1
), and ISZ (q

3
). 

The other two instructions, STO (q
2
) and BSB (q

4
), store a value into memory and are excluded 

during the next memory read operation:

F(q
0
 + q

1
 + q

3
)t

1
: B ← M

The particular decoded instruction is executed with timing variables t
2
 and t

3
. At time t

3
, the F 

flip-flop is cleared for the computer to return to the fetch cycle:

Ft
3
: F ← 0

The next timing variable after t
3
 is t

0
. But now F is equal to 0, so the next control function is F¢t

0
. 

This is the first control function in the fetch cycle. Thus, after executing the current instruction, 
control always returns to the fetch cycle to read the next instruction whose address is in PC. The 
common operations performed during the execute cycle are listed in Table 11-6.

Table 11-5 Register-transfer operations during fetch cycle

F¢t
0
: MAR ← PC Transfer instruction address

F¢t
1
: B ← M, PC ← PC + 1 Read instruction, increment PC

F’t
2
: I ← B(OP) Transfer operation code

F¢(q
0
 + q

1
 + q

2
 + q

3
 + q

4
) t

3
: F ← 1 Go to execute cycle

q
5
t
3
: PC ← B(AD) Branch unconditionally (BUN)

Q
6
t
3
: See Table 11-8 Register-reference instruction

Q
7
t
3
: See Table 11-9 Input-output instruction

Table 11-6 Common operations for execute cycle

Ft
0
: MAR ← B(AD) Transfer address part

F(q
0
 + q

1
 + q

3
)t

1
: B ← M Read operand

F(t
2
 + t

3
): See Table 11-7 Execute memory-reference instruction

Ft
3
: F ← 0 Return to fetch cycle
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The five memory-reference instructions and their corresponding register-transfer opera-
tions are listed in Table 11-7. These instructions are executed when F = 1 and with timing vari-
ables t

2
 and t

3
 The decoded operation q

i
 determines the particular instruction that is executed.

The AND and ADD instructions are executed with timing variable t
3
,
 
although they 

could use timing variable t
2
 instead. The operand from memory has been transferred to B with 

timing variable t
1
. The corresponding operation can be performed now between the B and A  

registers.
The STO instruction specifies a transfer of the contents of A into the memory word whose 

address was transferred to MAR with timing variable t
0
. The contents of A are first transferred 

into B, and a write operation transfers the contents of B into the memory word specified by MAR:

Fq
2
t
2
: B ← A

Fq
2
t
3
: M ← B

The ISZ instruction is executed with the following microoperations:

Fq
3
t
2
: B ← B + 1

Fq
3
t
3
: M ← B

Fq
3
B

z
t
3
: PC ← PC + 1  B

z
 = 1 if B = 0

The word from location M was placed in B during time t
1
 (see Table 11-6). The B register is 

incremented at time t
2
 and the new value is stored back in memory. All this time MAR does not 

change, so it always specifies the address of M. Remember that a memory word cannot be incre-
mented while residing in memory. It must be transferred to a processor register where the count-
ing can be implemented. While the incremented number is being stored in memory, its value in 
B is checked; if it is 0, PC is incremented to cause a skip of one instruction. Variable B

z 
used in 

the last statement above is a zero-detect variable and is equal to binary 1 if register B contains 
an all-0’s number.

Table 11-7 Execution of memory-reference instructions

AND Fq
0
t
3
: A ← A L B AND microoperation

ADD Fq
1
t
3
: A ← A L B, E ← carry Add microoperation

STO Fq
2
t
2
: B ← A Transfer A to B

Fq
2
t
3
: M ← B Store in memory

ISZ Fq
3
t
2
: B ← B + 1 Increment memory word

Fq
3
t
3
: M ← B Store back in memory

Fq
3
B

z
t
3
: PC ← PC + 1 Skip if B

z
 = 1 (B = 0)

BSB Fq
4
t
2
: B(AD) ← PC, B(OP) ← 0101, 

PC ← MAR
Transfer return address, trans-
fer address to PC

Fq
4
t
3
: M ← B, PC ← PC + 1 Store return address, increment 

address in PC
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The BSB instruction is the most complicated instruction available in the computer. A pos-
sible way to execute this instruction is as follows:

Fq
4
t
2
: B(AD) ← PC, B(OP) ← 0101, PC ← MAR

Fq
4
t
3
: M ← B, PC ← PC + 1

The return address available in PC is transferred to the address part of register B and the code 
0101 (BUN) is transferred to the operation-code part of the same register. Remember that the 
address register MAR contains the address part of the instruction designated by m. The transfer 
from MAR to PC results in transferring m into PC. All this is done during timing variable t

2
. The 

return address is stored in memory at time t
3
. PC is also incremented at this time, so the instruc-

tion to be read during the next fetch cycle will be from location m + 1.

11.5.3 Register-reference Instructions

The register microoperations that execute the register-reference instructions are listed in Table 
11-8. These instructions are recognized from operation decoder output q

6
 and are executed dur-

ing time t
3
 of the fetch cycle. For convenience, we define a new variable r = q

6
t
3
 and use it in all 

register-reference control functions. The rest of the control function is determined from one of 
the bits in the B register, where the rest of the instruction resides at this time. For example, the 
instruction CLA has the hexadecimal code 6800, which corresponds to a binary code 0110 1000 
0000 0000. The operation code is decoded from the I register and is equal to q

6
. Bit 12 in the B 

register is 1; so the control function that executes this instruction is q
6
t
3
B

12
 = rB

12
.

The first seven register-reference instructions perform the clear, complement, shift, and 
increment operations on the A or E register. The next four instructions are skip instructions 
executed only if the stated condition is satisfied. The skipping of the instruction is achieved by 
incrementing PC again, in addition to the incrementing at time t

1
 (see Table 11-5). The status-bit 

condition for skipping becomes part of the control function. Thus the accumulator is positive if 

Table 11-8 Execution of register-reference instructions

r = q
6
t
3

CLA rB
12

: A ← 0 Clear A

CLE rB
11

: E ← 0 Clear E

CMA rB
10

: A ← A Complement A

CME rB
9
: E ← E Complement E

SHR rB
8
: A ← shr A, A

16
 ← E, E ← A

1
Shift-right A and E

SHL rB
7
: A ← shl A, A

1
 ← E, E ← A

16
Shift-left A and E

INC rB
6
: A ← A+ 1 Increment A

SPA rB
5
A¢

16
: PC ← PC + 1 Increment PC if A is positive

SNA rB
4
A

16
: PC ← PC + 1 Increment PC if A is negative

SZA rB
3
A

z
: PC ← PC + 1 Increment PC if A is zero

SZE rB
2
E¢: PC ← PC + 1 Increment PC if E is zero

HLT rB
1
: S ← 0 Gear start-stop flip-flop
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A
16

 = 0 and negative if A
16

 = 1. The symbol A
:
 is a binary variable equal to I when the A register 

contains all 0’s. E’ is equal to 1 when the E flip-flop contains 0.
The halt instruction clears the start-stop flip-flop S and stops the timing sequence. The 

sequence register G stops counting while its value is 0. This causes the computer to idle, with t
0
 

always being at the output of the timing decoder. Since F is also 0, the control function F¢t
0
 is the 

only one produced while the computer is halted. This control function transfers the contents of 
PC to MAR continuously (see Table 11-5). We could tolerate this continuous transfer when the 
computer halts. If this is undesirable, we can remove the clock pulses from MAR as well to pre-
vent this transfer from occurring when S = 0. The computer can resume when the “start” switch 
is activated, which sets flip-flop S. This causes die clock pulses to reach the sequence register G 
and start producing the other timing variables.

11.5.4 Input-Output Instructions

The register-transfer microoperations that execute the four input-output instructions are listed in 
Table 11-9. These instructions are recognized from operation-decoder output q

7
 and are executed 

during time t
3
. We define a new variable p = q

7
t
3
 and use it in all input-output control functions. 

The control functions for these instructions contain a single bit from the B register which is part 
of the instruction-code definition. The two skip instructions depend on the status condition of 
flag bits N

9
 and U

9
.

11.6 Design of Computer Registers

The design of a synchronous digital system follows a prescribed procedure. From a knowledge of 
the system requirements, one formulates a control network and obtains a list of register-transfer 
operations for the system. Once this list is derived, the rest of the design is straightforward. Some 
installations utilize computer design automation techniques for translating the register-transfer 
statements to a circuit diagram composed of integrated circuits.

Section 11-5 specified the register-transfer statements for the computer in five separate 
tables. The entries in the tables consist of control functions and microoperations. The list of 
control functions provides the Boolean functions for the gates in the control logic network. The 
list of microoperations gives an indication of the types of registers that must be chosen for the 
computer. Although these tables are sufficient to complete the logic design of the system, it may 
be convenient to rearrange the information in the tables in a more convenient way during the 
actual implementation .process.

Table 11-9 Execution of input-output instructions

p = q
7
t
3

SKI pB
12

N
9
: PC ← PC + 1 Increment PC if input flag N

9
 = 1

INP pB
11

: A
1 - 8

 ← N
1 - 8

, N
9
 ← 0 Input to A, clear flag

SKO pB
10

U
9
: PC ← PC + 1 Increment PC if output flag U

9
 = 1

OUT pB
9
: U

1 - 8
 ← A

1 - 8
, U

9
 ← 0 Output from A, clear flag
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11.6.1 Register Operations

To determine the type of control input that must be provided in each register, we must obtain 
the list of microoperations that affect each register separately. This can be done by scanning the 
tables in Section 11-5 and retrieving all those statements that change the contents of a particular 
register. This also applies to the read and write operations in the memory unit. For example, a 
memory-read operation is symbolized with the microoperation:

B ← M

The statement also indicates that the contents of register B will change in value. This statement 
is found twice in the list of microoperations. In Table 11-5, we find it with control function F¢t

1
, 

and in Table 11-6, with control function F(q
0
 + q

1
 + q

3
)t

1
. Since both control functions produce 

the same operation, they can be combined with an OR into one statement:

R = F¢t
1
 + F(q

0
 + q

1
 + q

3
)t

1 
: B ← M

The symbol R is used for convenience to designate the read operation with a single Boolean 
control variable. The equal sign after R designates its equality with the control function listed.

This procedure is repeated for the memory-write operation and for all the registers in the 
computer. The result is as shown in Table 11-10. Each control function listed in the table is as-
signed a control-variable name. The single-letter variable names are not necessary, but they help 
shorten the algebraic expressions of input control for the registers. In most cases, the control 
variable is assigned a lowercase letter identical to the capital letter reserved to symbolize the 
corresponding register. The control variables common to the same register are distinguished by 
different numerical subscripts.

Table 11-10 is derived directly from Tables 11-5 through 11-9. The register to which a mi-
crooperation belongs is recognized by the presence of its symbol on the left side of the arrow. 
To recognize the microoperations belonging to register A, we scan the operations listed in Tables 
11-5 through 11-9 and retrieve all those that have an A as a destination register. The microopera-
tions for the other registers are obtained in a similar manner. If the microoperation occurs more 
than once, the corresponding control functions are ORed to form a composite control function.

The operations for the E flip-flop must be separated from the operations for the A register, 
even though they were listed together in the previous tables. The circular shift-right operation, for 
example, is stated in Table 11-8 as:

rB
8
: A ← shr A, A

16
 ← E, E ← A

1

Note that r is a variable equal to q
6
t
3
, and rB

8
 is assigned a control variable a

5
. In Table 11-10 

under the A register, we have;

a
5
 = rB

8
: A ← shr A, A

16
 ← E

which is the part of the shift operation that changes the contents of A, Under the E flip-flop, we 
have:

a
5
 = rB

8
: E ← A

1
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Table 11-10 Microoperations for registers

Memory Control

R = F’t
1
 + F(q

0
 + q

1
 + q

3
)t

1 
: B ← M Memory read

W = F(q
2
 + q

3
 + q

4
)t

3 
: M ← B Memory write

A Register

a
1
 = Fq

0
t
3 
: A ← A L B AND

a
2
 = Fq

1
t
3 
: A ← A + B Add

a
3
 = rB

12 
: A ← 0 Clear

a
4
 = rB

10 
: A ← A Complement

a
5
 = rB

8 
: A ← shr A, A

16
 ← E Shift-right

a
6
 = rB

7 
: A ← shl A, A

1
 ← E Shift-left

a
7
 = rB

6 
: A ← A + 1 increment

a
8
 = pB

11 
: A

1 - 8
 ← N

1 - 8
Transfer

B Register

b
1
 = Fq

2
t
2 
: B ← A Transfer

b
2
 = Fq

3
t
2 
: B ← B + 1 Increment

b
3
 = Fq

4
t
2 
: B(AD) ← PC, B(OP) ← 0101 Transfer

PC Register

c
1
 = F’t

1 
:

+ (q
4
B

z
 + q

4
)Ft

3

+ (B
5
A’

16
 + B

4
A

16

+ B
3
A

z
 + B

2
E’)r

+ (B
12

N
9
 + B

10
U

9
)p: PC ← PC + 1 Increment

c
2
 = q

5
t
3 
: PC ← B(AD) Transfer

b
3
 = Fq

4
t
2 
: PC ← MAR Transfer

MAR Register

d
1
 = F’t

0 
: MAR ← PC Transfer

d
1
 =F’t

0 
: MAR ← B(AD) Transfer

I Register

i
1
 = F’t

2 
: I ← B(OP) Transfer

E Flip-Flop

e
1
 = rB

11 
: E ← 0 Clear

e
2
 = rB

9 
: E ← E Complement

a
2
 = Fq

1
t
3 
: E ← carry Transfer

a
5
 = rB

8 
: E ← A

1
Shift-right
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which shows the part of the shift operation that changes the E flip-flop. Thus, the shift-right con-
trol variable a

5
 shifts the contents of A to the right and inserts the value of E into the leftmost bit 

of A. It also transfers the rightmost bit of A into E. 
The sequence register G does not have any listed microoperations in the previous tables. 

This register is shown in Fig. 11-6 to be a counter whose clock pulses are enabled by the start-
stop flip-flop S. This is included in Table 11-10 with the statement:

S: G ← G + 1

11.6.2 Design of Computer

The list of microoperations given in Table 11-10 provides the information needed to design the 
registers of the computer. The operations to be performed on each register are clearly demon-
strated by the listed statements. For example, program counter PC has three microoperations:

c
1
: PC ← PC + 1

c
2
: PC ← B(AD)

b
3
: PC ← MAR

This register must have increment and transfer capabilities. It can be implemented by means of 
a counter with parallel load of the type shown in Fig. 7-19. Since PC receives input information 
from two sources, it requires a multiplexer to select between the two inputs, as explained in con-
junction with Fig. 8-3. The other registers are designed in a similar manner.

A block diagram showing the types of registers needed for the computer is given in Fig. 
11-7. The memory unit is also included to show its connection to the processor. The control logic 

a
6
 = rB

7 
: E ← A

16
Shift-left

F Flip-Flop

f
1
 ← F¢(q

0
 + q

1
 + q

2

+ q
3
 + q

4
)t

3
 : F ← 1 Set

f
2
 ← Ft

3
: F ← 0 Clear

S Flip-flop

s
1
 = rB

1 
: S ← 0 Clear

G Register

S: G ← G  + 1 Count

U Register

u
1
 = pB

9 
: U

1 - 8
 ← A

1 - 8
, U

9
 ← 0 Transfer

N Register

a
8
 = pB

11 
: N

9
 ← 0 Clear
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provides all the control variables for the registers. The design of the control logic is discussed 
in the next section. The control variables that are generated in the control unit are applied to the 
registers as indicated in the diagram. In addition to the registers, the processor uses four multi-
plexers to select from two or more sources. All the registers and multiplexers are MSI functions 
available in standard integrated circuits. The three flip-flops, E, F, and S, and their corresponding 
combinational logic must be designed with SSI gates and flip-flops.

All of the registers in the computer, except register A, require a load, increment, or both 
load and increment control inputs. One can choose to employ an MSI counter with parallel load 
for all registers. In this manner, it would be possible to have an inventory of just one standard 
type of IC component for the registers. A possible commercial component is IC type 74161. 

i1

f1
f2

s1

u1

e1 – a6

a1 – a8

a8

b2

b1
b3

s1

s0

s

c1

d1

d2

c2

b3

0 1

MUX

MAR

s
0 1

MUX

0 1

MUX

s
0 1

MUX

2

F
E

S

PC

G Register U Register N Register

A Register

I Register

B Register

Address

Load
Inc

Load

Inc

Load

Load

Load
Count

W
R

B1–12

B1–12

B13 –16

B1–16

Memory
    unit

Control logic
      and
  decoders

Control outputs

Figure 11.7 Detailed block diagram for computer
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This MSI circuit contains a 4-bit counter with parallel load and an asynchronous clear input. The 
clear inputs of the registers can be connected to a master reset switch in the computer to clear all 
registers asynchronously prior to the clocked operations. The 12-bit registers, PC and MAR, will 
need three such ICs, and the 16-bit register, B, will require four ICs. The I and G registers can be 
implemented with one IC each. The 4-bit counter, IC, can be converted to a 2-bit counter for G 
by the method outlined in Section 7-5, in conjunction with Fig. 7-20.

The A register is the most complicated register because it performs all the processing tasks 
for the computer. This register is an accumulator register of the type designed in Section 9-10 
and can use the configuration shown in Fig. 9-22. It can also be implemented with a bidirectional 
shift register with parallel load, as shown in Fig, 7-9, together with an ALU of the type discussed 
in Section 9-6. A better choice would be to use an accumulator MSI circuit such as type 74S281 
IC. When implemented with an ALU or accumulator IC, the control unit must generate the cor-
responding control variables to select the required microoperations in the ALU. These will be 
different from the single control functions defined for the control unit in this design.

Input register N and output register U can be part of a standard teletypewriter interface. 
Integrated circuits that interface with a teletypewriter unit are available commercially and are 
usually called universal asynchronous receiver- transmitters (abbreviated UART). Such an IC 
includes an input register and an output register within the unit, together with the two flags requi-
red for synchronizing the transfer.

Three of the multiplexers in Fig. 11-7 select between two input sources. When the select 
input marked with an s is 1, MUX input number 1 is selected. When s = 0, MUX input num-
ber 0 is selected. The multiplexer associated with register B has three input sources. Selection 
variables s

1
 and s

0
 determine the selected input. When both selection lines are 0, the selected 

input comes from PC. The memory-read signal R makes s
0
 = 1 while s

1
 remains 0 (because b

1
 

= 0 when R = 1). With s
1
s

0
 = 01, MUX input number 1 is selected and this input comes from 

the memory unit. Similarly, control variable b
1
 produces a selection s

1
s

0
 = 10, which causes the 

contents of register A to be selected.
The entire computer shown in Fig. 11-7 can be enclosed within a single IC package to 

form a microcomputer. A typical microcomputer IC normally has added features in the proces-
sor section, but includes a smaller memory. Most of the memory in a microcomputer is usually 
of the ROM type. The internal design of a microcomputer chip requires that the logic of the 
computer be defined with a set of Boolean functions that specify all gates and flip-flops in the 
system. The Boolean functions that implement each register in the system can be derived by 
the method presented in Section 9-10 for the design of registers in terms of Boolean functions.

11.7 Design of Control

The control unit of the computer generates the control variables for the registers and memory 
unit. There are 24 distinct control variables and all of them are listed in Table 11-10 as control 
functions. In Chapter 10, we presented three methods for control logic design: hard-wired con-
trol, PLA control, and microprogram control. The control unit of the computer can be designed 
using any one of these three methods.

11.7.1 Hard-wired Control

The control organization presented in Fig. 11-6 is essentially a hard-wired organization of the se-
quence register and decoder method. Sequence register G in this case is a counter, and the timing 
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decoder provides four control states for the system. A second decoder is used for the operation 
code stored in the I register. The control-logic-network block generates all the control functions 
for the computer.

The implementation of the control logic network in Fig. 11-6 completes the design of the 
hard-wired control. This implementation consists of combinational gates that generate the 24 
control functions listed in Table 11-10. The Boolean functions listed as control functions specify 
the Boolean equations from which the combinational circuit can be derived. This circuit will not 
be drawn here but can be easily obtained from the 24 Boolean functions that define the control 
variables R, W, a

1
, through a

8
, b

1
, b

2
, b

3
, c

1
, c

2
, d

1
, d

2
, i

1
, e

1
, e

2
, f

1
, f

2
, s

1
, and u

1
.

11.7.2 PLA Control

The PLA control is similar to the sequence register and decoder method, except that all combi-
national circuits are implemented within the PLA. The two decoders are included inside the PLA 
implementation, since they are combinational circuits. The total number of control outputs is 24. 
The total number of PLA inputs is also 24. A 24-input, 24-output PLA may not be available in 
one commercial IC package. For this reason, the control unit should be partitioned in such a way 
so it can be implemented with a minimum number of PLA ICs.

One way to partition the control is according to the function tables presented in Section 11-
5. The register-transfer statements in this section are listed in Tables 11-5 through 11-9. The PLA 
control partitioned according to these tables is shown in Fig. 11-8. This implementation replaces 
the hard-wired control of Fig. 11-6.

Figure 11-8 shows three PLAs and two registers for the control unit. The two decoders are 
not needed here, since they are implemented inside the PLA. Note that there are no connections 
from the outputs of any PLA to the inputs of sequence register G. A feedback connection is not 
necessary because the G register is a counter and the next state is predetermined from the con-
tinuous count sequence. PLA 1 implements the control variables listed in Table 11-5 (fetch cycle) 
and Table 11-6 (common operations for execute cycle). These control variables depend on the 
timing variables from G, the operation code from I, and the cycle control in F. PLA 2 implements 
the control functions listed in Table 11-7 (execution of memory-reference instructions). These 
control functions have the same input variables as PLA 1, with the addition of binary variable B

z
. 

Remember that B
z
 is a binary variable equal to I when the B register contains all 0’s.

The third PLA generates the register-reference and input-output control functions listed in 
Tables 11-8 and 11-9. These control functions have two common variables:

r = q
6
t
3
  for the register-reference operations

p = q
7
t
3  

for the input-output operations

These two common variables are generated in PLA 1 and applied as inputs to PLA 3. The other 
inputs to the third PLA come from register B (bits 1-12) and other status-bit conditions.

Control variable c
1
 increments the program counter. This control variable is generated in all 

three PLAs. The three outputs must be combined with an external OR gate to provide a single 
output. This output is applied to the increment input of PC

The derivation of the program tables for the three PLAs completes the control design. The 
PLA 1 program table can be obtained from the control functions listed in Tables 11-5 and 11-6. 
These functions are repeated again in Table 11-11 for convenience. Some of the functions have 
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been simplified for entry in the program table. For example, the read control variable R was 
originally listed as:

R = F′t
1
 + F(q

0
+ q

1
 + q

3
)t

3

The decoded output variables q
0
, q

1
, and q

3
 are a function of the variables in the I register and can 

be simplified as follows;

q
0
+ q

1
 + q

3
 = I′

3
I′

2
I′

1
 + I′

3
I′

2
I

1
 + I′

3
I

2
I

1
 = I′

3
I

1
 + I′

3
I′

2

Since the PLA accepts the I variables rather than the q variables, it is more convenient to use 
the two-term function rather than the three-term function. Control variable f

1
 is simplified in a 

f1

f2 s1

u1

a8
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b1
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F F
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E
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Figure 11.8 PLA control for computer
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similar manner. The other Boolean variables need a translation from the t designation to a state 
in the sequence register G and from the q designation to the corresponding operation code in the 
I register.

The program table for PLA 1 is given in Table 11-12. The PLA has 6 inputs, 12 product 
terms, and 10 outputs. The entries for G

2
 and G

1
 are 00, 01, 10, and 11 and correspond to timing 

variables t
0
, i

1
, t

2
, and t

3
, respectively. The entry for I

3
, I

2
, and I

1
, is a binary number equal to the 

value of subscript i in q
i
, unless the function is simplified. Note that register I has four bits, but 

I
4
 is not used since it is always 0. The procedure for obtaining a PLA program table from a set of 

Boolean functions is explained in Section 5-8.

Table 11-11 Control functions for PLA 1

d
1
 = F′t

0
 : MAR ← PC

c
1
 = F′t

1
 : PC ← PC + 1

R = F′t
1
 + F(I’

3
I

1
 + I’

3
I’

2
)t

1
 : B ← M

i
1
 = F′t

2
 : I ← B(OP)

f
1
 = F′(I’

3
 + I′

2
I′

1
)t

3
 : F ← 1

c
2
 = q

5
t
3
 : PC ← B(AD)

d
2
 = Ft

0
 : MAR ← B(AD)

f
2
 = Ft

3
 : F ← 0

r = q
6
t
3
 : Register reference

p = q
7
t
3
 : Input-output

Table 11-12 Program table for PLA 1

Product 
term

Inputs Outputs

I
3

I
2

I
1

F G
2

G
1

d
1

c
1

R i
1

f
1

c
2

d
2

f
2

r p

1 - - - 0 0 0 1 - - - - - - - - - F′t
0

2 - - - 0 0 1 - 1 1 - - - - - - - F′t
1

3 0 - 1 1 0 1 - - 1 - - - - - - - FI′
3
I

1
t
1

4 0 0 - 1 1 0 - - 1 - - - - - - - FI′
3
I′

2
t
1

5 - - - 0 1 0 - - - 1 - - - - - - F′t
2

6 0 - - 0 1 1 - - - - 1 - - - - - FI′
3
t
3

7 - 0 0 0 1 1 - - - - 1 - - - - - FI′
2
I′

1
t
3

8 1 0 1 - 0 1 - - - - - 1 - - - - q
5
t
3

9 - - - 1 1 0 - - - - - - 1 - - - Ft
0

10 - - - 1 1 1 - - - - - - - 1 - - Ft
3

11 1 1 0 - 1 1 - - - - - - - - 1 - q
6
t
3

12 1 1 1 - 1 1 - - - - - - - - - 1 q
7
t
3
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The program table for PLA 2 can be derived in a similar manner, although it is not listed 
here. The third PLA requires 12 AND terms and a 6-input OR gate (to generate control variable 
c

1
). This part of the control may be implemented more economically with SSI gates or with a 

field-programmable gate array (FPGA). The FPGA’s similar to the FPLA in concept, except that 
it contains only programmable AND gates. A typical FPGA has 9 AND (or NAND) gates shar-
ing 16 common inputs.† Two such FPGA integrated circuits are required to replace PLA 3 in  
Fig. 11-8. The external OR gate can be combined with the other lines that generate variable c

1
.

11.7.3 Microprogram Control

The organization of the control unit for the computer is more suitable for a PLA control than 
for a microprogram control, mostly because of the way the register-reference instructions were 
originally formulated. The microprogram control configuration to be developed here implements 
the control functions for the fetch cycle and the memory-reference instructions. The register-
reference and input-output operations can be implemented more efficiently with a hard-wired or 
PLA control.

The microprogram control does not need the I, G, and F registers. The operation code is 
in B(OP) at the end of the fetch cycle, and this code can be used to specify a macrooperation 
address for control memory without the need for an I register. The timing variables generated in 
the sequence register G can be replaced by a sequence of clock pulses that read consecutive mi-
croinstructions from control memory. The transfer from the fetch cycle to the execute cycle can 
be done in control memory by a branch microinstruction that transfers control to the next cycle 
without the use of the F flip-flop. The microprogram control configuration to be developed here 
replaces the entire hard-wired control of Fig. 11-6 (except the B register).

Going over Tables 11-5, 11-6, and 11-7, we note that all microinstructions can be sequenced 
by incrementing the control memory address, except for going to execute a particular memory-
reference instruction or for returning to the fetch cycle. A particular memory-reference instruc-
tion routine can be accessed with an external macrooperation address. If we start the fetch cycle 
from address 0, it would be possible to branch to the fetch cycle by clearing the control memory 
address register CAR. Therefore, the address-sequencing part of the microprogram control needs 
only three operations:

1. Increment CAR to read the next microinstruction in sequence.

2. Clear CAR to start the fetch cycle.

3. Provide a bit transformation from B(OP) to an external address for CAR.

A possible microprogram control for the computer is shown in Fig. 11-9. The control memory 
ROM has 32 words of 7 bits each. The first four bits are encoded to provide 16 bit combina-
tions, one for each control function. Although the computer has 24 control functions, 16 are 
sufficient to generate those control functions associated with the fetch cycle and the execution of 
the memory-reference instructions. Instead of using 16 bits of ROM to specify 16 outputs, we 
chose to employ only 4 bits and decode them through a 4-to-16 line decoder to provide up to 16 
distinguishable output variables. This scheme saves ROM bits but requires an external decoder. 

†IC type 82S103 from Signetics.
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It also limits the capability of the microinstructions because only one control function can be 
specified in any given microinstruction.

The address-sequencing part of the microprogram unit does not require a multiplexer to se-
lect status-bit conditions. There is only one status bit to be considered and we will show later how 
this can be included with an external circuit. There is no need for an address field in the microin-
struction because no branching capabilities are provided except to return to the beginning of the 
fetch cycle or to transfer an external address. The last three bits of a microinstruction determine 
the next address. Bit 7 increments the control address register. Bit 6 clears CAR, which causes a 
return to the fetch cycle. Bit 5 loads an external address into CAR. The input address must con-
tain 5 bits because the ROM has 32 = 25 words. Three of these bits come from the B-register part 
that holds the operation-code. The last two bits are always equal to 11. This is a code transforma-
tion from the operation-code bits of the instruction to an external address for control memory. 
This transformation causes the AND instruction whose operation code is 000 to be changed into 
an address for CAR equal to 00011. The ADD instruction transforms from 001 to 00111; and so 
on, up to an input-output instruction whose operation code is 111 and whose address transforma-
tion is 11111. The most significant bit in B(OP) is not used because it is always 0.

The microprogram control unit shown in Fig. 11-9 is very simple and requires only three 
MSI circuits. Because of its simplicity, it is not very flexible and, as shown subsequently, requires 
additional circuits for a complete control-unit implementation.

The microoperations for the fetch cycle and the execution of memory-reference instruc-
tions are listed in Tables 11-5, 11-6, and 11-7. The microoperations for the I and F registers are 
not needed, since these registers are not used. The remaining microoperations and their encoded 
control functions are listed in Table 11-13. The first four bits of a ROM word in control memory 
provide 16 combinations, and each combination specifies a microoperation. The all-0’s and all-
1’s combinations do not initiate a microoperation. The other 14 combinations are decoded to 
provide control variables for the listed microoperations. Decoder output 14 initiates the memory-
write operation, M ←  B, and also specifies a conditional control for incrementing PC dependent 

1

14

3

1

  4 × 16
decoder

B(OP) 0

15

2

1

3

2

32 × 7
 ROM

7

6

5

4CAR

1
Not
used

Increment

Clear

Load input

Figure 11.9 Microprogram control unit for computer
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on variable B
z
. The reason for repeating these two microoperations in one microinstruction will 

be clarified later. Note that the memory-write microoperation is also initiated with decoder out-
put 11, and the control variable that increments PC is also available from decoder output 2.

The microprogram for control memory is given in Table 11-14. This is also the truth table 
for programming the ROM. There are 32 words of ROM, and the address and content of each 
word are specified in the table. The table is subdivided into nine routines showing the micro-
instructions that belong to the fetch cycle and the microinstructions for executing each of the 
computer instructions. The symbolic designation column gives the microprogram in symbolic 
form and the address sequencing for CAR.

The fetch cycle starts from address 0. The three consecutive microoperations in the fetch 
routine transfer the contents of PC to MAR, read the instruction into the B register, and increment 
PC, At address 2 (0010), bit 5 of the microinstruction is equal to 1. The same clock pulse that 
increments PC also performs the microoperation:

CAR ← 22B(OP) + 3

B(OP) contains the three bits of the operation code. These bits are shifted twice to the left (multi-
plied by 22) and binary 3 (11) is added to form an address for CAR. The address received in CAR 
transfers control to one of the routines listed in the table, and control continues to execute the 
specified instruction. The implementation of this code transformation is depicted in Fig. 11-9.

Table 11-13 Encoding of ROM bits for microoperations

ROM bits
Decoder 
output

Control 
function Microoperation1 2 3 4

0 0 0 0 0 - None

0 0 0 1 1 d
1 MAR ← PC

0 0 1 0 2 c
1 PC ← PC + 1

0 0 1 1 3 R B ← M

0 1 0 0 4 c
2 PC ← B(AD)

0 1 0 1 5 d
2 MAR ← B(AD)

0 1 1 0 6 r Register-reference operation

0 1 1 1 7 p Input-output operation

1 0 0 0 8 a
1 A ← A L B

1 0 0 1 9 a
2 A ← A + B, E ← carry

1 0 1 0 10 b
1 B ← A

1 0 1 I 11 W M ← B

1 1 0 0 12 b
2 B ← B + 1

1 1 0 1 13 b
3 B(AD) ← PC, B(OP) ← 0101, PC ← MAR

1 1 1 0 14 W, c
1 M ← B, if (B

z
 = 1) then (PC ← PC + 1)

1 1 1 1 15 - None
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Table 11-14 ROM truth table for microprogram control

Instruction ROM 
address

ROM outputs Symbolic designation

1 2 3 4 5 6 7 Microoperations Next address

FETCH 00000 0 0 0 1 0 0 1 MAR ← PC CAR ← CAR + 1

00001 0 0 1 1 0 0 1 B  ← M CAR ← CAR + 1

00010 0 0 1 0 1 0 0 PC ← PC + 1 CAR ← 22B(OP) + 3

AND 00011 0 1 0 1 0 0 1 MAR ← B(AD) CAR ← CAR + 1

00100 0 0 1 1 0 0 1 B  ← M CAR ← CAR + 1

00101 1 0 0 0 0 1 0 A ←A L B CAR ← 0

00110 0 0 0 0 0 1 0 None CAR ← 0

ADD 00111 0 1 0 1 0 0 1 MAR ← B(AD) CAR ← CAR + 1

01000 0 0 1 1 0 0 1 B ← M CAR ← CAR + 1

01001 1 0 0 1 0 1 0 A ← A + B, E ← carry CAR ← 0

01010 0 0 0 0 0 1 0 None CAR ← 0

STO 01011 0 1 0 1 0 0 1 MAR ← B(AD) CAR ← CAR + 1

01100 1 0 1 0 0 0 1 B ← A CAR ← CAR + 1

01101 1 0 1 1 0 1 0 M ← B CAR ← 0

01110 0 0 0 0 0 1 0 None CAR ← 0

ISZ 01111 0 1 0 1 0 0 1 MAR ← B(AD) CAR ← CAR + 1

10000 0 0 1 1 0 0 1 B ← M CAR ← CAR + 1

10001 1 1 0 0 0 0 1 B ← B + 1 CAR ← CAR + 1

10010 1 1 1 0 0 1 0 M ← B. if (B
z
 = 1) then 

(PC ← PC + 1)
CAR ← 0

BSB 10011 0 1 0 1 0 0 1 MAR ← B(AD) CAR ← CAR + 1

10100 1 1 0 1 0 0 1 B(AD) ← PC, PC ← 
MAR

CAR ← CAR + 1

10101 1 0 1 1 0 0 1 M ← B CAR ← CAR + 1

10110 0 0 1 0 0 1 0 PC ← PC + 1 CAR ← 0

BUN 10111 0 1 0 0 0 1 0 PC ← B(AD) CAR ← 0

11000 0 0 0 0 0 1 0 None CAR ← 0

11001 0 0 0 0 0 1 0 None CAR ← 0

11010 0 0 0 0 0 1 0 None CAR ← 0

REGISTER 11011 0 1 1 0 0 1 0 Register operation CAR ← 0

11100 0 0 0 0 0 1 0 None CAR ← 0

11101 0 0 0 0 0 1 0 None CAR ← 0

11110 0 0 0 0 0 1 0 None CAR ← 0

I/O 11111 0 1 1 1 0 1 0 Input-output operation CAR ← 0

www.youseficlass.ir



Computer Design 437 

This configuration assigns four words of ROM for each instruction, except for the I/O in-
struction. For example, the ISZ instruction has operation code 011. The beginning of the routine 
that executes this instruction is at address 4 × 3 + 3 = 15, which is binary 01111. The four ROM 
words for this routine are at addresses 15, 16, 17, and 18. We cannot use the word at address 19 
because this address contains the first microinstruction for the BSB routine. Since there are no 
branching capabilities in this microprogram unit, we cannot branch to an unused ROM word; 
therefore, each routine must be completed with no more than four microinstructions.

The AND routine can be implemented with three microinstructions. The address of the 
instruction is transferred into MAR, the operand is read from memory into B, and the AND mi-
crooperation is performed between the A and B registers. The last microinstruction at address 5 
(00101) has bit 6 equal to 1. This causes CAR to be cleared, and control returns to address 0 to 
start the fetch cycle again. The first two microinstructions of the AND routine have bit 7 equal 
to 1, which causes CAR to be incremented. The last word in this routine at address 6 is not used. 
This word cannot be left empty because we must specify something for the ROM truth table. The 
best way to fill in this word is to specify no microoperation in bits 1 through 4 and to clear CAR 
with bit 6. In this way, if a malfunction occurs and control memory finds itself in address 6, no 
operation will be executed and control will return to, the fetch cycle.

The ADD and STO routines need three microinstructions. The BSB instruction uses all four 
words available for the routine. The BUN instruction needs only one microinstruction. A register-
reference instruction initiates a control variable r, which must be used in conjunction with a bit 
in the B register to initiate one of the specified operations. The same applies to an input-output 
(I/O) instruction.

The ISZ routine needs four microoperations and a conditional operation dependent on 
the value of B

z
. This imposes a problem, because there are only four ROM words available for 

this routine and the microprogram configuration has no facility for checking status-bit condi-
tions. This problem can be solved by including two microoperations in one microinstruction and 
checking the status bit with an external AND gate. To compensate for this unorthodox configura-
tion, we insert an external circuit as shown in Fig. 11-10. The ROM decoder has two outputs for a 

BZ

Register operation

Input-output operation  ROM
decoder

Other inputs

Hard-wired
   control
      or
   PLA 3
of Fig.11-8

  Register
     and
input-output
  operation

Increment PC

if BZ = 1 

W

M ← B

M ← B, inc PC

c1

p

r

2

14

11

7

6

Figure 11.10 Additional circuits for microprogram control
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memory-write operation M ← B:. one in output 11 and the other in output 14. These two outputs 
are ORed externally to provide one common output. Output 14 of the decoder is enabled during 
the fourth microinstruction of the ISZ routine. This output is ANDed externally with status bit B

z 

to provide the increment-PC control function. Decoder output 2 also specifies an increment-PC. 
Some of the operations in the register-reference and input-output instructions specify this opera-
tion as well. The three outputs must be ORed together to form a single output for incrementing 
PC. Variables r and p from the ROM decoder are used in conjunction with other status-bit condi-
tions to generate the remaining control variables for the computer. These control variables can be 
generated with an external hardwired configuration or with a PLA as indicated in the diagram.

11.8 Computer Console

Any computer has a control panel or console with switches and lamps to allow manual and visual 
communication between an operator and the computer. This communication is needed for start-
ing the operation of the computer (bootstrapping) and for maintenance purposes. For the sake of 
completeness, we shall enumerate a set of useful console functions for the computer, although 
the circuits required to implement these functions will not be shown.

Lamps indicate to the operator the status of registers in the computer. The normal output 
of a flip-flop connected to an indicator lamp will cause the lamp to light when the flip-flop is set 
and to turn off when the flip-flop is cleared. The registers whose outputs are to be observed in the 
computer console are: A, B, PC, MAR, I, E, F and S. When a count is made of the total number 
of flip-flops involved, we find that 63 indicator lamps are needed.

A set of switches and their functions for the console may include the following:

1. Sixteen “word” switches to set manually the bits of one word.

2. A “start” switch to set the S flip-flop. The signal from this switch also clears flip-flop F, 
N

9
, U

9
 and register G.

3. A “stop” switch to clear the S flip-flop. To ensure the completion of the current instruc-
tion, the signal from the switch is ANDed with the Boolean function (F + q

5
 + q

6
 + q

7
)

t
3
 before it is applied to clear S.

4. A “load address” switch to transfer an address to the PC register. When this switch is 
activated, the contents of 12 “word” switches are transferred to PC.

5. A “deposit” switch to manually store words into memory. When this switch is activated, 
the content of PC is transferred to MAR and a memory cycle is initiated. After 1 ms, the 
contents of the 16 “word” switches are transferred into the B register and PC is incre-
mented by 1.

6. A “display” switch to examine the content of a word in memory. When this switch is 
activated, the content of PC is transferred to MAR, a memory cycle is initiated, and PC is 
incremented by 1. The contents of the memory word specified by the address in PC are 
in register B and can be seen in the corresponding indicator lamps.

To ensure that the computer is not running when the power is turned on, the S flip-flop must 
have a special circuit that forces it to always turn to the clear position right after the application 
of power to the machine.
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PROBLEMS

11-1.  Go over the instruction set of the computer designed in this chapter (Tables 11-2, 11-3, and 11-4) and 
list all those instructions that are useful for:

(a) transfers between memory and accumulator;

(b) transfers between input-output and accumulator;

(c) arithmetic manipulations;

(d) logic operations;

(e) shift operations;

(f) control decisions based on status conditions;

(g) subroutine branch and return.

11-2.  (a) List the sequence of instructions for the computer to perform an arithmetic right-shift of a num-
ber stored in the accumulator. The number is in sign-2’s-complement representation, (b) Repeat for 
an arithmetic left-shift. Indicate how an overflow can be detected.

11-3.  Show that the list of instructions obtained in problem 11-1(d) constitutes a sufficient set for imple-
menting all 16 logic operations listed in Table 2-6.

11-4.  (a) Write a sequence of three instructions to be stored in memory locations 1, 2, and 3. They should 
check if a character is available in the input device and, if so, transfer it to the accumulator, (b) Write 
a sequence of three instructions to be stored in memory locations 5, 6, and 7. They should check if 
the output device is empty and, if so, transfer a character from the accumulator.

11-5.  The computer described in this chapter does not have an overflow indication after two signed num-
bers are added. Assume that the two numbers added with the ADD instruction are in sign-2’s-com-
plement representation. Derive an algorithm in flowchart form for a computer program that will add 
the two numbers and detect an overflow.

11-6.  The following program is a list of instructions in hexadecimal code. The computer executes the ins-
tructions starting from hexadecimal location 100.

(a) Write the program in symbolic form. Note that the last two values are operands.

(b) Determine the contents of register A when the computer halts, and explain what the program 
accomplishes.

www.youseficlass.ir



440 Chapter 11

Location Instruction

100 6800

101 1106
102 6200
103 6020
104 1107
105 6001
106 0063
107 0074

11-7.  An instruction in address (021)
16

 in the computer has the operation-code of the AND instruction and 
an address part (983)

16
. The memory word at address (083)

16 
contains the number (B8F2)

16
. Register 

A contains (A937)
16

. Tabulate the contents of registers PC, MAR, B, A, and I, after the instruction is 
executed. Repeat the problem five more times, each time starting with the operation-code of another 
memory-reference instruction.

11-8. The memory access time for the computer was assumed to be less than 1 ms, so a memory read or 
write operation can be terminated during a clock pulse interval. Now assume that the memory has an 
access time of 2 ms. How many microseconds would it take to execute the ISZ instruction, including 
the time to fetch the instruction from memory?

11-9. The ADD instruction assumes that the numbers are either unsigned or in sign-2’s-complement form, 
since all 16 bits of the numbers are added. It is required to change the hardware execution of this 
instruction (hexadecimal code 1) so that it will add numbers in sign-1’s complement representation

(a) Modify the register-transfer statements for the ADD instruction in Table 11-7.

(b) Can the modified instruction be used to add two unsigned binary numbers?

(c) What is the circuit that is now needed to detect the zero content of register A for the SZA ins-
truction?

11-10. The computer designed in this chapter does not use the hexadecimal operation codes 8 to F, even 
though the instruction has four bits for the operation pan. We now add the following instructions to 
the computer. List the register-transfer statements that must be added to Tables 11-5, 11-6, and 11-7 
for the execution of these new instructions.

Symbol Hexadecimal code Description Function

ORA 8 m OR to A A ← A ∨ M

XRA 9 m Exclusive-OR to A A ← A ⊕ M

SWP A m Swap A with memory A ← M, M ← A

SUB B m Subtract A from memory A ← M - A

BSA C m Branch and save address in A A ← PC, PC ← m

BPA D m Branch on positive A If (A > 0) then (PC ← m)

BNA E m Branch on negative A If (A < 0) then (PC ← m)

BZA F m Branch on zero A If (A = 0) then (PC ← m)

11-11. The computer designed in this chapter uses an F flip-flop to distinguish between the fetch and exe-
cute cycles. This flip-flop is not needed if the sequence register G is a 3-bit counter and its decoder 
supplies eight timing signals, t

0
 through t

7
. The G register can be cleared as soon as the execution 
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of the instruction is completed. (This is the way the control was designed in the simple computer of 
Section 8-12.)

(a) Revise Tables 11-5, 11-6, and 11-7 to conform with this new control scheme.

(b) Determine the time of execution of each instruction, including the time to fetch the instruction.

11-12. List the register-transfer statements for the execution of the instructions listed below. Assume that 
the computer does not have an F flip-flop, but that the sequence register G has 16 timing variables, 
t
0
 through t

15
. The G register must be cleared when the execution of the instruction is completed. The 

fetch cycle for the computer now is:

t
0
:  PC ← MAR

t
1
:  B ← M, PC ← PC + 1

t
2
:  I ← B(OP)

 Each of the following instructions starts the execute cycle from timing variable t
3
. The last statement 

must include the microoperation G ← 0.

Symbol Hexadecimal code Description Function

SBA 8 m Subtract from A A ← A - M

ADM 9 m Add to memory M ← A + M (A does not change)

BEA A m Branch if A equal If (A = M) then (PC ← m)
(A does not change)

11-13. Compare the register-transfer statements for the A register listed in Table 11-10 with the accumulator 
designed in Section 9-10. Design one typical stage of the A register for the computer using the pro-
cedure outlined in Section 9-10. Include the circuit for the zero-detection variable A

z
.

11-14. Draw the logic gates that generate control functions a
1
 through a

s
 for register A (Table 11-10).

11-15. One way to simplify a circuit when using the register-transfer method is to use common paths while 
developing the list of statements. To illustrate with a particular example, consider the multiplexer for 
the input to PC in Fig. 11-7. This multiplexer will not be needed if we can replace the statement:

Fq
4
t
2
: PC ← MAR

 by the statement.

Fq
4
t
2
: PC ← B(AD)

 in the BSB instruction of Table 11-7. Explain why this can be done and how it results in the removal 
of the multiplexer from the block diagram of the computer.

11-16. Design the G register of the computer using a 4-bit counter with parallel load of the type shown in 
Fig. 7-19.

11-17. List the program table for PLA 2 of Fig. 11-8.

11-18. Change the AND instruction of the computer to an OR instruction and modify the microprogram of 
Table 11-14 accordingly. Assign the OR microoperation to decoder output 15 in Table 11-13.

11-19. Change the BSB instruction of the computer to the BSA instruction defined in problem 11-12. 
Modify the microprogram of Table 11-14 to conform with this change. The encoding of ROM bits in 
Table 11-13 may also need a change.
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11-20. Design a microprogram control unit for a computer that implements the fetch cycle and the exe-
cution of the memory-reference instructions listed in Table 11-2 and problem 11-12. Include two 
outputs for register-reference and input-output operations.

11-21. Write short notes on

(a) Program counter.

(b) Instruction register.

(c) Sequence register.

(d) Computer console.

11-22. Differentiate between 

(a) Fetch Cycle & Execute Cycle.

(b) Register-reference instructions & Input-output instructions.

11-23. Register A contains (A848)
16

 and the value of E is 0. Tabulate the contents of register E, A, B, and 
PC after the execution of the CLA instruction. Repeat the problem 13 more times, each time staring 
from another one of the register reference instructions. The initial value of PC is (023)

16.

11-24. List the sequence of instructions for the  computer that will 

(a) Reset flip-flip E

(b) Set flip-flip F.

(c) Set flip-flip S.

11-25. Starting from the register-transfer statement given in Table 11-10 for the F flip-flop, derive the input 
Boolean functions for F. Use T flip-flip.

11-26. An 8-bit counter with parallel load is enclosed in one IC package. How many ICs are needed to 
construct the following computer registers: PC, MAR, B, I and G.? 
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Microcomputer System Design

12.1 Introduction

A digital system is defined by the registers it contains and the operations performed on the binary 
information stored in the registers. Once a digital system is specified, the role of the designer 
is to develop the hardware that implements the required sequence of operations. The number of 
distinct microoperations in a given system is finite. The complexity of the design is in sequenc-
ing the operations to achieve the intended data processing task. This involves the formulation of 
control functions or the development of a microprogram. A third alternative is to use a micro-
computer to implement the digital system. With a microcomputer, the sequence of operations can 
be formulated with a set of instructions that constitutes a program.

A digital system can be constructed by means of MSI circuits such as registers, decoders, 
ALU, memory, and multiplexers. Such a custom-made system has the advantage that it can be 
tailored to the needs of the particular application. However, a digital system constructed with 
MSI circuits would require a large number of IC packages. Moreover, any modifications that 
may be required after the system has been constructed must be accomplished by means of wiring 
changes among the components.

Some digital systems are suitable for LSI design with components such as processor unit, 
microprogram sequencer, and memory unit. These systems can be microprogrammed to fit the 
required specifications. The microprogram method operates at the register-transfer level and 
must specify each microoperation in the system. The microprogram LSI organization uses fewer 
ICs than the MSI implementation.

The number of IC packages can be further reduced if the digital system is suitable for con-
struction with microcomputer LSI components. These components can be classified by function 
as follows:

1. A microprocessor, which is a central processor unit (CPU) enclosed in one LSI package.

2. Random-access memory (RAM) and read-only memory (ROM) chips that can be com-
bined to form any memory size needed for an application.

3. Programmable interface units whose function is to interface between the CPU or mem-
ory and a wide variety of input and output devices.

The user can interconnect these LSI components to form a microcomputer system that fits the 
design requirements and thus reduce drastically the number of IC packages.
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A microprocessor combined with memory and interface modules is called a microcom-
puter. The word micro is used to indicate the small physical size of the components involved. 
The second part of the word in microprocessor and microcomputer is what really sets them apart. 
Processor is used to indicate that section of the system which performs the basic functions to 
execute instructions and to process data as specified by a program. This part is usually called the 
CPU. The term microcomputer is used to indicate a small-size computer system consisting of 
the three basic units: CPU, memory, and input-output interface. The microprocessor is usually 
enclosed in one IC package called a microprocessor chip. A microcomputer in most cases refers 
to an interconnection of LSI components. On the other hand, some microprocessor chips include 
within the package not only the CPU, but also a portion of the memory as well. Such an LSI 
component is sometimes called a one-chip microcomputer.

A microcomputer can be used as a low-cost, general-purpose computer to provide process-
ing capabilities similar to those of any other computer system. Although this is an important 
application, it is not the one we want to emphasize. In many applications, the microcomputer 
is used as a special-purpose digital system to provide the register-transfer operations for the 
system. This has the advantage that a few LSI packages replace the large number of MSI cir-
cuits that would be otherwise needed to generate these operations. Another advantage is that the 
register-transfer operations for the system can now be specified with a program. The program 
for a special-purpose application is unalterable, and for this reason it can be stored in a read-
only memory. Once a fixed program resides in ROM, there is no behavioral difference between a 
microcomputer-controlled digital system and a custom hardware design.

The most important feature of the microcomputer is that a special-purpose digital sys-
tem having a dedicated application can be designed by writing a program for a general-purpose 
digital computer. The execution of the fixed, unalterable program causes the microcomputer to 
behave in a prescribed manner, just as a corresponding MSI-based digital system would behave. 
This method of digital design was not economically feasible to implement before the develop-
ment of small, inexpensive microcomputer components.

The program stored in the ROM part of a microcomputer system is a computer program that 
needs no alterations. Since RAM is a volatile memory, turning power off and on again destroys 
the binary information stored in it. The ROM is a nonvolatile memory and the program stored in 
it is available every time power is turned on. A special-purpose digital system constructed with a 
microcomputer starts operating as soon as power is supplied since its program resides in ROM. 
For this reason, the ROM part of a microcomputer system is also called the program memory.

At this point we should distinguish between a microprogram and a microcomputer. Al-
though both use the prefix micro, the former is derived from the concept of microoperations, 
whereas the latter refers to the small size of the components. Both use a ROM to store a program 
that specifies the operations in the system. A microprogram stored in control memory imple-
ments the control unit in the CPU. The instructions stored in a microcomputer may be considered 
as macrooperations for the CPU rather than microinstructions for processor registers. Further-
more, the word microprogram refers to the way the control unit is implemented. A microcom-
puter is a small-size computer whose CPU may or may not have a microprogram control unit.

The low-cost, small-size microcomputer has changed the direction of digital logic design, 
Instead of realizing a set of register-transfer operations by control functions or a microprogram, 
logic functions are realized by specifying a set of instructions which are stored in ROM and ex-
ecuted in the microprocessor CPU. This method of design may be classified as a programmable 
logic method since the sequential operations are specified with a program stored in memory.
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The microprocessor is a central component in a microcomputer system. The amount and 
type of memory in the system, as well as the nature of the I/O interface units that are used, are a 
function of the particular application. The fixed program that resides in the ROM of a particular 
microcomputer system is also dependent on the specific application.

The design of a microcomputer system may be divided into two parts: hardware design and 
software design. The hardware design considers the interconnection of the physical components 
to provide a complete digital system. The software design is concerned with the development of 
the programs for a particular application. Writing programs for a microcomputer is essentially 
the same as writing programs for any other computer. The only difference is that a microcomputer 
programmer must be familiar with the hardware configuration and must take into consideration 
the problems associated with the particular application. Writing programs for an established 
general-purpose computer usually involves computational procedures which require very little, 
if any, knowledge of the hardware construction of the computer itself.

This chapter covers the hardware aspects of microcomputers without considering software 
problems. Writing a program for a microcomputer is similar to writing a microprogram for con-
trol memory, except that one must use the set of instructions for the commercial microprocessor 
selected. The study of software design is a subject that by itself could fill an entire volume.

In this chapter, we first define the various components of a microcomputer system and the 
way they communicate with each other. The organization of a typical microprocessor is then 
presented, and its internal and external operations are explained. Some important features com-
mon to all microprocessors are discussed. We then show the organization of the memory section 
and explain the various types of interface units commonly used in the design of microcomputer 
systems.

12.2 Microcomputer Organization

A typical microcomputer system consists of a microprocessor plus memory and I/O interface. 
The various components that form the system are linked through buses that transfer instructions, 
data, addresses, and control information among the IC components. Figure 12-1 shows the block 
diagram of a microcomputer system. Typically, the microcomputer has a single microprocessor. 
If many processors are included, then we have a multiprocessor system—which is a valid pos-
sibility. A number of RAM and ROM chips are combined to form a given memory size. The in-
terface units communicate with various external devices through the I/O bus. At any given time, 
the microprocessor selects one of the units through its address bus. Data are transferred to and 
from the selected unit and the microprocessor via the data bus. Control information is usually 
transferred through individual lines, each specifying a particular control function.

The purpose of the microprocessor is to provide a CPU which interprets instruction codes 
received from memory and to perform arithmetic, logic, and control operations on data stored 
in internal registers, memory words, or interface units. The microprocessor contains a number 
of registers, an arithmetic logic unit, and timing and control logic. Externally, it provides a bus 
system for transferring instructions, data, and control information to and from the modules con-
nected to it. The internal operations of a typical microprocessor and the functions of the control 
lines are described in Section 12-3.

The random-access memory is a read-write memory type and consists of a number of IC 
packages connected together. The RAM is used to store data, variable parameters, and inter-
mediate results that need updating and are subject to change. The ROM consists of a number 
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of IC packages and is used for storing programs and tables of constants that are not subject to 
change once the production of the microcomputer system is completed. The method of connect-
ing memory chips to the microprocessor is described in Section 12-6.

The interface units provide the necessary paths for transferring information between the 
microprocessor and external input and output devices connected to the I/O bus. The micropro-
cessor receives status and data information from external devices through the interface. It re-
sponds by sending control and data information for the external devices through the interface. 
This communication is specified by programmed instructions that direct data through the buses 
in the microcomputer system. The various interface modules available in microcomputers and 
their operation are presented in Section 12-7.

The communication between the LSI components in a microcomputer takes place via the 
address and data buses. The address bus is unidirectional from the microprocessor to the other 
units. The binary information that the microprocessor places on the address bus specifies a par-
ticular memory word in RAM or ROM. The address bus is also used to select one of many 
interface units connected to the system or to a particular register within an interface unit. A 
memory word and an interface register may be distinguished by assigning a different address 
to each. Alternatively, a control signal may be used to specify whether the address on the bus is 
for a memory word or for an interface register. The number of lines available in the address bus 
determines the maximum memory size that can be accommodated in the system. For n lines, 
the address bus can specify up to 2n words of memory. The typical length of a microprocessor  

Microprocessor

RAM

ROM

Interface
  units

I/O
bus

Data
 bus

Address
   bus

Control
  lines

Figure 12.1 Microcomputer system block diagram
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address bus is 16, providing a maximum memory capacity of 216 = 65,536 words. The amount of 
memory employed in a microcomputer system depends on the particular application and quite 
often is less than the maximum available in the address bus.

The data bus transfers data to and from the microprocessor and the memory or interface 
which is selected by the address bus. The data bus is bidirectional, which means that the binary 
information can flow in either direction. A bidirectional data bus is used to save pins in the IC 
package. If a unit did not use a bidirectional data bus, it would be necessary to provide separate 
input and output terminals in the IC package. The number of lines in the microprocessor data bus 
ranges from 4 to 16, with 8 lines being the most common.

A set of separate data and address buses is the most common transfer path found in micro-
processors. The advantage of this scheme is that a microprocessor can select a word in memory 
and transfer the data word at the same time. Some microprocessors use one common bus which 
is time-multiplexed for transfer of addresses or data. For example, a common 16-line bus can be 
used to transfer a 16-bit address, followed by a 16-bit data word to be written in memory. The 
advantage of this scheme is that fewer terminal pins are needed and yet data can be 16 bits wide. 
The disadvantages are the time lost in the sequential use of the common bus and the need for 
an external latch to hold the address for memory. Some microprocessors share only part of the 
system bus between data and address. A 16-line bus can use 8 bidirectional lines for data transfer 
and all 16 lines for transferring an address. This requires sharing of the data bus, since the ad-
dress is split between the 8 data-bus lines and the remaining available 8 lines.

Instead of using a microprocessor chip as shown in Fig. 12-1, some applications replace this 
block with a microcomputer chip. Typically, a microcomputer chip contains a CPU together with 
64 words of RAM and about 1024 words of ROM, all within one IC package. It also provides 
some features of an interface. If the digital system to be designed does not require more memory 
or additional interface capabilities, then the entire microcomputer system can be constructed 
with the single-chip microcomputer component. Thus a one-chip microcomputer can be used 
as a low-cost, small-size component for a stand-alone application. Most microcomputer chips 
can be expanded with external ROM, RAM, and interface capability to provide a more powerful 
control application. In subsequent discussions, the memory and interface will be separated from 
the CPU, but it must be realized that some of the memory and interface may be included within 
the IC package that contains the CPU.

To facilitate the development of special-purpose digital systems by means of a microcom-
puter, many sources offer a complete microcomputer unit on a single printed-circuit (PC) board. 
The microprocessor and a number of RAM, ROM, and interface ICs together with any other MSI 
and SSI chips needed to build a microcomputer unit, are all mounted on a single PC board. The 
IC terminals are connected through printed wires along the board to form a complete microcom-
puter unit. The user is given access to the interface for the I/O devices through the pins of the 
board connector. The connector also provides enough pins to accommodate all buses and allow 
for memory and interface expansion external to the board. Memory and interface expansion is 
also available in ready-made PC boards.

12.2.1 Bus Buffer

The bus system in a microprocessor is commonly implemented by means of bus buffers con-
structed with three-state gates. A three-state (or tri-state) gate is a digital circuit that exhibits 
three output states. Two of the states are signals equivalent to binary 1 and 0 as in conventional 
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gates. The third state is called a high-impedance state. The high-impedance state behaves as if 
the output is disabled or “floating,” which means that it cannot affect or be affected by an external 
signal at the terminal. The electronic circuit of a three-state gate is explained in Section 13-5 in 
conjunction with Fig. 13-16.

The graphic symbol of a three-state buffer gate is shown in Fig. 12-2. It has a normal input 
and a control input that determines the output state. When the control input is equal to binary 1, 
the gate behaves as any conventional buffer, with the output equal to the normal input. When the 
control input is 0, the output is disabled and the gate goes to the high-impedance state, regardless 
of the value in the normal input. The high-impedance state of a three-state gate provides a feature 
not available in other gates. Because of this feature, a large number of three-state gate outputs 
can be connected with wires to form a common bus line without endangering loading effects. 
However, no more than one gate may be in the active state at any given time. The connected gates 
must be controlled so that only one three-state gate has access to the bus line while all other gates 
are in a high-impedance state.

A bidirectional bus can be constructed with bus buffers to control the direction of informa-
tion flow. One line of a bidirectional bus is shown in Fig. 12-3. The bus control has two selection 
lines, s

i
, for input transfer and s

0
for output transfer. These selection lines control two three-state 

buffers. When s
i
 = 1 and s

0
= 0, the bottom buffer is enabled and the top buffer is disabled by going 

to a high-impedance state. This forms a path for input data coming from the bus to pass through 
the bottom buffer and into the system. When s

0
= 1 and s

i
 = 0, the top buffer is enabled and the 

bottom buffer goes to a high-impedance state. This forms a path for output data coming from the 
system to pass through the upper gate and out to the bus line. The bus line can be disabled by 
making s

i
 and s

0
both 0. This puts both buffers into a high-impedance state, which prevents any 

input or output transfer of information through the bus line. This condition must exist when an 

Normal input A

Control input C

Y = A if C =1
Y is disabled when C = 0

Figure 12.2 Graphic symbol for a three-state buffer gate

Output control

Input control

Data output

Data input

Bidirectional
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si

s0

   Bus disabled
(high impedence)

Figure 12.3 Bidirectional bus buffer
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external source is using the common bus line to communicate with some other component. The 
two selection lines can be used to inform the external modules connected to the bus of the state 
in which the bidirectional bus is at any given time.

In most cases, the drive capability of a microprocessor bus is limited, i.e., it can drive only 
a small number of external loads, When the bus is connected to a large number of external units, 
the drive capability of the microprocessor must be enhanced with external bus buffers, which are 
also available in IC form. Furthermore, any component that has separate input and output termi-
nals must be connected to the microcomputer bus system through external bus buffers in order to 
isolate the component when it is not communicating with the bus. Thus, a microcomputer system 
quite often needs external bus buffers between the microprocessor and the other LSI components 
and between certain LSI components and the common-bus system.

12.3 Microprocessor Organization

To guarantee a wide range of acceptability, a microprocessor must provide an internal organiza-
tion suited for a wide range of applications. The organizations of commercial microprocessors 
differ from each other, but they all have the common property of a central processor unit. As 
such, they are capable of interpreting instruction codes received from memory and of performing 
data processing tasks specified by a program. They also respond to external control commands 
and generate control signals for external modules to use.

12.3.1 Typical Set of Control Signals

Proper operation of a microprocessor requires that certain control and timing signals be provided 
to accomplish specific functions and that other control lines be monitored to determine the state 
of the microprocessor. A typical set of control lines available in most microprocessors is shown 
in Fig. 12-4. For completion, the diagram also shows the data bus, address bus, and power supply 

Data bus

Address bus

Write

Read

Interrupt request

Bus granted

Reset

Interrupt acknowledge

Clock input Clock output

Power supply

Bus request

Microprocessor

Figure 12.4 Control signals in a microprocessor
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input to the unit. The power requirement for a particular microprocessor is specified by the volt-
age level and current consumption that must be supplied to operate the IC.

The clock input is used by the microprocessor to generate multiphase clock pulses that pro-
vide timing and control for internal functions. Some microprocessors require an external clock 
generator to supply the clock pulses. In this case, the output clock is available from the clock 
generator rather than from the microprocessor itself. Some units generate the clock within the 
chip but require an external crystal or circuit to control the frequency of the clock. The clock 
pulses are used by external modules to synchronize their operations with the operations of the 
microprocessor.

The reset input is used to reset and start the microprocessor after power is turned on or 
any time the user wants to start the process from the beginning. The effect of a reset signal is to 
initialize the microprocessor by forcing a given address into the program counter. The program 
then starts executing with the first instruction at this address. The simplest way to initiate a reset 
is to clear the program counter and start the program from address zero. Some microprocessors 
respond to the reset signal by transferring the contents of a specified memory location into the 
program counter. The designer must then store the beginning address of the program at the ad-
opted memory location.

The interrupt request into the microprocessor typically comes from an interface module to 
inform the microprocessor that it is ready to transfer information. When the microprocessor ac-
knowledges the interrupt request, it suspends the execution of the current program and branches 
to a program that services the interface module. At the completion of the service routine, the 
microprocessor returns to the previous program. The interrupt facility is included to provide a 
change in program sequence as a result of external conditions. The interrupt concept and the 
method of responding to an interrupt request are discussed in Section 12-5.

The bus-request control input is a request to the microprocessor to temporarily suspend its 
operation and drive all buses into their high-impedance state. When the request is acknowledged, 
the microprocessor responds by enabling the bus-granted control output line. Thus, when an 
external device wishes to transfer information directly to memory, it requests that the micropro-
cessor relinquish control of the common buses. Once the buses are disabled by the microproces-
sor, the device that originated the request takes control of the address and data buses to conduct 
memory transfers without processor intervention. This feature is called direct memory access 
and is discussed in Section 12-8.

The read and write are control lines that inform the component selected by the address bus 
of the direction of transfer expected in the data bus. The read line informs the selected unit that 
the data bus is in an input mode and that the microprocessor will accept data from the data bus. 
The write line indicates that the microprocessor is in an output mode and that valid data are avail-
able on the data bus. When the buses are disabled, these two control lines are in a high-impedance 
state; thus, the external unit in control of the buses can specify the read and write operations.

Other possibilities exist for bus control. The address bus may be controlled with an addi-
tional line to indicate whether the address is for a memory word or for an interface unit. Another 
possibility is to combine the read and write control lines into one line labeled R/W. When this 
line is 1, it indicates a read, and when 0, it indicates a write. A second control line is then needed 
to indicate when a valid address is on the address bus, so that the external components respond 
to the R/W line only when requested with a valid address.

The control signals enumerated in Fig. 12-4 constitute a minimum set of control func-
tions for a microprocessor. Most microprocessors have additional control features for special  
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functions. Different units may use different mnemonic names for identical control functions, and 
not necessarily the names used here.

12.3.2 CPU Example

To appreciate the tasks performed by a microprocessor, it will be instructive to investigate the 
internal organization of a typical unit. Figure 12-5 shows the block diagram of a central proces-
sor unit enclosed within a microprocessor chip.* Externally, it provides a bidirectional data bus, 
an address bus, and a number of control lines. Here we show only the control lines associated 
with the bus transfer. The data bus is designated by the symbol DBUS and consists of eight lines. 
The information contained in the eight lines is called a byte, which is the name used to denote 
an 8-bit word. The address bus, designated by the symbol ABUS, consists of 16 lines to specify 

* This is similar to the 8080/85 microprocessor except that the F and G registers are called H and L in the 
8080/85.
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Figure 12.5 Block diagram of microprocessor
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216 = 64K (K = 1024) possible addresses. Thus the microprocessor is capable of communicating 
with a memory unit of 64K bytes.

Internally, the microprocessor has six processor registers labeled B through G, an accumu-
lator register designated by the letter A, and a temporary register, T. These registers are 8-bits 
wide and can accommodate a byte. The ALU operates on the data stored in A and T, and the result 
of the operation is transferred to A or, through an internal bus, to any one of the other six pro-
cessor registers. The status register holds the status bits of an operation, such as end carry from 
the ALU, the sign-bit value, and a zero-result indication.† The operation code of an instruction 
is transferred to the instruction register (IR), where it is decoded to determine the sequence of 
microoperations needed to execute the instruction. The timing and control supervise all internal 
operations in the CPU and the external control lines in the microprocessor.

The address buffers receive information from three sources: the program counter (PC) the 
stack pointer (SP),and the address register (AR). PC maintains the memory address of the current 
program instruction and is incremented after every instruction fetch. AR is used for temporary 
storage of addresses that are read from memory. The functions of these two registers will be 
clarified when we describe the sequence of operations in the CPU. SP is used in conjunction with 
a memory stack and its function is explained in Section 12-5. The address bus can also receive 
address information from a pair of processor registers. Three pairs can be formed to provide a 
16-bit address. They are labeled with the combined register symbols BC, DE, and FG. Each pro-
cessor register contains 8 bits and, when combined with the one adjacent to it, forms a register 
pair of 16 bits. It is sometimes convenient to partition the three 16-bit registers PC, SP, and AR 
into two parts. The symbol H designates the 8 high-order bits, and the symbol L, the 8 low-order 
bits. Thus PC(L)refers to bits 1 through 8 of PC and PC(H) refers to bits 9 through 16.

12.3.3 Memory Cycle

The memory unit consists of both RAM and ROM. It is connected to the microprocessor through 
the address and data buses and the read and write control. This is shown schematically in Fig. 12-6.  
A memory cycle is defined as the time required to access the memory to read or write a byte.

In the read cycle, the microprocessor places an address in ABUS and enables control line 
RD. The memory responds by reading the byte and placing it in DBUS. The microprocessor 
then accepts the byte and transfers it to an internal register. To express the read cycle sym-
bolically, assume that the address is to come from AR and the data byte is to be transferred to  

†The status register was discussed in Sec. 9-7.

Address bus (ABUS)

Data bus (DBUS)

Read (RD)Microprocessor

 (For RAM only)

     Memory 
(RAM or ROM)

Write (WR)

Figure 12.6 Communication between microprocessor and memory
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register A:

ABUS ← AR, RD ←1  address in bus for reading

DBUS ← M [ABUS]  memory reads byte

A ← DBUS, RD ← 0  byte transferred to A

First, the microprocessor places the memory address into ABUS and informs the memory that 
a valid address is available for reading. The memory responds to RD by reading the byte at the 
address given by ABUS and placing it in DBUS. The microprocessor then transfers the byte from 
DBUS to A. At the same time, control signal RD is disabled, indicating the end of the memory 
transfer.

The three operations listed above can be combined into one statement:

A ← M [AR]

This is a read operation that transfers the memory byte addressed by AR into the A register.
In the write cycle, the microprocessor places an address in ABUS and a data byte in DBUS. 

At the same time, the control line WR is enabled. The memory responds to WR by writing the 
byte from DBUS into a memory location specified by the address in ABUS. This process can be 
expressed symbolically:

ABUS ← AR, DBUS ← A, WR ← 1
M [ABUS] ← DBUS,   WR ← 0

This states that the contents of register A are transferred to a memory byte at the address given by 
AR. Again, it is possible to write this operation with one composite statement:

M [AR] ← A

Memory transfers to and from the microprocessor must conform with certain timing rela-
tionships that must exist between the control signals and the information on the buses. These tim-
ing relationships are specified in timing waveforms that are included with the product specifica-
tions of the units involved. The time interval of a memory cycle is a function of the internal clock 
frequency of the microprocessor and the access time of the memory. Once the microprocessor 
sends an address, it expects a response within a given interval of time. A memory that is capable 
of responding within the processor time interval can be directly controlled by the microprocessor 
memory cycle.

If the microprocessor communicates with a slow memory, it may take longer to access the 
memory than the allowable timing interval. To be able to use slow memories, a microprocessor 
must be able to delay the transfer until the memory access is completed. One way is to extend 
the microprocessor clock period by reducing the clock frequency to fit the access time of the 
memory. Some microprocessors provide a special control input called ready to allow the memory 
to set its own memory cycle time. If, after sending an address out, the microprocessor does not 
receive a ready input from memory, it enters a wait state for as long as the ready line is in the 
0-state. When the memory access is completed, the ready line goes to the 1-state to indicate that 
the memory is ready for the specified transfer.
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12.3.4 Microprocessor Sequencing

The timing and control in the microprocessor determine the sequence of transfers through the 
internal and external buses, the ALU, and the processor registers. During the fetch cycle, the 
control reads an operation code from memory and  deposits it into its instruction register. The 
instruction is decoded and translated into specific processing activities. Further references to 
memory depend on the operation code decoded. Let us assume that ail operation codes consist 
of eight bits and are stored in one byte of memory. Operands are also one byte long because the 
data bus is eight bits wide. An address is specified with two bytes or 16 bits. Now consider three 
add instructions with different format lengths.

1. Add B to A. This is an instruction to add the contents of register B to the present contents 
of the accumulator. All the information necessary to specify the instruction is contained 
within the one-byte operation code.

2. Add immediate operand to A. This is an instruction that adds an operand to the pres-
ent contents of the accumulator. The operand byte is placed in memory following the 
operation-code byte. This instruction occupies two bytes of memory.

3. Add operand specified by an address to A. This is an instruction that adds a byte stored 
anywhere in memory to the present contents of the accumulator. The address of the op-
erand is placed in memory following the operation-code byte. This instruction occupies 
three bytes of memory since the address itself occupies two bytes.

The format and function of the three instructions are summarized in Table 12-1. Each in-
struction has at least one byte for the operation code. The control unit is designed to recognize 
the number of bytes in a particular instruction from the decoded operation code of the first byte.

The memory representation of the three instructions is depicted in Fig. 12-7. The first in-
struction is assumed to be in location 81, with an operation code of 8 bits assigned arbitrarily. The 
other two instructions occupy two and three bytes, respectively. The address of the third instruc-
tion is 260 and is determined from the 16-bit binary number in locations 85 and 86:

(00000001 00000l00)
2
 = (260) 

10

The operand for this instruction is shown to reside in memory location 260. In a typical appli-
cation, the three instructions with normally reside in ROM, while the operand in location 260 
will be in RAM. This operand must reside in RAM because it must be assumed that its value is 
subject to change during the computation. Otherwise, if the operand value does not change, there 
is no need to associate it with an address.

Table 12-1 Three typical instructions for microprocessor

Instruction Byte 1 Byte 2 Byte 3 Function

Add B to A Operation code — — A ← A + B

Add immediate oper-
and to A

Operation code Operand — A ← A + byte 2

Add operand specified 
by an address to A

Operation code High-order half 
of address

Low-order half of 
address

A ← A + M [ad-
dress]
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Referring to Fig. 12-5 for the names of registers and buses, we can now list the sequence 
of operations required to process each instruction. We assume that the program counter initially 
contains 81.

Add B to A;

IR←M [PC], PC ← PC + 1  read operation code

T ←B  transfer B to T

A←A + T  add T to A

The first line represents the fetch cycle for reading the operation code into the instruction regis-
ter, The decoded operation specifies a processor register; so the contents of B are transferred to 
T and the add operation is performed in the ALU. Note that PC has been incremented and now 
contains the number 82.

The one-byte instruction is executed with one memory cycle because all operands reside 
in processor registers. If an operand resides in memory, it is necessary to access the memory to 
read the operand.

Add immediate operand to A:

IR ← M [PC], PC ← PC + 1  read operation code

T ← M [PC], PC ← PC + 1  read operand

A ← A + T  add operand to A

The first line represents the fetch cycle again. PC is incremented to contain address 83. The 
operand at this address is read from memory and placed in T, and the addition is performed in 
the ALU.

Decimal Address 

High-order half of Address 

Low-order half of Address 

Op-code to add B to A

Operand

Op-code to add immediate operand to A

Op-code to add memory byte to A

Next op-code 

Operand260 00001110

00000001

01010101

00000100

11100111

11101100

11000110

1000000081

87

86

85

84

83

82

1-byte instruction 

2-byte instruction 

3-byte instruction 

Memory
  binary
content 

Figure 12.7 Memory representation of three instructions
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If the instruction contains the address of the operand, the microprocessor must go through 
four memory cycles to execute the instruction.

Add operand specified by an address to A:

IR ← M [PC], PC ← PC + 1  read operation code

AR (H) ← M [PC], PC ← PC + 1  read first byte of address

AR (L) ← M [PC], PC ← PC + 1  read second byte of address

T ← M [AR]  read operand

A ← A + T  add operand to A

The address part of the instruction is temporarily stored in the address register (AR). The 16-bit 
address formed in AR is then used to read the operand.

A large number of memory cycles is undesirable in microprocessors because they consume 
a considerable amount of processing time. This is one of the limiting factors on the speed of 8-bit 
microprocessors with 16-bit addresses. The number of accesses to memory can be reduced if a 
16-bit data bus is used. 16-bit microprocessors require fewer references to memory compared 
to 8-bit microprocessors. Although we have chosen to describe the operation of an 8-bit micro-
processor, the operation with a 16-bit data bus would be similar, taking into consideration the 
differences in word lengths used for processor registers and memory words.

12.4 Instructions and Addressing Modes

The logical structure of microprocessors is described in reference manuals provided by the man-
ufacturer. A reference manual for a particular microprocessor describes the internal organization 
of the CPU, the function of all input and output terminals, and the processor registers available 
from the user’s point of view. The manual describes all the instructions available in the computer 
and explains their functions. It also shows how status bits are affected by each instruction. The 
internal code for each instruction is listed in binary, octal, or hexadecimal. In most cases, either 
the octal or hexadecimal equivalent code is adopted because these codes need fewer digits than 
the binary representation. When a program is written for the computer, each instruction is as-
signed a symbolic name to identify it.

Symbolic names and codes assigned to instructions used in one microprocessor are differ-
ent from the names and codes used in a different microprocessor, even for similar instructions. 
For this reason, the user must study and remember the set of instructions and their symbolic 
names every time a different microprocessor is employed. Although the instruction sets of dif-
ferent microprocessors differ from one another, there are certain instructions that perform basic 
operations and are included in all microprocessors.

12.4.1 Basic Set of Microprocessor Instructions

Microprocessor instructions may be classified into three distinct types.

1. Transfer instructions that move data among registers, memory words, and interface reg-
isters without changing the binary information content.

2. Operation instructions that perform operations on data stored in registers or memory 
words.
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3. Control instructions used to test status conditions in registers and, depending on results, 
cause a change in program sequence.

The instruction set of a particular microprocessor specifies the register-transfer operations and 
control decisions that are available in the microcomputer system. A specific program for a micro-
computer is equivalent to specifying the sequence of operations for the particular digital system 
that the microcomputer implements.

Transfer-type instructions in microprocessors are indicated by various names. A move in-
struction causes a transfer of data from source to destination. Either the source or the destination 
may be a processor register or a memory location. The load and store instructions are similar to 
the move instruction, except that they usually refer to transfers from and to memory and accu-
mulator. The exchange instruction swaps information between two registers or between a register 
and a memory word. The push and pop instructions transfer data among processor registers and 
a memory stack. The input and output instructions transfer data among processor registers and 
interface registers.

Operation-type instructions perform arithmetic, logic, and shift operations among proces-
sor registers or memory words. They also set, clear, or complement status or flag bits. Typical 
operation instructions are add, subtract, AND, OR, complement, and set carry. Most of the oper-
ation-type instructions also change the status bits in the status register of the processor.

Control-type instructions provide decision-making capabilities and change the path taken 
by the program when executed in the computer. Instructions are stored in consecutive memory 
locations and are executed one after the other in sequence. The programmer inserts a control 
instruction every time that control must be transferred to an instruction out of normal sequence. 
Control instructions may be conditional or unconditional. A conditional control instruction 
causes a branch out of normal program sequence only when a specified status condition is de-
tected. An unconditional control instruction causes a branch unconditionally. The branch out of 
normal program sequence is accomplished by changing the program counter so it contains the 
address of the instruction that is to be executed next.

There are three types of control instructions and each type may be conditional or uncondi-
tional:

1. Jump or branch instructions.

2. Call to and return from subroutine instructions.

3. Skip instructions.

The words jump and branch are used interchangeably to mean the same thing, but sometimes 
they are used to denote different addressing modes. These instructions are associated with an 
address that specifies where the jump or branch is to be made. The call-to-subroutine and return-
from-subroutine instructions are explained in the next section in conjunction with the memory 
stack. A skip instruction skips the next instruction in sequence. By placing an unconditional 
branch instruction after the skip instruction, it is possible to branch to one of two possible loca-
tions, depending on the value of a specified status-bit condition.

12.4.2 Instructions for Microprocessor

The number of distinct instructions in a particular microprocessor may range from 50 to 250. 
These instructions must be studied and memorized by the user who writes programs for the 
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microcomputer. A partial list of instructions formulated for the microprocessor of Fig. 12-5 is 
presented in Table 12-2. The instructions are divided into three sections to give examples of 
transfer-, operation-, and control-type instructions.

The hexadecimal code listed in the table is a 2-digit number equivalent to the 8-bit opera-
tion code assigned to the instruction. (The equivalent 4-bit representation for the 16 hexadecimal 
digits was given in Table 1-l.) The symbolic name for each instruction is a 2- to 4-letter designa-
tion followed by one or two symbols for a register, an operand, or a memory address. The descrip-
tion column explains the instruction in words, and the function column defines the instruction 
precisely with a register-transfer statement. Note that computer instructions specify macroopera-
tions for the computer and can be symbolized with appropriate statements in the register-transfer 
method. However, for various practical reasons, computer instructions are written with special-
ized symbols as in the second column of the table. These special symbols are assigned by the 
computer manufacturer and tend to be different in different computers.

The first four instructions in Table 12-2 are move instructions that transfer information from 
a given source to a given destination. The next three are load and store instructions that accom-
plish a similar function. A representative number of operation-type instructions are listed in the 
second part of the table. The last section lists a few control instructions.

The move with register-indirect instruction:

MOV      A, FG

symbolizes the register-transfer operation A ← M [FG]. It transfers the memorybyte whose ad-
dress is in register pair FG into register A. This is called a register-indirect instruction because 
register pair FG specifies the address of the operand rather than the operand itself.

The load-immediate instruction:

LXI      FG, D16

symbolizes the register-transfer operation FG ← D16, where D16 is a 2-byte number that may 
represent an address. This instruction can be used to transfer an address into register pair FG. 
When used in this manner, register pair FG constitutes a data counter or a pointer that points to 
an address in memory where an operand is stored. FG can be incremented with the increment-
register-pair instruction:

INX      FG

which symbolizes the register-transfer operation FG←FG + 1. In this way, the data counter or 
pointer can be incremented to point at consecutive addresses in memory where the programmer 
stores a table of consecutive data bytes.

The operation instructions provide the common arithmetic, logic, and shift operations. Note 
that more instructions of the same type can be formulated if we specify one of the other five 
processor registers C, D, E, F, or G instead of specifying register B. Similarly, an instruction that 
specifies a register pair can be duplicated by using any one of the three possible register pairs 
BE, DE, or FG.

The last six instructions in the table are control instructions. The jump and call instructions 
need a 16-bit address symbolized by AD 16. The return and halt instructions are one-byte instruc-
tions. Those that include the symbol AD 16 or D 16 are three-byte instructions and those that use 
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Table 12-2 Partial list of instructions for microprocessor

Hexadecimal 
code Instruction symbol Description Function*

78 MOV A, B Move B to A A ← B
3E MVI A, D8 Move immediate operand to A A ← D8

7E MOV A, FG Move to A with register indirect A ← M [FG]

77 MOV FG, A Move A with register indirect M [FG] ← A
3A LDA AD16 Load A direct A ← M [AD 16]

32 STA AD16 Store A direct M [AD 16] ← A
01 LXI FG, D16 Load register pair immediate FG ← D 16

80 ADD B Add B to A A ← A + B

C6 ADI D8 Add immediate operand to A A ← A + D8

86 ADD FG Add to A with register indirect A ← A + M [FG]
90 SUB B Subtract B from A A ← A − B
A0 ANA B AND B to A A ← A ∧ B
B0 ORA B OR B to A A ← A ∨ B

04 INR B Increment B B ← B + 1

05 DCR B Decrement B B ← B − 1
03 INX BC Increment register pair BC BC ← BC + l

0B DCX BC Decrement register pair BC BC ← BC − 1

2F CMA Complement A A ← A

07 RLC Rotate A left with carry A ← clc A

OF RRC Rotate A right with carry A ← crc A

37 STC Set carry bit to 1 C ← 1

C3 JMP AD16 Jump unconditionally PC ← AD 16

DA JC AD16 Jump on carry If (C = 1) then (PC ← AD 16)

C2 JNZ AD16 Jump on nonzero If (Z = 0) then (PC ← AD 16)

CD CALL AD16 Call subroutine Stack ← PC, PC ← AD 16

C9 RET Return from subroutine PC ← stack

76 HLT Halt processor

*A = accumulator register; B =B register; FG = register pair F and G; BC = register pair B and C; D8 = 8-bit data operand 
(1 byte); D16 = 16-bit data operand (2 bytes); AD 16 = 16-bit address (2 bytes).
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a D8 symbol are two-byte instructions. All others are one-byte instructions whether they do or 
do not specify a register.

The best way to appreciate the instruction set of a computer is to write programs that per-
form meaningful data-processing tasks. The programs written for a microcomputer system re-
quire the same logical reasoning involved in writing microprograms for a digital system as ex-
emplified in Chapter 10.

12.4.3 Addressing Modes

The operation code of the instruction specifies the operation that will be executed after it is read 
from memory and placed in the control unit of the CPU. The control unit must also know where 
to find the operand or operands upon which the operation is to be performed. Operands may be 
located in processor registers, in memory words, or in interface registers. The way the operands 
are determined during program execution is determined from the addressing mode of the instruc-
tion. In large computers, the addressing mode of an instruction is specified with a binary code 
just as the operation code is specified. In 8-bit microprocessors, the first byte of an instruction is 
a combined binary code that specifies both the operation and the mode of the instruction. This 
byte, when placed in the instruction register during the fetch cycle, is interpreted by the control 
to determine not only the operation that must be executed but also the way to go about locating 
the operands.

An example of three addressing modes for the same operation can be found in Table 12-1. 
The table defines three types of addressing modes for the add-to-A instruction. By specifying a 
different mode, the operation can refer to a register, to an immediate operand, or to an operand 
specified by a memory address. A computer can use a variety of addressing modes for the same 
operation to provide different ways for locating operands. To the inexperienced user, the variety 
of addressing modes in some computers may seem excessively complicated. However, the avail-
ability of different addressing schemes gives the experienced programmer flexibility for writing 
programs that are more efficient with respect to the number of instructions and execution time.

We have already discussed several addressing modes in previous examples and they are 
summarized here for reference.

Implied Mode: In this mode the operand is specified implicitly in the definition of the 
instruction. Instructions of this type are 1-byte instructions. For example, the instruction “com-
plement accumulator” is an implied-mode instruction because the operand in the accumulator 
register is implied in the definition of the instruction.

Register Mode: In this mode the operands are in registers which reside within the CPU. 
Register-mode instructions are 1-byte instructions and can be executed within the CPU without 
the need to reference memory for operands.

Register-indirect Mode: In this mode the instruction specifies a register or a pair of regis-
ters in the processor whose contents give the address of the operand in memory. This mode uses 
1-byte instructions even though the operand is in memory. Before using a register-indirect-mode 
instruction, the programmer must ensure that the address of the operand is placed in the proces-
sor register with a previous transfer-type instruction. A reference to the register is then equivalent 
to specifying a memory address.
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Immediate Mode: In this mode the operand is specified in the instruction itself. In an 8-bit 
microprocessor, the operand is placed in memory immediately after the operation-code byte. An 
immediate-mode instruction having an 8-bit operand is a 2-byte instruction. One with a 16-bit 
operand is a 3-byte instruction.

Direct-addressing Mode: In this mode the operand resides in memory and its address is 
given directly in the address part of the instruction. In 8-bit microprocessors with 16-bit address-
es, a direct instruction consists of 3 bytes. In computers with wider memory words, the address 
part is combined with the operation and mode code bits to combine the entire instruction in one 
memory word. Most direct-mode instructions assume that the other operands reside in processor 
registers. If more than one operand resides in memory, the instruction must include additional 
addresses to specify their locations.

Some 8-bit microprocessors with 16-bit addresses have special direct-addressing modes 
that require only one byte to specify an address. Such microprocessors divide the 216 bytes of 
memory into blocks called pages. Each page is usually assigned 256 bytes of consecutive mem-
ory space. A page in memory is then specified by the 8 high-order bits of an address. The 8 low-
order bits give the byte within the page. Thus, a 64K memory can be divided into 256 pages of 
256 bytes each. The first page is called page 0 and the last is page 255. By means of the paging 
scheme, it is possible to develop some variations in the direct mode of addressing.

Zero-page Addressing: This is similar to the direct-addressing mode except that the ad-
dress part of the instruction contains only 1 byte. This is a 2-byte instruction, with the second 
byte specifying the 8 low-order bits of a memory address. The 8 high-order bits of the address 
are assumed to be all 0’s. This restricts the range of addresses to the lowest 256 bytes of memory 
(0−255) which is defined to be page 0.

Present-page Addressing: This mode assumes that the operand resides in memory within 
the same memory page as the instruction that uses it. Since the program counter always holds 
the address of the next instruction, its 8 high-order bits also contain the present page number. 
This mode of addressing uses 2-byte instructions, with an 8-bit address part. The address of the 
operand is obtained from the page number catenated with the address part of the instruction. The 
16-bit address of the operand is computed from:

PC (H) + AD 8

where PC(H) denotes the eight high-order bits of PC, and AD 8 is the 8-bit address of the instruc-
tion. The result is a 16-bit address, with PC(H)giving the first 8 bits and AD 8 the other 8 bits.

Relative Addressing: This is similar to the present-page addressing mode except that it is 
not sensitive to page boundaries. A relative-mode instruction is a 2-byte instruction, with the sec-
ond byte specifying a signed number in the range between −128 and +127. This is accomplished 
by representing the number in sign-2’s-complement form. The 16-bit address of the operand is 
computed by adding the 16-bit content presently available in the program counter to the 8-bit 
signed address in the instruction. If the latter is denoted by AD 8, the address computation can 
be symbolized as:

PC + AD 8
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This requires that the operand (or the location where a branch relative instruction transfers con-
trol) be within 127 and - 128 bytes away from the address of the next instruction. Page boundar-
ies are of no consequence in the relative mode because the entire 16 bits of the program counter 
are used in the calculation.

The address part of an instruction is used by the control unit in the CPU to obtain the 
operand from memory. Sometimes this address is the address of the operand, but sometimes it 
is just an address from which the address of the operand is calculated. Computers use various 
other addressing modes to calculate the address of an operand. To differentiate among the vari-
ous addresses involved in the computation, we must distinguish between the address given in the 
instruction and the actual address used by the control when it executes the instruction. The ad-
dress of the operand or the address where control branches in response to a jump, branch, or call 
instruction is called the effective address. In a direct-mode instruction, the effective address is 
equal to the address part of the instruction. In the relative mode, the effective address is computed 
from the value in PC plus the address part of the instruction.

The computation of the effective address for the last four addressing modes discussed above 
are listed in Table 12-3. The table also lists five other addressing modes commonly found in 
microprocessors (and in larger computers as well). The symbol AD 16 denotes a 2-byte address, 
and AD 8 denotes a 1-byte address. PC is the program counter and XR is an index register. XR is 
a CPU register used in many computers for storing an address. The address stored in XR can be 
referenced with an indexed-mode instruction. An address is placed initially into XR by means of 
a transfer-type instruction. The computation of the effective address in each mode is specified in 
the table with a register computational expression. The computed effective address is then used to 
access memory to read an operand or becomes the branch address in a control-type instruction. 
The other addressing modes listed in the table are explained below.

Indexed Addressing: Instructions in this mode contain 3 bytes, with the last two giving a 
16-bit address. The address part of the instruction is added to the value presently stored in the 
index register to obtain the effective address. The index register is often incremented or decre-
mented to facilitate the execution of program loops and to access tables of data stored in memory.

Table 12-3 Computation of effective address for various addressing modes

Address mode Effective address Comments

Direct AD 16 16-bit address part of instruction

Zero page ADS 8-bit address part of instruction

Present page PC(H) + AD 8 8 highest-order bits of PC catenated with AD 8

Relative PC + AD 8 Contents of PC plus signed AD8

Indexed XR + AD 16 Contents of XR plus AD 16

Base register XR + AD 8 Contents of XR plus AD 8

Indirect M [AD16] Address stored in location given by AD 16

Indexed-indirect M [XR + AD 8] Address stored in location (XR + AD 8)

Indirect-indexed M [AD 8] + XR Address stored in location AD 8 plus contents of XR
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Base-register Addressing: This is similar to the indexed-addressing mode, except that the 
address pan of the instruction consists of a number of bits that is less than the number of bits 
required for a full address. The effective address is calculated by adding the contents of the in-
dex register to the partial address in the instruction. The register used in this mode is sometimes 
called a base register instead of an index register. The base register holds a base address, and the 
truncated address in the instruction specifies a displacement with respect to the base address.

Indirect Addressing: In this mode the address part of the instruction specifies the address 
where the effective address is stored. Control reads the address part of the instruction and uses it 
to address memory again to read the effective address. Memory must be accessed again to read 
the operand if the instruction is of the operation type. In a control-type instruction, the effective 
address is the branch address which is transferred to PC.

Indexed-indirect Addressing: This is an indirect-addressing mode, except that the address 
part of the instruction is added to the contents of the index register to determine the address 
where the effective address is stored in memory.

Indirect-indexed Addressing: In this mode the value stored in the memory location speci-
fied by the address part of the instruction is added to the contents of the index register to obtain 
the effective address.

Specific microprocessors employ several addressing modes, but very seldom would one 
unit have all the addressing modes enumerated here. To be able to write programs for a micro-
computer, it is necessary to know the type of instructions available and also to be thoroughly 
familiar with the addressing modes used in the microprocessor.

12.5 Stack, Subroutines, and Interrupt

A very useful feature included in many computers is a memory stack, also called a last-in first-
out (LIFO) list. A stack is a storage device that stores information in such a manner that the item 
stored last is the first item retrieved. The operation of a stack is sometimes compared to a stack 
of trays. The last tray placed in the stack is the first to be taken off.

A stack is useful for a variety of applications and its organization possesses special features 
that facilitate many data processing tasks. For example, a stack is used in some electronic calcu-
lators and computers to facilitate the evaluation of arithmetic expressions. Its use in microproces-
sors is mostly for handling of subroutines and interrupts. In this section, we explain the operation 
of a stack and restrict the discussion to those applications found in microprocessors.

12.5.1 Memory Stack

A memory slack is essentially a portion of a memory unit accessed by an address that is always 
incremented or decremented after the memory access. The register that holds the address for a 
stack is called a slack pointer (SP) because its value always points to the top item in the stack. 
The two operations of a stack are the insertion and deletion of items. The operation of insertion is 
called push and it can be thought of as the result of pushing a new item onto the top of the stack. 
The operation of deletion is called pop and it can be thought of as the result of removing one 
item so that the stack pops out. However, nothing is physically pushed or popped in a memory 
stack. Those operations are simulated by incrementing or decrementing the stack pointer register.
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It must be realized that a stack can be placed within the microprocessor without the need 
to refer to memory. In such a case, the stack is constructed with registers and is called a register 
stack. The size of a register stack is limited by the number of registers it contains. A memory 
stack can grow and may occupy the entire memory space if necessary. We will explain the orga-
nization of the stack assuming that it resides in memory. The same organization also applies to 
a register stack, except that the push and pop operations are executed within the microprocessor 
without reference to memory.

Figure 12-8 shows a portion of a memory unit organized as a stack. The stack pointer reg-
ister SP holds a binary number whose value is equal to the address of the item which is currently 
on top of the stack. Three items are presently storedin the stack: A, B, and C in consecutive ad-
dresses m, m + 1, and m + 2, respectively. Item C at address m + 2 is on top of the stack, so SP 
now contains m + 2. To remove the top item, the stack is popped by reading the item at address m 
+ 2 and decrementing SP. Item B is now on top of the stack since SP contains address m + 1. To 
insert a new item, the stack is pushed by incrementing SP and writing a new item on top of the 
stack. Note that item C has been read out but not physically removed. This does not matter as far 
as the stack operation is concerned, because when the stack is pushed, a new item is written on 
top of the stack regardless of what was there before.

The position of the stack pointer in a microprocessor can be found in the block diagram 
of Fig. 12-5. The SP can specify an address for memory through the address bus, ABUS. The 
data transferred to and from the memory stack and the microprocessor go through the data bus, 
DBUS. To write meaningful register-transfer statements for the stack operations, we assume that 
the data are transferred to and from register A.

The push A operation is defined by the statements:

SP ← SP + 1

M [SP] ← A

SP is incremented to point at the next empty location in the stack. The contents of register A are 
placed in DBUS, the contents of SP are placed in ABUS, and a WR (write) operation is initiated. 
This inserts the contents of A into the top of the stack, and SP points at that location.

Stack Pointer (SP)

A

C

B

ABUS

DBUS

Memory

Address

m

m + 4

m + 3

m + 2

m + 1

Push:    SP ← SP + 1
             M[SP] ← DBUS

Pop:    DBUS ← M[SP]
           SP  ← SP − 1

Figure 12.8 Memory stack operations
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The pop A operation is defined by the statements:

A ← M [SP]

SP ← SP − 1

The contents of SP are placed in ABUS, and a RD (read) operation is initiated. The memory reads 
the word at the given address and places it in DBUS. The microprocessor accepts the word from 
DBUS and transfers it to register A. SP is then decremented to point at the byte one address down, 
which is now on top of the stack.

The two operations for either push or pop stack are (1) an access to memory through SP, 
and (2) updating SP. Which of the two operations is done first and whether SP is updated by 
incrementing or decrementing depend on the organization of the stack. In Fig. 12-8 the stack 
grows by increasing the memory address. The stack may be made to grow by decreasing the 
memory address as shown in Fig. 12-9. In such a case SP is decremented for the push operation 
and incremented for a pop operation. A stack may be organized so that SP points at the next 
empty location on top of the stack. In this case, the sequence of operations of updating SP and 
memory access must be interchanged. This last configuration was demonstrated in Fig. 10-20 for 
the register stack defined in Fig. 10-19.

The stack pointer is loaded with an initial value by means of a transfer-type instruction. 
This initial value must be the bottom address of an assigned stack in memory. Henceforth, SP is 
automatically incremented or decremented with every push or pop operation. The advantage of a 
memory stack is that the processor can refer to it without having to specify an address, since the 
address is always available and automatically updated in the stack pointer. Thus, a processor can 
reference a memory stack without specifying an address. For this reason, instructions involving 
stack operations are referred to as zero address or implied instructions.

12.5.2 Subroutines

A subroutine is a self-contained sequence of instructions that performs a given task. During 
normal execution of a program, a subroutine may be called to perform its function many times 
at various points in the main program. Each time a subroutine is called, a branch is executed to 
the beginning of the subroutine to start executing its set of instructions. .After the subroutine has 
been executed, a branch is made back to the main program. Because branching to a subroutine 
and returning to the main program is a common operation, all processors provide special instruc-
tions to facilitate subroutine entry and return.

The instruction that transfers control to a subroutine is known by different names. The most 
common names used are call subroutine, jump to subroutine, and branch to subroutine, A call-
subroutine instruction consists of an operation code together with the address that specifies the 
beginning of the subroutine. The instruction is executed by the performance of two tasks: (1) 
Control is transferred to the beginning of the subroutine. (2) The address of the next instruction 
in the calling program is stored in a temporary location so that the subroutine knows where to re-
turn. The last instruction of every subroutine, commonly called return from subroutine,transfers 
control to the instruction in the calling program whose address was originally stored in the tem-
porary location.

Microprocessors use the stack for storing the return address when handling subroutines. 
This is accomplished by pushing the return address into the stack every time a subroutine is 

www.youseficlass.ir



466 Chapter 12

called. The return-from-subroutine instruction is accomplished by popping the stack to read the 
return address and transferring control to the program at this address.

Figure 12-9 demonstrates by example the process of subroutine call and return in an 8-bit 
microprocessor. Three separate portions of memory are shown: the main program, a subroutine 
program, and a memory stack. The computer is now executing the main program, with PC point-
ing at the instruction in location 3500. The subroutine program starts at location 2673, and the 
top of the stack is specified by SP at address 7803. This is shown in Fig. 12-9(a) with all ad-
dresses having hexadecimal values. The call-subroutine instruction has associated with it a two-
byte address and each byte occupies one memory location. The last instruction of the subroutine 
in location 2686 has the operation code of the return-from-subroutine instruction. The top of the 
stack now contains a byte (designated by hexadecimal 46), but this is not important for the pres-
ent discussion.

The execution of the call-subroutine instruction in the main program is carried out as fol-
lows: (1) The address associated with the instruction (2673) is transferred to PC. (2) The return 
address to the main program (3503) is pushed into the stack. The result of these two operations is 
shown in Fig. 12-9(b). PC now points at location 2673, which is the address of the first instruc-
tion in the subroutine. Return address 3503 is pushed into the stack and occupies two bytes of 

Main program

PC

SP

CALL op-code

Next op-code

26

73

3500 2673

3503

3502

3501

2686

7800

780346

Stack

First op-code

RETURN op-code

Subroutine

Subroutine

(a) Initial values

PC

SP

CALL op-code

Next op-code

26

73

3500 2673

3503

3502

3501

2686

7800

780346

First op-code

RETURN op-code

Subroutine
7801

780235

03

(b) Alter execution of the CALL instruction

PC SP

CALL op-code

Next op-code

26

73

3503 780346

First op-code

RETURN op-code

Subroutine
35

03

(c) After execution of RETURN instruction

Figure 12.09 Numerical example for the call-subroutine and return-from-subroutine instruc-
tions
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memory. The computer now continues by executing the instructions in the subroutine program, 
since PC points at the first instruction of the subroutine.

When the last instruction of the subroutine is reached at address 2686, the computer exe-
cutes a return-from-subroutine instruction by popping the two top bytes in the stack and placing 
them into PC. The situation now is as depicted in Fig. 12-9(c). PC now holds address 3503 to 
continue the execution of the main program, and SP returns to its initial position.

The microprocessor shown in Fig. 12-5 executes the call-to-subroutine instruction by 
going through five memory cycles and six internal operations:

IR←M [PC], PC←PC + 1 read operation code
AR (H) ←M [PC], PC←PC + 1 read first byte of address
AR (L) ←M [PC], PC←PC + 1 read second byte of address
SP←SP−1, M [SP] ←PC(H) push first byte of return address
SP←SP−1, M [SP]←PC(L) push second byte of return address
PC←AR branch to subroutine address

The return-from-subroutine instruction is executed with three memory cycles and the updating 
of PC and SP:

IR ← M [PC], PC ← PC + 1 read operation code

PC (L) ← M [SP], SP ← SP + 1 pop second byte of address

PC(H) ← M [SP], SF ← SP + 1 pop first byte of address

The advantage of using a stack for storing the return address is that, when a subroutine is 
called, the return address is pushed into the stack automatically and the programmer does not 
have to be concerned with or remember where the return address is stored. If another subroutine 
is called by the current subroutine, the new return address is pushed into the stack, and so on. 
The return-from-subroutine instruction automatically pops the stack to obtain the return address 
from the last program that called it. Thus, the subroutine that exits is always the last subroutine 
that was called.

12.5.3 Interrupt

The concept of program interrupt is used to handle a variety of problems that arise out of normal 
program sequence. Program interrupt refers to the transfer of control from a currently running 
program to another service program as a result of an externally generated control signal. One of 
the control inputs in the microprocessor of Fig. 12-4 is labeled interrupt. Each interface module 
is capable of interrupting the microprocessors normal operation by providing a signal at this 
control input. The interrupt may be either a request for service or an acknowledgment of service 
performed earlier by the interface.

Consider, for example, the case of a microcomputer that is processing a large volume of 
data, portions of which are to be output to a printer. The microprocessor can output a byte of data 
within a few clock pulse intervals, but it may take the printer the equivalent of many processor 
clock pulses to actually print the character specified by the data byte. The processor could then 
remain idle, waiting until the printer can accept the next data byte. If an interrupt capability is 
available, the microprocessor can output a data byte and then continue to perform other data pro-
cessing tasks. When the printer is ready to accept the next data byte, it can request an interrupt 
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via the interrupt control input. When the microprocessor acknowledges the interrupt, it suspends 
the currently running program and automatically branches to a service program that will output 
the next data byte. After the byte is sent to the printer, the processor returns to the program that 
was interrupted while the character is being printed.

The interrupt procedure is, in principle, quite similar to a subroutine call, except that the 
branch is initiated by an external signal rather than by an instruction in the program. As in a 
subroutine call, an interrupt stores the return address in the stack. A subroutine-call instruction 
provides the branch address for the subroutine. With an interrupt procedure, the branch address 
to the service routine must be provided by the hardware. The way a microprocessor chooses the 
branch address in response to an interrupt request varies from one unit to another. In principle, 
there are two methods for accomplishing this. One is called vectored and the other nonvectored 
interrupt. In a nonvectored interrupt, the branch address either is a fixed location in memory or is 
stored in a fixed location in memory. The interrupt cycle stores the return address from PC into 
the stack and then sets PC to the predetermined branch address. In a vectored interrupt, the inter-
rupting source itself supplies the branch information to the microprocessor. This information, 
transferred through the data bus, is called an interrupt vector. The interrupt cycle first stores the 
return address from PC into the stack. If the interrupt vector is an address, the microprocessor 
accepts it from the data bus and transfers it to PC. The interrupt vector in some microprocessors 
is assumed to be a subroutine-call instruction. The microprocessor accepts the instruction from 
the data bus, places it into its instruction register, and proceeds to execute it.

The return from the service routine back to the original interrupted program is similar to 
a subroutine return. The stack is popped and the return address previously stored there is trans-
ferred to PC.

A microprocessor may have single or multiple interrupt input lines. If there are more inter-
rupt sources than there are interrupt inputs in the microprocessor, two or more sources are ORed 
together to form a common line for the microprocessor. An interrupt signal into a microprocessor 
may originate at any time during program execution. To ensure that no information is lost, the 
microprocessor acknowledges the interrupt only after the execution of the current instruction is 
completed and if the state of the processor warrants it. Figure 12-10 shows a possible vectored 
interrupt configuration. The diagram shows four sources ORed to a single interrupt-request in-
put. The microprocessor has within it an interrupt enable (IEN) flip-flop that can be set or cleared 
with program instructions. When IEN is cleared, the interrupt request is neglected. If IEN is set 
and the microprocessor is at the end of instruction execution, the microprocessor acknowledges 
the interrupt by enabling 1NTACK. The interrupt source responds to INTACK by placing an inter-
rupt vector into DBUS. The program controlled IEN flip-flop allows the programmer to decide 
whether to use the interrupt facility or not. If an instruction to clear IEN has been inserted in the 
program, it means that the programmer does not want the program to be interrupted. (IEN is also 
cleared with a reset signal.) An instruction to set IEN indicates that the interrupt facility will be 
used while the program is running. Some microprocessors use an interrupt mask bit in the status 
register instead of a separate IEN flip-flop.

Assume that the interrupt vector supplied to the data bus is an 8-bit address. The micropro-
cessor responds to an interrupt request by performing the following operations:

SP ← SP + 1, M [SP] ← PC (H)  push first byte of return address

SP ← SP + 1, M [SP] ← PC (L)  push second byte of return address
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1NTACK ← 1  enable interrupt acknowledge

PC (H) ← 0, PC (L) ← DBUS  transfer vector address to PC

IEN ← 0  disable further interrupts

In this manner, the interrupt source can specify any vector address from 0 to 255 to serve as the 
branch address to a service routine. IEN is cleared to disable further interrupts. The programmer 
can set IEN in the service program whenever it is appropriate to enable further interrupts.

The return from the interrupt is similar to a return from subroutine. The stack is popped and 
the return address is transferred to PC.

12.5.4 Priority Interrupt

In the preceding discussion, a method for generating the vector address of an interrupt service 
routine was described. If there is only one source capable of requesting service, the source of 
the interrupt is known and the service program can immediately begin the service routine. More 
often, several devices are allowed to originate interrupt requests, and the first task of the interrupt 
routine is to identify the source of the interrupt. There is also the possibility that several sources 
will simultaneously request service. In this case, the service program must also decide which 
source to service first.

The most common method of handling multiple interrupts is to begin the service routine 
by polling the interfaces to identify the one that generated the request. The service routine tests 
each source in sequence to find out if its interrupt signal is on. Once an interrupt is identified, 
all other interrupts are neglected until the service routine for the particular source is completed.

Microprocessor

   End of
instruction
 execution

Interrupt source

Interrupt

Interrupt
  vector

   Interrupt
acknowledge

Interrupt
 Enable

(INTACK)

IEN

INTACK

(DBUS)

request

1 2

43

Figure 12.10 Vectored interrupt configuration
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A priority interrupt is an interrupt system that establishes a priority over the various sources 
to determine which condition is to be serviced first when two or more requests arrive simultane-
ously. Establishing the priority of simultaneous interrupts can be done by software or hardware. 
In the software method, there is only one vector address for all interrupts. The service program 
begins at the vector address and polls the interrupt sources in sequence. The order in which the 
sources are tested determines the priority of each interrupt request. The highest-priority source 
is tested first and if its interrupt signal is on, control branches to a service routine for this source. 
Otherwise, the next lower-priority source is tested, and so on. Thus, the initial service routine 
for all interrupts consists of a program that tests the interrupt sources in sequence and branches 
to one of many possible service routines. The particular service routine reached belongs to the 
highest-priority source among all sources than can interrupt the processor.

Software techniques can, in theory, handle any number of interrupt sources to any sophis-
ticated level of priority. In practice, if there are many sources of interrupt requests, the time 
required to poll them to find the appropriate interrupt can exceed the time available to service 
the I/O device. In this situation, an external hardware priority interrupt unit can be used to speed 
up the operation.

A hardware priority interrupt unit functions as an overall manager in an interrupt system 
environment. It accepts interrupt requests from many sources, determines which of the incoming 
requests is of the highest priority, and issues an interrupt to the processor based on this deter-
mination. To speed up the operation, each interrupt source has its own vector address to access 
directly to its own service routine. Thus, no polling is required because all the decisions are 
established by the hardware priority interrupt unit.

The basic circuit that implements the hardware priority function is a priority encoder. The 
logic of the priority encoder is such that, if two or more input levels arrive at the same time, then 
the input having the highest priority will take precedence. The output of the priority encoder gen-
erates a partial address for the interrupt vector that supplies the branch address. The truth table 
of a four-input priority encoder is given in Table 12-4. The X’sin the table designate don’t-care 
conditions. Input I

0
 has the highest priority; so regardless of the values of other inputs, when this 

input is 1 the output generates the partial address xy= 00. I
1
 has the next priority level. The out-

put is 01 if I
1
 = 1 provided I

0
 = 0, regardless of the values of the other two lower-priority inputs. 

The partial address for I
2
 is generated only if higher-priority inputs are 0, and so on down the 

Table 12-4 Priority encoder truth table

Input
(Interrupt source)

Outputs

(Partial address) (Interrupt request)

I
0
     I

1
     I

2
     I

3
x     y R

1     X     X     X 0     0 1

0     1     X     X 0     1 1

0     0     1     X 1     0 1

0     0     0     1 1     1 1

0     0     0     0 X     X 0
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priority level. The priority levels dictate that a low-level input generates its own partial address 
only if all higher-level inputs are not asking for service. An interrupt request R is generated for 
the microprocessor only when one or more inputs are requesting an interrupt. If all inputs are 0, 
the R output becomes 0 and the partial address at this time is of no consequence because it will 
not be used by the microprocessor. Usually a microprocessor will have more than four interrupt 
sources. A priority encoder with eight inputs, for example, will generate a partial address of three 
bits. The partial address out of the encoder is used to form the vector address for each interrupt 
source. For example, the vector address supplied to the data bus after an interrupt acknowledge 
can be of the form:

000 xy 000

where x and y are the output bits from the priority encoder. The particular xy bits transferred 
will belong to the highest-priority interrupt source. By this procedure, the priority encoder can 
specify one of four possible branch addresses. Each vector address specifies the beginning ad-
dress of an 8-byte service routine in the lower 32 bytes of memory.

12.6 Memory Organization

A microprocessor must communicate with memory, both RAM and ROM, to read and write 
binary information such as instructions, data, and addresses. The size of the memory attached to 
a microprocessor depends on the number of instructions and data bytes needed for the particular 
application. A microprocessor may have an address bus with 16 lines to accommodate up to 64K 
bytes of memory. In many applications, the amount of memory needed may be less than 64K 
bytes. RAM and ROM chips are available in a variety of sizes and the individual chips must be 
interconnected to form a required memory size.

12.6.1 RAM and ROM Chips

A RAM chip is better suited for communicating with a microprocessor if it has one or more con-
trol inputs for selecting and enabling the unit only upon request. Another convenient feature is a 
bidirectional data bus to avoid inserting external bus buffers between the RAM and the data bus. 
The block diagram of a RAM chip suited for microcomputer applications is shown in Fig. 12-11. 
The capacity of the memory is 128 words of 8 bits each. This requires a 7-bit address and an 8-bit 
bidirectional data bus. The read and write inputs specify the memory operation, and the two chip 
select (CS) control inputs are for enabling the chip only when it is selected by the microprocessor. 
The availability of more than one control input to select the chip facilitates the decoding of the 
address lines when multiple chips are used in the microcomputer. The read and write inputs are 
sometimes combined into one line labeled R/W. When the chip is selected, the two binary states 
in this line specify the two operations of read and write.

The function table listed in Fig. 12-11(b) specifies the operation of the RAM chip. The unit 
is in operation only when CS1= 1 and CS2 = 0. The bar on top of the second select variable indi-
cates that this input is enabled when it is 0. If the chip select inputs are not enabled, or if they are 
enabled but the read and write inputs are not enabled, the memory is inhibited and its data bus 
is in a high-impedance state. When CS1 = 1 and CS2 = 0, the memory can be placed in a write 
or read mode. When the WR input is enabled, the memory stores a byte from the data bus into a 
location specified by the address input lines. When the RD input is enabled, the contents of the 
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selected byte are placed on the data bus. The RD and WR signals control the memory operation 
as well as the bus buffers associated with the bidirectional data bus.

A ROM chip is organized externally in a similar manner. However, since a ROM can only 
read, the data bus can only be in an output mode. The block diagram of a ROM chip is shown in 
Fig. 12-12. For the same-size chip, it is possible to have more bits of ROM than of RAM, because 
the internal binary cells in ROM occupy less space than in RAM. For this reason, the diagram 
specifies a 512-byte ROM. whereas the RAM has only 128 bytes.

The nine address lines in the ROM chip specify any one of the 512 bytes stored in it. The 
two chip select inputs must be CS1 = 1 and CS2 = 0 for the unit to operate. Otherwise, the data 
bus is in a high-impedance state. There is no need for a read or write control because the unit 
can only read. Thus, when the chip is enabled by the two select inputs, the byte selected by the 
address lines appears on the data bus.

12.6.2 Memory Address Map

The designer of a microcomputer system must calculate the amount of memory required for 
the particular application and assign it to either RAM or ROM. The interconnection between 
memory and microprocessor is then established according to the size of memory needed and the 
types of RAM and ROM chips available. The addressing of memory can be established by means 
of a table that specifies the memory address assigned to each chip. The table, called a memory 
address map, is a pictorial representation of assigned address space for each chip in the system.

To demonstrate with an example, assume that a microcomputer system needs 512 bytes of 
RAM and 512 bytes of ROM. The RAM and ROM chips to be used are specified in Figs. 12-11 

128 × 8
  RAM

8-bit data bus

CS1

CS2

RD

WR

AD7

Chip select 1

Chip select 2

Read

Write

7-bit address

(a) Block diagram

CS1 � � � RD WR Memory function State of data bus

0 0 X X Inhibit High-impedance

0 1 X X inhibit High-impedance

1 0 0 0 Inhibit High-impedance

1 0 0 1 Write Input data to RAM

1 0 1 X Read Output data from RAM

1 1 X X Inhibit High-impedance

(b) Function table

Figure 12.11 Typical RAM chip
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and 12-12. The memory address map for this configuration is shown in Table 12-5. The compo-
nent column specifies whether a RAM or a ROM chip is used. The hexadecimal address column 
assigns a range of hexadecimal equivalent addresses for each chip. The address bus lines are 
listed in the third column. Although there are 16 lines in the address bus, the table shows only 
10 lines because the other 6 are not used in this example and are assumed to be zero. The small 
x’s under the address bus lines designate those lines that must be connected to the address inputs 
in each chip. The RAM chips have 128 bytes and need 7 address lines. The ROM chip has 512 
bytes and needs 9 address lines. The x’s are always assigned to the low-order bus lines—lines 
1 through 7 for the RAM and lines 1 through 9 for the ROM. It is now necessary to distinguish 
between four RAM chips by assigning to each a different address. For this particular example, we 
choose bus lines 8 and 9 to represent four distinct binary combinations. Note that any other pair 
of unused bus lines can be chosen for this purpose. The table clearly shows that the 9 low-order 
bus lines constitute a memory space for RAM equal to 29= 512 bytes. The distinction between 
a RAM and ROM address is done with another bus line. For this purpose, we choose line 10. 
When line 10 is 0, the microprocessor selects a RAM, and when this line is 1, it selects the ROM.

The equivalent hexadecimal address for each chip is obtained from the information under 
the address bus assignment. The address bus lines are subdivided into groups of four bits each 
so that each group can be represented with a hexadecimal digit. The first hexadecimal digit rep-
resents lines 13-16 and is always 0. The next hexadecimal digit represents lines 9-12, but lines 
11 and 12 are always 0. The range of hexadecimal addresses for each component is determined 
from thex’s associated with it. These x’s represent a binary number that can range from an all-0’s 
to an all-1’s value.

512 × 8
  ROM

8-bit data bus

CS1

CS2

AD9

Chip Select 1

Chip Select 2

9-bit address

Figure 12.12 Typical ROM chip

Table 12-5 Memory address map for microprocomputer

Hexadecimal address

Address bus

Component 10 9 8 7 6 5 4 3 2 1

RAM 1 0000−007F 0 0 0 x x x x x x x

RAM 2 0080−00FF 0 0 1 x x x x x x x

RAM 3 0100−017F 0 1 0 x x x x x x x

RAM 4 0180−01FF 0 1 1 x x x x x x x

ROM 0200−03FF 1 x x x x x x x x x
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12.6.3 Memory Connection to Microprocessor

RAM and ROM chips are connected to a microprocessor through the data and address buses. The 
low-order lines in the address bus select the byte within the chips, and other lines in the address 
bus select a particular chip through its chip select inputs. The connection of memory chips to 
the microprocessor is shown in Fig 12-13. This configuration gives a memory capacity of 512 
bytes of RAM and 512 bytes of ROM. It implements the memory map of Table 12-5. Each RAM 
receives the 7 low-order bits of the address bus to select one of 128 bytes possible.The particular 
RAM chip selected is determined from lines 8 and 9 in the address bus. This is done through a  
2 × 4 decoder whose outputs go to the CS1 inputs in each RAM chip. Thus, when address lines 8 
and 9 are equal to 00, the first RAM chip is selected. When 01, the second RAM chip is selected, 
and so on. The RD and WR outputs from the microprocessor are applied to the inputs of each 
RAM chip.

The selection between RAM and ROM is achieved through bus line 10. The RAMs are 
selected when the bit on this line is 0, and the ROM, when the bit is 1. The other chip select input 
in the ROM is connected to the RD control line for the ROM chip to be enabled only during a 
read operation. Bus lines 1-9 are applied to the input address of ROM without going through the 
decoder. This assigns addresses 0-511 to RAM and 512−1023 to ROM. The data bus of the ROM 
has only an output capability, whereas the data bus connected to the RAMs can transfer informa-
tion in both directions.

The example just shown gives an indication of the interconnection complexity that can ex-
ist between memory chips and the microprocessor. The more chips connected, the more external 
decoders are required for selection among the chips. The designer must establish a memory map 
that assigns addresses to the various chips from which the required connections are determined. 
Since microprocessors also communicate with interface units, it is necessary to assign addresses 
to each interface as well. The communication between the microprocessor and interface is dis-
cussed in the next section.

12.7 Input-output Interface

An interface chip is an LSI component that provides the communication link between a micro-
processor and an I/O device. When in the output mode, the interface receives binary information 
from the data bus at the microprocessor rate and mode of transfer and transmits it to an external 
device at the device rate and mode of transfer. The interface behaves in a similar manner in the in-
put mode, except that the direction of transfer is in the opposite direction. An interface consists of 
a number of registers, selection logic, and control circuits that implement the required transfers. 
Interface logic is sometimes included within a RAM or ROM chip to provide an LSI component 
that includes both memory and interface capabilities within one IC package.

Most LSI interface components can be programmed to accommodate a variety of combina-
tions of operating modes. The microprocessor, through program instructions, transfers a byte to a 
control register inside the interface unit. This control information puts the interface in one of the 
possible modes suitable for the particular device to which it is attached. By changing the control 
byte, it is possible to change the interface characteristics. For this reason, LSI interface units are 
often said to be programmable. The instructions that transfer control information into a program-
mable interface are included in the microcomputer program and they initialize the interface for 
a particular mode of operation.
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Manufacturers of microprocessors supplement their product with a set of interface chips 
suitable for communication between the microprocessor and a variety of standard input and out-
put devices. Interface components are usually designed to operate with a particular microproces-
sor system bus with no additional logic besides address decoding. There are a variety of interface 
components in commercial use and each can be classified to be in one of four categories:

1. A parallel peripheral interface transfers data in parallel between the microprocessor and 
a peripheral device.

2. A serial communication interface converts parallel data from the microprocessor into 
serial data for transmission and converts incoming serial data into parallel data for recep-
tion by the microprocessor.

3. A special dedicated interface is constructed to communicate with one particular input-
output device, or can be programmed to operate with a particular device.

4. A direct memory access (DMA) interface is used for transferring data directly between 
an external device and memory. The bus buffers in the microprocessor are disabled and 
go into a high-impedance state during DMA transfer.

Commercial interface units may have different names from the ones listed here. Moreover, 
the internal and external characteristics vary considerably from one commercial unit to another. 
In this section, we discuss the common properties of interface components and explain in gen-
eral terms the various modes of transfer that they provide. The direct memory access transfer is 
discussed in the next section.

12.7.1 Communication with Microprocessor

Large computers quite often use separate buses in the CPU to communicate with memory and 
I/O interface. An I/O bus in large computers consists of a data bus and an address bus similar to 
the buses that communicate with memory. The I/O data bus transfers information to and from 
the external devices, and the I/O address bus is used to select a particular I/O device through its 
interface. The number of address lines in an I/O bus is smaller than in a memory bus because 
there are fewer I/O units to select than words in the memory system.

A microprocessor has a limit to the number of terminals that can be accommodated in the 
IC package. There are just not enough pins in a microprocessor chip to provide separate buses for 
communicating separately with memory and I/O. Invariably, all microprocessors use a common 
bus system for selecting memory words and interface units. If an interface chip has a number 
of registers, each register is selected by its own address just as a memory word is selected. The 
microprocessor bus does not distinguish between an interface register and a memory word. It is 
the responsibility of the user, through program instructions, to specify the appropriate address 
that will select one or the other. There are two ways that addresses can be assigned for selecting 
both memory and interface registers. One method is called memory-mapped I/O and the other is 
called isolated I/O.

In the memory-mapped I/O method, the microprocessor treats an interface register as be-
ing part of the memory system.The assigned addresses for interface registers cannot be used for 
memory words, thus reducing the memory space available. In a memory-mapped I/O organiza-
tion there are no input or output instructions because the microprocessor can manipulate I/O data 

www.youseficlass.ir



Microcomputer System Design 477 

residing in interface registers with the same instructions that are used to manipulate memory lo-
cations. Each interface is organized as a set of registers that respond to read and write commands 
in the normal address space of the microprocessor. Typically, a segment of the total address space 
is reserved for interface registers, but in general, they can be located at any address as long as 
there is not also a memory word that corresponds to that address.

The memory-mapped I/O organization is convenient for systems that do not need all the 
memory space available from the address bus lines. A microprocessor with a 16-bit address bus 
that requires a memory of less than 32K bytes can use the other 32K addresses available on the 
bus to access interface registers. A specific configuration for a memory-mapped I/O can be im-
plemented by modifying slightly the address connections shown in Fig. 12-13. Address line 11 in 
the diagram is not used to access memory. We now let this line distinguish between memory and 
interface so that when the bit in this line is 1, the address bus selects a memory word, but when 
the bit is 0, it selects an interface register. To accomplish this new condition, each line going into 
CS1 in the RAMs and ROM in Fig. 12-13 must be ANDed with the bit from address line 11. The 
chip select inputs of all interface units must be conditioned on the complement value of line 11, 
in addition to their assigned address.

With the isolated I/O organization, the microprocessor itself specifies whether the address 
on the address bus is for a memory word or for an interface register. This is done by means of one 
or two additional control lines provided with the microprocessor. For example, a microprocessor 
may have an output control line labeled M/IO. When M/IO = 1, it is signifies that the address in 
the address bus is for a memory word. When M/IO = 0, the address is for an interface register. 
This control line must be connected to the chip select inputs of RAM, ROM, and interface chips 
in a similar fashion as bus line 11 was connected in the previous example for the memory-
mapped I/O case.

In the isolated I/O organization, the microprocessor must provide distinct input and output 
instructions, and each of these instructions must be associated with an address. When the mi-
croprocessor fetches and decodes the operation code of an input or output instruction, it reads 
the address associated with the instruction and places it on the address bus. At the same time it 
makes control line M/IO equal to 0 to inform the external components that this address is for an 
interface and not for memory. Thus, during a fetch cycle or a memory-reference execute cycle, 
the microprocessor enables the read or write control and sets the M/IO line to 1. During the 
execution of an input or output instruction, the microprocessor enables the read or write control 
and sets the M/IO line to 0.

The isolated I/O method isolates memory and I/O addresses so that memory space is not 
affected by the interface address assignment. Because of this isolation, the full address space 
available by the address bus is unaffected by interface addressing as in the memory-mapped I/O 
method.

12.7.2 Parallel Peripheral Interface

A parallel peripheral interface is an LSI component that provides a path for transferring binary 
information in parallel between the microprocessor and a peripheral device. An interface chip 
normally contains two or more I/O ports that communicate with one or more external devices, 
and a single interface to communicate with the microprocessor bus system. The block diagram 
of a typical parallel peripheral interface is shown in Fig. 12-14. It consists of two ports. Each 
port has two registers, an 8-bit I/O bus, and a pair of lines labeled handshake. The information 
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stored in the control register specifies the port’s mode of operation. The port data register is used 
for transferring data to and from the data bus and the I/O bus.

The interface communicates with the microprocessor through the data bus and the chip 
select and read/write control. A circuit must be inserted externally (usually an AND gate) to 
detect the address assigned to the interface. This circuit enables the chip select input when the 
interface is selected through the address bus. Two register select inputs, RS1and RS2 are usually 
connected to the lowest-order lines of the address bus. These two inputs select one of the four 
registers in the interface, as specified in the table accompanying the diagram. The contents of the 
selected register are transferred into the microprocessor through the data bus when the RD input 
is enabled. The microprocessor loads a byte into the selected register through the data bus when 
the WR input is enabled. The interrupt output is used for interrupting the microprocessor, and the 
reset input is for resetting the interface after power is turned on.

The microprocessor initializes each port by transferring a byte to its control register. By 
loading appropriate bits into a control register at system initialization, the program can define 
the mode of operation of the port. The characteristic of the port depends on the commercial unit 
used. In most cases, each port can be placed in an input or output mode. This is done by transfer-
ring bits in the control register that specify the direction of transfer in the bus buffers that drive 
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the bidirectional I/O bus. In addition, the port can be made to function in a variety of operating 
modes. Three operating modes found in most interface chips are:

1. Direct transfer without handshake lines.

2. Transfer with handshaking.

3. Transfer with handshaking using interrupt.

An interface is placed in a direct-transfer mode of operation when the device attached to the 
I/O bus is always ready to transfer information: The handshake lines are not used in this mode, 
and some interface chips have a programming mode to convert these lines into data transfer lines. 
The direct transfer can operate in an input or output mode. In the input mode, a read operation 
transfers the contents of the I/O bus to the microprocessor data bus. In the output mode, a write 
operation transfers the contents of the data bus to the selected port data register. The received 
byte is then applied to the I/O bus. Direct input or output transfers are useful only if valid data 
can reside in the I/O bus for a long time compared with the microprocessor instruction execution 
time. If I/O data can be valid only for a short time, the interface must operate in the handshake 
mode.

Handshake lines are used to control the transfer between two devices operating asynchro-
nously with each other, i.e., when they do not share a common clock. Handshaking is a common-
ly used procedure and is not restricted to interface chips alone. Two handshake lines, connected 
between a source device and a destination device, control the transfer by informing each other 
of the status of the transfer through a common bus. The source device informs the destination 
through one of the handshake lines when valid information is available on the bus. The destina-
tion device responds by enabling the second handshake line when the information on the bus has 
been accepted. Figure 12-14 shows two handshake lines in each port. One is an output line and 
the other is an input line. It is customary to refer to these lines with symbols, but the symbols 
adopted are always different in different commercial units. Because of the variety of symbols 
used to designate these lines, we prefer not to adopt one symbol over another, but refer to the two 
lines as the output or input handshake line. The input handshake line would normally set a bit in 
the control register inside the interface. We will call this bit a flag, realizing that the register that 
holds the flag bit (the control register in this case) can be read by the microprocessor to check the 
status of the transfer. The flag bit is automatically cleared by the interface after a read or write 
operation associated with the corresponding data register.

The detailed handshake sequence for a particular commercial interface chip is specified in 
timing diagrams accompanying the product specifications. Because of the variety of procedures 
encountered in practice, it would be better to explain the handshake method in general terms 
without a preference for one specific method. The transfer with handshaking depends on whether 
the port is in an output or input mode.

In the output handshake mode, the microprocessor writes a byte into the interface port data 
register. The interface then enables the output handshake line to inform the external device that a 
valid byte is available on the I/O bus. When the external device accepts the byte from the I/O bus, 
it enables the input handshake line. This sets a flag bit in the control register. The microproces-
sor reads the register containing the flag bit to determine if the transfer was completed. If so, the 
microprocessor can write a new byte into the data register of the interface port. Writing data into 
a given port automatically clears the flag bit associated with the output transfer. The process now 
can be repeated to output the next byte.
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In the input handshake mode, the external device places a byte on the I/O bus and enables 
the interface input handshake line. The interface transfers the byte into its data register and also 
sets a flag bit in the control register. The microprocessor reads the register containing the flag 
bit to determine if an input transfer is requested. If the flag bit is set, the microprocessor reads 
the byte from the port data register and clears the flag bit. The interface then informs the device 
attached to the I/O bus, through the output handshake line, that a new byte can now be accepted. 
Once the output device has been informed that the interface is ready, it can initiate the transfer of 
the next byte by enabling the input handshake again.

In the handshake method just described, the microprocessor must periodically read the con-
trol register to check the status of the flag bit. If there are-a number of ports attached to the mi-
croprocessor, it would be necessary to poll them in succession to determine the ones that require 
a transfer. This is a time-consuming operation that can be avoided if the interface is initialized to 
operate in the interrupt mode. The interrupt output shown in Fig. 12-14 is then used to request an 
interrupt from the microprocessor. Most commercial units provide a separate interrupt line for 
each port in the interface. Every time a flag is set in the port, the interrupt request belonging to 
the port is automatically enabled to inform the microprocessor that a transfer is to be initiated. 
The microprocessor responds to the interrupt signal from the port that requested the action and 
transfers the byte of data to or from the interface port data register.

12.7.3 Serial Communication Interface

An I/O device may transfer binary information either in parallel or serially. In parallel transmis-
sion, each information bit uses a separate line so that the n bits of an item can be transmitted 
simultaneously. For example, a parallel peripheral device can transmit a word of 16 bits all at 
once through two 8-bit buses of a parallel peripheral interface. In serial transmission, the bits of 
a word are transmitted in sequence, one bit at a time, and through a single line. Parallel transmis-
sion is faster but requires many lines. It is used for short distances and where speed is important. 
Serial transmission is slower but less expensive, since it requires only one line. Binary informa-
tion transmitted from remote terminals through telephone wires or other communication media 
is of the serial type, because it would be expensive to subscribe to or lease a large number of 
lines. Examples of communication terminals are teletypewriters, CRT terminals, and remote 
computing devices,

The serial binary information transmitted to and from a terminal consists of binary-coded 
characters. The characters may represent alphanumeric information or control characters. The 
alphanumeric characters are referred to as text and include the letters of the alphabet, the decimal 
digits, and a number of graphic symbols such as period, plus, and comma. The control characters 
are used for the layout of printing or for specifying the format of the transmitted message. The 
number of bits assigned to each character code may be between five and eight, depending on the 
terminal.

The block diagram of a serial communication interface is shown in Fig. 12-15. It functions 
both as a transmitter and as a receiver and can be programmed to operate in a variety of transmis-
sion modes. The interface is initialized for a particular serial-transfer mode by means of a control 
byte which is loaded into its control register. The transmitter register accepts a data byte from the 
microprocessor through the data bus. This byte is transferred to a shift register for serial trans-
mission. The receiver portion receives serial information into another shift register, and when a 
complete data byte is accumulated, it is transferred to the receiver register. The microprocessor 
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can select the receiver register to read the byte through the data bus. The bits in the status register 
are used to set input and output flags and to detect certain errors that may occur during the trans-
mission. The microprocessor can read the status register to check the status of the flag bits and to 
determine if any errors have occurred.

The chip select and read/write control lines communicate with the microprocessor. The chip 
select (CS) input is used to select the interface. The register select (RS) is associated with the RD 
and WR controls. Two registers accept information during a write operation and the other two 
supply information during a read operation. The register selected is then a function of the RD and 
WR status, as shown in the table accompanying the diagram.

The transmitter and receiver have a clock input to synchronize the bit rate at which the se-
rial information is transferred. The transmit data line is connected to a remote receiver and the 
receive data line comes from a remote transmitter. If the clock is also connected to the remote 
terminal, the transmission is said to be synchronous. If the clock is not shared with the remote 
terminal, the transmission is said to be asynchronous.

In the synchronous serial mode of transmission, the local and remote transmitter and receiv-
er share a common clock. Bits are sent from the transmitter at equal intervals of time determined 
by the rate of the clock pulses. Since the receiver shares a common clock with the transmitter, it 
accepts the bits at the same clock rate. In asynchronous transmission, the two sides do not share 
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a common clock. The interface transmitter and receiver clocks are supplied with a local clock 
rate that specifies the transfer rate of the remote communication terminal to which the interface 
is attached.

A common problem associated with serial transmission is concerned with framing the char-
acters in a string of continuous bits. The transmitter and receiver can be programmed to recog-
nize the number of bits in each character in the remote terminal. There remains the problem of 
detecting the first bit in each character so that a count can start to frame the next character. The 
way characters are framed in serial transmission depends on whether the mode of transfer is 
synchronous or asynchronous.

In synchronous serial transmission, one communication control character, called the sync 
character, is chosen to serve as a synchronizing agent between the transmitter and receiver. For 
example, when the 7-bit ASCII code is used with an odd-parity bit at the most significant posi-
tion, the assigned sync character has the 8-bit code 00010110. When the transmitter starts send-
ing 8-bit characters, it sends a few sync characters first and then sends the actual message. The 
initial continuous string of bits accepted by the receiver is checked for a sync character. In other 
words, with each clock pulse, the receiver checks the last eight bits received. If they do not match 
the bits of the sync character, the receiver accepts one more bit, rejects the previous high-order 
bit, and checks again the last 8 bits received for a sync character. This is repeated after each clock 
pulse and bit received until a sync character is recognized. Once a sync character is detected, 
the receiver has framed a character. From here on, the receiver counts every eight bits and ac-
cepts them as a single character. Usually the receiver checks two consecutive sync characters to 
remove any doubt that the first sync character did not occur as a result of a noise signal on the 
line. Moreover, when the transmitter is idle and does not have any message characters to send, 
it sends a continuous string of sync characters. The receiver recognizes all sync characters as a 
condition for synchronizing the line and goes into a synchronous idle state. In this state, the two 
units maintain synchronism while no meaningful message is being communicated.

The standard procedure just described dictates that the transmitter in a synchronous com-
munication interface be designed to send sync characters at the beginning of transmission and 
also when no characters are available from the microprocessor. The receiver in a synchronous 
communication interface must frame eight consecutive bits into characters and must be able to 
identify certain character codes such as the sync character. When the receiver recognizes sync 
characters, they are used to maintain synchronism with the transmitter; but sync characters are 
not sent to the microprocessor.

The standard procedure for framing characters during asynchronous transmission is to send 
at least two additional bits with each character. These additional bits are called the stop and start 
bits. For example, a teletype unit uses an 8-bit character code but sends 11 bits for each character 
transmitted. The first bit is the start bit. This is followed by the 8 bits of the character and then 
by two stop bits. The convention in this terminal is that it rests in the 1-state when no character 
is transmitted. The first bit is always 0 and represents the start bit to indicate the beginning of 
a character. The receiver can detect the start bit when the line goes from 1 to 0. A clock in the 
receiver knows the transfer rate and the number of character bits to expect. After the 8 bits of the 
character are received, the receiver checks for two stop bits which are always in the 1-state. The 
length of time the line stays in the 1 (stop)-state depends on the amount of time required for the 
terminal to resynchronize. A teletype requires two stop bits. Other terminals use just one stop 
bit, and some use a one-and-a-half bit time for the stop period. The line remains in the 1-state 
until another character is transmitted. Figure 12-16 shows the 11 bits of a typical character from 
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a teletype. After the two stop bits have been transmitted, the line may go to 0, indicating a start 
bit for a new character. The line will stay in the 1-state if no other character follows immediately.

The standard procedure just described dictates that the transmitter in an asynchronous com-
munication interface inserts the start and stop bits prior to the serial transmission. The receiver 
must recognize the start and stop bits to frame the character. The receiver must also isolate the 
information bits for transfer to the microprocessor.

The standard framing procedures are incorporated with any serial communication interface. 
A serial communication interface may be asynchronous only, synchronous only, or both synchro-
nous and asynchronous.

12.7.4 Dedicated Interface Components

In addition to the interface components that transfer information in parallel or serially, one can 
find in commercial use other interface chips that are dedicated to a particular interface applica-
tion. A few of them are listed below.

Floppy disk controller

Keyboard and display interface

Priority interrupt controller

Interval timer

Universal peripheral interface

The floppy disk controller is an interface chip designed to control a small magnetic-disk 
storage device called floppy disk. The keyboard and display interface is suitable for scanning a 
matrix of keys to detect a closure and for driving a display of numeric or alphanumeric informa-
tion. The priority interrupt controller facilitates the interrupt handling by establishing priorities 
and providing an interrupt vector for the microprocessor. An interval timer is a programmable 
counter that can be set to count for a given interval of time and to interrupt the microprocessor 
when the counter reaches a prescribed count.

A universal peripheral interface is an LSI component that acts as a slave I/O processor to 
the system CPU. It has its own processor, control logic, RAM, and ROM and in some ways re-
sembles a microcomputer chip. Its function is to handle the operations of I/O devices rather than 
be involved in computational procedures.

The program stored in the ROM part of a universal peripheral interface is a dedicated, fixed 
program that handles the particular devices attached to it. The universal interface component 
is supervised by the program that is executed in the microprocessor. In essence, this is a two-
processor configuration with the system CPU and the slave universal interface device operating 
in parallel.

Start
  bit

8 information bits 2 stop
  bits

1 1 1 1 000 0

Figure 12.16 Asynchronous serial transmission of a character
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12.8 Direct Memory Access

The transfer of data between a mass storage device, such as magnetic disk or magnetic tape, and 
system memory is often limited by the speed of the microprocessor. Removing the processor 
during such a transfer and letting the peripheral device manage the transfer directly to memory 
would improve the speed of transfer and make the system more efficient. This transfer technique 
is called DMA (direct memory access). During DMA transfer, the processor is idle; so it no lon-
ger has control of the system bus. A DMA controller takes over the buses to manage the transfer 
directly between the peripheral device and memory.

The microprocessor may be made to idle in a variety of ways. The most common method 
is to disable the buses through a special control signal. Figure 12-17 shows two control signals 
useful for DMA transfer. The bus request (BR)input, when in the 1-state, is a request to the 
microprocessor to disable its buses. The microprocessor terminates the execution of its present 
instruction and then places its buses, including the RD (read) and WR (write) lines, into a high-
impedance state. When this is done, the processor places the bus granted (BG) output in the 
1-state. As long as BG = 1, the microprocessor is idle and its buses are disabled. The processor 
returns to its normal operation after the BR line returns to 0 by returning its BG line to 0 and 
enabling its buses. The bus request line is sometimes called a hold command, and the bus granted 
a hold acknowledge.

As soon as BG = 1, the DMA controller can take control of the bus system to communicate 
directly with the memory. The transfer can be made for an entire block of memory words, sus-
pending the processor operation until the whole block is transferred. The transfer can be made 
one word at a time in between microprocessor instruction executions. Such a transfer is called 
cycle stealing. The processor merely delays its operation for one memory cycle to allow the di-
rect memory I/O transfer to steal one memory cycle.

The DMA controller needs the usual circuits of an interface to communicate with the mi-
croprocessor. In addition, it needs an address register, a byte count register, and a set of address 
lines. The address register and address lines are used for direct communication with the system 
RAM. The word count register specifies the number of words to be transferred. The data transfer 
is usually done directly between the peripheral device and memory under control of the DMA.

Figure 12-18 shows the block diagram of a typical DMA controller. The unit communicates 
with the microprocessor via the data bus and control lines. The registers in the DMA are selected 
by the microprocessor through its address lines by enabling CS (chip select) and RS (register 
select). The RD and WR lines in the DMA are bidirectional. With BG = 0, the microprocessor 
communicates with the DMA register through the data bus to read from or write into the DMA 
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Figure 12.17 Control signals for DMA transfer
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registers. When BG = 1, DMA can communicate directly with the memory by specifying an ad-
dress in the address bus and activating its RD or WR control. The DMA communicates with an 
external peripheral device through the request and acknowledge lines.

The DMA controller includes three registers: an address register, a byte count register, and a 
control register. The address register contains 16 bits that specify the desired location in memory. 
The address bits go through a bus buffer into the address bus. The address register is incremented 
after each DMA byte transfer. The byte count register holds the number of bytes to be transferred. 
This register is decremented after each byte transfer and internally tested for zero. The control 
register specifies the mode of transfer—whether it is into (write) or out of (read) memory. All 
registers in the DMA appear to the microprocessor as an I/O interface. Thus, the processor can 
read from or write into the DMA registers under program control via the data bus.

The DMA is first initialized by the microprocessor. After that, the DMA starts and contin-
ues to transfer data between memory and peripheral unit until an entire block is transferred. The 
initialization process is essentially a program consisting of I/O instructions that include the DMA 
address for selecting particular registers. The microprocessor initializes the DMA by sending the 
following information through the data bus:

1. The starting address of the memory block where data are available (for read) or where 
data are to be stored (for write).

2. The byte count, which is the number of bytes in the memory block.
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Figure 12.18 Block diagram of DMA controller
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3. Control bits to specify a read or write transfer.

4. A control bit to start the DMA.

The starting address is stored in the DMA address register. The byte count is stored in the DMA 
byte count register, and the control bits are stored in the DMA control register. Once the DMA 
is initialized, the microprocessor stops communicating with the DMA unless it receives an inter-
rupt signal or if it wants to check how many bytes have been transferred.

The position of the DMA controller among other components in a microcomputer system 
is illustrated in Fig. 12-19. The microprocessor communicates with the DMA controller through 
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Figure 12.19 DMA transfer in a microcomputer system
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the address and data buses as with any interface unit. The DMA has its own address which acti-
vates the CS and RS lines. The microprocessor initializes the DMA through the data bus. Once 
the DMA receives the start control bit, it can start the transfer between the peripheral device and 
system RAM.

When the peripheral device sends a DMA request, the DMA controller activates its BR line, 
informing the processor to relinquish the buses. The microprocessor responds with its BG line, 
informing the DMA that its buses are disabled. The DMA then puts the current value of its ad-
dress register onto the address bus, initiates the RD or WR signal and sends a DMA acknowledge 
to the peripheral device.

The peripheral device then puts a byte on the data bus (for write) or receives a byte from 
the data bus (for read). Thus, the DMA controls the read or write operation and supplies the 
address for the memory. The peripheral unit can then communicate with RAM through the 
data bus for direct transfer between the two units while the microprocessor is momentarily  
disabled.

For each byte that is transferred, the DMA increments its address register and decrements 
its byte count register. If the byte count register does not reach zero, the DMA checks the request 
line coming from the peripheral. For a high-speed peripheral, this line will be activated as soon as 
the previous transfer is completed. A second transfer is then initiated, and the process continues 
until the entire block is transferred. If the peripheral speed is slower, the DMA request line may 
come somewhat later. In this case, the DMA removes its bus request line so the microprocessor 
can continue to execute its program. When the peripheral requests a transfer, the DMA requests 
the buses again.

If the byte count register reaches zero, the DMA stops any further transfer and removes 
its bus request. It also informs the microprocessor of the termination by means of an interrupt 
request. When the microprocessor responds to the DMA interrupt, it reads the contents of the 
byte count register. The zero value of this register indicates that all the bytes were successfully 
transferred. The microprocessor can read this register at any other time as well to check the num-
ber of bytes already transferred.

A DMA controller may have more than one channel. In this case, each channel has a DMA 
request/acknowedge pair of control signals and is connected to a separate peripheral device. Each 
channel also has its own address register and byte count register within the DMA. A priority 
among the channels may be established so that channels with high priority are serviced before 
channels with lower priority.

DMA transfer is very useful in many microcomputer system applications. It is used for 
fast transfer of information between floppy disks or magnetic-tape cassettes and system RAM. 
It is also useful for communication with interactive terminal systems having CRT screens or 
with television screens used for video games. Typically, an image of the screen display is kept 
in a memory which can be updated under processor control. The contents of the memory can be 
transferred to the screen periodically by means of DMA transfer.

A potential application for DMA is in a multiprocessor system forming a network of two or 
more processors. Communication between processors can be maintained with a shared memory 
that can be accessed by all processors. DMA is a convenient method for transferring information 
between the common memory and the various processors in the network.
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PROBLEMS

12-1. Microprocessors are typically categorized as being 4-bit, 8-bit, or 16-bit. What does the number of 
bits imply?

12-2. A microprocessor data bus has 16 lines and its address bus contains 12 lines. What is the maximum 
memory capacity that can be connected to the microprocessor? How many bytes can be stored in 
memory?

12-3. What is the difference between a microprocessor and a microcomputer? What is the difference 
between a single-chip microcomputer and a microprocessor chip?

12-4. Consider an 8-bit LSI component (memory or interface) with separate input and output data termi-
nals and no internal bus buffers. Using external three-state buffers, show how the input and output 
terminals of the component should be connected to a bidirectional data bus.

12-5. A 16-bit microprocessor has a single 16-bit bus which is shared for transferring either a 16-bit 
address or a 16-bit data word. Explain why an external address latch or register would be required 
between the microprocessor and the address inputs of the memory. Formulate a possible set of 
control signals for communicating between the microprocessor and memory. List the sequence of 
transfers for a memory read and memory write.

12-6. Go over the list of instructions in Table 12-2 and indicate if the instruction occupies one, two, or three 
bytes.

12-7. The first instruction listed in Table 12-2 is a move instruction that transfers the contents of B to A. 
How many equivalent instructions are there for transferring the contents of register R1to R2, where 
R1or R2 is one of the registers A, B, C, D, E, F, or G? The source register can be the same as the 
destination register.
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12-8. Table 12-1 lists three add-to A instructions with different addressing modes. Extend the table to 
include the following addressing modes:

(a) Zero-page addressing.

(b) Relative addressing.

(c) Index addressing.

List the sequence of operations required to process each instruction.

12-9. The operation code of an instruction is stored in memory location (7128)
16

. The next byte in memory 
contains (FB)

16
. Where should the operand be stored in memory if the instruction has the following 

addressing mode?

(a) Zero-page addressing,

(b) Present-page addressing.

(c) Relative addressing.

12-10. Some microprocessors provide an internal (limited capacity) register stack within the microproces-
sor chip. Others provide a stack pointer register with access to memory for the stack. Discuss the 
advantages and disadvantages of each configuration.

12-11. If you are familiar with an electronic calculator that employs a stack for evaluating arithmetic ex-
pressions, explain how the stack mechanism operates when calculating the expression 3 × 4 + 5 × 6.

12-12. A subroutine return address can be stored in an index register instead of a stack. Discuss the advan-
tages and disadvantages of this configuration.

12-13. The top of the stack contains 5A and the next byte down the stack is 14 (alt numbers are in hexade-
cimal). The stack pointer contains 3A56. A call subroutine to location 67AE instruction (three bytes) 
is located at memory address 013F. What are the contents of PC, SP, and the stack?

(a) Before the call instruction is executed?

(b) After the call instruction is executed?

(c)  After the return from subroutine?

(d) After a second return from subroutine instruction following the one in (c)?

12-14. How would you sequence a program that needs two memory stacks maintained throughout the pro-
gram with a microprocessor that has only one stack pointer?

12-15. What is the fundamental difference between a subroutine call and an interrupt request? Is it possible 
to employ a common memory stack for both?

12-16. A microprocessor responds to an interrupt request by pushing into the stack not only the return 
address, but also the contents of processor registers that may be affected while servicing the inter-
rupt.

(a) List those registers from Fig. 12-5 whose contents should be pushed into the stack.

(b) How many memory cycles would it now take to execute an interrupt request?

12-17. Obtain the circuit of the four-input priority encoder whose truth table is specified in Table 12-4.

12-18. Specify the four vector addresses (in hexadecimal) when x and y of Table 12-4 are bits 4 and 5 of the 
low-order byte. All other bits of the byte are 0. The high-order byte is always FF.

12-19. (a)    How many 128 × 8 RAM chips are needed to provide a memory capacity of 2048 bytes?

(b)  How many lines of the address bus must be used to access 2048 bytes of memory? How many 
of these lines will be common to all chips?

(c)  How many lines must be decoded for chip select? Specify the size of the decoders.
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12-20. A ROM chip of 1024 × 8 bits has four select inputs and operates from a 5-volt power supply. How 
many pins are needed for the IC package? Draw a block diagram and label all input and output ter-
minals in the ROM.

12-21. Extend the memory system of Fig. 12-13 to 4096 bytes of RAM and 4096 bytes of ROM. List the 
memory-address map and indicate what size decoders are needed.

12-22. A microprocessor employs RAM chips of 256 ´ 8 and ROM chips of 1024 × 8. The microcomputer 
system needs 2K bytes of RAM, 4K bytes of ROM, and four interface units, each with four registers. 
A memory-mapped I/O configuration is used. The two highest-order bits of the address bus are as-
signed 00 for RAM, 01 for ROM, and 10 for interface registers.

(a)  How many RAM and ROM chips are needed?

(b)  Draw a memory-address map for the system.

(c)  Give the address range in hexadecimal for RAM, ROM, and interface.

12-23. An 8-bit microprocessor has a 16-bit address bus. The first 15 lines of the address are used to select 
a bank of 32K bytes of memory. The high-order bit of the address is used to select a register which 
receives the contents of the data bus. Explain how this configuration can be used to extend the me-
mory capacity of the system to 8 banks of 32K bytes each, for a total of 256K bytes of memory.

12-24. The interface of Fig. 12-14 is connected to the address bus of a microprocessor. The data register of 
port A is selected with a hexadecimal address XXXC, where the X’s can be any number.

(a)  How should the address lines he connected to the chip select (CS) input?

(b)  What are the hexadecimal addresses that select the other three registers in the interface?

12-25. Consider the possibility of connecting a number of microprocessors to one common set of data and 
address buses. How can an orderly transfer of information be established between the microproces-
sors and the common memory?

12-26. Write short notes on

(a) Bus buffer

(b) Memory cycle

(c) Addressing modes

(d) Interrupt

(e) Memory stack

12-27. Differentiate between 

(a) Implied Mode and Register mode

(b) Immediate Mode and Direct addressing mode

(c) Zero-page addressing and present-page addressing

(d) RAM and ROM

(e) Direct transfer and transfer with handshaking in a parallel peripheral interface

(f) Synchronous and asynchronous serial transfer

12-28. What will accumulator register A and the status bits C (carry), S (sign), Z (zero), and V (overflow) 
contain after each of the following instructions? The initial value of register A in each case is (83)

16
. 

Assume that all status bits are affected after an arithmetic or logic operation.

(a) CMA (2F)

(b) Exclusive-NOR the accumulator to itself 

(c) RLC (07)

(d) RRC (0F)
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12-29. Specify the number of bytes in instructions in each instruction and list the sequence of register trans-
fers that execute the following instructions from Table 12-2

Instruction Symbol Description Function

LXI FG, D16 Load register pair immediate FG ← D16

ORA B OR B to A A ← A∨B

DCX BC Decrement register pair BC BC ← BC-1

JMP AD16 Jump unconditionally PC ← AD16

CALL AD16 Call subroutine Stack ← PC, PC ← AD16

12-30. An electronic calculator that employs a stack for evaluating arithmetic expressions, explain  how the 
stack mechanism operates when calculating the expression (Division and multiplication have same 
precision)

6 ÷ 2 – 1 × 2

12-31. Derive the truth table of a 6 –input priority encoder.

12-32. A microprocessor uses RAM chips of 2048 × 1 capacity.
(a) How many chips are needed and how should their address lines be connected to provide a 

memory capacity of 2048 bytes?

(b) How many chips are needed to provide a memory capacity of 32K bytes? Explain in words how 
the chips are to be connected to the address bus.
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Digital Integrated Circuits

13.1 Introduction

The integrated circuit (IC) was introduced in Section 1-9, and the various IC digital logic fami-
lies were discussed in Section 2-8. This chapter presents the basic electronic circuits in each IC 
digital logic family and analyzes their electrical operation. A basic knowledge of electronics is 
assumed.

The IC digital logic families to be considered here are:

RTL Resistor-transistor logic
DTL Diode-transistor logic
I 2 L Integrated-injection logic
TTL Transistor-transistor logic
ECL Emitter-coupled logic
MOS Metal-oxide semiconductor
CMOS Complementary metal-oxide semiconductor

The first two, RTL and DTL, have only historical significance since they are seldom used in 
new designs. RTL was the first commercial family to have been used extensively. It is included 
here because it represents a useful starting point for explaining the basic operation of digital 
gates. DTL circuits have been gradually replaced by TTL. In fact, TTL is a modification of 
the DTL gate. The operation of the TTL gate will be easier to understand after the DTL gate is 
discussed. The characteristics of TTL, ECL, and CMOS were presented in Section 2-8. These 
families have a large number of SSI circuits, as well as MSI and LSI circuits. I2L and MOS are 
mostly used for constructing LSI functions.

The basic circuit in each IC digital logic family is either a NAND or a NOR gate. This basic 
circuit is the primary building block from which more complex functions are obtained. An RS 
latch is constructed from two NAND or two NOR gates connected back to back. A master-slave 
flip-flop is obtained from the interconnection of about ten basic gates. A register is obtained from 
the interconnection of flip-flops and basic gates. Each IC logic family has available a catalog of 
integrated-circuit packages that provide various digital logic functions. The differences in the 
logic functions available from each logic family are not so much in the function that they achieve 
as in the specific characteristics of the basic gate from which the function has been constructed.

NAND and NOR gates are usually defined by the Boolean functions they implement in 
terms of binary variables. When analyzing them as electronic circuits, it is more convenient to 
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investigate their input-output relationships in terms of two voltage levels: a high level (H) and a 
low level (L) (see Fig. 2-10). Binary variables take the values 1 and 0. When positive logic is ad-
opted, the high voltage level is assigned the binary value of 1, and the low voltage level a binary 
0. From the truth table of a positive-logic NAND gate, we deduce its behavior in terms of high 
and low levels as stated in Fig. 13-1. The corresponding behavior of the NOR gate is also stated 
in the same figure. These statements must be remembered because they will be used during the 
analysis of all the gates in this chapter.

The various digital logic families are usually evaluated by comparing the characteristics of 
the basic gate in each family. The most important characteristics were discussed in Section 2-8. 
They are listed here again for reference.

1. Fan-out specifies the number of standard loads that the output of the gate can drive with-
out impairment of its normal operation. A standard load is defined as the current flowing 
in the input of a gate in the same IC family.

2. Power dissipation is the power consumed by the gate, which must be available from the 
power supply.

3. Propagation delay is the average transition delay time for the signal to propagate from 
input to output when the signals change in value.

4. Noise margin is the limit of a noise voltage which may be present without impairing the 
proper operation of the circuit.

The bipolar junction transistor (BJT) is the familiar npn or pnp junction transistor. In con-
trast, the field-effect transistor (FET) is said to be unipolar. The operation of a bipolar transistor 
depends on the flow of two types of earners: electrons and holes. A unipolar transistor depends 
on the flow of only one type of majority carrier which may be eletrons (n-channel) or holes 
(p-channel). The first five logic families listed previously, RTL, DTL, TTL, ECL, and I2L, use 
bipolar transistors. The last two logic families, MOS and CMOS, employ a type of unipolar  

Inputs Output NAND gate

x y z (a)  If any input is LOW, the output is HIGH.

L L H (b)  If all inputs are HIGH, the output is LOW.

L H H

x

y
z

H L H

H H L

Inputs Output NOR gate

x y z (a)  If any input is HIGH, the output is LOW.

L L H (b)  If all inputs are LOW, the output is HIGH

L H L
x

y
zH L L

H H L

Figure 13.1 Input-output conditions for positive-logic NAND and NOR gates
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transistor called metal-oxide semiconductor field-effect, transistor, abbreviated MOSFET, or 
MOS for short. We begin by describing the characteristics of the bipolar transistor and the basic 
gates used in the bipolar logic families. We then explain the operation of the MOS transistor in 
conjunction with its two logic families.

13.2 Bipolar Transistor Characteristics

This section is devoted to a review of the bipolar transistor as applied to digital circuits. This 
information will be used for the analysis of the basic circuit in the five bipolar logic families. 
Bipolar transistors may be of the npn or pnp type. Moreover, they are constructed either with 
germanium or silicon semiconductor material. IC transistors, however, are made with silicon and 
are usually of the npn type.

The basic data needed for the analysis of digital circuits may be obtained from inspection of 
the typical characteristic curves of a common-emitter npn silicon transistor, shown in Fig. 13-2. 
The circuit in (a) is a simple inverter with two resistors and a transistor. The current marked I

C
 

flows through resistor R
C
 and the collector of the transistor. Current I

B
 flows through resistor R

B
 

and the base of the transistor. The emitter is connected to ground and its current I
E
 = I

C
 + I

B
. The 

supply voltage is between V
CC

 and ground. The input is between V
i
 and ground, and the output is 

between V
0
 and ground.

VCC

V0

V1

IB

IC RC

RB

IE

(a) Inverter circuit

VBE (V)

IB
(mA)

0.6 0.7 0.8           
VCE (V)

IC
(mA)

0.6

VCC

0.3

0.4

0.5

IB = 0.2 mA 

VCC

RC

               (b) Transistor base characteristic                (c) Transistor collector characteristic

Figure 13.2 Silicon npn transistor characteristics
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We have assumed a positive direction for the currents as indicated. These are the directions 
in which the currents normally flow in an npn transistor. Collector and base currents I

C
 and I

B
 

are positive when they flow into the transistor. Emitter current I
E
 is positive when it flows out of 

the transistor, as indicated by the arrow in the emitter terminal. The symbol V
CE

 stands for the 
voltage drop from collector to emitter and is always positive. Correspondingly, V

BE
 is the voltage 

drop across the base-to-emitter junction. This junction is forward biased when V
BE

 is positive. It 
is reverse biased when V

BE
 is negative.

The base-emitter graphical characteristic is shown in Fig. 13-2(b). This is a plot of V
BE

 ver-
sus I

B
. If the base-emitter voltage is less than 0.6 V, the transistor is said to be cutoff and no base 

current flows. When the base-emitter junction is forward biased with a voltage greater than 0.6 
V, the transistor conducts and I

B 
starts rising very fast while V

BE
 changes very little. The voltage 

V
BE

 across a conducting transistor seldom exceeds 0.8 V.
The graphical collector-emitter characteristics, together with the load line, are shown in 

Fig. 13-2(c). When V
BE

 is less than 0.6 V, the transistor is cutoff with I
B
 = 0 and a negligible 

current flows in the collector. The collector-to-emitter circuit then behaves like an open circuit. 
In the active region, collector voltage V

CE 
may be anywhere from about 0.8 V up to V

CC
. Collec-

tor current I
C
 in this region can be calculated to be approximately equal to I

B
h

FE
, where h

FE
 is 

a transistor parameter called the dc current gain. The maximum collector current depends not 
on I

B
, but rather on the external circuit connected to the collector. This is because V

CE
 is always 

positive and its lowest possible value is 0 V. For example, in the inverter shown, the maximum I
C
 

is obtained by making V
CE

 = 0 to obtain I
C
 = V

CC
/R

C
.

It was stated that I
C
 = h

FE
I

B
 in the active region. The parameter h

FE
 varies widely over 

the operating range of the transistor, but still it is useful to employ an average value for the 
purpose of analysis. In a typical operating range, h

FE
 is about 50, but under certain conditions 

it could go down to as low as 20. It must be realized that the base current I
B
 may be increased 

to any desirable value, but the collector current I
C
 is limited by external circuit parameters. As 

a consequence, a situation can be reached where h
FE

I
B
 is greater than I

C
. If this condition exists, 

then the transistor is said to be in the saturation region. Thus, the condition for saturation is 
determined from the relationship:

I
I

hB
CS

FE

≥

where I
CS

 is the maximum collector current flowing during saturation. V
CE

 is not exactly zero in 
the saturation region but is normally about 0.2V.

The basic data needed for analyzing bipolar transistor digital circuits are listed in Table 
13-1. In the cutoff region, V

BE
 is less than 0.6 V, V

CE
 is considered as an open circuit, and both 

Table 13-1 Typical npn silicon transistor parameters

Region V
BE

(V)* V
CE

(V) Current relationship

Cutoff < 0.6 Open circuit I
B
 = I

C
 = 0

Active 0.6 − 0.7 > 0.8 I
C
 = h

FE
I

B

Saturation 0.7 − 0.8 0.2 I
B
 ≥ I

CS
/h

FE

* V
be
 will be assumed to be 0.7 V if the transistor is conducting, whether in the active or saturation region.
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currents are negligible. In the active region, V
BE

 is about 0.7 V, V
CE

 may vary over a wide range, 
and I

C
 can be calculated as a function of I

B
. In the saturation region. V

BE
 hardly changes but V

CE
 

drops to 0.2 V. The base current must be large enough to satisfy the inequality listed. To simplify 
the analysis, we will assume that V

BE
 = 0.7 V if the transistor is conducting, whether in the active 

or saturation region.
The analysis of digital circuits may be undertaken using a prescribed procedure: For each 

transistor in the circuit determine if its V
BE

 is less than 0.6 V. If so, then the transistor is cutoff 
and the collector-to-emitter circuit is considered an open circuit. If V

BE
 is greater than 0.6 V, the 

transistor may be in the active or saturation region. Calculate the base current, assuming that  
V

BE
 = 0.7 V. Then calculate the maximum possible value of collector current I

CS
, assuming  

V
CE

 = 0.2 V. These calculations will be in terms of voltages applied and resistor values. Then, if the 
base current is large enough that I

B
 > I

CS
/h

Fe
, we deduce that the transistor is in the saturation region 

with V
CE

 = 0.2 V. However, if the base current is smaller and the above relationship is not satisfied, 
the transistor is in the active region and we recalculate collector current I

C
 using the equation  

I
C
 = h

FE
I

B
. 

To demonstrate with an example, consider the inverter circuit of Fig. 13-2(a) with the fol-
lowing parameters:

R
C
 = 1 kΩ   V

CC
 = 5 V (voltage supply)

R
B
 = 22 kΩ  H = 5 V (high-level voltage)

h
FE

 = 50 L = 0.2 V (low-level voltage)

With input voltage V
i
 = L = 0.2 V, we have that V

BE
 < 0.6 V and the transistor is cutoff. The 

collector-emitter circuit behaves like an open circuit; so output voltage V
0
 = 5 V = H.

With input voltage V
i
 = H = 5 V, we deduce that V

BE
 > 0.6 V. Assuming that V

BE
 = 0.7, we 

calculate the base current:

I
V V

R K
mAB

i BE

B

=
−

=
−
Ω
=

5 07

22
0 195.

The maximum collector current, assuming V
CE

 = 0.2 V, is:

I
V V

R k
mACS

CC CE

C

=
−

=
−
Ω
=

5 0 2

1
4 8

.
.

We then check for saturation:

0 195
4 8

50
0 096.

.
.= ≥ = =I

I

h
mAB

CS

FE

and find that the inequality is satisfied since 0.195 > 0.096. We conclude that the transistor is 
saturated and output voltage V

0
 = V

CE
 = 0.2 V = L. Thus the circuit behaves as an inverter.

The procedure just described will be used extensively during the analysis of the circuits in 
the following sections. This will be done by means of a qualitative analysis, i.e., without writing 
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down the specific numerical equations. The quantitative analysis and specific calculations will be 
left as exercises in the Problems section at the end of the chapter.

There are occasions where not only transistors but also diodes are used in digital circuits. 
An IC diode is usually constructed from a transistor with its collector connected to the base, as 
shown in Fig, 13-3(a). The graphic symbol employed for a diode is shown in Fig. 13-3(b). The 
diode behaves essentially like the base-emitter junction of a transistor. Its graphical characteris-
tic, shown in Fig. 13-3(c), is similar to the base-emitter characteristic of a transistor. We can then 
conclude that a diode is off and nonconducting when its forward voltage, V

D
, is less than 0.6 V. 

When the diode conducts, current I
D
 flows in the direction shown in Fig. 13-3(b), and V

D
 stays 

at about 0.7 V. One must always provide an external resistor to limit the current in a conducting 
diode, since its voltage remains fairly constant at a fraction of a volt.

13.3 RTL and DTL Circuits

13.3.1 RTL Basic Gate

The basic circuit of the RTL digital logic family is the NOR gate shown in Fig, 13-4. Each in-
put is associated with one resistor and one transistor. The collectors of the transistors are tied 
together at the output. The voltage levels for the circuit are 0.2 V for the low-level and from 1 to 
3.6 V for the high-level.

The analysis of the RTL gate is very simple and follows the procedure outlined in the pre-
vious section. If any input of the RTL gate is high, the corresponding transistor is driven into 
saturation. This causes the output to be low, regardless of the states of the other transistors. If all 
inputs are low at 0.2 V, all transistors are cutoff because V

BE
 < 0.6 V. This causes the output of 

the circuit to be high, approaching the value of supply voltage V
CC

. This confirms the conditions 
stated in Fig. 13-1 for the NOR gate. Note that the noise margin for low signal input is 0.6 − 0.2 
= 0.4 V.

The fan-out of the RTL gate is limited by the value of the output voltage when high. As the 
output is loaded with inputs of other gates, more current is consumed by the load. This current 
must flow through the 640-Ω resistor. A simple calculation (see Problem 13-1) will show that, if 

1

2

(a)  Transistor adapted for 
use as a diode

1 2
+ –

ID

VD

(b) Diode graphic symbol

VD (V)

ID
(mA)

0.6 0.7

(c) Diode characteristic

Figure 13.3 Silicon diode symbol and characteristic
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h
FE

 drops to 20, the output voltage drops to about 1 V when the fan-out is 5. Any voltage below 
1 V in the output may not drive the next transistor into saturation as required. The power dissipa-
tion of the RTL gate is about 12 mW and the propagation delay averages 25 ns.

13.3.2 DTL Basic Gates

The basic circuit in the DTL digital logic family is the NAND gate shown in Fig. 13-5. Each 
input is associated with one diode. The diodes and the 5-kΩ resistor form an AND gate. The 
transistor serves as a current amplifier while inverting the digital signal. The two voltage levels 
are 0.2 V for the low-level and between 4 and 5 V for the high-level.

The analysis of the DTL gate should conform to the conditions listed in Fig. 13-1 for the 
NAND gate. If any input of the gate is low at 0.2 V, the corresponding input diode conducts cur-
rent through V

CC
 and the 5-kΩ resistor into the input node. The voltage at point P is equal to the 

input voltage of 0.2 V plus a diode drop of 0.7 V, for a total of 0.9 V. In order for the transistor 

VCC = 3.6 V

B

Y = (A + B + C)′

CA

640 Ω

450 Ω450 Ω450 Ω

Figure 13.4 RTL basic NOR gate

VCC = 5 V

B

Y = (ABC)′

C

A

2 kΩ
5 kΩ

5 kΩ

P
Q1

D1 D2

Figure 13.5 DTL basic NAND gate
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to start conducting, the voltage at point P must overcome a potential of one V
BE

 drop in Q 1 plus 
two diode drops across D1 and D2, or 3 × 0.6 = 1.8 V. Since the voltage at P is maintained at 
0.9 V by the input conducting diode, the transistor is cutoff and the output voltage is high at 5 V.

If all inputs of the gate are high, the transistor is driven into the saturation region. The volt-
age at P now is equal to V

BE
 plus the two diode drops across D1 and D2, or 0.7 × 3 = 2.1 V. Since 

all inputs are high at 5 V and V
P
 = 2.1 V, the input diodes are reverse biased and off. The base 

current is equal to the difference of currents flowing in the two 5-kΩ resistors and is sufficient to 
drive the transistor into saturation (see Problem 13-2). With the transistor saturated, the output 
drops to V

CE
 of 0.2 V. which is the low level for the gate.

The power dissipation of a DTL gate is about 12 mW and the propagation delay averages 30 
ns. The noise margin is about 1 V and a fan-out as high as 8 is possible. The fan-out of the DTL 
gate is limited by the maximum current that can flow in the collector of the saturated transistor 
(see Problem 13-3).

The fan-out of a DTL gate may be increased by replacing one of the diodes in the base 
circuit with a transistor as shown in Fig. 13-6. Transistor Q1 is maintained in the active region 
when output transistor Q2 is saturated. As a consequence, the modified circuit can supply a 
larger amount of base current to the output transistor. The output transistor can now draw a larger 
amount of collector current before it goes out of saturation. Part of the collector current comes 
from the conducting diodes in the loading gates when Q2 is saturated. Thus, an increase in allow-
able collector saturated current allows more loads to be connected to the output, which increases 
the fan-out capability of the gate.

13.3.3 High-Threshold Logic—HTL

There are occasions where digital circuits must operate in an environment which produces very 
high noise signals. For operation in such surroundings, there is available a type of DTL gate 
which possesses a high threshold to noise immunity. This type of gate is called a high-threshold-
logic (HTL) gate.

VCC = 5 V

Y = (ABC)′

C

2 kΩ

5 kΩ

Q1 D2

B

A

2 kΩ

1.6 k

Q2

Figure 13.6 Modified DTL gate
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The HTL gate is shown in Fig. 13-7. Comparing it with the modified DTL gate of Fig. 13-6, 
we note that the supply voltage has been raised to 15 V and a zener diode (Z) is used instead of 
a normal diode. The zener diode has the characteristic of maintaining a constant voltage of 6.9 
V when reverse biased.

In order for output transistor Q2 to conduct, the emitter of Q1 must rise to a potential of 
one V

BE
 drop plus the fixed zener voltage of 6.9 V, for a total of about 7.5 V, The low level for the 

gate remains at 0.2 V, but the high level is about 15 V. With the input of 0.2 V, the base of Q1 is at 
0.9 V and Q2 is off. The noise signal must be greater than 7.5 V to change the state of Q2. With 
all the inputs at 15 V, output transistor Q2 is saturated. The noise signal must be greater than 7.5 
V (in the negative direction) to turn the transistor off. Thus, the noise margin of the HTL gate is 
about 7.5 V for both voltage levels.

13.4 Integrated-injection Logic (I2L)

Integrated-injection logic is the most recent digital logic family to be introduced commercially. 
Its main advantage is the high packing density of gates that can be achieved in a given area of 
semiconductor chip. This allows more circuits to be placed in the chip to form complex digital 
functions. As a consequence, this family is used mostly for LSI functions. It is not available in 
SSI packages containing individual gates.

The I2L basic gate is similar in operation to the RTL gate, with few major differences: (1) 
The base resistor used in the RTL gate is removed altogether in the I2L gate. (2) The collector 
resistor used in the RTL gate is replaced by a pnp transistor that acts as a load for the I2L gate. 
(3) I2L transistors use multiple collectors instead of the individual transistors employed in RTL.

The schematic diagram of the basic I2L gate is shown in Fig. 13-8. It has an npn transistor, 
Q1, with multiple collectors for the outputs. The base circuit has a pnp transistor, T1, connected 
to supply voltage V

BB
. Unlike other logic families, the I2L basic gate operation cannot be analyzed 

when standing alone. One must show its interconnection to other gates to make any sense.

VCC = 15 V

Y

C

15 kΩ

5 kΩ

Q1 Z

B

A

12 kΩ

3 kΩ

Q2

6.9 V
+ –

Figure 13.7 High-threshold-logic (HTL) gate
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Figure 13-9 shows the interaction of the basic gate formed by Q1 and T1 with other gates 
in its input and output. Here we see that one collector of Q2 supplies the input to the basic gate. 
Transistor T1 in the basic gate acts as a load that injects current to the collector of Q2. One of the 
collectors of Q1 acts as an output of the basic gate and is connected to the base of Q3. Transistor 
T3, connected to the base of Q3, acts as a load to inject current to the collector of Q1 in the basic 
gate. The basic gate here acts as an inverter and its equivalent circuit is shown in Fig. 13-9(b). 
Using multiple collectors and a pnp transistor instead of a load resistor turns out to be a more 
efficient method of construction, since they reduce the chip area required and allow the packing 
of more circuits. The pnp transistor, although shown to be connected to the base of a given gate, 
acts as a collector load for all the other gates that are connected to this base.

The basic I2L gate, when connected to other gates, performs the NOR logic function. This 
is demonstrated in the circuit diagram shown in Fig. 13-10. The logic function that the circuit 
implements is drawn with graphic gate symbols in Fig. 13-10(a), which shows the interconnec-
tion of two NOR gates and an inverter. This is implemented with three I2L gates, Q1, Q2, and Q3, 
as shown in Fig. 13-10(b). The output transistors are also shown for completeness. The collectors 

VBB = 1.5 V

Q1
Input

T1

Outputs

Figure 13.8 I2L basic gate

VBB

Q1
A

T1

Q2

Q3

T3

A′

              

VBB

A

T3

Q1

A′

                              (a) Inverter gate Q1                  (b) Equivalent circuit

Figure 13.9 Connection of other gates to the inputs and outputs of a basic I2L gate
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of Q1 and Q2 are tied together to form one NOR function. Input B is complemented by transistor 
Q2. The collectors of Q3 and Q1 are tied together to form the second NOR function. The base 
of each npn transistor receives the injection current from the multiple-collector pnp transistors 
T1 and T2. The emitters of the npn transistors are connected to the base of the pnp transistor to 
facilitate the construction.

13.5 Transistor-Transistor Logic (TTL)

The original basic TTL gate was a slight improvement over the DTL gate. As the TTL technology 
progressed, additional improvements were added to the point where this logic family became the 
most widely used type in the design of digital systems. There are many versions (or “series”) of 
the TTL basic gate. The names and characteristics of five versions appear in Table 13-2, together 
with their propagation delay and power dissipation values. The speed-power product is an im-
portant parameter for comparing the basic gates. This is a product of the propagation delay and 
the power dissipation measured in picojoules (pJ). A low value for this parameter is a desirable 
figure, because it indicates that a given propagation delay can be achieved without excessive 
power dissipation, or vice versa.

B

A
(A + B)′ = A′B′

(A + B′)′ = A′B

(a) Logic diagram

A

T2

Q1

B′B Q2

T1

Q3

(A + B)′

(A + B′)′

Injection
 current

(b) Circuit diagram

Figure 13.10 Typical connections among I2L gates
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The standard TTL gate was the first version in the TTL family. This basic gate was then 
constructed with different resistor values to produce gates with lower dissipation or higher speed. 
The propagation delay of a saturated logic family depends largely on two factors: storage time 
and RC time constants. Reducing the storage time decreases the propagation delay. Reducing re-
sistor values in the circuit reduces the RC time constants and decreases the propagation delay. Of 
course, the trade-off is a higher power dissipation because lower resistances draw more current 
from the power supply. The speed of the gate is inversely proportional to the propagation delay.

In the low-power TTL gate the resistor values are higher than in the standard gate to reduce 
the power dissipation, but the propagation delay is increased. In the high-speed TTL gate, resistor 
values are lowered to reduce the propagation delay, but the power dissipation is increased. The 
Schottky TTL is a later improvement in the technology that removes the storage time of transis-
tors by preventing them from going into saturation. This version increases the speed of operation 
without an excessive increase in power dissipation. The low-power Schottky TTL version sacri-
fices some speed for reduced power dissipation. It is about equal to standard TTL in propagation 
delay but has only one-fifth the power dissipation. It has the best speed-power product and, as a 
consequence, it became the most popular version in new designs.

All TTL versions are available in SSI packages and in more complex forms as MSI and LSI 
functions. The differences in the TTL versions are not in the digital functions that they perform, 
but rather in the values of resistors and type of transistor that their basic gate uses. In any case, 
TTL gates in all versions come in three different types of output configurations.

1. Open-collector output.

2. Totem-pole output.

3. Three-state (or tri-state) output.

These three types of outputs will be considered in conjunction with the circuit description of the 
basic TTL gate.

13.5.1 Open-collector Output Gate

The basic TTL gate shown in Fig. 13-11 is a modified circuit of the DTL gate. The multiple emit-
ters in transistor Q1 are connected to the inputs. These emitters behave most of the time like the 
input diodes in the DTL gate since they form a pn junction with their common base. The base-
collector junction of Q1 acts as another pn junction diode corresponding to D1 in the DTL gate 

Table 13-2 TTL versions and their characteristics

Name Abbreviation
Propagation 
delay (ns)

Power
dissipation (mW)

Speed-power 
product (pJ)

Standard TTL TTL 10 10 100

Low-power TTL LTTL 33  1  33

High-speed TTL HTTL 6 22 132

Schottky TTL STTL 3 19  57

Low-power Schottky TTL LSTTL  9.5  2  19
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(see Fig. 13-5). Transistor Q2 replaces the second diode, D2, in the DTL gate. The output of the 
TTL gate is taken from the open collector of Q3. A resistor connected to V

CC
 must be inserted 

external to the IC package for the output to “pull up” to the high voltage level when Q3 is off; 
otherwise, the output acts as an open circuit. The reason for not providing the resistor internally 
will be discussed later.

The two voltage levels of the TTL gate are 0.2 V for the low level and from 2.4 to 5 V for the 
high level. The basic circuit is a NAND gate. If any input is low, the corresponding base-emitter 
junction in Q1 is forward biased. The voltage at the base of Q1 is equal to the input voltage of 0.2 
V plus a V

BE
 drop of 0.7 V or 0.9 V. In order for Q3 to start conducting, the path from Q1 to Q3 

must overcome a potential of one diode drop in the base-collector pn junction of Q1 and two V
BE 

drops in Q2 and Q3, or 3 × 0.6 = 1.8 V, Since the base of Q1 is maintained at 0.9 V by the input 
signal, the output transistor cannot conduct and is cutoff. The output level will be high if an exter-
nal resistor is connected between the output and V

CC
 (or an open circuit if a resistor is not used).

If all inputs are high, both Q2 and Q3 conduct and saturate. The base voltage of Q1 is equal 
to the voltage across its base-collector pn junction plus two V

BE
 drops in Q2 and Q3, or about 0.7 

× 3 = 2.1 V. Since all inputs are high and greater than 2.4 V, the base-emitter junctions of Q1 are 
all reverse biased. When output transistor Q3 saturates (provided it has a current path), the output 
voltage goes low to 0.2 V. This confirms the conditions of a NAND operation.

In the above analysis, we said that the base-collector junction of Q1 acts like a pn diode 
junction. This is true in the steady-state condition. However, during the turn-off transition, Q1 
does exhibit transistor action resulting in a reduction in propagation delay. When all inputs are 
high and then one of the inputs is brought to a low level, both Q2 and Q3 start turning off. At this 
time, the collector junction of Q1 is reverse biased and the emitter is forward biased; so transistor 
Q1 goes momentarily into the active region. The collector current of Q1 comes from the base of 
Q2 and quickly removes the excess charge stored in Q2 during its previous saturation state. This 
causes a reduction in the storage time of the circuit as compared to the DTL type of input. The 
result is a reduction of the turn-off time of the gate.

VCC = 5 V

Y

C

1 kΩ

Q3
B

A

4 kΩ 1.6 kΩ

Q2

VCC = 5 V

Q1

R1

Figure 13.11 Open-collector TTL gate
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The open-collector TTL gate will operate without the external resistor when connected to 
inputs of other TIT gates, although this is not recommended because of the low noise immunity 
encountered. Without an external resistor, the output of the gate will be an open circuit when 
Q3 is off. An open circuit to an input of a TTL gate behaves as if it has a high-level input (but a 
small amount of noise can change this to a low level). When Q3 conducts, us collector will have 
a current path supplied by the input of the loading gate through V

CC
, the 4-kΩ resistor, and the 

forward-biased base-emitter junction.
Open-collector gates are used in three major applications: driving a lamp or relay, perform-

ing wired logic, and for the construction of a common-bus system. An open-collector output can 
drive a lamp placed in its output through a limiting resistor. When the output is low, the saturated 
transistor Q3 forms a path for the current that turns the lamp on. When the output transistor is 
off, the lamp turns off because there is no path for the current.

If the outputs of several open-collector TTL gates are tied together with a single external 
resistor, a wired-AND logic is performed. Remember that a positive-logic AND function gives 
a high level only if all variables are high; otherwise, the function is low. With outputs of open-
collector gates connected, together, the common output is high only when all output transistors 
are off (or high). If an output transistor conducts, it forces the output to the low state.

The wired logic performed with open-collector TTL gates is depicted in Fig. 13-12. The 
physical wiring in (a) shows how the outputs must be connected to a common resistor. The graph-
ic symbol for such a connection is demonstrated in (b). The AND function formed by connecting 
together the two outputs is called a wired-AND function. The AND gate is drawn with the lines 
going through the center of the gate to distinguish it from a conventional gate. The wired-AND 
gate is not a physical gate but only a symbol to designate the function obtained from the indicated 
connection. The Boolean function obtained from the circuit of Fig. 13-12 is the AND operation 
between the outputs of the two NAND gates:

Y = (AB)′ ⋅ (CD)′ = (AB + CD)′

The second expression is preferred since it shows an operation commonly referred to as an AND-
OR-INVERT function (see Section 3-7).

Open-collector gates can be tied together to form a common bus. At any time, all gate out-
puts tied to the bus, except one, must be maintained in their high state. The selected gate may 

A

B
Y

VCC

OC

C

D
OC

          

A

B
Y

OC

C

D
OC

  (a) Physical connection            (b) Wired logic graphic symbol

Figure 13.12 Wired-AND of two open-collector (oc) gates, Y = (AB + CD)′
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be either in the high or low state, depending on whether we want to transmit a 1 or 0 on the bus. 
Control circuits must be used to select the particular gate that drives the bus at any given time.

Figure 13-13 demonstrates the connection of four sources tied to a common bus line. Each 
of the four inputs drives an open-collector inverter, and the outputs of the inverters are tied to-
gether to form a single bus line. The figure shows that three of the inputs are 0, which produces 
a 1 or high level on the bus. The fourth input, I

4
, can now transmit information through the com-

mon bus line into inverter 5. Remember that an AND operation is performed in the wired logic. If 
I

4
 = 1, the output of gate 4 is 0 and the wired-AND operation produces a 0. If I

4
 = 0, the output of 

gate 4 is 1 and the wired-AND operation produces a 1. Thus, if all other outputs are maintained 
at 1, the selected gate can transmit its value through the bus. The value transmitted is the comple-
ment of I

4
, but inverter 5 in the receiving end can easily invert this signal again to make Y = I

4
.

13.5.2 Totem-pole Output

The output impedance of a gate is normally a resistive plus a capacitive load. The capacitive load 
consists of the capacitance of the output transistor, the capacitance of the fan-out gates, and any 
stray wiring capacitance. When the output changes from the low to the high state, the output 
transistor of the gate goes from saturation to cutoff and the total load capacitance, C, charges 
exponentially from the low to the high voltage level with a time constant equal to RC. For the 
open-collector gate, R is the external resistor marked R

L
. For a typical operating value of C = 15 

pF and R
L
 = 4 kΩ, the propagation delay of a TTL open-collector gate during the turn-off time 

is 35 ns. With an active pull-up circuit replacing the passive pull-up resistor R
L
, the propagation 

Y

I2

I1
0

0

1

1

oc-1

oc-2

I3
0 1

oc-3

I4 0

1
oc-4

1

0

5

VCC

Bus line

Figure 13.13 Open-collector gates forming a common bus line
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delay is reduced to 10 ns. This configuration, shown in Fig. 13-14, is called a totem-pole output 
because transistor Q4 “sits” upon Q3.

The TTL gate with the totem-pole output is the same as the open-collector gate, except for 
the output transistor Q4 and the diode D1. When the output Y is in the low state, Q2 and Q3 are 
driven into saturation as in the open-collector gate. The voltage in the collector of Q2 is V

BE
(Q3) 

+ V
CE

(Q2) or 0.7 + 0.2 = 0.9 V. The output Y = V
CE

(Q3) = 0.2 V. Transistor Q4 is cutoff because 
its base must be one V

BE
 drop plus one diode drop, or 2 × 0.6 = 1.2 V, to start conducting. Since 

the collector of Q2 is connected to the base of Q4, the latter’s voltage is only 0.9 V instead of the 
required 1.2 V, and so Q4 is cutoff. The reason for placing1 the diode in the circuit is to provide a 
diode drop in the output path and thus ensure that Q4 is cutoff when Q3 is saturated.

When the output changes to the high state because one of the inputs drops to the low state, 
transistors Q2 and Q3 go into cutoff. However, the output remains momentarily low because the 
voltages across the load capacitance cannot change instantaneously. As soon as Q2 turns off, Q4 
conducts because its base is connected to V

CC
 through the 1.6-kΩ resistor. The current needed 

to charge the load capacitance causes Q4 to momentarily saturate, and the output voltage rises 
with a time constant RC. But R in this case is equal to 130 Ω, plus the saturation resistance of 
Q4, plus the resistance of the diode, for a total of approximately 150 Ω. This value of R is much 
smaller than the passive pull-up resistance used in the open-collector circuit. As a consequence, 
the transition from the low to high level is much faster.

As the capacitive load charges, the output voltage rises and the current in Q4 decreases, 
bringing the transistor into the active region. Thus, in contrast to the other transistors, Q4 is in 
the active region when in a steady-state condition. The final value of the output voltage is then 
5 V, minus a V

BE
 drop in Q4, minus a diode drop in D1  to about 3.6 V. Transistor Q3 goes into 

cutoff very fast, but during the initial transition time both Q3 and Q4 are on and a peak current is 
drawn from the power supply. This current spike generates noise in the power supply distribution 
system. When the change of state is frequent, the transient current spikes increase the power sup-
ply current requirement and the average power dissipation of the circuit increases.

Y

1 kΩ

Q3

4 kΩ
1.6 kΩ

Q2

VCC = 5 V

Q1

Q4

130 Ω

D1

Figure 13.14 TTL gate with totem-pole output
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The wired-logic connection is not allowed with totem-pole output circuits. When two to-
tem-poles are wired together with the output of one gate high and the output of the second gate 
low, the excessive amount of current drawn can produce enough heat to damage the transistors in 
the circuit (see Problem 13-7). Some TTL gates are constructed to withstand the amount of cur-
rent that flows under this condition. In any case, the collector current in the low gate may be high 
enough to move the transistor into the active region and produce an output voltage in the wired 
connection greater than 0.8 V, which is not a valid binary signal for TTL gates.

13.5.3 Schottky TTL Gate

As mentioned before, a reduction in storage time results in a reduction of propagation delay. 
This is because the time needed for a transistor to come out of saturation delays the switching of 
the transistor from the on condition to the off condition. Saturation can be eliminated by placing 
a Schottky diode between the base and collector of each saturated transistor in the circuit. The 
Schottky diode is formed by the junction of a metal and semiconductor, in contrast to a conven-
tional diode which is formed by the junction of p-type and n-type semiconductor material. The 
voltage across a conducting Schottky diode is only 0.4 V, as compared to 0.7 V in a conventional 
diode. The presence of a Schottky diode between the base and collector prevents the transistor 
from going into saturation. The resulting transistor is called a Schottky transistor. The use of 
Schottky transistors in a TTL decreases the propagation delay without a sacrifice of power dis-
sipation.

The Schottky TTL gate is shown in Fig. 13-15. Note the special symbol used for the Schott-
ky transistors and diodes. The diagram shows all transistors to be of the Schottky type except Q4. 

3.5 kΩ

Q3

900 Ω

Q2

VCC

Q1

Q4

50 Ω

2.8 kΩ

Q5

Q6

250 Ω
500 Ω

Figure 13.15 Schottky TTL gate
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An exception is made of Q4 since it does not saturate but stays in the active region. Note also that 
resistor values have been reduced to further decrease the propagation delay.

In addition to using Schottky transistors and lower resistor values, the circuit of Fig. 13-15 
includes other modifications not available in the standard gate of Fig. 13-14. Two new transistors, 
Q5 and Q6 have been added, and Schottky diodes are inserted between each input terminal and 
ground. There is no diode in the totem-pole circuit. However, the new combination of Q5 and 
Q4 still gives the two V

BE
 drops necessary to prevent Q4 from conducting when the output is low. 

This combination comprises a double emitter-follower called a Darlington pair. The Darling-
ton pair provides a very high current gain and extremely low resistance. This is exactly what is 
needed during the low-to-high swing of the output, resulting in a decrease of propagation delay.

The diodes in each input shown in the circuit help clamp any ringing that may occur in the 
input lines. Under transient switching conditions, signal lines appear inductive; this, along with 
stray capacitance, cause signals to oscillate or “ring.” When the output of a gate switches from 
the high to the low state, the ringing waveform at the input may have excursions below ground as 
great as 2−3 V, depending on line length. The diodes connected to ground help clamp this ringing 
since they conduct as soon as the negative voltage exceeds 0.4 V. When the negative excursion is 
limited, the positive swing is also reduced. The success of the clamp diodes in limiting line effects 
has been so successful that all versions of TTL gates use them.

The emitter resistor of Q2 in Fig. 13-14 has been replaced in Fig. 13-15 by a circuit consist-
ing of transistor Q6 and two resistors. The effect of this circuit is to reduce the turn-off current 
spikes discussed previously. The analysis of this circuit, which helps to reduce the propagation 
time of the gate, is too involved to present in this brief discussion.

13.5.4 Three-state Gate

As mentioned earlier, the outputs of two TTL gates with totem-pole structures cannot be con-
nected together as in open-collector outputs. There is, however, a special type of totem-pole gate 
that allows the wired connection of outputs for the purpose of forming a common-bus system. 
When a totem-pole output TTL gate has this property, it is called a three-state (or tri-state) gate.

A three-state gate exhibits three output states: (1) a low-level state when the lower transis-
tor in the totem-pole is on and the upper transistor is off; (2) a high-level state when the upper 
transistor in the totem-pole is on and the lower transistor is off: and (3) a third state when both 
transistors in the totem-pole are off. The third state provides an open circuit or high-impedance 
state which allows a direct wire connection of many outputs to a common line. Three-state gates 
eliminate the need for open-collector gates in bus configurations.

Figure 13-16(a) shows the graphic symbol of a three-state buffer gate. When the control 
input C is high, the gate is enabled and behaves like a normal buffer with the output equal to the 
input binary value. When the control input is low, the output is an open circuit which gives a high 
impedance (the third state) regardless of the value of input A. Some three-state gates produce a 
high-impedance state when the control input is high. This is shown symbolically in Fig. 13-16(b). 
Here we have two small circles, one for the inverter output and the other to indicate that the gate 
is enabled when C is low.

The circuit diagram of the three-state inverter is shown in Fig. 13-16(c). Transistors Q6, Q7, 
and Q8 associated with the control input form a circuit similar to the open-collector gate. Tran-
sistors Q1−Q5, associated with the data input, form a totem-pole TTL circuit. The two circuits 
are connected together through diode D1. As in an open-collector circuit, transistor Q8 turns off 
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when the control input at C is in the low-level state. This prevents diode D1 from conducting, and 
also, the emitter in Q1 connected to Q8 has no conduction path. Under this condition, transistor 
Q8 has no effect on the operation of the gate and the output in Y depends only on the data input 
at A.

When the control input is high, transistor Q8 turns on, and the current flowing from V
CC

 
through diode D1 causes transistor Q8 to saturate. The voltage at the base of Q5 is now equal to 

C

A
Y = A if C = High
Y high-impedence
    if C = Low

          C

A
Y = A′ if C = Low
Y high-impedence
    if C = High

          (a) Three-state buffer gate          (b) Three-state inverter gate

Q3
Q2

Q4

D1

Q1

Q5

Y

A

Q6C Q7
Q8

VCC

 Data
input

Control
  input

(c) Circuit diagram for the three-state inverter of (b)

Figure 13.16 Three-state TTL gate
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the voltage across the saturated transistor, Q8, plus one diode drop, or 0.9 V. This voltage turns 
off Q5 and Q4 since it is less than two V

BE
 drops. At the same time, the low input to one of the 

emitters of Q1 forces transistor Q3 (and Q2) to turn off. Thus both Q3 and Q4 in the totem-pole 
are turned off and the output of the circuit behaves like an open circuit with a very high output 
impedance.

A three-state bus is created by wiring several three-state outputs together. At any given time, 
only one control input is enabled while all other outputs are in the high-impedance state. The 
single gate not in a high-impedance state can transmit binary information through the common 
bus. Extreme care must be taken that all except one of the outputs are in the third state; otherwise, 
we have the undesirable condition of having two active totem-pole outputs connected together.

An important feature of most three-state gates is that the output enable delay is longer than 
the output disable delay. If a control circuit enables one gate and disables another at the same 
time, the disabled gate enters the high-impedance state before the other gate is enabled. This 
eliminates the situation of both gates being active at the same time.

There is a very small leakage current associated with the high-impedance condition in a 
three-state gate. Nevertheless, this current is so small that as many as 100 three-state outputs can 
be connected together to form a common bus line.

13.6 Emitter-coupled Logic (ECL)

Emitter-coupled logic (ECL) is a nonsaturated digital logic family. Since transistors do not satu-
rate, it is possible to achieve propagation delays of 2 ns and even below 1ns. This logic family has 
the lowest propagation delay of any family and is used mostly in systems requiring very-high-
speed operation. Its noise immunity and power dissipation, however, are the worst of all the logic 
families available.

A typical basic circuit of the ECL family is shown in Fig. 13-17. The outputs provide both 
the OR and NOR functions. Each input is connected to the base of a transistor. The two voltage 
levels are about −0.8 V for the high state and about −1.8 V for the low state. The circuit consists 
of a differential amplifier, a temperature- and voltage-compensated bias network, and an emitter-
follower output. The emitter outputs require a pull-down resistor for current to flow. This is ob-
tained from the input resistor, R

P
, of another similar gate or from an external resistor connected 

to a negative voltage supply.
The internal temperature- and voltage-compensated bias circuit supplies a reference volt-

age to the differential amplifier. Bias voltage V
BB

 is set at −1.3 V, which is the midpoint of the 
signal logic swing. The diodes in the voltage divider, together with Q6, provide a circuit that 
maintains a constant V

BB
 value despite changes in temperature or supply voltage. Any one of the 

power supply inputs could be used as ground. However, the use of the V
CC

 node as ground and 
V

EE
 at −5.2 V results in best noise immunity.

If any input in the ECL gate is high, the corresponding transistor is turned on and Q5 is 
turned off. An input of − 0.8 V causes the transistor to conduct and places −1.6 V on the emit-
ters of all transistors (V

BE
 drop in ECL transistors is 0.8 V). Since V

BB
 = −1.3 V. the base voltage 

of Q5 is only 0.3 V more positive than its emitter. Q5 is cutoff because its V
BE

 voltage needs at 
least 0.6 V to start conducting. The current in resistor R

C2
 flows into the base of Q8 (provided 

there is a load resistor). This current is so small that only a negligible voltage drop occurs across 
R

C2
. The OR output of the gate is one V

BE
 drop below ground, or −0.8 V, which is the high state. 

The current flowing through R
C1

 and the conducting transistor causes a drop of about 1 V below 
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ground (see Problem 13-9). The NOR output is one V
BE

 drop below this level, or at −1.8 V, which 
is the low state.

If all inputs are at the low level, all input transistors turn off and Q5 conducts. The voltage 
in the common-emitter node is one V

BE
 drop below V

BB
 or − 2.1 V. Since the base of each input 

is at a low level of −1.8 V, each base-emitter junction has only 0.3 V and all input transistors are 
cutoff. R

C2
 draws current through Q5 that results in a voltage drop of about 1 V, making the OR 

output one V
BE

 drop below this, at −1.8 V or the low level. The current in R
C1

 is negligible and the 
NOR output is one V

BE
 drop below ground, at −0.8 V or the high level. This verifies the OR and 

NOR operations of the circuit.
The propagation delay of the ECL gate is 2 ns, and the power dissipation is 25 mW. This 

gives a speed-power product of 50, which is about the same as for Schottky TTL. The noise 
margin is about 0.3 V and not as good as in the TTL gate. High fan-out is possible in the ECL 
gate because of the high input impedance of the differential amplifier and the low output imped-
ance of the emitter-follower. Because of the extreme high speed of the signals, external wires act 
like transmission lines. Except for very short wires of a few centimeters, ECL outputs must use 
coaxial cables with a resistor termination to reduce line reflections.

The graphic symbol for the ECL gate is shown in Fig. 13-18(a). Two outputs are available, 
one for the NOR function and the other for the OR function. The outputs of two or more ECL 
gates can be connected together to form wired logic. As shown in Fig. 13-18(b), an external 
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Q1 Q4 Q5

A
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  RP
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  RP
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Q6VBB =
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245 907
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Q7
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 Outputs

   OR
Output
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Figure 13.17 ECL basic gate
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wired connection of two NOR outputs produces a wired-OR function. An internal wired con-
nection of two OR outputs is employed in some ECL ICs to produce a wired-AND (sometimes 
called dot-AND) logic. This property may be utilized when ECL gates are used to form the OR-
AND-INVERT and the OR-AND functions.

13.7 Metal-Oxide Semiconductor (MOS)

The field-effect transistor (FET) is a unipolar transistor, since its operation depends on the flow 
of only one type of carrier. There are two types of field-effect transistors: the junction field-effect 
transistor (JFET) and the metal-oxide semi-conductor (MOS). The former is used in linear cir-
cuits and the latter in digital circuits. MOS transistors can be fabricated in less area than bipolar 
transistors.

The basic structure of the MOS transistor is shown in Fig. 13-19. The p-channel MOS 
consists of a lightly doped substrate of n-type silicon material. Two regions are heavily doped 
by diffusion with p-type impurities to form the source and drain. The region between the two 
p-type sections serves as the channel. The gate is a metal plate separated from the channel by 
an insulated dielectric of silicon dioxide. A negative voltage (with respect to the substrate) at the 
gate terminal causes an induced electric field in the channel which attracts p-type carriers from 
the substrate. As the magnitude of the negative voltage on the gate increases, the region below the 
gate accumulates more positive carriers, the conductivity increases, and current can flow from 
source to drain provided a voltage difference is maintained between these two terminals.

B

A (A + B)′  NOR

(A + B)    OR           

B

A
(A + B)′ + (C + D)′ =
[(A + B)(C + D)]′

D

C

(A + B)(C + D)

     (a) Single gate         (b) Wired combination of two gates

Figure 13.18 Graphic symbols of ECL gates

drain (–)
gate (–)

source

n-type substrate

P p+ + + +

                           

drain (+)

gate (+)

source

p-type substrate

n n– – – –

    (a) p-channel    (b) n-channel

Figure 13.19 Basic structure of MOS transistor
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There are four basic types of MOS structures. The channel can be a p- or n-type, depending 
on whether the majority carriers are holes or electrons. The mode of operation can be enhance-
ment or depletion, depending on the state of the channel region at zero gate voltage. If the chan-
nel is initially doped lightly with p-type impurity (diffused channel), a conducting channel exists 
at zero gate voltage and the device is said to operate in the depletion mode. In this mode, current 
flows unless the channel is depleted by an applied gate field. If the region beneath the gate is left 
initially uncharged, a channel must be induced by the gate field before current can flow. Thus, 
the channel current is enhanced by the gate voltage and such a device is said to operate in the 
enhancement mode.

The source is the terminal through which the majority carriers enter the bar. The drain is the 
terminal through which the majority carriers leave the bar. In a p-channel MOS, the source termi-
nal is connected to the substrate and a negative voltage is applied to the drain terminal. When the 
gate voltage is above a threshold voltage V

T
 (about −2 V), no current flows in the channel and the 

drain-to-source path is like an open circuit. When the gate voltage is sufficiently negative below 
V

T
, a channel is formed and p-type carriers flow from source to drain. P-type carriers are positive 

and correspond to a positive current flow from source to drain.
In the n-channel MOS, the source terminal is connected to the substrate and a positive 

voltage is applied to the drain terminal. When the gate voltage is below the threshold voltage V
T
 

(about 2 V) no current flows in the channel, When the gate voltage is sufficiently positive above 
V

T
 to form the channel, n-type carriers flow from source to drain. N-type carriers are negative, 

which corresponds to a positive current flow from drain to source. The threshold voltage may 
vary from 1 to 4 V depending on the particular process used.

The graphic symbols for the MOS transistors are shown in Fig. 13-20. The accepted symbol 
for the enhancement type is the one with the broken-line connection between source and drain. 
In this symbol, the substrate can be identified and is shown connected to the source. We will use 
an alternative symbol that omits the substrate; in this symbol, the arrow is placed in the source 
terminal to show the direction of positive current flow (from source to drain in the p-channel and 
from drain to source in the n-channel).

Because of the symmetrical construction of source and drain, the MOS transistor can be 
operated as a bilateral device. Although normally operated so that carriers flow from source to 
drain, there are circumstances when it is convenient to allow carrier flow from drain to source 
(see Problem 13-12).

One advantage of the MOS device is that it can be used not only as a transistor, but as a 
resistor as well. A resistor is obtained from the MOS by permanently biasing the gate terminal 
for conduction. The ratio of the source-drain voltage to the channel current then determines the 
value of the resistance. Different resistor values may be constructed during manufacturing by 
fixing the channel length and width of the MOS device.

gate

drain

substrate

source

G

D

S               

gate

drain

substrate

source

G

D

S

  (a) p-channel     (b) n-channel

Figure 13.20 Symbols for MOS transistors
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Three logic circuits using MOS devices are shown in figure 13-21. For an n-channel MOS, 
supply voltage V

DD
 is positive (about 5 V) to allow positive current flow from drain to source. The 

two voltage levels are a function of the threshold voltage V
T
. The low level is anywhere from zero 

to V
T
, and the high level ranges V

T
 to V

DD
. The n-channel gates usually employ positive logic. The 

p-channel MOS circuits use a negative voltage for V
DD

 to allow positive current flow from source 
to drain. The two voltage levels are both negative above and below the negative threshold voltage 
V

T
. P-channel gates usually employ negative logic.

The inverter circuit shown in Fig. 13-21(a) uses two MOS devices. Q1 acts as the load resis-
tor and Q2 as the active device. The load resistor MOS has its gate connected to V

DD
, thus main-

taining it always in the conduction state. When the input voltage is low (below V
T
), Q2 turns off. 

Since Q1 is always on, the output voltage is at about V
DD

. When the input voltage is high (above 
V

T
), Q2 turns on. Current flows from V

DD
 through the load resistor Q1 and into Q2. The geometry 

of the two MOS devices must be such that the resistance of Q2, when conducting, is much less 
than the resistance of Q1 to maintain the output Y at a voltage below V

T
.

The NAND gate shown in Fig. 13-21(b) uses transistors in series. Inputs A and B must both 
be high for all transistors to conduct and cause the output to go low. If either input is low, the 
corresponding transistor is turned off and the output is high. Again, the series resistance formed 
by the two active MOS devices must be much less than the resistance of the load resistor MOS. 
The NOR gate shown in Fig. 13-21(c) uses transistors in parallel. If either input is high, the cor-
responding transistor conducts and the output is low. If all inputs are low, all active transistors 
are off and the output is high.

13.8 Complementary MOS (CMOS)

Complementary MOS circuits take advantage of the fact that both n-channel and p-channel de-
vices can be fabricated on the same substrate. CMOS circuits consist of both types of MOS 

VDD

Y = A′

A Q2

Q1

     

VDD

Y = (AB)′

A

B

   

VDD

Y = (A + B)′

A B

 
        (a) Inverter    (b) NAND gate       (c) NOR gate

Figure 13.21 n-channel MOS logic circuits
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devices interconnected to form logic functions. The basic circuit is the inverter, which consists 
of one p-channel transistor and one n-channel transistor as shown in Fig. 13-22(a). The source 
terminal of the p-channel device is at V

DD
, and the source terminal of the n-channel device is at 

ground. The value of V
DD

 may be anywhere from +3 to +18 V. The two voltage levels are 0 V for 
the low level and V

DD
 for the high level.

To understand the operation of the inverter, we must review the behavior of the MOS tran-
sistor from the previous section:

1. The n-channel MOS conducts when its gate-to-source voltage is positive.

2. The p-channel MOS conducts when its gate-to-source voltage is negative.

3. Either type of device is turned off if its gate-to-source voltage is zero.

Now consider the operation of the inverter. When the input is low, both gates are at zero 
potential. The input is at − V

DD
 relative to the source of the p-channel device and at 0 V relative 

to the source of the n-channel device. The result is that the p-channel device is turned on and 
the n-channel device is turned off. Under these conditions, there is a low-impedance path from 
V

DD
 to the output and a very-high-impedance path from output to ground. Therefore, the output 

VDD

Y = A′A

n

P

VDD

Y = (AB)′

A

B

VDD

Y = (A + B)′

A

B

(a) Inverter

              (b) NAND gate          (c) NOR gate

Figure 13.22 CMOS logic circuits
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voltage approaches the high level V
DD

 under normal loading conditions. When the input is high, 
both gates are at V

DD
 and the situation is reversed: The p-channel device is off and the n-channel 

device is on. The result is that the output approaches the low level of 0 V.
In either logic state, one MOS transistor is on while the other is off. Because one transistor 

is always turned off, the dc power dissipation of the CMOS circuit is extremely low, usually on 
the order of 10 nW. The major power drain occurs when the CMOS circuit changes state.

CMOS logic is usually specified for single-supply operation over the 5−15V range, but 
some circuits may be operated at 3 V or 18 V, Operating CMOS at large values of supply voltage 
produces a greater power dissipation. The propagation delay time decreases and the noise margin 
improves with increased power supply voltage. The propagation delay of the inverter is about 25 
ns. The noise margin is usually about 40% of the V

DD
 supply voltage value. The advantages of 

CMOS, i.e., low power dissipation, excellent noise immunity, high packing density, and a wide 
range of supply voltages, make it a strong contender for a popular standard as a digital circuit 
family.

Two other CMOS basic gates are shown in Fig. 13-22. A two-input NAND gate consists of 
two p-type units in parallel and two n-type units in series, as shown in Fig. 13-22(b). If all inputs 
are high, both p-channel transistors turn off and both n-channel transistors turn on. The output 
has a low impedance to ground and produces a low state. If any input is low, the associated n-
channel transistor is turned off and the associated p-channel transistor is turned on. The output is 
coupled to V

DD
 and goes to the high state. Multiple-input NAND gates may be formed by placing 

equal numbers of p-type and n-type transistors in parallel and series, respectively, in an arrange-
ment similar to that shown in Fig. 13-22(b).

A two-input NOR gate consists of two n-type units in parallel and two p-type units in se-
ries, as shown in Fig. 13-22(c). When all inputs are low, both p-channel units are on and both n-
channel units are off. The output is coupled to V

DD
 and goes to the high state. If any input is high, 

the associated p-channel transistor is turned off and the associated n-channel transistor turns on. 
This connects the output to ground, causing a low-level output.
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PROBLEMS

13-1. (a) Determine the high-level output voltage of the RTL gate for a fan-out of 5. (b) Determine the 
minimum input voltage required to drive an RTL transistor to saturation when h

FE
 = 20. (c) From 

the results in (a) and (b), determine the noise margin of the RTL gate when the input is high and the 
fan-out is 5.

13-2. Show that the output transistor of the DTL gate of Fig. 13-5 goes into saturation when all inputs are 
high. Assume that h

FE
 = 20.

13-3. Connect the output Y of the DTL gate shown in Fig. 13-5 to N inputs of other similar gates. Assume 
that the output transistor is saturated and its base current is 0.44 mA. Let h

FE
 = 20.

(a) Calculate the current in the 2-kΩ resistor.

(b) Calculate the current coming from each input connected to the gate.

(c) Calculate the total collector current in the output transistor as a function of N.

(d) Find the value of N that will keep the transistor in saturation.

(e) What is the fan-out of the gate?

13-4. Draw the interconnection of I2L gates to form a 2 × 4 decoder.

13-5. Let all inputs in the open-collector TTL gate of Fig. 13-11 be in the high state of 3 V.

(a) Determine the voltages in the base, collector, and emitter of all transistors.

(b) Determine the minimum h
FE

 of Q2 that ensures that this transistor saturates.

(c) Calculate the base current of Q3.

(d) Assume that the minimum h
FE

 of Q3 is 6.18. What is the maximum current that can be tolerated 
in the collector to ensure saturation of Q3?

(e) What is the minimum value of R
L
 that can be tolerated to ensure saturation of Q3?

13-6. (a) Using the actual output transistors of two open-collector TTL gates, show (by means of a truth 
table) that when connected together to an external resistor and V

CC
, the wired connection produces 

an AND function. (b) Prove that two open-collector TTL inverters when connected together produce 
the NOR function.

13-7. It was stated in Section 13-5 that totem-pole outputs should not be tied together to form wired logic. 
To see why this is prohibitive, connect two such circuits together and let the output of one gate be in 
the high state and the output of the other gate be in the low state. Show that the load current (which 
is the sum of the base and collector currents of the saturated transistor Q4 in Fig. 13-14) is about 32 
mA. Compare this value with the recommended load current in the high state of 0.4 mA.

13-8. For the following conditions, list the transistors that are off and those that are conducting in the 
three-state TTL gate of Fig. 13-16(c). (For Q1 and Q6, it would be necessary to list the states in the 
base-emitter and base-collector junctions separately.)

(a) When C is low and A is low.

(b) When C is low and A is high.

(c) When C is high.

 What is the state of the output in each case?

13-9. Calculate the emitter current I
E
 across R

E
 in (he ECL gate of Fig. 13-17 when:

(a) At least one input is high at −0.8 V.

(b) All inputs are low at −1.8 V.
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 Now assume that I
C
 = I

E
. Calculate the voltage drop across the collector resistor in each case and 

show that it is about 1 V as required.

13-10. Calculate the noise margin of the ECL gate.

13-11. Using the NOR outputs of two ECL gates, show that when connected together to an external resistor 
and negative supply voltage, the wired connection produces an OR function.

13-12. The MOS transistor is bilateral, i. e., current may flow from source to drain or from drain to source. 
Using this property, derive a circuit that implements the Boolean function:

Y = (AB + CD + AED + CEB)′

 using six MOS transistors.

13-13. (a) Show the circuit of a four-input NAND gate using CMOS transistors. (b) Repeat for a four-input 
NOR gate.

MORE SOLvED quESTIONS

1. Why we go for Digital integrated circuits?

 Digital : Processing of discretized information (signal).

1.  Accurate.

2.  Flexible.

3.  It requires less operational energy.

4.  Repeatability.

2. Why there are different Logic Families?

1.  Space satellite, Digital wristwatch – low power consumption

2.  Scientific Computer – high speed

3.  Digital Control of equipment in industrial environment – noise immunity

4.  Compatibility

5.  Flexibility

6.  Cost

7.  Size, Packing Density

8.  Evolution

3. Transistor-inverter is key to development of logic circuit. Why?

 Diodes, Switches can be used to build OR and AND circuit but not NOT circuit. Hence, with these 
it is not possible to develop every type of logic circuits.
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Appendix

ANSWERS TO SELECTED PROBLEMS

Chapter 1

1-1.  0, 1,2, 10, 11, 12. 20, 21, 22, 100, 101, 102, 110. 111, 112, 120, 121. 122, 200, 201.

1-2.  (a) 1313, 102210

  (b) 223, 11314.52

  (c) 1304, 336313

  (d) 331, 13706

1-3,  (100021.1111 ...)
3
; (3322.2)

4
; (505.333 ...)

7
; (372.4)

8
; (FA.8)

16
.

1-4.  1100.0001; 10011100010000; 10l0l00001.00111; 11111001110.

1-5.  2.53125; 46.3125; 117.75; 109.875.

1-6. decitnal binary octal hexadecimal

  225.225  11100001.001110011   341.16314   E1.399

  215.75  11010111.110   327.6   D7.C

  403.9843 110010011.111111   623.77   193.FC

10949.8125 10101011000101.1101 25305.64 2AC5.D

1-7.  (a) 73.375

  (b) 151

  (c) 78.5

  (d) 580

  (e) 0.62037 

  (f) 35

  (g) 8.333

  (h) 260

1-8.  l’s complement: 0101010; 1000111; 1111110; 01111; 11111.

  2’s complement: 0101011; 1001000; 1111111; 10000; 00000.
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1-9.  9’s complement: 86420; 90099; 09909; 89999; 99999. 

  10’s complement: 86421; 90100; 09910; 90000; 00000.

1-10.  '(175)
11

.

1-14.  (a) Six possible tables. 

  (b) Four possible tables.

1-15.  (a) 1000 0110 0010 0000

  (b) 1011 1001 0101 0011

  (c) 1110 1100 0010 0000

  (d) 1000011 0101100

1-17.  0000, 0001, 0010, 0011,0100, 0101. 0110,0111, 1011, 1100, 1101, 1110.

1-18.  00001, 01110, 01101, 01011, 01000, 10110, 10101, 10011, 10000, 11111.

1-20  000, 001, 010, 101, 110, 111, representing 0, 1,2, 3, 4, 5, respectively.

1-21.  Two bits for suit, four bits for number. J = 1011, Q = 1100, K = 1101.

1-23.  (a) 0000 0000 0000 0001 0010 0111

  (b) 0000 0000 0000 0010 1001 0101

  (c) 1110 0111 1110 1000 1111 0101

1-24.  (a) 597 in BCD

  (b) 264 in excess − 3

  (c) Not valid for 2421 code of Table 1-2

  (d) FG in alphanumeric

1-25.  00100000001 + 10000011010 = 10100011011.

1-26.  L = (A + B) . C.

Chapter 2

2-1.	 	 Closure,	associative,	commutative,	distributive;	identity	for	+	is	2;	identity	for	•	is	0;	
no inverses.

2-2  All postulates are satisfied except for postulate 5; there is no complement.

2-5.  (a) x

  (b) x

  (c) y

  (d) z(x + y)

  (e) 0

  (f) y (x + w)

2-6.  (a) A' B′ + B(A + C)

  (b) BC + AC′
  (c) A + CD

  (d) A + B′CD
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2-7.  (a) 1

  (b) B′D′ + A(D′ + BC′)
  (c) 1

  (d) (A′ + B)(C + D)

2-11.  (b) F = (x′ + y)′ + (x + y)′ + (y + z′)′ has only OR and NOT operators.

  (c) F = [(xy)′ ⋅ (x′y′)′ ⋅ (y′z)′]′ has only AND and NOT operators. 

2-12.  (a) T
1
= A′(B′+ C′)

  (b) T
2
 = A + BC = T′

1

2-13.  (a) ∑(1, 3, 5, 7, 9, 11, 13, 15) = ∏ (0, 2, 4, 6, 8, 10, 12, 14)

  (b) ∑(1. 3, 5, 9, 12, 13, 14) = ∏ (0, 2, 4, 6, 7, 8, 10, U, 15)

  (c) ∑(0, 1, 2, 8, 10, 12, 13, 14, 15) = ∏ (3, 4, 5, 6, 7, 9, 11)

  (d) ∑(0, I, 3, 7) = ∏(2, 4, 5, 6)

  (e) ∑(0. 1, 2, 3, 4. 5, 6. 7), no maxterms 

  (f) ∑(3, 5. 6, 7) = ∏ (0. 1. 2, 4)

2-14.  (a) ∏ (0, 2, 4, 5, 6)

  (b) ∏(1,3,4,5, 7,8,9, 10. 12, 15)

  (c) ∑(1, 2, 4, 5)

  (d) ∑(5.7,8.9, 10, 11, 13, 14, 15)

2-18.  F= x ⊕ y = x′y +  xy′; (dual of F) = (x′+ y)(x +y′)= xy+ x′y′ = F′.
2-20.  F = xy + xz + yz.

Chapter 3

3-1.  (a) y

  (b) ABD + ABC + BCD

  (c) BCD + ABD′
  (d) wx + w′x′y
3-2.  (a) xy + x′z′
  (b) C + A′B
  (c) a′ + bc

  (d) xy + xz + yz

3-3.  (a) D + B′C
  (b) BD + B′D′ + A′B or BD + B′D′ + A′D′
  (c) In′ + k′m′n
  (d) B′D′ + A′BD + ABC

  (e) xy′ + x′z + wx′y
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3-4.  (a) A′B′D′ + B′C′D′ + AD′E
  (b) DE + A′B′C + B′C′E′
  (c) BDE′ + B′CD′ + B′D′E′ + A′B′D′ + CDE′
3-5.  (a) F

1
 = ∏(0, 3, 5, 6); F

2
 = ∏(0, 1, 2, 4)

  (b) F
1
 = x′y′z + x′yz′ + xy′z′ + xyz; F

2
 = xy + xz + yz

  (c) F
1
 = (x + y + z)(x + y′ + z′)(x′ +y + z′)(x′ + y′ + z);

         F
2
 = (x + y)(x + z)(y + z)

3-6.  (a) y

  (b) (B + C′)(A + B)(A + C + D)

  (c) (w + z′)(x′ + z)

3-7.  (a) z′ + xy = (x + z′)(y + z′)
  (b) C′D + A′B′CD′ + ABCD′ =(A + B′ + D)(C + D)(C′ + D′)
  (c) A′C′ + AD′ + B′D′ = (A′ + D′)(C′ + D′)(A + B′ + C′)
  (d) B′D′ + A′CD′ + A′BD = (A′ + B′)(B + D′)(B′ + C + D)

  (e) w′z′ + υw′x′ + υ′wz = (υ′ + w′)(w′ + z)(w + x + z′)(υ + x + z′)
3-8  (a) x

y

z’

z’

 x

y

z’

3-9.  (a) F
1
 = A + D′E′ + CD′ = (A′D + A′C′E)′

  (b) F
2
 = A′B′ + C′D′ + B′C′ = (BD + BC + AC)′

3-11.  (a) F= BD + D′(AB′C + A′B′C)

3-12.  (a) (A′ + B′ + C′)(A + B′ + C + D′)(A + B + C′ + D) 

  (b) (C + D)(C′ + D′)(A + B)(A′ + B′)
3-13.  AND-AND → AND. AND-NAND → NAND, NOR-NAND → OR, NOR-AND 

→ NOR, OR-OR → OR, OR-NOR → NOR. NAND-NOR → AND, NAND-OR → 
NAND.

3-15.  (a) F = 1

  (b) F = CD′ + B′D′ + ABC D

3-16.  (a) F = A′C + B′D′; A′(C + D′)(B′ + C′)
  (b) x′z′ + w′z; (w′ + z′)(x′ + z)

  (c) AC + CE′ + A′C′D; (A′ + C)(C + E)(A + C′ + D) 

       or AC + CD′ + A′C′E; (A′ + C)(C + E)(A + C′ + E′)
  (d) A′B + B′E′; (A′ + B′)(B + E')

3-17.  (a) B′(A + C′ + D′)
  (b) A′D + ABC′
  (c) B′D + B′C + CD
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3-18.  F = x′y + xz (needs four NAND); F = (x′ + z)(x + y) (needs four NOR).

3-19.  d = ABC′DE + AB′CDE′ + ABCD′E.

3-20.  B′D' (A′ + C) + BD (A′ + C′); [B′ + D(A′ + C′)] [B + D′(A′ + C)]; 

  [D′ + B (A′ + C′)] [D + B′(A′ + C)].

3-21.  f ⋅ g = x'yz' + w′xy′z + wxy′z′.

3-24.  (a) F= A′CEF′G′
  (b) F = ABCDEFG + A′CEF′G′ + BC′D′EF

  (c) F = A′B′C′DEF′ + A′BC′D′E + CE′F + A′BD′EF

Chapter 4

4-1.  Inputs: a, b, c, d.

  Outputs: F = abc + abd + bcd + acd + a′b′c′ + a′c′d′ + a′b′d′
   + b′c′d′; F = ∏(3, 5, 6, 9, 10, 12)(cannot be simplified further).

4-2.  Inputs: A
3
A

2
A

1
.

  Outputs:  B
6
 to B

1
 ; B

1
 = A

1
; B

2
 = 0; B

5
 = A

1 
A

2
 B

4
 = A

1
(A

2
A

3 
+ A

2
A

3
); B

5
 =. A

3
(A

1
 + 

A
2
 ); B

6 
= A 

2  
A

3
.

4-3.  Outputs: w, x.y, z; w = a
0
a

1
b

0
b

1
; x = a

1
a′

0
b

1
 + b

1
b

0
a′

0

   y = a
1
b

0
b′

1
 + a

0
a′

1
b

1
 + a

0
b′

0
b

1
 + a′

0
a

1
b

0
; z = a

0
b

0.

4-4.  Outputs: w, x.y, z; x = a
1
b

1
+ a

1
a

0
b

0 
+ b

1
b

0
a

0
;

   y = a′
1
a′

0
b

1
 + a′

1
d

1
b′

0
 + a′

1
a

0
b′

1
b

0
 + a

1
a′

0
b′

0
 + a

1
a′

0
b′

1 
+ a

1
a

0
b

1
b

0

   z = a
0
b′

0
 + c′

0
b′

0
.

4-5.  Inputs: A,B, C, D.

  Outputs: w, x, y, z; w = A′B′C; x = BC′ + B′C;y = C; z = D′.
4-6.  Inputs: A, B, C, D

  Outputs: F
4
F

3
F

2
F

1
; F

1
 = D; F

2
 = CD′ + C′D; F

3
 = (C + D) 

   B' + BC′D′; F
4
 = (B + C + D) A′ + AB′C′D′.

4-7.  Inputs: F
8
F

4
F

2
F

1

  Outputs: S S S S L L L L8 4 2 1
1

8 4 2 1
010 10

;

   L
2
 = L

8
 = S

8
 = 0; L

1
 = L

4
 = F

1
; S

1
 = F

2
; S

2
 = F

4
; S

4
 = L

8
.

4-8.  Inputs: A, B, C, D.

  Output: F = AB + AC.

4-10.  Inputs: A, B, C, D.

  Outputs: w, x, y, z; w = A; x = A′C + BCD + A′B + A′D
    y = AC′D′ + A′C′D + ACD + A′CD′ or y = AC′D′ + B′C′D + ACD + 

B′CD'; z = D.
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4-11  Inputs: w, x, y, z.

  Outputs: E  ABCD

100

 ; E = wx + wy; A = wx′y′;
   101

   B = w′x + xy; C = w′y + wxy′; D = z.

4-12.  Inputs: A, B, C, D (Blank display for invalid input bit combinations)

  Outputs: a = A′C + A′BD + B′C′D′ + AB′C 

   b = A′B′ + AC′D′ + A′CD + ABC′ 
   c = A′B + A′D + B′C′D′ + AB′C′
   d = A′CD′ + A′B′C + B′C′D′ + AB′C′ + A′BC′D 

   e = A′CD′ + B′C′D′ 
   f = A′BC′ + A′C′D′ + A′BD′ + AB′C′ 
   g = A′CD′ + A′B′C + A′BC′ + AB′C′
  (Total of 21 NAND gates)

4-13.  Full-adder circuit. 

4-14.  Full-adder circuit.

4-17.  
x

x

y

y

z

x
y
z

x’
y’
z’

z

S

C

4-18.  F = ABC′ + A′B + B′ = A′ + B′ + C′ (two NOR gates).

4-19.  (a) Full-adder, F
1
 is the sum, F

2
 is the carry 

  (b) F = A′B′C′ + A′BC + AB′C + ABC′

4-26.  Input variables: A. B. C. D; output variables: w, x, y, z. 

  w = A, x = A ⊕ B, y = x ⊕ C, z = y ⊕ D.

4-27.  C=x ⊕ y ⊕ z ⊕ P (three exclusive-OR gates).

4-28.  A

B
H A

H A

C

D

E

F

G

H A
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Chapter 5

5-1.  Same as Fig. 5-2 except that B = 1101.

5-3.  The exclusive-OR gate is used to form the 1’s complement of B when V = 1.

  The 2's complement is obtained by adding 1 = V to the input carry.

5-4.  C
5
= G

4
+ P

4
G

3
 + P

4
P

3
G

2
 + P

4
P

3
P

2
G

1
 + P

4
P

3
P

2
P

1
C

1
.

5-5.  (b) C
4
 = (G′

3
P′

3
 + G′

3
G′

2
P′

2
 + G′

3
G′

2
G′

1
P′

1
 + G′

3
G′

2
G′

1
C′

1
)'

5-6.  (c) C
4
 = (P′

3
 + G′

3
P′

2
 + G′

3
G′

2
P′

1
; + G′

3
G′

2
G′

1
C′

1
)

5-7.   (a) 60 ns 

  (b) 120 ns

5-9.  312.

5-10.  Inputs: x
8
, x

4
 x

2
, x

1
; outputs: y

8
, y

4
, y

2
, y

1

  y
1
 = x′

1
, y

2
 = x

2
, y

4
 = x

2
 ⊕ x

4
, y

5
 = (x

2
 + x

4
 + x

8
)′.

5-15.  All ten AND gates require four inputs equivalent to the minterms m
0
 through m

9
.

5-17.  F
1
(x, y, z) = ∑(0, 1, 6).

  F′
2
(x, y, z) = ∑(4, 5) (use NOR gale). 

  F
3
(x, y, z) = ∑(0, 1, 6, 7) = F

1
 + m

7
.

5-22.  Inputs: D
0
D

1
D

2
D

3
; outputs: x, y, E. Priority given to input with highest subscript num-

ber.

  x = D
2
 + D

3
 y = D

3
 + D

1
D′

2
; E = D

0
 + D

1
 + D

2
 + D

3
.

5-23.  I
0
, through I

7
 = C′, 1, C′, 0, C′, C′, 0, C.

5-27.  (a) 1024 × 5

  (b) 256 × 8

  (c) 1024 × 2

Chapter 6

6-4.  Q J K' Q(t + 1) = JQ′ + K′Q
0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

www.youseficlass.ir



528 Appendix

6-5.  Q SD R Q (t + 1) = S+ R′Q

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

6-7.  Output of gate:   1 2 3 4 5 6 7 8 9

(a) 1 1 0 1 1 0 0 1 1

(b) 0 1 1 0 1 1 0 1 0

(c) 1 1 1 0 0 1 1 0 1

(d) 1 0 0 1 1 1 1 0 0

(e) 1 1 0 1 1 0 0 1 1

(f) 1 1 0 1 1 1 0 1 0 CP = 1

1 1 0 1 1 0 0 1 1 CP = 0

6-9.  11/000/0
01/1
10/1

11/1
01/0
10/0

Inputs: xy
Output: S

z = 0 z = 1

00/1

6-10  A counter with a repeated sequence: 00, 01, 10.

6-11.  x = I; binary sequence is: 1. 8, 4, 2, 9, 12, 6, 11, 5, 10, 13, 14, 15, 7, 3.

  x = 0; binary sequence is: 0, 8, 12, 14, 7, 11, 13, 6, 3, 9, 4, 10, 5, 2, 1.

6-12.

P.S. Next state Output z
xy = 00 xy = 01 xy = 10 xy = 00 xy = 01 xy = 10 xy = 11 xy = 11

A B A B A B A B A B
0 0 1 0 0 0 1 1 0 1 0 0 0 0
0 1 0 1 0 1 1 0 1 1 1 0 0 0
1 0 1 0 1 0 0 0 1 0 0 0 0 1
1 1 1 0 1 0 1 0 1 0 1 0 0 1

               A(t + 1) = xB + y′B′A′ + yA + x′A; B(t + 1) = xA′B′ + x′A′B + yA′B
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6-13.  Present Next State Output
State    0 1    0 1

a    f b    0 0

b    d a    0 0

d    g a    1 0

f    f b    1 1

g    g d    0 1

6-14.  State: a f b c e d g h g g h a

Input: 0 1 1 1 0 0 1 0 0 1 1

Output: 0 1 0 0 0 1 1 1 0 1 0

6-15.  State: a f b a b d g d g g d a

Input: 0 1 1 1 0 0 1 0 0 1 1

Output: 0 1 0 0 0 1 1 1 0 1 0

6-17.  J K′ Q (t + 1)

0 0 0

0 1 Q (t)

1 0 Q′(t)
1 1 1

Q (t) Q (t +1) J K′
0 0 0 X

0 1 1 X

1 0 X 0

1 1 X 1

6-18.  SD R Q(t + 1)

0 0 Q(t)

0 1 0

1 0 1

1 1 1

Q(t) Q (t + 1) SD R

  0 0 0 X

  0 1 1 X

  1 0 0 1

  1 1 X

1

0

X
either}

6-19. (a) TA = A + B′ x; TB = A + BC′x + BCx′ + B′C′x′; 
       TC = Ax = r Cx + A′B′C′x′
 (b) SA = A′B′x; RA = A; SB = A + C′x′; RB = BC′ x + C x';

      SC = A′ B' x + Ax; RC = A′ x
 (c) JA = B' x, KA = 1; JB = A +C'x', KB = CV + Cx';

      JC = A'B'x + Ax, KC = x; y = A'x

6-20.  (A = 23, B = 22 C = 21, D = 20); TA = (D + C + B)x;

  TB = (D + C)x; TC = Dx; TD = 0.

6-21.  JA = x, KA = x′; JB = Ax', KB = 1; JC = Bx + Ax, KC = Bx′.
6-22.  JQ

8
 = Q

1
Q

2
Q

4
 JQ

4
 = Q

1
 Q

2
 JQ

2
 = Q'

8
 Q

1
 JQ

1
 = 1

  KQ
8
 = Q

1
  KQ

4
 = Q

1
 Q

2
 KQ

2
 = Q

1
 KQ

1
 = 1
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6-23  
2 4 2 1

A B C D









 ; TA = BCD + A'B; TB = CD + A′B; TC = D + A′B; TD = 1.

6-25.  JA = yC + xy  JB = xAC  JC = x′B + yAB′
  KA=x′+y′B′  KB = A'C + x′C + yC' KC = A'B′ + xB + y' B′
6-26  (a) A(t + 1) = AB′C′x′ + A′BC′x + AB'C'x' + AB′Cx.

       B(t + 1) = A′BC′x′ + A′B′Cx.

       C(t + 1) = ABC′x′ + A′BC'x′ + A'BCx' + AB′C'x′+ AB′Cx′.
       d(A, B, C, x) = ∑(0, 1, 12. 13, 14, 15) (don′t-care terms).

Chapter 7

7-1.  Use an external HAND gate.

7-2.  (a)  Change inverter associated with CP into a buffer gate, or (b) use flip-flops that trig-
ger on the negative edge.

7-8.  A = 0010, 0001, 1000, 1100; Q = 1, 1, 1, 0.

7-9.  D = x ⊕ y ⊕ Q; JQ = x′y; KQ = (x′ + y)'

7-11.  200 ns; 5 MHz.

7-12.  Ten flip-flops will be complemented.

7-15.  1010 →  1011 → 0100   1110 → 1111 → 0000

  1100 → 1101    Self-starting.

7-16.  

101   110      111                     Not self-starting.

000 → 001 → 010 → 011 → 100

  

7-27.  (a) Unused states (in decimal):    2     4    5     6   9   10   11   13

         Next state (in decimal):          9   10    2   11   4   13     5     6

  (b) 2 → 9 → 4 → 8         8 is a valid state

       10 → 13 → 6 → 11 → 5 → 0            0 is a valid state

7-29.  (a) 13, 32

  (b) 32, 768

7-32.  (a) 16

  (b) 8, 16

  (c) 16

  (d) 16 + 255k where k is the number of l’s in the word to be stored

Chapter 8

8-3.  A shift-right register with serial input x and shift control P.

8-5.  (a) (1) B ← A; (2) A ← B: (3) C ← D; (4) BUS ← B 

  (b) (1) 01000; (2) 10010; (3) 00110
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8-7.        operation          address MUX     data MUX        destination decoder
        ________        ___________        _________        _______________
  (a)     write             10           11                −
  (b)     read             11            −                10

8-9. A mod-9 counter that counts the binary states from 0 through 8.

8-12. S: A ← shr A, B←shr B, B
n
← A

1
, A←A

1
,

8-14.  PR forms the product of BR and AR by successive additions of the contents of BR a 
number of times equal to the number in AR. The multiplication starts when 5 becomes 
1 and terminates with D = 1.

8-15.  (a) 000000

  (b) 011000 (24)

  (b) 000011 (3)

  (c) 100011 (−29)

  (d) 001110 (14) 

  (f) 010001 (17) 

  (g) 101111 (−17)

  (h) 000101 (5)

8-19.  (1 − 2-26) × 2225 and 2−256.

8-20.  (105 − 1) × 1099 and 10−95.

8-21. coefficient exponent

(a) 0 111111000000 1 000111

(b) 0 011111100000 1 000010

(c) 0 000111111000 1 000001

8-22. (a) 8

 (b) 16

  (b) 65,536

  (c) 8,388,607

8-25.  q
4
t
3
:    MAR ←PC

  q
4
t
4
:    MBR ← M, PC ← PC + 1

  q
4
t
5
:    R ← MBR, T ← 0

Chapter 9

9-2.  Four selection lines for each.

9-4.  (a) 64 × 8 RAM

  (b) 6

  (c) 8

  (d) 8 multiplexers of 2 × 1 each
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9-7.  (c)

9-8. s
2
s

1
s

0
C

in
 = 0000  0001 0010 0011 0100 0101 0110 0111.

           F = 0000  0001 B B + 1 B B + l 1111 0000.

9-9. (a) F = B + Ā B plus l’s complement of A

(b) F = B + Ā + 1 B plus 2’s complement of A

(c) F = A + B − 1 l’s complement of (A + B) minus one

(d) F = A + B l’s complement of (A + B)

(e) F = Ā l’s complement of A

(f) F = Ā + 1 2*s complement of A

(g) F = Ā − 1 l’s complement of A minus one

(h) F = Ā l’s complement of A

9-10.  X
i
 = A

i
; Y

i
 = s′ B

i
; C

in
 = s.

9-11.  F = 2’s complement of (B − A) and a borrow occurs if A < B.

5-12.  X
1
 = A

i
(s'

1
 + s

0
); Y

i
 = B'

i
s'

1
s

0
+ B'

i
s

1
.

9-13.  X
1
 = A

i
(s'

1
 + s

0
) + A'

i
s'

1
s'

0
; Y

1
 = B

i
s

1
 + B'

i
s'

1
s

0
.

9-16.  Let x = s
2
s'

1
s'

0
, y = s

2
s

1
s'

0

                    X
i
, = x′A

i
 + A

i
B

i
 + y B

i
; Y

i
 = B

i
s

0
 + B′

i
s

1
y'; Z

i
 = s′

2
C

i

9-17.  Same as Table 9-4 with the OR and AND selection variables interchanged.

9-18.  (a) E = 1 if F = all l’s
  (b) C = 1 if A > B

  (c) A > B if C = 1  A < 5 if C = 0

       A ≥ B if C = 1 or E = 1 A = B if E = 1

       A < B if C = 0 and E = 0 A ≠ B if E = 0

9-24.  R5 ← R1 + R2 R6 ← crc R6

  R5 ← crc Rl5 R5 ← R5 + R6

  R6 ← R3 + R4 R5 ← crc R5

9-26.  J A
i
 = KA

i
 = B

i
K'

i
p

10
 + B'

i
K

i
p

10
; K

i + 1
, = A'

i
B

i
 + A'

i
K

i
 + B

i
K

i
.

  where K
i
 is input borrow and K

i + 1
 is output borrow

9-27.  JA
i
 = B'

i 
p

11
 + P

12
 + B'

i
P

13
; KA

i
 = P

11
 + 3

i
P

12
 + B'

i
P

13
.

9-28.  JA
i
 = KA

i
 = E

i
; E

i + 1
 = E

i
A

i
; E

i
 = p

14
.

s
1

s
0

Y
1

0 0 B
i
′

0 1 B
i
′

1 0 1

1 1 0
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Chapter 10

10-3.  A negative zero will occur after the computation of (−A) + (+ B) provided A = B. This 
can be avoided by clearing A

3
 if A = 0 when A ≥ B.

10-7.  DT
0
 = q'

m
T

0
 + P

2
,T

3
; DT

1
 = q

m
T

0
; DT

2
 = T

1
 + P'

1
T

3
; DT

3
 = T

2
.

10-11. (a) 0   Same as Table 10-2

       1   A ← A + B+ 1, S ← C
n
, E ← C

n + 1
, go to 3

       2   A ← A + B, S ← C
n
, E ← C

n + 1

       3   If (E = 1) then (go to 6)

       4   If (S = 1) then (go to 7)

       5   V ← 0, go to 0

       6   If (S = 1) then (go to 5)

       7   V ← 1, go to 0

10-11. A microinstruction with 26 zeros.

10-12. 1    R1 ← R1, C ← 0
  2    If (S = 1) then (go to 4)

  3    R1 ← crc R1, go to 8

  4    R1 ← shl R1

  5    R1 ← R1

  6    If (S = 1) then (go to 8)

  7    R1 ← 0
  8    Next routine starts here

10-17. 2t(1 + k).

10-18. TG
1
 = q

m
 + T'

0
; TG

2
 = T

1
 + P

2
T

3

10-19. 2’s complement of k.

10-20. (rn − 1) (rn = 1) < (r2n = l)for r ≥ 2.

10-21. JG, = q
s
T

0
 + S'T

2
 + T

4
 + T

6
; KG

1
 = 1

  JG
2
 = q

a
T

0
 + T

1
 + E'T

5
;  KG

2
 = ST

2
 + T

3
 + T

7

  JG
3
 = ST

2
;    KG

3
 = ET

5
 + T

7

10-23. T
0
:    x = 1, if (q

m
 = 1) then (go to T

1
) else (go to T

0
)

  T
1
:    P ← 0, go to T

2

  T
2
:    If (A = 0) then (go to T

0
) else (go to T

3
)

  T
3
:    P ← P + B, A ← A − 1, go to T

2

Chapter 11

11-2.  (a) CLE (b) CLE

        SPA       SHL

        CME       overflow if E ≠ A
l6

        SHR
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11-4.  (a) location (b) location

1 SKI 5 SKO

2 BUN 1 6 BUN 5

3 INP 7 OUT

11-5.  An overflow occurs if the signs of the two numbers are the same but the sign of the 
result is different.

11-6.  (b) Value of A = (0011)
16

 = (17)
10

11-8. 11 µs.

11-9. (a) Fq
1
t
2
: A ← A + B, E ← carry

          Fq
1
t
3
E: A ← A + 1

  (c) Must detect both positive and negative zero

11-10. ORA      Fq
8
t
1
: B ← M  SUB Fq

11
t
1
:   B ← M, A ← Ā

                Fq
8
t
2
: A ← A ∨ B               Fq

11
t
2
   A ← A + 1

  SWP      Fq
10

t
1
: B ← M                Fq

10
t
3
:   A ← A + B

                Fq
10

t
2
: A ← B,  B ← A BSA q

l2
t
3
:   A ← PC, PC ← B (AD)

                Fq
10

t
3
: M ← B  BPA q

13
A′

16
t
3
:   PC ← B (AD)

11-11. (b) Instruction: AND ADD STO IS2 BSB BUN REG I/O

       Time (µs):    6    6    5   7    5    4    4   4

11-12. SBA can be done in a variety of ways:

  (a) use procedure defined in problem 9-25;

  (b) swap A and B, then complement and add;

  (c) form the 2′s complement in B as in problem 9-29.

  ADM    q
9
t
3
:   MAR ← B (AD)

               q
9
t
4
:   B ← M

              q
9
t
5
:   A ← B, B ← A

              q
9
t
6
:   A ←A + B

              q
9
t
7
:   A ← B, B ← A

              q
9
t
8
:   M ← B, G, ← 0

Chapter 12

12-2.  The width of the data bus.

12-3.  4096 words, 8192 bytes.

12-8.  49.

12-9. (b) Relative: Two-byte instruction, A ← M[PC + AD8].

  AR(L) ← M[PC], PC ← PC + 1

  If AR(8) = 0 then AR(H) ← 0 else AR(H) ← all i's

  AR ← M[AR]

  A ← A + T
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12-10. (a) 00 FB

  (b) 71FB: (c)7125

12-14.

(a)

PC S P Stack

013 F 3 A 56 5 A, 14

(b) 67 A E 3 A 58 42, 01, 5 A, 14

(c) 014 2 3  A 56 5 A, 14

(d) 145 A 3 A 54 —

12-17. (a) PC, A, B, C, D, E, F, G, status register

  (b) Ten memory cycles

12-18. x = I'
0 
I'

1
; y = I'

0 
I'

2  
R = I

0 
+

 
I

1 
+

 
I

2
+

 
I

3
.

12-19. FF00, FF08, FF10, FFI8.

12-20. (a) 16

  (b) 11, 7

  (c) 4, 4 × 16

12-21. 24 terminals.

12-22. 32 RAM chips with a 5 × 32 decoder. Eight ROM chips with a 3 × 8 decoder. Use line 
13 for CS2. Address range: 0000-0FFF for RAM; 1000-IFFF for ROM.

12-23. (a) 8. 4

  (c) RAM: 0000 − 07FF; ROM: 4O00 − 4FFF; interface: 8000 − 800F

Chapter 13

13-1.  (a) 1.05 V

  (b) 0.82 V

  (c) 0.23 V

13-2.  I
B
 = 0.44 mA, I

cs
 = 2.4 mA

13-3.  (a) 2.4 mA

  (b) 0.82 mA

  (c) 2.4 + 0.82 N

  (d) 7.8

  (e) 7

13-5.  (b) 3.53

  (c) 2.585 mA

  (d) 16 mA

  (e) 300 Ω

13-9.  (a) 4.62 mA

  (b) 4 mA

13-10. 0.3 V.
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Index

A

Access time, 262, 279, 318, 417, 440, 453
Accumulator register, 324, 346, 408–411, 429, 451–452, 

460, 490
design of, 324

Active pull-on, 506
Active region, 495–496, 499, 504, 507–509
Addend, 5, 105, 138–140, 146, 240, 290
Adder, 105–106, 108

BCD, 144
binary, 144–145
decimal, 143
full, 105–106
half, 105–106
parallel, 138–139, 141
serial, 241, 269
sign-magnitude, 286
2’s complement, 286

Adder-subtractor, 370, 377–378, 402–403
Addition, 4, 12, 18, 38, 70, 73, 105, 140, 143, 287, 289, 

326, 338
parallel, 287
serial, 287
with sign-1’s complement, 287, 293
with sign-2’s complement, 287

Address, 162–163, 167, 235, 259–260, 267, 270, 279, 
281

Address bus, 279–280, 446, 449, 451, 473, 486, 489, 
491

Addressing modes, 456–457, 460–463, 489
base register, 463
direct, 461
immediate, 461
implied, 460
indexed, 462
indirect, 463
present-page, 461

register, 460
register-indirect, 460

relative, 461
zero-page, 461

Address register, 258–260, 267, 273, 279–280, 379, 396, 
451, 484, 487

Adjacent squares, 67–68, 70–75, 87, 91, 108
Algebraic manipulation, 41, 105, 121, 130, 196, 219
Algorithm, 146, 200, 290, 362, 380, 386
Alphanumeric codes, 18

ASC11, 19
card code, 19–20, 167
EBCDIC, 19–21, 30

ALU, 317–322, 325
design, 317

Analog computer, 2
AND, 24–27, 30, 34, 39, 41, 43, 46
AND gate, 26, 41, 53, 76, 83, 106, 119, 157, 170, 185, 

390, 498, 505
AND-OR-INVERT, 83–86, 142, 168, 175
Application notes, 173
Arithmetic addition, 14, 31, 144, 287, 324, 327, 355
Arithmetic circuit, 326, 328–332, 334, 336, 357

design, 326
Arithmetic logic unit(see ALU), 317, 319, 325, 335–336, 

358, 445
Arithmetic microoperation, 281
Arithmetic shift, 291–292, 314, 359
Asynchronous counter, 243
Asynchronous transmission, 481–482
Augend, 5, 138–140, 146, 290

B

Base of number, 4, 10, 294
Base of transistor, 494, 511
Base register, 462–463

addressing, 462
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BCD, 15, 30, 62, 71, 111, 136, 145
BCD adder, 144–145, 177
BCD correction, 145
BCD counter, 217, 226, 245, 249, 269
BCD-to-decimal decoder, 149–151, 176
BCD-to seven segment decoder, 133–134, 147
Bidirectional bus, 448–449
Bidirectional shift–register, 341
Binary, 1–3, 15, 22
Binary adder, 144–146, 175
Binary addition, 23, 143
Binary arithmetic, 23–24
Binary cell, 20, 229, 263–264, 266, 269
Binary code, 14–16, 18, 20, 111, 144, 297, 344, 460
Binary coded decimal, 15, 249, 272–273
Binary codes, 3, 14–16, 103, 143, 297

alphanumeric, 18–19
decimal, 5, 15

Binary counter, 199, 215–217, 247, 249–250, 270, 352
with parallel load, 238, 249

Binary information, 16, 23, 103, 131, 156, 180, 229, 
240, 258, 285

Binary logic, 3, 23–24, 26, 35
definition, 23

Binary multiplication, 175
Binary numbers, 3, 9, 12, 29, 129, 289, 403

conversion of, 6–7, 16
1’s complement, 281, 283, 287
2’s complement, 14, 29, 174, 288

Binary operator, 31–32, 34, 77
Binary signal, 26, 57, 109–110, 312, 508
Binary storage, 3, 15, 20, 229, 263, 265, 270
Binary-to decimal conversion, 177
Binary variable, 24, 39, 51, 104, 107, 147, 298, 309, 

424, 430
Bipolar, 356, 402, 493–494, 513
Bit, 14–20, 29, 131, 156, 217
Bit-slice microprocessor, 320
Bit-time, 241
BJT, 493, 519
Boolean algebra, 23, 26, 31–40, 44, 46, 48, 58, 67, 103

definition, 31
operator precedence, 38
postulates, 36–37
properties, 35
simplification, 65–66, 68, 70
theorems, 36
two-valued, 23, 32–34

Boolean function, 39–41, 44–46, 48, 53
complement, 9, 12, 29, 47
implementation, 41, 76
simplification, 65–66, 70
truth table, 24, 37, 64, 113, 126

Boolean function implementation, 118, 125, 157

product of sums, 48, 75
sum of products, 48, 53, 75, 83, 76
with AND-OR-INVERT, 142
with NAND, 118, 120, 183
with NOR, 82, 100, 126

Boolean variable, 197
Borrow, 5, 11, 109, 340, 533
Branch, 380, 397, 400, 415, 417, 457, 462, 471

conditional, 284–285
to subroutine, 397–398, 415
unconditional, 380, 401, 411, 457

Branch address, 397–398, 400, 468, 470
Buffer gate, 231–232, 448, 509, 528
Bus, 464, 468, 471, 473, 476, 531

bidirectional, 448, 451
for microprocessor, 454, 457, 459

Bus buffer, 444–445, 450
Bus granted, 449–450, 484
Bus organization, 318–319, 360
Bus request, 449–450, 484, 487
Bus transfer, 276–277, 315
Byte, 452, 454, 467–468, 489, 539

C

Calculator, 3, 489, 491
Call subroutine, 399, 459, 465–466, 489, 491

canonical between, 47
Card code, 19–20, 167–168
Carry, 11, 108, 142, 145, 252, 320, 338, 352, 459
Carry bit, 138, 342, 345, 348, 386, 459
Carry look–ahead, 320
Carry propagation, 140–141
Central processor unit, 3, 317, 399, 407, 443, 449, 451
Character, 19, 21, 297, 411–412, 482
Characteristic, 182, 184, 197, 205, 376, 497
Character string, 297
Chip, 26, 28, 137, 444, 447, 471, 474, 483, 501
Chip select, 471–473, 477, 484, 490
Circuit design, 207, 407
Circular shift, 255, 284, 346, 359, 425
Classical method, 137, 139–140, 143, 392
Clear, 10, 95, 181, 373, 385, 391, 429, 434, 457, 468
Clock, 180, 182, 188, 192, 230, 237, 254, 272, 375
Clocked flip-flops, 185–186
Clocked sequential circuit, 193, 203, 206, 229, 233, 363
Clock generator, 180, 231, 362, 408, 417, 450
Clock pulses, 180, 182, 185, 231, 237, 254, 363, 397, 

418, 424
Closure, 31, 33, 62, 483, 522
CMOS, 55–58, 61, 517, 519

logic circuit, 104, 331, 333
Code conversion, 111–112
Codes, 14, 16, 131, 306, 456, 482
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Code transformation, 400–401, 434–435
Coefficient, 4, 6, 92, 295–297, 314, 552
Coincidence, 50, 67, 69, 117, 266
Collector, 83, 494, 496, 499, 501, 504–506
Combinational circuit, 103–105, 108, 114, 133, 135, 

164, 171, 197, 202
analysis, 108
design, 114

Combinational logic, 98, 103–104, 108, 112, 114, 138, 
160, 162

with decoders, 137
with MSI and LSI, 137–138, 140, 142, 160, 164
with multiplexers, 160–161, 277, 341
with PLA, 171, 177
with ROM, 234

Commutative law, 31
Comparator, 145, 147, 175
Compare, 146–147, 175
Complement, 9–11, 13, 37, 47, 76, 83, 85, 104, 244

of a function, 42–43
Complementary MOS (see CMOS), 515
Complements, 9, 11, 13, 148, 172, 246, 350

subtraction, 9, 11, 29, 31
Computer, 1–3, 18, 21, 133, 144, 271, 297, 302, 309

design, 28
Computer console, 368, 438, 442
Computer instruction, 303

types, 303
Conditional code, 284
Control address register, 368–369, 378, 383, 398
Control function, 272, 321, 346, 425, 434

conditional, 284
Control logic design, 362, 364, 366, 366, 370, 388, 394
Control memory, 344, 346, 368, 377

writable, 368
Control of processor, 382, 405
Control organization, 344, 364, 377, 396, 429
Control state diagram, 364, 373–374, 390, 402, 405
Control-type instructions, 457–458
Control unit, 2–3, 254, 317, 378, 419, 429, 460
Control word, 236, 343, 345, 368, 385, 401
Counter, 215, 244, 246, 249

BCD, 249
binary, 247
design of, 230, 247
johnson, 257
mod-N, 253
ripple, 269
self starting, 218, 269
synchronous, 247, 249

CP (see clock pulses), 210, 224, 231, 243
CPU, 317, 320, 444, 462, 483
Crystal, 26, 450
Current, 59, 265, 270, 495

Cutoff, 495, 497, 504
Cycle stealing, 484

D

Darlington pair, 507
Data book, 62, 173, 268, 402, 517
Data bus, 486, 488, 536
Data counter, 458
Data path, 318

gating, 318
Data-processor, 362, 369, 371, 390, 404
Data selector, 156
DC current gain, 495
Decimal adder, 143, 175, 293
Decimal addition, 314
Decimal codes, 15
Decimal data, 293–294, 315
Decimal numbers, 92, 143, 249, 294, 314

conversion to binary, 293
9’s complement, 13, 16, 29, 133, 294, 535
10’s complement, 11, 29–30

Declaration statement, 274
Decorder, 163

BCD-to-seven-segment, 133–134, 147
BCD-to-decimal, 149–151, 
with enable input, 403
implementation, 313, 364

Decoder/demultiplexer, 154, 176
Decrement, 281, 327–328, 459, 491
De morgan’s theorem, 37, 42, 123, 127
Demultiplexer, 153–154, 176
Depletion mode, 514
Design algorithm, 360–363, 369
Destructive read-out, 259, 261, 266
D flip-flop, 183, 204, 220, 223, 242, 376

edge triggered, 185, 189, 230, 244
Digital circuit, 60, 64, 87, 114, 363, 517
Digital computer, 18, 21, 28, 268, 396, 439
Digital integrated circuits, 28, 62, 492
Digital logic gates, 51–52, 54, 65, 103
Digital multiplexer, 156–157
Digital system, 16, 27, 156, 271, 369, 444, 447
Diode, 492, 497, 507, 509, 519
Diode characteristic, 497
Diode-transistor logic (see DTL), 492
DIP, 27
Direct address, 302
Direct clear, 192
Direct memory access, 450, 476, 484
Discrete information, 1, 20
Distributive law, 32, 35, 39, 47, 62
DMA transfer, 476, 484, 487
Don’t care conditions, 87, 150
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Drain, 513–515, 517
DTL, 492, 497, 499, 518–519

basic gate, 493, 500
modified gate, 500

Dual-in-line package, 27
Duality, 35, 37, 47, 57
Dynamic indicator, 183

E

EBCDIC, 19–21, 30, 167
ECL, 55–57, 61, 511

basic gate, 61, 511
Edge-triggered flip-flop, 187, 189–190, 192
Effective address, 462–463
Electronics, 55, 98, 173, 268, 492, 517
Emitter, 492, 493, 512, 518
Emitter-coupled logic (see ECL), 55, 492, 511
Emitter-follower, 509, 512
Enable, 362, 417, 469, 519
Encoder, 154–155
End around carry, 12–14, 288
End carry, 11–12, 289, 410, 452
Enhancement mode, 514
EPROM, 166
Equivalence, 50, 54, 57, 130, 132, 360
Equivalence function, 50, 54, 77, 129, 135, 146
Error-detection codes, 16
Even function, 54
Excess-3 code, 15, 21, 29, 112, 114, 116
Excitation table, 204–208
Exclusive-NOR, 50–52, 57, 142, 490
Exclusive-OR, 49–51, 77, 109, 131, 220, 283

functions, 131
Implementation, 275, 282

execute cycle, 419, 421, 477
exponent, 297, 314, 532

F

FA (see full adder), 139, 290, 329
Fan-out, 59, 61, 493, 499, 518
FET, 493, 513
Fetch cycle, 306–308
Field, 32, 170, 378, 381, 397, 401, 513
Firmware, 386
Fixed-point, 285–286, 295, 386, 402
Flag bit, 411, 479–480
Flat package, 27
Flip-flop, 124, 180–189

basic circuit, 182, 511
characteristic equation, 182–184
characteristic table, 182, 185
clocked, 180, 182

Direct coupled, 181
direct inputs, 192
d type, 190–191, 230
edge-triggered, 189–191
excitation table, 205–208, 211
input functions, 197–198
JK type, 184–185, 207, 243
master-slave, 185, 187, 290
RS type, 182
triggering, 185, 187, 193
T type, 207, 360

Floating type, 294
normalized, 296, 314

Floppy disk, 483
Flowchart, 363–364
FPLA, 170, 433
Full-adder, 106, 336, 348, 355, 526
Full-subtractor, 110–111, 136

G

Gate, 53, 58, 60, 64, 79, 84, 120, 180, 331
Gated latch, 184, 230
Gray code, 18

H

Half-adder, 105–107, 142
Half-subtractor, 109–110
Handshake, 477–479

transfer with, 477
Hardware, 166, 378, 445, 470
Hard-wired control, 365, 369, 386, 418, 430, 437

Design, 369
Example, 369

Hexadecimal code, 413, 417, 423, 440, 458
Hexadecimal numbers, 8–9

conversion to binary, 293
High-impedance state, 448, 450, 509
High-level signal, 183
High-threshold logic, 499–500
Hold command, 484
HTL, 499–500
Huntington postulates, 33, 35, 50, 62
Hysteresis loop, 265

I

IC
IC logic families, 58–61, 64

characteristics of, 59–60
voltage levels, 60

IC RAM, 264
Identity element, 31–33
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Immediate mode, 461, 490
Implication, 49–51, 64
Implied, 157, 301–302
Increment, 251, 272, 282
Indexed addressing, 462–463
Index register, 462–463
Indirect addressing, 463
Inhibition, 49–51, 64
Input carry, 138–139, 141, 331, 334
Input device, 3, 400, 409, 411, 439
Input equations, 197
Input functions, 197–198
Input-output instructions, 413, 417, 438, 442
Input-output interface, 444, 474
Input register, 22, 409, 411
Instruction code, 300–301
Instruction format, 301, 315
Instruction register, 304, 315, 401, 408, 410, 468
Integrated circuit gates, 56
Integrated circuit memory, 263–264
Integrated circuits, 137, 173, 508, 512, 519
Integrated circuit type

10102, 55–56
10107, 55–56
2901, 322
2910, 396
4002, 56–57
4022, 258
7400, 55–58
7404, 55–56
7442, 151
7475, 230
7485, 147
74L85, 175–176
7487, 356
7490, 245
74138, 148
74148, 155
74157, 157
74161, 249, 428
74175, 230
74182, 142, 174
74194, 238
74283, 139, 174
82S83, 145
82S100, 168
9408, 396
Integrated-injection logic (See IIL), 55, 492, 500
Interregister transfer, 273, 281, 384
Interrupt, 449–450, 463, 468, 470

priority, 469
Interrupt acknowledge, 449, 469, 471
Interrupt enable, 468–469
Interrupt request, 449, 468, 487, 489

Interval timer, 483
Invalid state, 218, 257, 270
Inverse, 32, 62
Inverter, 26, 41, 51, 79, 118, 127, 165, 231, 519
I/O bus, 445, 476, 479
I2L, 55, 492, 500, 502, 519

basic gate, 501
interconnection, 492

Isolated, 188, 476–477

J

JK flip flop, 184–185, 194, 205, 208, 349, 391
master-slave, 188–189

Johnson counter, 256–257, 270
Jump instruction, 457
Junction transistor, 493

K

Karnaugh map, 65

L

Large scale integration, 28
Latch, 181, 184, 230, 488, 492

D type, 190, 220, 230, 365
SR type, 181

LIFO, 397, 463
Literal, 41, 43, 68, 93, 108
Load input, 232, 252, 282, 434
Logical word, 300, 412

negative logic, 57–59, 64
positive logic, 57–59, 64, 491

Logic circuit, 55, 104, 145, 332, 520
design of, 331

Logic design, 133, 244, 317, 320, 336
Logic gates, 25, 54, 186, 309, 441
Logic microoperations, 273, 283, 297, 313, 360
Logic operations, 49, 272, 283, 297, 325, 331, 334, 413, 

439
Logic polarity, 59, 78
Look-ahead carry, 141–143, 174

generator, 141, 174
LSI, 28, 55, 137, 152, 158, 168, 173, 443, 446
LSI circuits, 138, 173, 492
LSI components, 173, 402–444, 446, 449
LSI functions, 55, 173, 492

asynchronous receiver-transmitter, 429
bit-slice microprocessor, 320
central processor unit, 3, 317, 399, 443, 451
direct memory access, 450, 476, 484
input-output interface, 444, 474
microcomputer, 466, 470, 472, 474, 488
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microprocessor, 320, 445, 449, 454, 467, 474
microprogram sequencer, 396, 398
parallel peripheral interface, 476–478, 480, 486
programmable logic array, 167–170, 234, 310, 365, 

367, 393, 402
random access memory, 229, 262, 368, 443, 445
read only memory, 161–162, 166
serial communication interface, 476, 480, 483

M

M(see memory word), 259, 279, 422, 477
Macrooperation, 304, 384, 485
Magnetic core memory, 261–262
Magnetic flux, 265–266
Magnitude comparator, 145–147
Mantissa, 295
Map method, 65, 91, 96, 98

alternative versions, 65
Mapping function, 401
MAR, 310, 360, 423
Mask, 166, 168, 298, 468
Master clock, 180, 231, 279, 408
Master-slave flip-flop, 187–188, 492
Maxterm, 44, 47
MBR, 260–261
Medium scale integration, 28
Memory, 2, 22, 167, 179

access time, 262
integrated circuit, 27, 204, 263
magnetic core, 261, 265
random access, 229, 262, 445
read only, 138, 161, 166, 307, 365, 443
scratchpad, 321–323
stack, 397–398
2-port, 322–323
volatile, 262, 444

Memory address, 260, 273, 279, 301, 409, 472, 489
Memory address map, 472–473, 490
Memory address register, 258–260, 270, 273, 305
Memory buffer register, 259–260, 270, 304, 408, 418
Memory cycle, 262, 438, 452–453, 490

stealing, 484
Memory enable, 264, 323
Memory mapped I/O, 476–477, 490
Memory organization, 471
Memory read, 305, 321, 323, 417, 426, 488
Memory reference instructions, 413–415, 421, 442
Memory register, 22, 258, 278
Memory select, 321
Memory stack, 398, 457, 463
Memory transfer, 275, 277, 279, 315, 453
Memory unit, 22, 236, 246, 252, 258–259, 261

examples, 9

Memory word, 258–259, 275, 302, 304, 422, 438
Memory write, 312, 321, 410, 426, 488
Metal-oxide semiconductor (see SOM), 55, 492, 494, 

513
Microcomputer, 3, 173, 402, 429, 444, 456, 472
Microcomputer chip, 449, 447, 483
Microinstruction, 369, 377, 380, 384, 401, 438

fields of, 401
Microoperation, 272, 284, 299, 342, 350, 422

arithmetic, 410, 412
interregister transfer, 273, 281, 304, 315
logic, 271–272
shift, 269, 272

Microprocessor, 3, 320
control signals, 237, 258–259, 449, 484, 488
instructions, 308, 417, 458–460, 490
memory connection, 474–475
organization, 266, 304, 449, 463, 471, 477
sequencing, 313, 377, 396, 443, 454

Microprogram, 365, 368, 376, 381, 384, 399
Microprogram control, 365, 368–369, 437, 444

of computer, 402, 407
of CPU, 402
example, 402
of processor, 392, 405

Microprogram sequencer, 396–399, 400, 405, 443
Minterm, 43–44, 46, 68, 70, 73, 77, 93, 128, 234
Minuend, 5, 11, 9, 109, 289
Mod-N counter, 253
MOS, 55, 62, 492, 494, 513–515, 519

basic gate, 501
MOS transistor, 494, 513–514, 516–517, 519
Move instruction, 306, 457, 488
MSI, 242, 270, 310, 428, 528, 536
MSI circuit, 28, 145, 174, 229, 253, 429
MSI functions, 138, 161, 173, 175, 232

accumulator, 324
BCD adder, 144–145
binary adder, 144–146
bus buffer, 447–448, 485
counters, 215, 217, 226, 242
decoder, 147, 151, 154
demultiplexer, 153–154, 176
encoder, 154–156
johnson counter, 256–257, 270
look-ahead carry generator, 141–143, 174
magnitude comparator, 145–147
multiplexer, 156–157
priority encoder, 156, 470, 491
random access memory, 229, 262, 368, 443, 445
read only memory, 161–162, 167
register, 348, 360, 367, 370
shifter, 341, 359
shift- register, 241, 243
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Multilevel NAND circuits, 117
Multilevel NOR circuits, 124
Multiplexer, 156–157

implementation with, 156–157
Multiplicand, 386–387, 388, 404
Multiplication, 294, 317, 361, 386
Multiplier, 386–387
Multiprocessor, 445, 487
MUX (see multiplexer), 341, 378, 429, 531

N

NAND, 30, 50, 52, 56, 64, 79
NAND circuits, 117

Analysis, 117
Multilevel, 117

NAND gate, 79–80, 85, 515, 517, 517
graphic symbols, 78

Negative edge, 186–189
Negative logic, 57, 59, 64, 78, 515

graphic symbol, 51, 58
Negative zero, 288–289, 402
Next-state, 268, 348, 391, 396
Noise margin, 60–61, 493
Nondegenerate forms, 84
Nonnumeric data, 297
NOR, 181, 191, 223, 512, 524, 527
NOR circuits, 117, 124, 147

analysis, 117
multilevel, 117

NOR gate, 54, 58–59, 64, 125, 127
graphic symbols, 59, 78

NOT, 170, 334, 358, 374
Number base conversions, 6

O

Octal number, 148, 296, 314
conversion to binary, 293
conversion to decimal, 293

Odd function, 54
One flip-flop per state, 364–366, 369

example, 364
Open collector gate, 506–507, 509

common bus, 447, 449, 479
wired logic, 83, 265, 505

Operation, 494, 500, 505
Operation-code, 302, 308, 409, 440, 454
Operation-type instructions, 457–458
Operator precedence, 38
OR, 34–35, 38
OR-AND-INVERT, 83, 85–86
OR gate, 51, 76, 151
Output carry, 138–139

status bit, 338, 340
Output device, 21, 409, 411
Output register, 409, 411, 417, 429
Overflow, 383, 403, 532, 535

status bit, 434, 457

P

Packing, 299–300, 500–501, 520
Paging, 461
Parallel adder, 138–141

with look ahead carry, 143
Parallel load, 231–233, 238
Parallel peripheral interface, 476–478, 480
Parallel transfer, 238, 269, 277
Parity bit, 131–132
Parity check, 17, 132
Parity generator, 131–132, 136
PC board, 447
Peripheral interface, 476–478, 480, 483, 490
Pipeline register, 400–401, 405
PLA, 395–396
PLA control, 393–396, 405

example, 393
PLA program table, 168, 170–172, 177, 394
Pointer, 397–399
Polarity indicator, 59, 78
Polling, 469–470
Pop stack, 398–399, 465
Positive edge, 187–189, 192, 247
Positive logic, 57–59, 64, 78, 493
Postulate, 36–37, 522
Power dissipation, 59–61, 64, 493, 502, 512, 517
Present-page, 461, 489–490
Present state, 179, 183, 185, 195, 199
Prime implicant, 93, 95

essential, 93
Printed circuit board, 447
Priority encoder, 155, 176, 470, 489, 491
Priority interrupt, 469–471, 483
Processor logic design, 317–318, 320, 322, 324, 328, 

332, 356, 360
Processor organization 318, 360
Processor unit, 317–318, 320–321

control of, 317
Product of maxterms, 45–46, 48, 63, 77, 99
Product of sums, 48, 65, 75, 80
Product term, 79, 170–171
Program counter, 304, 306, 408, 410, 414, 461
Programmable interface, 443, 474
Programmable logic array, 167–168, 170, 234, 310, 365

control logic with, 366–367
field programmable, 168, 170, 402
program table, 394–395
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Program memory, 444
PROM, 166
Propagation delay, 60, 64, 142, 186, 491
Push stack, 399

R

Radix, 285, 294, 296
Radix-point, 285, 296
RALU, 320
RAM, 321, 445, 471
RAM chip, 471–472
Random-access, 229, 262
Read, 266–268
Read cycle, 268, 270, 305, 452
Read only memory, 161–162, 166–167

combinational logic with, 164, 172
in control logic, 163
truth table, 24, 37, 39
types of, 472

Reflected code, 30, 72, 96, 135
Register, 21–22, 30, 230–231, 409, 489

with parallel load, 231–232
Register-indirect, 458, 460
Register mode, 460, 490
Register operations, 425
Register pair, 452, 458–459
Register-reference instructions, 414, 416, 420, 423
Register stack, 398, 464, 485
Register transfer, 444, 458, 464
Register transfer language, 272, 274, 282
Register transfer logic, 271–272, 274, 296, 304, 316
Relative addressing, 461, 489
Replacement operator, 274
Reset, 181, 212, 468, 481
Resistor, 492, 497–498
Resistor-transistor logic (see RTL), 492
Return address, 397–398, 416
Return from subroutine, 399, 457, 459, 467, 489
Ring counter, 255–257

switch-tail, 255
Ring counter controller, 365
Ripple counter, 242–244
ROM (see read only memory), 447, 454, 471
ROM chip, 472–474, 490
RS flip-flop, 181–184
RTL, 492, 497

basic gate, 493, 500

S

Saturation region, 495–496, 499
Schottky transistor, 508
Schottky TTL, 60–61, 503, 508
Scratchpad memory, 314, 321–322, 356, 360

Self starting counter, 218
Sense amplifier, 266–268
Sense wire, 266
Sequencer, 396–397, 399
Sequencer register, 386

control example, 386
Sequential circuit, 103, 114

analysis, 356, 493
asynchronous, 180, 185
clocked, 229, 233
design, 348, 352
synchronous, 248, 269

Sequential logic, 179–180, 182, 216, 220, 375, 393
control, 272
digital system, 179, 215, 236
implementation

Serial addition, 139, 240
Serial input, 235–238
Serial output, 235–237, 320
Serial transfer, 236–237, 490
Set, 223, 233, 298, 331, 375, 411, 453
Seven-segment decoder, 133–134
Shifter, 319–321

design, 319
Shift microoperation, 284, 300

arithmetic, 281, 283
logic, 283–284

Shift register, 238, 240, 269, 281
bidirectional, 238, 240, 271
with parallel load, 270, 313

Sign bit, 293, 314, 338, 345, 414, 452
Sign-magnitude, 286–287, 294, 317
Sign-9’s complement, 294
Sign-1’s complement, 287, 289, 314, 440
Sign-10’s complement, 294, 314, 316
Sign-2’s complement, 290, 292, 294
Skip instruction, 414, 416–417, 457
Small-scale integration, 28
Software, 386, 445, 470, 488
Source, 25, 193, 236, 321, 457
Speed-power product, 502–503, 512
SSI, 55, 137, 365, 447, 470, 503
Stack, 397–399, 452, 457
Stack pointer, 397–399, 465, 489
Standard forms, 43, 48, 76–77, 83, 96
Standard product, 43
Start bit, 482–483
State, 374–375, 389, 394, 405, 448
State assignment, 202–203, 223
State diagram, 199–201, 219, 224, 374, 390
State equation, 195–196

design, 196
State reduction, 198–200, 202
State table, 194–195, 198
Status register, 338–339, 342
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Stop bit, 482
Storage register, 258–259
Subroutine, 396–397, 399, 407, 415, 465
Subtraction, 4, 11, 29, 33, 295, 297, 371–372

with sign-magnitude, 289
with sign-2’s complement, 287

Subtractor, 111, 176, 281, 331, 376, 403
full, 110–111
half, 109–110

Subtrahend, 5, 11, 109, 289, 414
Sum of minterms, 45–48
Sum of products, 48, 75, 82, 108, 168, 170
Switching circuit, 25, 30, 194, 223
Symbolic microprogram, 380–381, 385
Sync character, 482
Synchronous counter, 242, 247, 249, 352
System design, 407, 419, 443, 446, 448

T

Tabulation method, 89, 92, 96
Teletype, 1, 21–22, 482
Teletypewriter, 3, 407, 411, 429
T flip-flop, 185–186, 206, 217
Three-state bus, 511
Three-state gate, 448, 509, 511
Threshold voltage, 514–515
Time constant, 506–507
Timing and control, 408, 417, 445, 450, 454
Timing diagram, 207, 246, 254
Timing sequence, 272, 363, 419, 424
Timing variables, 284, 308, 432, 441
Toggle, 185, 192
Totem-pole gate, 509
Transfer, 30, 50, 184
Transfer-type instructions, 457
Transistor, 55, 492, 494, 496, 500

characteristics, 494
circuit, 478, 492

Transistor-transistor logic (see TTL), 55, 492–502
Trigger, 185, 192, 244
Triggering of flip-flops, 185, 417
Tri-state, 447, 503, 509, 519
True/complement, one/zero element, 327
TTL, 55, 60, 139, 502, 504

open collector, 503–505

Schottky, 61, 64, 503
7400 series, 55
standard, 423, 483
three-state, 448, 503
totem-pole, 503, 505, 509

Two-level implementation, 76, 78, 82, 163
2-port memory, 322–323

U

UART, 429
Unconditional branch, 380, 401, 460
Unipolar, 493, 513
Universal gate, 117, 124
Unused state, 214–215, 257, 270
Up-down counter, 247

V

Vectored interrupt, 468–469
Veitch diagram, 65, 97
Venn diagram, 38–39, 43, 65
VLSI, 28
Volatile memory, 444
Voltage, 58, 60, 495, 499, 505

W

Wired-AND, 83, 505–506, 520
Wired logic, 83, 505, 512, 518
Word, 162, 167, 207, 258, 262, 266
Word time, 236, 254, 272

generation of, 254
Write, 398, 400, 403
Write cycle, 268, 270, 453

X

XOR (see exclusive core), 50, 177, 197, 299, 331, 338, 
383

Z

Zero indication, 338
Zero page, 461–462, 489–490

www.youseficlass.ir


	Cover
	Contents
	Preface
	1. Binary Systems
	1.1 Digital Computers and Digital Systems
	1.2 Binary Numbers
	1.3 Number Base Conversions
	1.4 Octal and Hexadecimal Numbers
	1.5 Complements
	1.6 Binary Codes
	1.7 Binary Storage and Registers
	1.8 Binary Logic
	1.9 Integrated Circuits

	2. Boolean Algebra and Logic Gates
	2.1 Basic Definitions
	2.2 Axiomatic Definition of Boolean Algebra
	2.3 Basic Theorems and Properties of Boolean Algebra
	2.4 Boolean Functions
	2.5 Canonical and Standard Forms
	2.6 Other Logic Operations
	2.7 Digital Logic Gates
	2.8 IC Digital Logic Families

	3. Simplification of Boolean Functions
	3.1 The Map Method
	3.2 Two- and Three-variable Maps
	3.3 Four-variable Map
	3.4 Five- and Six-Variable Maps
	3.5 Product of Sums Simplification
	3.6 NAND and NOR Implementation
	3.7 Other Two-level Implementations
	3.8 Don’t-care Conditions
	3.9 The Tabulation Method
	3.10 Determination of Prime-implicants
	3.11 Selection Of Prime-implicants
	3.12 Concluding Remarks

	4. Combinational Logic
	4.1 Introduction
	4.2 Design Procedure
	4.3 Adders
	4.4 Subtractors
	4.5 Code Conversion
	4.6 Analysis Procedure
	4.7 Multilevel Nand Circuits
	4.8 Multilevel NOR Circuits
	4.9 Exclusive-OR and Equivalence Functions

	5. Combinational Logic with MSI and LSI
	5.1 Introduction
	5.2 Binary Parallel Adder
	5.3 Decimal Adder
	5.4 Magnitude Comparator
	5.5 Decoders
	5.6 Multiplexers
	5.7 Read-Only Memory (ROM)
	5.8 Programmable Logic Array (PLA)
	5.9 Concluding Remarks

	6. Sequential Logic
	6.1 Introduction
	6.2 Flip-Flops
	6.3 Triggering of Flip-flops
	6.4 Analysis of Clocked Sequential Circuits
	6.5 State Reduction and Assignment
	6.6 Flip-flop Excitation Tables
	6.7 Design Procedure
	6.8 Design of Counters
	6.9 Design with State Equations

	7. Registers, Counters, and the Memory Unit
	7.1 Introduction
	7.2 Registers
	7.3 Shift Registers
	7.4 Ripple Counters
	7.5 Synchronous-counters
	7.6 Timing Sequences
	7.7 The Memory Unit
	7.8 Examples of Random-access Memories

	8. Register-Transfer Logic
	8.1 Introduction
	8.3 Arithmetic, Logic, and Shift Microoperations
	8.4 Conditional Control Statements
	8.5 Fixed-point Binary Data
	8.6 Overflow
	8.7 Arithmetic Shifts
	8.8 Decimal Data
	8.9 Floating-point Data
	8.7 Arithmetic Shifts
	8.8 Decimal Data
	8.9 Floating-point Data
	8.10 Nonnumeric Data
	8.11 Instruction Codes
	8.12 Design of a Simple Computer

	9. Processor Logic Design
	9.1 Introduction
	9.2 Processor Organization
	9.3 Arithmetic Logic Unit
	9.4 Design of Arithmetic Circuit
	9.5 Design of Logic Circuit
	9.6 Design of Arithmetic Logic Unit
	9.7 Status Register
	9.8 Design of Shifter
	9.9 Processor Unit
	9.10 Design of Accumulator

	10. Control Logic Design
	10.1 Introduction
	10.2 Control Organization
	10.3 Hard-wired Control—Example 1
	10.4 Microprogram Control
	10.5 Control of Processor Unit
	10.6 Hard-wired Control—Example 2
	10.7 PLA Control
	10.8 Microprogram Sequencer

	11. Computer Design
	11.1 Introduction
	11.2 System Configuration
	11.3 Computer Instructions
	11.4 Timing and Control
	11.5 Execution of Instructions
	11.6 Design of Computer Registers
	11.7 Design of Control
	11.8 Computer Console

	12. Microcomputer System Design
	12.1 Introduction
	12.2 Microcomputer Organization
	12.3 Microprocessor Organization
	12.4 Instructions and Addressing Modes
	12.5 Stack, Subroutines, and Interrupt
	12.6 Memory Organization
	12.7 Input-output Interface
	12.8 Direct Memory Access

	13. Digital Integrated Circuits
	13.1 Introduction
	13.2 Bipolar Transistor Characteristics
	13.3 RTL and DTL Circuits
	13.4 Integrated-injection Logic (I2L)
	13.5 Transistor-Transistor Logic (TTL)
	13.6 Emitter-coupled Logic (ECL)
	13.7 Metal-Oxide Semiconductor (MOS)
	13.8 Complementary MOS (CMOS)

	Appendix
	Index

