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3.

ﬁ(

CHAPTER 1
FUNDAMENTAL PRINCIPLES OF COUNTING

Sections 1.1 and 1.2

(a) By the rule of sum, there are 8 4 5 = 13 possibilities for the eventual winner.

{b) Since there are eight Republicans and five Democrats, by the rule of product we have
8 x 5 = 40 possible pairs of opposing candidates.

{¢) The rule of sum in part (a); the rule of product in part (b).

By the rule of product there avre 5 x5 x5 x 5x 5 x 5 == 5% license plates where the first
two symbols are vowels and the last four are even digits.

By the rule of product there are () 4 x 12 x 3 x 2 = 288 distinct Buicks that can be
manufactured. Of these, (b) 4 x 1 x3 x 2= 24 are blue.

(a) From the rule of product there are 10 x 9 x 8 x 7 = P(10,4) = 5040 possible slates.
(b) (i) There are 3 x 9 x 8 x 7 = 1512 slates where a physician is nominated for president.
(ii) The number of slates with exactly one physician appearing is 4 X [3 x 7 x 6 x 5] = 2520.
(iii) There are 7 X 6 X 5 X 4 = 840 slates where no physician is nominated for any of the
four offices. Consequently, 5040 — 840 = 4200 slates include at least one physician.

Based on the evidence supplied by Jennifer and Tiffany, from the rule of product we find
that there are 2 X 2 x 1 x 10 x 10 x 2 = 800 different license plates.

{a) Here we are dealing with the permutations of 30 objects (the runners) taken 8 (the first
eight finishing positions) at a time.. So the trophies can be awarded in P(30,8) = 30!/22!

ways.

{b) Roberta and Candice can finish among the top three runners in 6 ways. For each of
these 6 ways, there are P(28,8) ways for the other 6 finishers (in the top 8) to finish the
race. By the rule of product there are 6. P(28,6} ways to award the trophies with these
two runners among the top three.

By the rule of product theve are 2% possibilities.

By the rule of product there are (a) 12! ways to process the programs if there are no
restrictions; (b} {(4!)(8!) ways so that the four higher priority programs are processed first;
and (¢) (41}(81){3!) ways where the four top priority programs arve processed first and the
three programs of least priority are processed last.

3
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9.

10.

11.

12.
13.

14.

15.

16.

17&

18.

19.

20.

(a) (14)(12) = 168
(b) (14)(12)(6)(18) = 18,144
(c) (8)(18)(6)(3)(14)(12)(14)(12) = 73,156,608

Cousider one such arrangement — say we have three books on one shelf and 12 on the
other. This can be accomplished in 15! ways. In fact for any subdivision (resulting in
two nonempty shelves) of the 15 books we get 15! ways to arrange the books on the two
shelves. Since there are 14 ways to subdivide the books so that each shelf has at least one
book, the total number of ways in which Pamela can arrange her books in this manner is

(14)(151).

(a) There are four roads from town A to town B and three roads from town B to town
C, so by the rule of product there are 4 X 3 = 12 roads from A to C that pass through B.
Since there are two roads from A to C directly, there are 12 + 2 = 14 ways in which Linda

can make the trip from A to C.
(b) Using the result from part (a), together with the rule of product, we find that there

are 14 x 14 = 196 different round trips (from A to C and back to A).
(c) Here there are 14 x 13 = 182 round trips.

(1) act (2) at.c (3) c,a,t (4) ct,a (5) t,ac (8) t,c,a
(a) 8= P(8,8) (b) 7! 6!

(a) P(7,2) = T1/(T—2)! = T1/5! = (7)(6) = 42
(b) P(8,4) = 8!/(8 — 4)! = 81/4! = (8)(7)(6)(5) = 1680

(c) P(10,7) = 101/(10 — 7)! = 10!/3! = (10)(9)(8)(7)(6)(5)(4) = 604,800
(d) P(12,3) = 12!/(12 — 3)! = 121/9! = (12)(11)(10) = 1320

Here we must place a,b,c,d in the positions denoted by x: exexexexe By therule
of product there are 4! ways to do this.

(a) With repetitions allowed there are 40%° distinct messages.
(b) By the rule of product there are 40 x 30 X 30 x ... x 30 x 30 x 40 = (40%)(30%%)

messages.

Class A: (27— 2)(2% — 2) = 2,113,928, 964
Class B: 21(2'€ — 2) = 1,073,709, 056
Class C: 2%(2° — 2) = 532, 676, 608

From the rule of product we find that there are (7T}(4)(3)(6) = 504 ways for Morgan to
coufigure her low-end computer system.

(a) 7! = 5040 - (b) 4x3x3x2x2x1x1={(41)3) =144
{e) (31)(5)(4h) = 720 (d) (31)(41)(2) = 288

(a) Since there are three A’s, there are 8!/3! = 6720 arrangements.

4
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21.

22.

23,

24.

25.

26.

27.

289

{b) Here we arrange the six symbols D,T,G,R,M, AAA in 6! = 720 ways.

(a) 121/(31212121)

(b} [111/(31212121)] (for AG) + [111/(3121212!)] (for GA) ,

(¢) Consider one case where all the vowels are adjacent: S,CL,G,C,L, OIOOIA. These
seven symbols can be arranged in (71)/(2!2!) ways. Since 0,0,0,I,1,A can be arranged

in (61)/(3!2!) ways, the number of arrangements with all the vowels adjacent is

(71 /(2120)]6!/(3120)].

(Case 1: The leading digit is 5)  (6!)/(2!)

(Case 2: The leading digit is 6)  (61)/(2!)?

(Case 3: The leading digit is 7}  (6!)/(2!)? :

In total there are [{6!)/(2D][1 + (1/2) + (1/2)] = 6! = 720 such positive integers n.

Here the solution is the number of ways we can arrange 12 objects — 4 of the first type,
3 of the second, 2 of the third, and 3 of the fourth. There are 121/(4131213!) = 277,200
ways.

Pn+lr)=m+/{n+l-rii={n+1)/(n+1-r)] ni/(n—r)]=
(n+1)/(n+1-1)]P(n,r).

(a) n=10 (b)y n=15
(c) 2nl/(n —2)1 + 50 = (2n)l/(2n - 2)! = 2n(n — 1)+ 50 = (2n)(2n ~ 1) = n® = 25 =
n = 5.

Any such path from (0,0) to (7,7) or from (2,7) to (9,14) is an arrangement of 7 R’s and
7 U’s. There are (14!)/(7!7!) such arrangements.

In general, for m,n nonnegative integers, and any real numbers «, b, the number of such
paths from (a,8) to (a+m,b+n) is (m+n)l/{min!).

{(2) Bach path consists of 2 H’s, 1 V, and 7 A’s. There are 10!/(2!117!) ways to arrange
these 10 letters and this is the number of paths.

(b} 10t/(211171) ‘

{¢) I @,8, and ¢ are any real numbers and m,n, and p are nonnegative integers, then
the number of paths from {(g,d,¢) to (a+m, b+ n,c+p) is (m+n+p)l/(minip!).

(2} The for loop for £ is executed 12 times, while those for j and k are executed 10—5+41 = 6
and 13 - 8 4 1 == 8 times, respectively. Consequently, following the execution of the given
prograin segment, the value of counter is

0+ 12(1) + 6(2) + 8(3) = 48.

(b} Here we have three tasks — 7}, Ty, and T5. Task 7} takes place each {ime we traverse
the instructions in the ¢ loop. Similarly, tasks T, and T take place during each iteration
of the § and k loops, respectively. The final value for the integer variable counter follows
by the rule of sum. '
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29.

340.

31.

32.

33.

34.

38,

36‘

37.

(a) & (b) By the rule of product the print statement is executed 12x 6 x 8 = 576 times.

(a) For five letters there are 26 x 26 x 26 x 1 x 1 = 26° palindromes. There are 26 x 26 x
26 x 1 x 1 x 1 =26 palindromes for six letters.

(b) When letters may not appear more than two times, there are 26 x 25 x 24 = 15,600
palindromes for either five or six letters.

By the rule of product there are (&) 9x 9 x 8 x 7 x 6 x5 = 136,080 six-digit integers
with no leading zeros and no repeated digit. (b) When digits may be repeated there are
9 x 10° such six-digit integers.

(i} (a) (Ix8xTx6x5x1) (for the integers ending in 0) + (8 X 8x 7T x 6 x5 x 4) (for
the integers ending in 2,4,6, or 8) = 68,800. (b} When the digits may be repeated there
are 9 x 10 x 10 x 10 x 10 x 5 = 450,000 six-digit even integers.

(ii) (a) (9x8x7x6x5x1) (for the integers endingin 0) + (8x8x 7 x6 x5 x 1)
(for the integers ending in 5) = 28,560. {(b) 9 x 10 x 10 x 10 x 10 x 2 = 180, 0600.

(iii) We use the fact that an integer is divisible by 4 if and only if the integer formed by
the last two digits is divisible by 4. {a) (8 x 7x 6 x5 x6) (last two digits are 04, 08, 20,
40, 60, or 80) + (7 x 7 x 6 x 5 x 16) (last two digits are 12, 16, 24, 28, 32, 36, 48, 52, 56,
64, 68, 72, 76, 84, 92, or 96) = 33,600. (b) 9 x 10 x 10 x 10 x 25 = 225, 000.

(a) For positive integers n,k, where n = 3k, nl/(3!)* is the number of ways to arrange
the n objects @y, 2y, %y, %3, 29, 29,...,Tk, Tk, £¢. Lhis must be an integer.
(b) If n,k are positive integers with n = mk, then n!/(m!)* is an integer.

(a) With 2 choices per question there are 2'° = 1024 ways to answer the examination.
(b) Now there are 3 choices per question and 3'° ways,

(41721 (No 7’s} -+ (4!) (One 7 and one 3) + (2)(4!/2?) (One 7 and two 3's) + (41/21) (TWO
7’s and no 3's) + (2)(4!/2!) (Two 7’s and one 3) + (4!/(2!2!}) {(Two 7’s and two 3's). The
total gives us 102 such four-digit integers.

(a) 6! (b) Let A,B denote the two people who insist on sitting next to each other.
Then there are 5! (A to the right of B} 4 5! (B to the right of A) = 2(5!} seating
arrangements.

{a) Locate A. There are two cases to consider. (1) There is a person to the left of A on
the same side of the table. There are 7! such seating arrangements. {2} There is a person
to the right of A on the same side of the table. This gives 7! more arrangements. So there
are 2(7!) possibilities. (b) 7200

We can select the 10 people to be seated at the table for 10 in Gg) ways., For each such
selection there are 9! ways of arranging the 10 people around the table. The remaining six
people can be seated around the other table in 5! ways. Consequently, there are Gg) a5t
ways to seat the 16 people around the two given tables.
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38. The nine women can be situated around the table in 8! ways. Each such arrangement
provides nine spaces (between women) where a man can be placed. We can select six

of these places and situate a man in each of them in (3)6! =0-8-7-6-5-4 ways.

Consequently, the number of s«éating arrangements under the given conditions is (83)(§) 6 =
2,438, 553, 600.

39.

procedure SumOfFaci(s, sum: positive integers; 7,k nonnegative integers;
factorsal: array [0..9] of ten positive integers)
begin : :
faciorial [0] := 1
fori:=1to9do
factorial [3] := § * factorial [i - 1]

fori:=1to 9 do
for j := 0 to 9 do
for k:= 0 to 9 do
begin '
sum = factorial [{] + factorial [j] + factorial [k]
if (100 * s + 10 * j + k) = sum then
print (100 * i + 10 * 5 + k)
end
end

The unique answer is 145 since (1) + (4!) + (81) = 1 + 24 + 120 = 145.

Section 1.3

L (8 =6Y[216-2))) = 61/(24)) = (6)(5)/2 = 15

2

a b b ¢ € e
a c b d e f
1 d b & d e
8 e b f a f
a f ¢ d e £

2. Order is not relevant here and Diane can make her selection in (22} = 792 ways.

3. () C(10,4) = 101/(4161) = (10)(D(BYT)/(4){(3)}2)(1) = 210
(b) (5) = 12/(718!) = (12)11)(10)OHBY/B)AEH2)(L) =792
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16,

1.

12.

(¢) C(14,12) = 141/(12!21) = (14)(13)/(2)(1) = 61
(d) (13) = 15!/(10151) = (15)(14)(18)(12)(11)/(5)(4)(3)(2)(1) = 3003

(a) 2°—1=63 (b) (§) =20 © O+ +(=mn

(a) There are P(5,3) = 5I/(5— 3)! = 51/2! = (5)(4)(3) = 60 permutations of size 3 for the
five letters m, r, a, f, and t.
(b) There are C(5,3) = 5!/[34(5 — 3)!] = 5!/(3!2!) = 10 combinations of size 3 for the five
letters m, r, 8, f, and t. They are .

af,m afr af,t : a,1m,r a,n1,t

a,r,t fmr fim,t fr,t m,r,b

(”) " (" X 1) = D)= 1)+ (2)n = Dln = 2) = G~ D+ (n = 2)] =

2
G)n-1)(2n -2) = (n - 1)%
) ( g) 1 10 Eab)(m) (w) 0 ‘
(c) (2) (1 )(2 women)+( )( ) (4 women)+.. +( )( ) (10 women) = $°3_, (12?) (mlfzé)
(d) (1.,0) (1;3) (7 women) + ( )( ) (8 women) + ( )( ) (9 women) +

(i0) (5) (10 women) = 3z (7) (2.

(e) Tits (w) (12_-z)
@ () ® @) © FEOE) @ O
<@@®® ® (D) E) =374

(13) (g)( )( 4) /2 (Division by 2 is needed since no distinction is made for the order

in w%:izch the other two cards are drawn.} This result equals 54,912 = (1;3) (é) (428) 3744 =
HEGE)O6)-

m) (GGG | |
@ () ® @) © () @ (@+6)+6)

G G |
{(a) (2;’} = 120 {b) @) = 56 (e) (i} (g) (four of the first six) ~5~@ (;f)

{five of the first six) %(g) (:} (all of the first six) = (15)(4) + (6)(6) + {1}(4) = 100.

{(a) The first three books can be selected in (?) ways. The next three in (g} ways.
The third set of three in (g} ways and the fourth set in @) ways. Consequently, the 12

books can be distributed in (i,f} (g) (g} @) = (120)/1(31)*] ways.
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-.E‘%ﬂ

15.

16.

1&.

19.

o) (DG 6 = a2/ierer).

The letters M,LLLP,PI can be arranged in [71/{4)){(2)] ways. Each srrangement provides
eight locations (one at the start of the arrangement, one at the finish, and six between
letters) for placing the four nonconsecutive §’s. Four of these locations can be selected in
{i} ways. Henee, the tolal number of these arrangements is (z} [71/(48(2h].

{;;) == 12,378 when n = 17,

{a) Two distinct points determine a line. With 15 points, no three collinear, there
ave (;‘?} possible lines.

’ 5 . . ' -
(b} There are {23) possible triangles or planes, and (?} possible tetrabedra.

(a) z(z +1) = (P2 DB DA+ DB+ 1)+ (6541) = 245+ 10+ 1T+ 26437

= 97
2
() 2201 = [(-2P U+ (-1 = (0 - D+ (L~ (2 1) = ~9~2~ 14047
s P
2 -5
LA
(e} S 4(-1)]=2404+2+4+0+2+04+24042+0+2=12
g3

n
{E‘é,} E{~1}k - i{"“}*}ﬂ + (__M}_)M-l} + {(~l)ﬁ+2 + (Mi)n-ﬁij R [{Mi}znmi + {wi}m}
= 0404...40=

4
(&) Y (-1 =-142-344-546=3

PP
"1 e vin L
& 2o o) Y7 () 2A-1Y75% e 3 (=1 e
= A #d Fusl B}
~itl . ‘iﬁ“ AL ?;i’f
(d) 2;;7; + 2 \®) fgg{ D {i?z}‘}
(s) 10'/(4l3131) m) ()2 + (V)2+ (B

{c) {m} (four 1's, six 0's) + {?} (f) {two 1's, one 2, seven 0's) +
{gf } {two 25, eight s}

é::% {three 1's, seven 0's} + @:E;}} {f} {one 1, one 2, eight 0's) +
{one 3, nine §'s) = 220
{m} 4 g’w} + {w} (@} + g;ifﬁ} {? = 705
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20'

21.

22.

23.

24.

25.

26.

2?0

(2", {;?)) ~ Select an even number of locations for 0,2. This is done in (12?) ways

for 0 <i < 5. Then for the 2¢ positions selected there are two choices; for the 10— 2
remaining positions there are also two choices — namely, 1,3.

(8) We can select 3 vertices from A, B, C,D,E,F, G, Hin ( ) ways, so there are ( ) = 56
distinct inscribed triangles.
(b) (f) = 70 quadrilaterals.

{(c) The total number of polygons is (g) + (i) + (2} + (2) + (g) + (g} =98 E(g) + (f) + (Z)] -
956 — [1 + 8 + 28] = 219,

There are (’;} triangles if sides of the n-gon may be used. Of these (3} triangles,
when n > 4 there are n triangles that use two sides of the n-gon and n(n — 4)
triangles that use only one side. So if the sides of the n-gon cannot be used, then there

are ';) —n - n{n —4), n > 4, triangles.

(a) From the rule of product it follows that there are 4 X 4 X 6 = 96 terms in the complete
expansionof (a+b+c+d)e+ f+g+h)utv+w+z+y+2).
(b) The terms dbvz and egu do not occur as summands in this expansion.

@ (5) ®) (5)@)

(¢) Let ¢ =2z and b= —3y. By the binomial theorem the coefficient of ®b® in the
expansion of {a+ b)'? is (192) But (1:) a®b® = (”)(2:0)9( 3y)° = ( 12)(2'3)( 3)° 2%, s0
the coefficient of 2% is (}92)(29)(-3)3.

@) ) ) =
(metsy) st (=) - (2%)
™ nalngtuglomd” .
@ (i) =12 () (o,h,) =12
() (1 ! 3)(2)( “H(-1) =24 (d) (1,;,2)(“‘2)(3)2 = —216
(e} (3,2 1,2){2)3( ~1)*(3)(~2)* = 161,280

(a) (2 2 2 \ 2) = (100)/(2!)° = 113,400
{b) {2 5. g 2 4)(9)2(*“3}2(3}2{3}2(“2}@ = {(120)/1(21* (4D]}(2)*(3)*(2)* = 718,502,400

() (g 2,2,2,2, 4)“)2( 21} )Y = [(12)/(0)(2)* (4D1(2)*(5)*(3)* = 10,103,940, 000

In each of parts (a)}{e) replace the variables by 1 and evaluate the results,
(a) 2° (b) 2%¢ , (e} 3¢ - (dy 4° (e} 4%
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28.

29.

30.

31’

32.

33.

34Q

Y S A s e ) =T

= =0

n 1 1 1
b) Zi;((n ) i Zgﬁ(n)”’_ :L;(mz)( )z;;;(@):
o) = il = SR =

(m + 1)ty = (m + DBy = m+ (04

The sum is the binomial expansion of (1 4 2)* = 3™,

@) 1=[142) o = (Lo = (Ja(4ar 4 (20 42yt ()
(b) 1=[2+=2)—(z+1)" () 2*=[2+z)—2]"

20 ()8 = (1+8)% = 9% = [(£3)]* = (£3)'%, s0 & = 3.

(a) D (@i —aiy)=(ar —ao) + (a2 — a1) + (a3 — a3) = a3 — ap

i1

(b) Z(Gz“az 1)—-(051 —ag)+{ay—ar)+(az—a3)+ ...+ (@ney — Gz} + (Gn —apq) =

o — a0
(c)g(iiz z+1)w(“"’"") (”““)H “‘ +(101 13)0“(1(1)2”1(1)1):

1 i 1-51 -850 25

102 2 102 102 Bl

procedure Selectf(i,5: positive integers)
begin
fori:=1tobdo
- forj:=i+1to6do
print (i,j)
end

procedure Selectd(i,j,k: positive integers)
begin
fori:=1ta4do
for j:=¢41to 85 do
for k== j-+1to6do
print (i,5,k)
end
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2.

8.

9.

Section 1.4

Let z;,1 <: < 5, denote the amounts given to the five children.

{a) The number of integer solutions of z; 4z + s+ w4+ 25 =10, 0 <7, 1 <i <5, is
(5"';2‘“1) = (;3) Here n =235, r = 10.

(b) Giving each child one dime results in the equation z; + 2+ 23+ 24+ 25 =5, 0 <
z;, 1 <1 < 5. There are (54-:—1) = (g) ways to distribute the remaining five dimes.

{(c) Let =5 denote the amount for the oldest child. The number of solutions to z; +
ot zat s+ zs =10, 0 €2y, 1 €4 <4, 2 € 25 is the number of solutions to

hi+vetUsHyatys =8 0<y, 1<i <5, whichis (M57) = ().

Let z;, 1 <1 < 5, denote the number of candy bars for the five children with =z,
the number for the youngest. (x; = 1) : @y + 23 + 24 -+ z5 = 14. Here there are

('Hiﬁ“’) = (i;) distributions. (2; = 2): %3+ 23+ z4+ 25 = 13. Here the number of

distributions is (4+;§—~1) = Gg) The answer is GZ) + (ﬁ) by the rule of sum.
(5= )
@ (%) » ®) () = ()

{¢) There are 31 ways to have 12 cones with the same flavor. So there are (
to order the 12 cones and have at least two flavors.

42

12) — 31 ways

(a) 2°

(b) For each of the n distinct objects there are two choices. If an object is not selected,
then one of the n identical objects is used in the selection. This results in 2" possible
selections of size n.

()
44321y __ (35 4428-1) _ {3
(a) ( 32 ) - (32) (b) ( 28 ) - (2;)
(Q} (4%-:»-1) . (183) (d) 1
() it zetastag =232 2,22, 1 <154 Let yy=2;+2,1<4 <4 The
pumber of solutions to the given problem is then the same as the number of solutions to
yi+ya+yatys =40, 1% 26, 1<i <4 Thisis (Y57} = ().

(£ (‘M"gg”l} - {‘H’g“l} 2tz ‘zé} - (g), where the term ( g} accounts for the solutions where
X4 > 26.

S

For the chocolate donuts there are (’Mg"’"i} = (;) distributions. There are (Mi“}) e (fz)

ways o distribute the jelly donuis. By the rule of product there are (;) @) ways to

distribute the donuts as specified.

, _fa+20-1y  fn+19 _
Zﬁﬁ,zﬁﬁm< 2% )..._( 29 )mnw?
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10.

11.

12.

13.

14.

15.

Here we want the number of integer solutions for z; + 29 + z3 + 24 + 25 + 25 = 100,
2, > 3,1 <¢<86 (Forl < ¢ <6, z; counts the number of times the face with 3
dots is rolled.} This is equal to the number of nonnegative integer solutions there are to
vi+ystyatyatus+ye = 82, y; 2 0,1 <4 £ 6. Consequently the answer is (6*"82 1) (g).

(a) (1025-—1) = (154) (b) (V+§w1) + 3(7+3~1) + 3(7+:;-1) + (7+§-'-1) —
(n) + 3(“}) + 3( ) + (z) where the first summand accounts for the case where none of
1,3,7 appears, the second summand for when exactly one of 1,3,7 appears once, the third
summand for the case of exactly two of these digits appearing once each, and the last
summand for when all three appear.

the number for oy 422+ ...+ 25 < 39,2; 20, 1 £ <5, and this equals the number of
solutions for zy + 23+ ...+ x5+ 26 = 3%, 2; 2> 0, 1 < ¢ < 6. There are (6"“39"‘1 E (gg)

such solutions.

(b) Let yi ==i+3, 1 <t <5, and consider the inequality y;+yo+...4+ys < 54, y; 2> 0.

There are [as in part (a)] (‘H'g: 1) = (?i) solutions.

@ ()= ()

(b) (3”"1) (container 4 has one marble) +(3+5"1) (container 4 has three marbles)

+ 3+g«—1) (container 4 has five marbles) «gm("“ 1) (container 4 has seven marbles)

=32, (7).
(@) (a0 J(s)z(zr
b .c.d

(b) The terms in the expansion have the form viwbz y*z® where a,b,c,d,e are
nonnegative integers that sum to 8. There are (5+2' ) = (1:) terms.

(a) The number of solutions for z3-+2z2+...+ 25 < 40,2; 2 0, 1 <i <5, is the same as

Consider one such distribution - the one where there are six books on each of the four
shelves. Here there are 24! ways for this to happen. And we see that there are also 24!
ways to place the books for any other such distribution.

The number of distributions is the number of positive integer solutions to
21+ 2 4 23 + 14 = 24,

This is the same as the nwmber of nonnegative integer solutions for
Vit ye b ys b ye =20

[Here y; + 1 =2; for all 1 <4< 4]
So there are (4+§g~1) = @ﬁ) such distributions of the books, and consequently, (;ﬁ) {241)
ways in which Beth can arrange the 24 books on the four shelves with at least one book

on each shelf.
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16.

17.

185

19.

20 -

21.

22.

23.

24.

For equation {1} we need the number of nonnegative integer solutions for

wy +wytws+...+we=n—18, where w; > 0 forall 1 <:¢ < 19. This is (19‘2{“"3}“1) =

{” 19> The number of positive integer solutions for equation {2) is the number of nonneg-
ative integer solutions for

i+ zgt ...k 2g =n - 64,

and this is (64"“{2‘::;‘?”1) == (::(:4).
So (") = (%) = ("%) and n — 19 = 63. Hence n = 82.

(a) (5+12-— } = GZ) (b) 512

(a) There are (3"’”2"1) = (g) solutions for z;+2z9+23 =6 and g“gi"l) = (gf) solutions
for z4+ 25 + x5 + 77 = 31, where z; > 0, 1 <i £ 7. By the rule of product the pair of

equations has 2) (g‘;) solutions.
5 /34
®) ()6)
Here there are r = 4 nested for loops, so 1 < m <k < j <7 < 20. We are making
selections, with repetition, of size r = 4 from a collection of size n = 20. Hence the

print statement is executed (2‘}+44"1) = (ia) times.

Here there are r = 3 nested for loops and 1 < ¢ < j < k£ £ 15. So we are making
selections, with repetition, of size r = 3 from a collection of size n = 15. Therefore the

statement .
counter := counter +1

is executed (15‘23”1) = (1.;) times, and the final value of the variable counteris 104 @7) =
690.

3
this segment the value of the variable sum is ¥.720 ¢ = (220)(221)/2 = 24, 310.

(wsz) =56 (zﬂ} mey (AR L (5 41)) ey (AR DR DI

3

The begin-end segment is executed (“’*‘3“”’) = ("32) = 220 times. After the execution of

Ly, = """‘”‘;‘““"““ ~ ‘“‘i;“" = Tiai* = n(n + D2 ~ 1] = a(n + 1){M--% =
ningl Hindl}
3 .

(a) Put one object into each container. Then there are m — n identical objects o place
into n distinet containers. This yields (””i”{:::z}"ﬁ s 2;’) - m”) distributions,
{b} Place r objects into each container. The remaining m —rn objects can then be dis-

tributed among the n disiinct containers in (”*“{;’t:;}‘”i) . (m“:ﬁ:;’}f") - (m’“:ﬁ‘“f}”}
WaYE. ‘

(a)
procedure Selections!(1j: nonnegative integers)
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25.

26.

27.

begin
for i :== § to 10 do

for j:=0to 10~¢ do
print (ij, 10 — i — 7}

end ‘

(b) Forall 1<:<4 let y, = x;+2 > 0. Then the number of integer solutions to
zy + &3 + &3 + 24 = 4, where —2 < z; for 1 <1 < 4, is the number of integer solutions
to y1 +ys +ys + ya = 12, where y; > 0 for 1 < ¢ < 4. We use this observation in the
following. ~

procedure Selections2(i,j,k: nonnegative integers)
begin
fori:=0to 12 do
forj:=01%012~: do
fork:=0to12-:-~jdo
print (i,5,k, 12 —¢— 5 — k)
end

If the sumnands must all be even, then consider one such composition - say,
0=10+4+24+4=205+2+1+2).

Here we notice that 5+ 24 1+ 2 provides a composition of 10. Further, each composition
of 10, when multiplied through by 2, provides a composition of 20, where each summand is
evenn. Consequently, we see that the number of compositions of 20, where each summand
is even, equals the number of compositions of 10 — namely, 2%~ = 29,

Each such composition can be factored as k times a composition of m. Consequently,
there are 2™~ compositions of n, where n = mk and each summand in a composition is 2
multiple of k.

2) Here we want the number of integer solutions for @y + a3+ 23 = 12, 24,25 > 0, 23 = 7.
The nmumber of integer solutions for z¢ + 23 == 5, with z;, 23 > 0, is the same as the number
of integer solutions for gy, 4+ y3 = 3, with yy,y3 > 0. This is {M‘g‘”’ 1} = (;) o= 4,

b} Now we must also consider the integer solutions for wy + wy 4 ws = 12, wy, wy > §,
wy = §. The number here is (”g‘":} - (g) = 6,

Consequently, there arve 4 + 6 = 10 arrangements that result in three runs.

¢} The number of arrangements for four runs requires two cases [as above in part (b)].
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28.

If the first run consists of heads, then we need the number of integer solutions for z, +
Ty 4 x5+ x4 = 12, where 23 + 23 = 5, 23,23 > 0 and @y + 24 = 7, 29,24 > 0. This

number is (“‘3’1) (2"'?“1) = (:g) (g} = 4.6 = 24. When the first run consists of tails we get

{?} G) = 6 - 4 = 24 arrangements.

In all there are 2{24) = 48 arrangements with four runs.

d) If the first run starts with an H, then we need the number of integer solutions for
Tyt 2o+ 2z X+ 25 = 12 where ¢y + 23+ 25 = 5, #1,23,25 > 0 and x4 + 24 = T,

Z3,24 > 0. This is (3+§'"1) (2"”2'}) = (z) (g) = 36. For the case where the first run starts

with & T, the number of arrangements is (3“"1) (24‘"3"1) = (6) (g) = 60.

4 3 4

In total theve are 36 4+ 60 = 96 ways for these 12 tosses to determine five runs.

e) (3*’4‘" )(3+§ 1) ( )( ) = 30 - the number of arrangements which result in six runs, if

the first run starts with an H. But this is also the number when the first run staris with
a T. Consequently, six runs come about in 2 - 90 = 180 ways.

f) 2(1+4~1) (1‘4»2—1) +2(2+§'1) (2+§-1> +2(3+§-—1) (3+:-1) +2(4+;»1) (4—;«2-4) +2<5+g—-1) (5+§«-1) -
25 (1) (e3) =2[1-1+4-6+6-15+4-20+1-15] = 420.

{a) For n > 4, consider the strings made up of n bits — that is, a total of n O’s and 1’s.
In particular, consider those strings where there are (exactly) two occurrences of 01. For
example, if n = 6 we want to include strings such as 010010 and 100101, but not 101111
or 010101. How many such strings are there?

{(b) For n > 6, how many strings of n 0’s and 1's contain (exactly) three occurrences of 017
{c) Provide a combinatorial proof for the following:

| w1 podd
For n > 1, 2“3(”“)+(”“)+ e
1 3 nii)s 1 EVen.

{(a) A string of this type consists of z; 1’s followed by z; 0’s followed by x5 1’s followed by
z4 0's followed by z5 1's followed by z¢ 0's, where,

1t Tt Tzt Tt 2 b Te =0, 21,26 20, 22,%3,284,25 > 0.
The number of solutions to this equation equals the number of solutions to
ittt utystye=n—4, where y; 20 for 1 < <6
This number is (6%:::}”3} z= {::"fi) = {“?E).

{b) For n > 6, a string with this structure has z; 1’s followed by 2, 0’s followed by z3 1's
.. followed by z3 0’s, where

Tyt xrytazto-tag=mn, 5,23 >0 x5,23,...,27 >0
The number of solutions to this equation equals the nurmber of solutions to

mtptmtooo+ys=n-—6 where y; 20 for igég&
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This number is (SH”"@“’) = (“"”} == (“f;l)

n-G 7%~8
(c) There are 2" strings in total and n 4+ 1 strings where there are k 1’s followed by n — &

0’s, for k = 0,1,2,...,n. These n + 1 strings contain no occurrences of 01, so there are
2"~ (n+1)=2" ~ ("‘1“) strings that contain at least one occurrence of 01. There are

(”;’1) strings that contain (exactly) one occurrence of 01, (“;1> strings with (exactly) two
occurrences, ("lf,'l) strings with (exactly) three occurrences, ... , and for

(i) n odd, we can have at most 5% occurrences of 01. The number of strings with =+
occurrences of 01 is the number of integer solutions for

m1+x2+w~~+xn+1mn, Elaxn+1 201 $2y$3s”'a$n>0*
This is the same as the number of integer solutions for
ity t+ Y =n—(n—1)=1, where y1,9,...,¥as1 2 0.

This number is ((““)1”“1) = (nf) = (nﬂ) = (2(%?)“)-

12
(il n even, we can have at most % occurrences of 01. The number of strings with 2
occurrences of 01 is the number of integer solutions for
Ty + T4 F Tpp2 =N, 21,Tpa 20, 22, %5,...,2, > 0

This is the same as the number of integer solutions for

i+t yppz=n—n=0, where ;20 for 1 <:<n+2.

i e i () = () = (:2) = ()

Consequently, ’

-1 1 1 S dd
2:;”(?2«? ):(‘nﬂ% )..;,(n'é' )+“_+ nix n o
1 3 8 ni1)s T €ven,
and the result follows.

Section 1.5

(2@ ( 2n } _(2n) {Zn}! _
n} T\n-1 T alnl {(a-Uin+1)

@ (n+1)  (2n)ln  e)n+D)-n] 1 (20}
(n+1)nl nlin+ D (n+ 1)in! T (41 nin! T

ol

www.yousefiglass.ir




10.

by = 429 by = 1430 by == 4862 bio = 16796

(8) 5(= by); 14(= by)

(b} For n > 0 there are b,(= {nil) (2:)) such paths from (0,0) to (n,n).
{¢) For n > 0 the first move is U and the last is H.

Using the results in the third column of Table 1.10 we have:

111000 110010 101010
123 125 135
456 346 246
(@) (i) 1347 (i) 1257 (i) 1235
2568 3468 4678
(b) (i) 10111000 (i) 11100010 (i) 11011000

There are bs(= 42) ways.
(a) (i) 1110001010 (i) 1010101010 (iii) 1111001000

() () (((able(de & (((ab)(e(de)))f)
(it} ((ab((cd(e & ((ad)((cd)(ef)))
(iil)  (a(((be(de « (al{(be)(de))f))

(i) When n = 4 there are 14(= b,) such diagrams.

(ii) For any n > 0, there are b, different drawings of n semicircles on and above a horizontal
line, with no two semicircles intersecting. Consider, for instance, the diagram in part (f)
of the figure. Going from left to right, write 1 the first time you encounter a semicircle
and write 0 the second time that semicircle is encountered. Here we get the list 110100,
The list 110010 corresponds with the drawing in part {(g). This correspondence shows that
the number of such drawings for n semicircles is the same as the number of lists of n 1's
and n O's where, as the list is read from left to right, the number of 0's never exceeds the
number of 1's.

{a) In total there are {1;’\} = (Ef} paths from (0,0} to (7,3}, each made up of seven R’s

and three [/’s. From these {lf} paths we remove those that viclate the stated condition
— pamely, those paths where the number of U’s exceeds the number R’s (at some first
position in the path). For example, consider one such path:

RURUURRRRR.

i8
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11.

Here the condition is violated, for the first time, after the third U. Transform the given
path as follows:

RURUURRRRR«~RURUUUUUUU.

Here the entries up to and including the first violation remain unchanged, while those
following the first violation are changed: R’s become U'’s and U’s become R’s. This
correspondence shows us that the number of paths that violate the given condition is the
same as the number of paths made up of eight U’s and two R’s — and there are (136) = (129)
such paths.

Consequently, the answer is

(10) _ (10) - d00 10l _ 1048 1043) ( )wv { ”1 )(m)

7 & T 8t 8138 8131 i< .
(b) (m+n) _ (m+'n.> _ {mgnll  (min)
n1 ntmi {n1}{m—1)t
= (minint)—{minilm __ /mii-m X (m+n)‘-) — (n:};l—m (m+n}
{n-41}im! TN a4l niml 77 N ndl

[Note that when m = n, this becomes { ( ) the formula for the nth Catalan number.]

[ =

Consider one of the (z1) (if) = (%)(?) ways in which the $5 and $10 bills can be arranged
— say, |

(*) $5, $5, $10, $5, $5, $10, $10, $10, $5, $5, $10, $10.

Here we consider the six $5 bills as indistinguishable ~ likewise, for the six $10 bills. How-
ever, we consider the patrons as distinct. Hence, there are 6! ways for the six patrons, each
with a $5 bill, to occupy positions 1, 2, 4, 5, 9, and 10, in the arrangement (*). Likewise,
there are 6! ways to locate the other six patrons (each with a $10 bill}. Consequently, here
the number of arrangements is

( )( )(6’)(6?) = ( )(12') = 68,428, 800.

Supplementary Exercises

HIHRBINEZHIY

(a) 5° (b} B(4%)
/ \ j;m\m Select any four of these twelve points {on the circumference). As
E! % "i seen in the figure, these points determine a pair of chords that in-
| AN j tersect. Consequently, the largest number of points of intersection
\%iim/ P for all possible chords is ( ) = 485,
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8.

3
@ (%)
(b) 3 (215‘)2 ("f) (four hymns from one book, one from each of the other two) + 6 (215) (225 ) ( 235)
{one hymn from one book, two hymns from a second book, and three from the third book)

+(225)3 {(two hymns from each of the three books).

(a) 10%

(b) There are 10 choices for the first flag. For the second flag there are 11 choices: The
nine poles with no flag, and above or below the first flag on the pole where it is situated.
There are 12 choices for the third flag, 13 choices for the fourth,. .., and 34 choices for the
last (25th). Hence there are (341)/(9!) possible arrangements. :

{¢) There are 25! ways to arrange the flags. For each arrangement consider the 24 spaces,
one between each pair of flags. Selecting 9 of these spaces provides a distribution among
the 10 flagpoles where every flagpole has at least one flag and order is relevant. Hence
there are (253)(2;) such arrangements.

Consider the 45 heads and the 46 positions they determine: (1) One position to the left
of the first head; (2) One position between the i-th head and the (i 4 1}-st head, where
1 <1 < 44; and, (3) One position to the right of the 45-th (last) head. To answer the

question posed we need to select 15 of the 46 positions. This we can do in (f?) ways.

In an alternate way, let z; denote the number of heads to the left of the i-th tail, for
1 <1 € 15. Let z;4 denote the number of heads to the right of the 15th tail. Then we
want the number of integer solutions for

ry+ s+ 23t ...+ 25 + 21s = 45,

where 1 > 0, 236 2> 0, and z; > 0 for 2 < ¢ < 15. This is the number of integer solutions
for
iyt ys+ .+ yis + e = 31,

with ¢; > 0 for 1 < ¢ < 16. Consequently the answer is (16*"33;“}) = (gf) == (‘;g)

P

(a) €(12,8) (b) P(12,8)

There are {71/2!) ways to arrange the seven symbols OE,W N, N D,R,G. In each arrange-
ment there are § locations for the I so that it is not adjacent to a vowel, so there are
(6}71/2)) arrangements. The three vowels can be divided up inte a pair and a single
vowel in six ways {ovder counts}, so the total number of arrangements is (62)(71/2!).

(a) There are two blocks, for example, that differ only in size. There are four that differ
only in color, one that differs ouly in the material used for construetion, and five that differ
only in shape. In total there are 2 + 4 4+ 1 4 5 = 12 blocks that differ from the small red
wooden sguare block in exactly one way. '

(b} There are {::) = § ways of selecting the two differing properties. Each such pair must
be considered separately. o ~
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10.

11.

12.

13.

14.

15.

(i) Material, size: Here there are 1 x 2 = 2 such blocks.

(3i) Material, color: This pair yields 1 X 4 = 4 such blocks.

(iii) Material, shape: For this pair we obtain 1 x 5 = 5 such blocks.

{(iv) Size, color: Here we get 2 x 4 = 8 of the blocks.

(v) Size, shape: This pair gives us 2 x 5 = 10 such blocks.

(vi) Color, shape: For this pair we find 4 x 5 = 20 of the blocks we need to count.

In total there are 2 + 4 4+ 5 + 8 + 10 + 20 = 49 of Dustin’s blocks that differ from the
large blue plastic hezagonal block in exactly two ways.

Since ‘R’ is the 18th letter of the alphabet, the first and middle initials can be chosen in
(1:) = (17)(16)/2 = 136 ways.

Alternately, since ‘R’ is the 18th letter of the alphabet, consider what happens when the
middle initial is any letter between ‘B’ and ‘Q’. For middle initial ‘Q’ there are 16 possible
first initials. For middle initial ‘P’ there are 15 possible choices. Continuing back to ‘B’
where there is only one choice (namely ‘A’) for the first initial, we find that the total
number of choices is 1 4+ 2 + 3 + ... + 15 + 16 = (16)(17)/2 = 136.

The number of linear arrangements of the 11 horses is 111/(5!313!). Each circular arrange-
ment represents 11 linear arrangements, so there are (1/11)[11!/(5!3!3!)] ways to arrange
the horses on the carousel.

(a) P(16,12) by (%) P(15,10)

@ O @+GE6E+0 G () + () + () = () +
@6+ Q) @) (@) +G)E+ @) -9 | -
®) @ (E+E0) (@and i) ()(437)+(37)0) = DG +EE)-

{(a) If there sre no restrictions Mr. Kelly can make the assignments in 12! = 479,001,600
ways. :

(b) Mr. DiRocco and Mr. Fairbanks can be assigned in 4 x 3 = 12 ways, and the other
10 assistants can then be assigned in 10! ways. Consequently, in this situation, Mr. Kelly
can make one of 12(10!) = 43,545,600 assignments.

(¢} Suppose that Mr. Hyland is assigned to the first floor and Mr. Thornhill is assigned
to the third fioor. This can be sccomplished in 4 x 4 x (10!} = 58,060,800 ways. There
are 3 x 2 == 6 ways to assign these two assistants to different floors, so in this case we have
(3 % 2) x [4 x 4 x (10)] = 348, 364, 800 possibilities.

Alternately, from part (b), there ave 3x[12(10!)] = 130,636, 800 ways in which Mr. Hyland
and Mr. Thornhill could be assigned to the same floor — and (12!) - [(3)(12)(101)] =
348,364,800. '

{a) For each increasing four-digit integer we bave four distinct digits, which can only be

arranged in one way. These four digits can be chosen in (i} = 126 ways. And these same
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16.

17.

18,

19.

four digits can also be arranged as a decreasing four-digit integer.

To complete the solution we must account for the decreasing four-digit integers where the
units digit is 0. There are ( ) = 84 of these.

Consequently there are 2@) + (g) = 343 such four-digit integers.

{(b) For each nondecreasing foﬁz‘udigit integer we have four nonzero digits, with repetitions

allowed. These four digits can be selected in (W:”l) = (If) ways. And these same four

digits account for a nonincreasing four-digit integer. So at this point we have 2(142)‘ —~ 9 of

the four-digit integers we want to count. (The reason we subtract 9 is because we have
counted the nine integers 1111, 2222, 3333, ..., 9999 twice in 2(142}.}

We have not accounted for those nonincreasing four-digit integers where the units digit is
0. There are (m'{f“") 1= ( ) — 1 of these four-digit integers. (Here we subtracted 1
since we do not want to include 0000.)

Therefore there are [2 (?) ~ 9]+ (132) R [2(?) + (1;)} - ‘10 = 1200 such four-digit
integers.

(8) (332)(1/2)%(-3) = 135/2

(b) Each term is of the form 2z™y" 2" where each n;, 1 < <3,isa nonnegative
integer and ny + ny + ng = 5. Consequently, there are (3+§ 1) (7) terms.

(¢} Replace z,y, and z by 1. Then the sum of all the coefficients in the expansion is

((1/2) + 1 -3y = (-3/2)°.

(2) First place person A at the table. There are five distinguishable places available for
A (e.g., any of the positions oceupied by A,B,C,D,E in Fig. 1.11(a})). Then position the
other nine people relative to A. This can be done in 9! ways, so there are (5)(9!) seating
arrangements. ’

{b) There are three distinct ways to position A,B so that they are seated on longer sides
of the table across from each other. The other eight people can then be imcated in 8!
different ways, so the total number of arrangements is (3)(8!).

(a} For 214 23+ 23 =6 there are (_3*2”1) = (g) nonnegative integer solutions. With
zy 4+ 2+ 23 = 6 and =z 4 a3+ x3 + 24 + x5 = 15, the number of nonnegative integer
solutions for z; + 25 = 8 is (“g ”l) = (m), The number of solutions for the pair of

equations is ( ){w} ’

(b} Let 0 <k <8 For 2+ 2y by =k there are {”“"g‘”}} (kw} solutions. To
solve 24+ 25 < 1B — k, consider x4 + 25 + 06 = 15 ~ &k, 24,25,28 = . Here there are

3415~k1) __ {17k : ; e i T8 (BEDY (17K
( ok } = (mwk) solutions, The total number of solutions is Ekmﬁ{ M )(wwk .

(a) Here A must win set § and exactly two of the four earlier sets. This can be done in

(2) ways. With seven possible scores for each set there are (g) 7% ways for the scores to

be recorded.
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20.

21.

22.

23.

24.

25.

26.

3
2

So if A wins in four or five sets, then the scores can be recorded in {(2) 74 (é) 75} ways.
Since B may be the winner, the final answer is 2[(2) T4+ (;) 71

(b) Here A can win in four seis in ( } ways, and scores can be recorded in (g} 7 ways.

We can choose r objects from n in (’:) ways. Once the r objects are selected they can

be arranged in a circle in {r — 1)! ways. So there are (':) (r—1)! circular arrangements
of the n objects taken r at a time.

For every positive integer n, 0 = (1 —1)* = (g)(l)“ - (;‘)(1)1 + (2’)(1)2 - (g)(l)S +

0 (hrand (@ +G)+ () + =) +G) + () +-
(a) 7!/3t (by 5 ' ) ()«

(a) There are P(20,12) = 2 = (20)(19)(18) --- (11)}(10}(9) ways in which Francesca can
fill her bookshelf.

(b)" There are (‘1.,7) ways in which Francesca can select nine other books. Then she can
arrange those nine books and the three books on tennis on her bookshelf in 12! ways.
Consequently, among the arrangements in part (a) there are ( )(12‘) arrangements that

include Francesca’s three books on tennis.

Following the execution of this program segment the value of counter is
104+(12-14+1D)(r~14+1)2)+[B3+4+.. . +(s -3+ {4 +(12-34+1)(6) + (¢ - 7+1)(8) =
104+ (12)(r)(2) +[(1/2)(s =3+ )(s -3+ 2)— 2~ 1}(4) + (10)(6) + (t — 6)(8) =

224+ 24r + 8t +2(s —2)(s —1) — 12 =14 + 24r + 8t + 2s(s ~ 3).

(a) For 17 there must be an odd number, between 1 and 17 inclusive, of 1’s.

For 2k +1 1’s, where 0 < k < 8, there are 2k + 2 locations to select, with repetitions
allowed. The selection size is the number of 2’s, which is (1/2){17—(2k+1)] = 8~k. The
;;lgzﬁian can be made in (2“2;&8; k )”1) = (gfz) ways, and so the answer is Y 4.5 @fz) =
(b} In the case of 18 the number of 1’s must be even: 2k, for 0 < k £ 9. If there are 2k
1's, there are 2k + 1 locations, with repetitions allowed, for the (1/2)(18 —2k) =9~k
2’s. The selection can be made in F‘"’H“g}: k)1 ) = {9*”‘) ways, and the answer is

2o (5FF) = 4181, |
{¢) For n odd,let n=2k+1 for & > 0. The number of ways to write n as an

ordered sum of 1's and 25 is J1 ("‘i‘i?),

For n even, let n =2k for k> 1. Here the answer is 37, gf:f)e

By

{a} (i) 1{one3)+ 1 (three 3's} 4 1 (five ¥’} = 3.

{ii) {: ) (one 3} + ( } {three 3's) ~§—( ) {(five 3’s).

(B) (i) 1(no &%)+ 1 (two3's) + 1 (four 3’s) + 1 (six 3's) = 4.
(it} '(g) {no 3’s} %{ﬁ) {two 3's) +(§) {four 3’s) +(g)~ {six ,318}“
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30,

3i.

{a} The number of positive integer solutions to the given equation is the same as the
number of nonnegative integer solutions for y1 + e+ ...+ 4 = n 7, where y > 0 for

all 1 < <r. Here there are ("H::::)"“i) = {::i) = [:::;} solutions,

(b) The totalis T, (771) = ("5 + (%) +... + (1) =2t

P ]

{a) There are 5~ 1 =4 horizontal moves and 9~ 2 = 7 vertical moves. One can
srrange 4 R's and 7 U's in 111/{417!) ways.

(b} Since a diagonal move takes the place of one horizontal move and one vertical move,
the number of disgonal moves is between 0 and 4, inclusive. The resulting cases are as
follows:

{0 D’s): 4 R’s, 7Us 111/(4l7)
{1 Ds): IR, 6Us: 101/{113i61)
(2 D's): 2 R’s, 5Us 91 /(21215!)
(3 D's): 1R, 4Us 81/(311141)
{4 D's} 0Rs, 3U% /(4106130

The answer is the sum of the results:  TE[(11 — /(GH4 — (7 - 1)

(a) 111/(7140)
(b) [L11/(7141)] — (41 /(212041 /(3110)]

(c)  [121/(TH40] + [101/(6181L)] + [91/(51212)] + [81/(4113D] + [7/(31041)]  (for part (a))
{{11/(7140)] + [101/(613111)] + [9!/(512121)] + [8! /(411130 + [71/(310141)]} —

[{14/(2120] + [BY/(11110] + (207210} x {[4/(31H] + [31/(2UD]}]  (for part (b)),

Here we want certain paths from {1,1) to (14,4} where the moves are of the form:
(m,n) — (m+ 1,n+1), if the (n + 1)-st ballot is for Katalin.
(m,n)— (m+4 1,n - 1), if the (n + 1)-st ballot is for Donna.

These paths are the ones that never touch or cross the horizontal (or z-) axis. In general, an
ordered pair {m,n} bere indicates that m ballots have been counted with Katalin leading
by # votes. The number of ways to count the ballots according to the preseribed conditions

is
13 13

- = — = 579,

(8) (g) 1287 — 715 = 57

Each rectangle (contained within the 8 x 5§ grid} is determined by {our corners of the form
{a,8), (e, b), (¢, d},{a,d}, where a,b,c,d are integers with 0 S e < e < Band 1 < b d < &

We can select the pair a,¢c in {;} ways and the pair b,d in @} ways. Consequently, the

numnber of reclangles is {:2 {g} = 540,
Heve we consider the vumber of integer solutions for
Tyt zedez=6, ;>0 1£i<8, and wyd+wy =6, w;>0, 1<:2<2

This equals the number of integer solutions for

24
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33.

34.

yityaty=3, 520 12:<3 and sm+2p=3, %20 15i52

o (331N (2431 {5 (4
8o the answer 155 M ){ 3 )= ”3) 3}

There are (z) == 15 ways to chouse the four quarters when Hunter will take these dectives.

For each of these choices of four quarters, there are 12-11:10-9 ways to assign the electives,
S0, 1 total, there are (ﬁ) <12-11-10-9 = 178,200 ways for Hunler to select and schedule
these four electives,

Consider the family as one unit. Then we are trying to arrange nine distinet objects — the
family and the eight other people — around the table. This can be done in 8! ways. Since
the family vnit can be arranged in four ways, the total number of arrangements under the
prescribed conditions is 4(81).

-25 [l
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CHAPTER 2
FUNDAMENTALS OF LOGIC

Section 2.1

The sentences in parts {(a), (¢), (d), and (f) are statements.
The statements in parts (a}, (c), and (f} are primitive statements.

Since p — ¢ is false the truth value for p is 1 and that of ¢ is 0. Consequently, the truth
values for the given compound statements are

(a) © (b) © (c) 1 (d) 0
(a) r—gq (b) g—p (¢) (sAr)—gq

(a) If triangle ABC is equilateral, then it is isosceles.

(b) If triangle ABC is not isosceles, then it is not equilateral.
(¢) Triangle ABC is equilateral if and only if it is equiangular.
(d) Triangle ABC is isosceles but it is not equilateral.

(e} I triangle ABC is equiangular, then it is isosceles.

(a) True (1) (b) False (0) (¢) True (1)

(a) If Darci practices her serve daily then she will have a good chance of winning the
tennis tournament.
(¢} ¥ Mary is to be allowed on Larry’s motorcycle, then she must wear her helmet.

plglpVei(a)~(pVg > pip—glg—p|(d) p=ag—-(4—p
0olo0] © 1 1 1 1

ol1] 1 1 1 i) 0

116 1 1 0 1 1
1111 1 1 1 1
plalp—=qgiphp—=qgllellpAlp—g]—q | ({f)|(g)

0lo| 1 0 1 10

ol1} 1 0 1 11

1106] © 0 1 119

111 1 1 1 110

26
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9.

10.

11.

12.

13.
14.

15.

i8.

17.

plgirig—=r (b)) p=(g—r) p—=gl(c)p—g —r  (h)

0100 1 1 i 0 i

01011 1 1 1 1 1

01110 0 i i ] 1
G111 1 1 1 1 1

110 0 1 1 4] 1 1

11011 1 1 0 1 1

1116 ] i 1 0 1

1111 1 1 1 1 i
Propositions {(a}, (e), (f), and (h) are tautologies.

s I

plalrip=(g—or) | (pog—(p—r)|s—t

01010 1 1 i

61011 1 1 1

0,110 i 1 1

HE 1 1 1

11010 1 1 1

11011 1 1 1

11110 0 0 1

111:1 1 1 1
() 2° =32 (b) 2

(a) [pAg)Ar]—(sVt) isfalse (0) when (pAg)Ar istrue (1) and sVt is false (0).
Hence p,q, and r must be true (1) while s and ¢ must be false (0).

p:0; r:0; s:0

(8) n=9 (b) n=19 (¢) n=19

{(a) m=3, n=6 by m=3, n=9 (¢} m=18 n=9
(d) m=4,n=9 () m=4 n=29

(a) 16°-10=90 {b) 20°~ 20 =380

{c} (10}20) —10=190 (d} (20)(10) — 10 = 190

Cousider the following possibilities:

(i) Suppose that either the first or the second statement is the true one. Then statements
(3) and (4) are false — so their negations are true. And we find from (8} that Tyler did
not eat the piece of pie — while from (4) we conclude that Tyler did eat the pie.

{ii}) Now we'll suppose that statement (3) is the only true statement. So statements (3)
and (4) no longer contradict each other. But now statement (2) is false, and we have Dawn
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guilty (from statement (2)) and Tyler guilty (from statement (3)).

(iii) Finally, consider the last possibility — that is, statement (4) is the true one. Once
again statements (3) and (4) do not contradict each other, and here we learn from statement
(2) that Dawn is the vile culprit.

Section 2.2

(a)

(i)
plglrighrip—{gAr)ip—gip—ri{(pogAr(p—r)
ololo] © 1 1 1 1
0jol1]| © 1 1 1 1
oj1jol o 1 1 1 1
ol1]1] 1 1 1 1 1
1/0/0] 0 0 0 0 0
1{0i1! © 0 0 1 0
1]1/0] o 0 1 0 0
11)1] 1 1 1 1 1
(ii)
plelripVegl(pVg—rip—rig=ri(p=riA(g—r)
olojo| o© 1 1 1 1
oloj1] O 1 1 1 1
ol1lo] 1 - 0 1 0 0
oj1f1] 1 1 1 1 1
110j0] 1 0 0 1 0
1{ol1] 1 1 1 1 1
1{116] 1 0 0 0 0
111111 1 1 1 1 1
(iii)
plgirigVrip—{gVr)ip—q|-r—(p-—+gq)
glotol o 1 1 1
oloj1] 1 1 1 1
0({110] 1 1 1 1
ol1(1] 1 1 1 1
116/0] 0 0 0 0
tiel1] 1 1 0 1
11110 1 1 1 1
11171] 1 1 1 1
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8.

b)

[p— (g v r)] = [ —(p—q) From part {iii} of part (a)

<= [-r — (-pVg)] By the 2nd Substitution Rule,
and (p — ) == (~pV )
<= [~(-p V g} — —r] By the lst Substitution Rule,

and (8 — t) &= {(—~t — —s), for
primitive statements s,?

&= [(-mp A—g) — 1] By DeMorgan’s Law, Double Negation
and the 2nd Substitution Rule
< [(pA—g) — 7] By Double Negation and the

2nd Substitution Rule

plalpAglpVpAg
olo] o© 0
ol1!l o 0
1,0] 0 1
1(1] 1 1

a) For a primitive statement s, sV =-s <= Tj. Replace each occurrence of s by
pV (g Ar) and the result follows by the 1st Substitution Rule.

b) For primitive statements s, ¢ we have (s — {) <= (-t — =-s). Replace each
occurrence of s by pV g, and each occurrence of ¢t by r, and the result is a consequence
of the 1st Substitution Rule.

(D) [pAdArIVIPADA-rI = PAQA(rV-r) = PAGAT &> pAg.
@) [prg) Vgl = (pV ) A(gV ~g) &= (pV ) ATy = pV g
Therefore, the given statement simplifies to {(pV —g) — s or {g = p) — s

a) Kelsey placed her studies before her interest in cheerleading, but she (still) did not get
a good education.

b} Norma is not doing her mathematics homework or Karen is not practicing her piano
lesson.

¢) Harold did pass his C+4+ course and he did finish his data structures project, but he
did not graduate at the end of the semester.

(a) ~fpA(gVr)A{~pV —qVr)l <> -pV(~gA-wr)V(pAgA-r) &= (ngA-r)V|-pV
(pArgh-r)] <= (~gA-r)VIToA(mpV (g A~r))] & (g A-r)V [-pV{gA-r)] <
~pV[{(~qVg)A-r] & —pV-r.

(b} -lprg)—=rle~[pAgVr] & (pAg)Ar.

{c) pA(gV~-r) (d) —pA-gA-r
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10.

11.

12.

24
e’

pigl{(-pVgAlpA(pAg) [PAg
010 0 0
011 0 0
110 0 0
101 1 1

b)(mpAg)V{pV(pVg) =>pVyg

(a) g—p<4=>qVp, so(g— p) <> gAp.

(b) p—+(gAr)<=>-pV(gAr),sofp— (gAT)]* &= -pA(gVr).

(¢) pe g+ (p— QMg — p) = (~pVeA(—gVp), so (p & ¢)* &= (-pAg)V(=gAp).
(d) p¥g <= (pA-g)V (=pAg), so(pVg)! <= (pV ~q) A (~pV g).

(a) 0+ 0=0,then2+2=1.

Llet p: 0+4+0=0,¢:1+1=1.

(The implication: p— ¢) - 0+ 0 =0, then 1 + 1 = 1. — False.

(The Converse of p— ¢: ¢ = p)-If1+1=1, then 0+0=0. - True

(The Inverse of p— ¢: =p— —¢) - 0+05#0, then 1+ 1% 1. — True

(The Contrapositive of p — ¢g: =q¢ — —p) - 1+ 15 1, then 0+ 0 # 0. — False

(b) ¥ -1 < 3 and 3+ 7 =10, then sin(¥) = —1. (TRUE)
Converse: If sin(#¥) = —1, then —1 < 3 and 34 7 = 10. (TRUE)
Inverse: If —1 2> 3 or 3+ 7 # 10, then sin(*¥) # ~1. (TRUE)
Contrapositive: If sin(¥) s —1, then —1> 3 or 3+ 7 # 10.

(a) True (b) True {¢) True
a) (g—r)V-p b) (~gVr)V-p
plg|pNg pA-g | ~pAg|(pA-g)V(~pAg) | ~peq)

0jo] 0 0 0 0 0

011 1 0 1 1 1

1{o] 1 1 0 1 1

1{1] 0 0 0 0 0
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13.

14.

15.

16.

plaglriilpeoghrgenAlrepliliip—=gAg—r)A(r—p)
0700 1 1
0j0!1 0 0
01110 0 0
0111 0 0
11010 0 0
1101 0 0
1{110 0 0
11111 1 1

pleiphgla—(pAg) Ip—la—=(pAg)]

0l6| o 1 1
(@ 0}1] 0 0 1

10 o 1 1

11 1 1 1

(b) Replace each occurrence of p by pV¢g. Then we have the tautology (pV¢) — [qg —
[(pV¢)Ag]] by the first substitution rule. Since (pV¢)A g <= ¢, by the absorption laws,
it follows that {(pV¢) — [g— ¢] &= Tp.

plalpValpAgla—(pAg | (pVa —lg—(pAg)]

0/0] © 0 1 1
(c)yjo]1] 1 0 0 0

110] 1 0 1 1

1]1] 1 1 1 1

So the given statement is not a tautology. If we try to apply the second substitution rule
to the result in part (a) we would replace the first occurrence of p by pV ¢. But this
does not result in a tautology because it is not a valid application of this substitution rule
— for p is not logically equivalent to pV ¢.

(a) -p<=>(p1p)

(b) pVge&= ~(-pA-g) &= (-pT—g) <= (pTpT(aTg)

() pAger (pAg) > ~plg =T T(T9

(d) poge= pVee ~pA-g) > (pT ) = pllgTy

{e) perges>{(p—gA(g—p)<>tAut= (tTu)T (7T u), where ¢ stands for
pT(gTq) and u for ¢T(p1p)

(8) ~pe==(plp)

(b) pVags==pVg &> -(play(plglplg

(¢) phge>pA-—ge= (-pl-g) > (plp)llela)

(d}) p=ge=pVae(plalpla=lpinldlirinld

() perge=(rir)i(sls) where r standsfor [(p[p)|¢ll{(pip lg] and s
for (glg)lpllllela)lp

31
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17.

18,

19.

20.

pila|~plg (cpl~g) | ~(pTg) | (-pl-q)

6,0 0 0 0 O

611 1 1 0 0

110 i 1 ¢ 0

111 1 1 1 1

(a) pvaA(pV-q)iVe Reasons

& [pvi{gh—g)lvy Distributive Law of V over A

& (pVFE)Vyg g A =g < F (Inverse Law)

& pVg pV Fy & p (Identity Law)

() (p-+g)A[gA(rV~g)] Reasons

& (p—g)A—g Absorption Law (and the
Commutative Law of V)

& (mpVg)A~g p— g pVy

& —gA(-pVyg) Commutative Law of A

& (gA-p)V(~gAqg) Distributive Law of A over V

& (~gA-p)VFH Inverse Law

& —gA-p Identity Law

& ~{gVp) DeMorgan’s Laws

(a) pVipA(pVq) Reasons

& pVp Absorption Law

& p Idempotent Law of v

(b) pvgV(pA-gAr) Reasons

& (pvgavi-{pVeAr] DeMorgan’s Laws

& [pvgov-pvgir{pvevr) Distributive Law of V over A

& ThAa{(pVeVr) Inverse Law

& pVgVr Identity Law

() l=pV—g) = (pAgAT) Reasons

€& ~(-pV-g)VipAgAr) $—t & sV

& (=pA-giV{pAgAT) DeMorgan’s Laws

& {(pAgV{pAgATr) Law of Double Negation

& pAg Absorption Law

(a) [pA(wVeV-gVirViv-r)A-q = PArVIDIVHT V1) A —g] <=

ALYV {TeAg) &= pV g

(b) [pvipargviphgAr)IAl(pArAt)Vi] <= pAt by the Absorption Law.
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1.

Section 2.3

(a}

plairip—a (pVg | (pVg —=r
ololo] 1 0 1
olol1]| 1 0 1
oitjo] 1 1 0
ol1]1] 1 1 1
1{0/0] © 1 0
11ei1] o 1 1
1j1/0) 1 1 0
i1t} 1 1 1

The validity of the argument follows from the results in the last row. {The first seven rows

may be ignored.)
(b)

plalriprg)—r =gip——r|-pV-g
000 1 1 1 1
0lof1 1 1 1 1
o110 1 0 1 1
0f1]1 1 0 1 1
110}0 1 1 1 1
1101 1 1 0 1
1{1]0 0 0 1 0
11111 1 0 0 0

The validity of the argument follows from the results in rows 1, 2, and 5 of the table. The
results in the other five rows may be ignored.

(c) '

plalrigVripV(gVvr)i[pV({gVr)A-g|pVr
0lol0| 0 0 0 0
01011 1 1 1 1
oli1(o] 1 1 0 0
0i1l1] 1 1 0 1
1tiei0l o 1 1 1
110017 1 1 1 1
1i1ie} 1 1 0 1
1111 1 1 0 1

Consider the last two columns of this truth table. Here we find that whenever the truth
value of [pV (g V 7)] A —g is 1 then the truth value of pV r is also 1. Consequently,

pvgvr)a-g=pvr
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{The rows of the table that are crucial for assessing the validity of the argument are rows
2,5, and 6. Rows 1, 3, 4, 7, and 8 may be ignored.)

(a)
plglrip=glg—=rip=rillp—=gAlg=r)i-{p—r)
olojo] 1 1 1 1
olol1] 1 1 1 1
ol1i0f 1 0 1 1
gj1i1] 1 1 1 1
110610 © 1 0 1
110/1] o© 1 1 1
1i1/0] 1 0 0 1
1111} 1 1 1 1
(b)
plelp—=qllp=OA~qlllp—=g)A-gl = p
o]0 1 1 1

0l1] 1 0 1

1{o0] © 0 1

111 1 0 1

(¢)
pleglpipVel(eVvaghr-pillpVvgA-p —q
0/0] 1] O 0 1

ol1]1 1] 1 1 1
1ioj0] 1 0 1
1{1{0 | 1 0 1

(d)

R S,
plalrip=rlg—=ri(pVg—=rilpor)A(gor)]—s
0/0/0] 1 1 1 1
ploj1] 1 1 1 1
glijo] 1 0 0 1
olili| 1 1 1 1
110/l o© 1 0 1
1lol1} 1 1 1 1
111101 o 0 0 1
1{1i1] 1 i 1 1

(a) I p has the truth value 0, then so does pAg.

(b) When pV g has the truth value 0, then the truth value of p (and that of ¢} is 0.
{c) ¥ ¢ has truth value 0, then the truth value of {(pV ¢) A —p] is 0, regardless of the
truth value of p.

{(d) The statement ¢V s has truth value 0 only when each of ¢,s has truth value 0. Then

34
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(p — ¢) has truth value 1 when p has truth value 0; (r — s) has truth value 1 when r
has truth value 0. But then (pV r} must have truth value 0, not 1.

(e) For (-pV —r) the truth value is 0 when both p,r have truth value 1. This then
forces ¢,s to have truth value 1, in order for (p — ¢), (» — s} to have truth value 1.
However, this results in truth value 0 for (—gV -s).

{(a) Janice’s daughter Angela will check Janice’s spark plugs. (Modus Ponens)
(b) Brady did not solve the first problem correctly. (Modus Tollens)

{(c) This is a repeat-until loop. (Modus Ponens)

(d) Tim watched television in the evening. (Modus Tollens)

{a) Rule of Conjunctive Simplification

(b) Invalid — attempt to argue by the converse
(¢) Modus Tollens

(d} Rule of Disjunctive Syllogism

(e) Invalid — attempt to argue by the inverse

(a)

Steps Reasons
(1) gAr Premise
2) ¢ Step (1) and the Rule of Conjunctive Simplification
3) J.qvr Step (2) and the Rule of Disjunctive Amplification

Consequently, (g Ar) — (¢ V r) is a tautology, or gAr =gV r.

(b} Consider the truth value assignments p : 0, ¢ : 1, and r : 0. For these assignments
[pA(gAr)}V=lpV (gAr)] has truth value 1, while [pA (g V )]V —[pV (¢ V r)] has truth
value 0. Therefore, P — P; is not a tautology, or P # P;.

(1) & (2)  Premise

(3) Steps (1), (2) and the Rule of Detachment

(4) Premise

(5) Step (4) and (r — ¢} &= (=g — or) &= (g — —r)
(8) Steps (3), (8) and the Rule of Detachment

(7 Premise

{8) Steps (6), (7) and the Rule of Disjunctive Syllogism
(%) Step {8) and the Rule of Disjunctive Amplification

(1) Premise

(2) Step (1) and the Rule of Conjunctive Simplification
(3) Premise

{4) Steps (2), (3) and the Rule of Detachment
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(5)
(6)
()
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(13)

(a)

(1)
()
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

(b)

(1)
(2)
(3)
@)
(5)
)
(M)
(g} & @

(c)

(1)
(2)

Step (1) and the Rule of Conjunctive Simplification
Steps (4), (5) and the Rule of Conjunction
Premise

Step (7) and [r — (s V)] &= [=(s V) — 7]
Step (8) and DeMorgan’s Laws

Steps (6}, (9) and the Rule of Detachment

Premise

‘Step (11) and [(-pV ) = 7] <= [~r = =(=pV g)]

Step (12) and DeMorgan’s Laws and the Law of Double Negation
Steps (10), (13) and the Rule of Detachment
Step (14) and the Rule of Conjunctive Simplification

Premise {The Negation of the Conclusion)

Step (1) and =(—g — 8) <= =(——g V 8) <=> (g V s) &= g A s
Step (2) and the Rule of Conjunctive Simplification
Premise

Steps (3), (4) and the Rule of Disjunctive Syllogism
Premise

Step (2) and the Rule of Conjunctive Simplification
Steps (6), (7) and Modus Tollens

Premise

Steps (8), (9) and the Rule of Disjunctive Syllogism
Steps (5), (10) and the Rule of Conjunction

Step (11) and the Method of Proof by Contradiction

p—q Premise

g - P Step (1) and (p — ¢) = (~g — ~p)

pVr Premise

-p b T Step (3} and (pVr) & (~p— 1)

-G~ T Steps (2), (4) and the Law of the Syllogism
AR Premise

rer s Step (6) and (~r V 5) €= (r — 8)

g — 8 Steps (5), (7) and the Law of the Syllogism
-p e ¢ Premise

(mp - g) Ag— —p) Step (1) and (—p < g} <= [(-p — @) A{g — —p)]
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10.

(3)
(4)
(5)
(6)
(M
(a)
(1)
(2)
(3)

(4)
(5) 9%@

(b)

(1)
(2)
()
(4)
(5) ﬁ‘@

(¢)

(1)
(2)
(3)
(4)
(8) %

(d)

(1)

(2

(3)
(4).",

TP g
q——*?"
Y e
-y

pPA—g

PAT
(pAT)Vq

b, p—*4g

—gVr
g—r

-3

p—rg, g
—p

-y

=p A
=(pVr)

Step (2) and the Rule of Conjunctive Simplification
Premise

Steps (3), (4) and the Law of the Syllogism
Premise

Steps (5), (6) and Modus Tollens.

Premise '

Step (1) and the Rule of Conjunctive Simplification
Premise

Steps (2), (3) and the Rule of Conjunction

Step (4) and the Rule of Disjunctive Amplification

Premises

Step (1) and the Rule of Detachment
Premise

Step (3) and =gV r &= (g —r)

Steps (2), (4) and the Rule of Detachment

Premises

Step (1) and Modus Tollens

Premise

Steps (2), (3) and the Rule of Conjunction
Step {(4) and DeMorgan’s Laws

Premises
Step (1) and the Rule of Detachment
Premise

Steps (2), (3) and Modus Tollens
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B

(2) ~g—-p
3) p—g

4) 4q

(6) pAg

6) p—{g—r)
(1) (phg)—r
8 ..r

(f)

(1) pAg

2 »

(3) p—(rig)
(4) rhg

56y r

(6) r—{(sVt)
() sVt

(8 s

9) .o ¢

(g)

(1) -s,pVs
2 »p

(3) p—ilg—r)
4) g-r

(5) t -+ g

{(6) t -7

(T) 2, = = =t
(b)

(1)  -pvr

2) por

(3 -r

4) -»

(8) pVg

6) -p—yg
(7)., ¢

Premise

Premise

Step (2) and (p — ¢) &= (=g — —p)

Steps (1), (3) and the Rule of Detachment
Steps (1), (4) and the Rule of Conjunction
Premise

Step (6), and [p— (g —r)] &= [(pAg) — 1]
Steps (5), (7) and the Rule of Detachment

Premise

Step (1) and the Rule of Conjunctive Simplification
Premise

Steps (2}, (3) and the Rule of Detachment

Step (4) and the Rule of Conjunctive Simplification
Premise

Steps (5), (6) and the Rule of Detachment

Premise

Steps (7), (8) and the Rule of Disjunctive Syllogism

Premises

Step (1) and the Rule of Disjunctive Syllogism
Premise

Steps (2), (3) and the Rule of Detachment
Premise

Steps (4), (8) and the Law of the Syllogism
Step (6) and (t — r) &= (~r — ~i)

Premise

Step (1) and (p—r) & (mpVr)

Preraise

Steps (2), (3) and Modus Tollens

Premise

Step (5) and (pV g) & (=—pV q) & (~p — ¢)
Steps (4), (6) and Modus Ponens
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12.

(a)
(b}

(c)
(d)

%

p:l g:0 r:1
p:0 q:0 r:Qorl
p:0 g:1 vl
p,gr:1 s5:0

pg,r:1 s:0

a} p: Rochelle gets the supervisor’s position.

g: Rochelle works hard.

r: Rochelle gets a raise.

s: Rochelle buys a new car.

(pAg)—r

r— S

-8
oo TPV g
(1) s Premise
2) r—s Premise
3y -r Steps (1), (2) and Modus Tollens
(4) (pAg)—r Premise
(53) ~(pAg) Steps (3), (4) and Modus Tollens
(6) . ~pV g Step (5) and ~(p A g) &= —p V —q.
b} p: Dominic goes to the racetrack.

g: Helen gets mad.

r: Ralph plays cards all night.

s: Carmela gets mad.

t: Veronica is notified.

p—q

r s

(gvs)—1

4

oo AT

{1y 4 Premise
(2) (gvs)—t Premise
(3) ~{gvs) Steps (1}, (2) and Modus Tollens
(4) —gA e Step (3) and ~{gV 8) &> —g A s
(8 —gq  Step (4) and the Rule of Conjunctive Simplification
6) »p—gq Premise
(7) —p Steps (5}, (6) and Modus Tollens
8 s Step (4) and the Rule of Conjunctive Simplification
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13.

(9) r-—s Premise
(10) -r Steps (8), (9) and Modus Tollens
(11} ,", -p A —r Steps (7), (10) and the Rule of Conjunction

c) p: There is a chance of rain.
¢: Lois’ red head scarf is missing.
r: Lois does not mow her lawn.
s: The temperature is over 80° F.

(pVg)—r
3-—)“‘!}}
s A g

Ed
g
L r

The following truth value assignments provide a counterexample to the validity of this

argument:

p:0;¢:0;r:1;5:1

(2) t

P lgiripVe | pVr i (pVgA(-pVr)lqVr t—(qgVr)
0 1010 0. 1 0 0 1
0 |10}1 0 1 0 1 1
0 j110 1 1 1 1 1
0 11}1 1 1 1 1 1
1100 1 0 0 0 1
11071 1 1 1 1 1
1 111067 1 0 0 1 1
1 7111 1 1 1 1 1

From the last column of the truth table it follows that [[pVg)A(-pVr)] = (gVr)isa
tautology.

Alternately we can try to see if there are truth values that can be assigned to p,q, and r
so that {g V r) has truth value 0 while {(p V ¢), (—~p V r) both have truth value 1.

For (g V r) to have truth value 0, it follows that ¢ : 0 and r : 0. Consequently, for (pV ¢)
to have truth value 1, we have p : 1 since ¢ : 0. Likewise, with r : 0§ it follows that
-p 1 1 # (~pV)r has truth value 1. But we cannot have p : 1 and —p : 1. So whenever
{pV ¢), (mpVr) have truth value 1, we have (g V r} with truth value 1 and it follows that
pVa)A{~pVr)] - (gVr)is a tautology.

Finally we can also argue as follows:

www.yousefiglass.ir



N IR el Bl A ol el A

o
-
s N’

© 00 NSO W

"

(1)

el S Al ol

Steps
pVy
gVp
~(-g)Vp
g p
—pVr
p—-«)i"
'1(1‘*-)1“

ee gV T

Steps
pV(gVr)
(pV@A(pVr)
pvr

p-—+s

-pV s

. e TV

Steps

per g
®—-9)A(g—p)
p—gq

—pVq

P

pVyq

(Vg A(-pV4q)
gVyg

S g

Steps

rVyg

p»«k'(‘

“pVr

lpva A(-pVr)
gvr

ot G

- W g
(rVg)A{-rvs)]

s qVs

&b

@ oo

O DU 2N

e e B N o

Reasons
Premise
Step (1) and the Commutative Law of V

- Step (2) and the Law of Double Negation

Step (3), ~¢ = p& ~(~g)Vp

Premise

Step (8),p—r & —pVr

Steps (4), (6), and the Law of the Syllogism
Step (7), "¢ »r & qVr

Reasons

Premise

Step (1) and the Distribution Law of V over A

Step (2) and the Rule of Conjunctive Simplification
Premise

Step (4), p—> 3 & —pVs

Steps (3), (8), the Rule of Conjunction, and Resolution

Reasons

Premise

(peg e llp—a)A(g—p)

Step (2) and the rule of Conjunctive Simplification
Step (3}, p— g ¢ —pVyg

Premise

Step (5) and the Rule of Disjunctive Amplification
Steps (6), (4), and the Rule of Conjunction

Step (7) and Resolution

Step (8) and the Idempotent Law of V.

Reasons

Premise

Premise

Step (2), p—r & —pVr

Steps (1), (3}, and the Rule of Conjunction
Step (4) and Resolution

Premise

Step (8),r — s & ~rVs

Steps (5}, {7), the Commutative Law of V,
and the Rule of Conjunction

Step (8) and Resolution

RSl ol A e

o

o
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- 10,

Steps
-pVgVr
gV(-pVr)

~q
~qV(~pVr)

lgv(=vmA[-¢V(=pVri]
(mpVvr)

-

"‘!TV“‘lp

[(rV —p) A(=rV -p)]

A
ﬁ@ﬂp

10.

Reasons

Premise

Step (1) and the Commutative and
Associative Laws of V

Premise

Step (3) and the Rule of Disjunctive
Aruplification

Steps (2), (4}, and the Rule of
Conjunction

Step (5), Resolution, and the
Idempotent Law of A

Premise

Step (7) and the Rule of
Disjunctive Amplification

Steps (6), (8), the Commutative Law
of v, and the Rule of Conjunction
Step (9), Resolution, and the
Idempotent Law of V
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(v)

@ ha e

[

=

10.

il.
12,

13.

14.

15.

16.

(c) Consider the following assignments.
p: Jonathan has his driver’s license.
q: Jonathan’s new car is out of gas.
r

Steps
—pV s
pVgVi
pV{gVvi)
[lpv(gVHlA(-pVs)
(gVit)Vs
gV {tVs)
—“gVr
lgv(tvs)]
(tVs)Vr
tV{(sVr)

-tV {(sAr)
(mtVs)A(—tVr)

~tV s
MtV {(svrlA(-tVs)]
(sVr)vs

&
¢ @ rvs

b

10.

11.
12.

13.

14,

15.

16.

Reasons

Premise

Premise

Step (2) and the Associative
Law of V

Steps {3), (1), and the Rule

of Conjunction

Step (4) and Resolution (and

the First Substitution Rule)
Step (5) and the Associative Law of V
Premise

Steps (6), (7), and the

Rule of Conjunction

Step (8) and Resolution {and the
First Substitution Rule)

Step (9) and the Associative
Law of V

Premise

Step (11) and the Distributive
Law of V over A

Step (12) and the Rule of
Conjunctive Simplification

Steps (10}, (13), and the Rule

of Conjunction

Step (14) and Resolution {and
the First Substitution Rule)
Step (15) and the Commutative,
Associative, and Idempotent Laws of V

Jonathan likes to drive his new car.
Then the given argument can be written in symbolic form as

—“pVyg
Y -

gy S
_gvor

s
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Steps Reasons

1. -pVg 1. Premise

2. p¥Y-r 2. Premise

3. (pV-riA(-pVyg) 3. Steps (2), (1), and the Rule of Conjunction

4. -rVgqg 4. Step (3) and Resolution

5 ¢qV-r 5. Step (4) and the Commutative Law of Vv

6. —gV-r 6. Premise

7. {gV-r)A(~gV -r) 7. Steps (3), (6), and the Rule of Conjunction

8 ~rVor 8. Step (7) and Resolution

9. J,or 9. Step (8) and Idempotent Law of V
Section 2.4

(a) False (b) False (¢) False

(d) True (e} False {f) TFalse
(a) (i) True (ii) True (iii) True (iv) True

(b) The only substitution for z that makes the open statement [p(z) A ¢g(z)] A r(z) into a
true statement is z = 2.

Statements (a), (c), and (e) are true, while statements (b), (d), and (f) are false.

(a) Every polygon is a quadrilateral or a triangle (but not both). (True — for this
universe.)

(b) Every isosceles triangle is equilateral. (False)

(c) There exists a triangle with an interior angle that exceeds 180°. (False)

(d) A triangle has all of its interior angles equal if and only if it is an equilateral triangle.
(True)

(e) There exists a quadrilateral that is not a rectangle. (True)

(f) There exists a rectangle that is not a square. (True)

{g) I all the sides of a polygon are equal, then the polygon is an equilateral triangle.
(False)

(k) No triangle has an interior angle that exceeds 180°. (True)

(i) A polygon {of three or four sides) is a square if and only if all of its interior angles are
equal and all of its sides are equal. (False)

{7} A triangle has all interior angles equal if and only if all of its sides are equal. {True)

44
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(a) dz [mz) A e(z) A §(z)] True
(b) dz {.s(x;é Aelz) A ~m{z)] True
() Ve [e(z) — (m(z) V p(z))] False
(d) vz [(g(z) A o(z)) — —p(=)], True
or Vz [(p(z) Ac(z)) — ~g(2)],
or Vo [(g(2) A p(e)) — ~e(z)]
(e) Ve [(c(z) A s(z)) — (p(z) ¥ e(2))], True
6.
(a) True (b) True (¢) False
(d) True (e) False (f) False
7. (a)
(i) 3z o(z)

(i) 3z [p(z) A g(z)]
(i) Ve fo(x) — ~4(z)]
(v) Vo [ofe) = ~4(x)]
) 3z [o(e) AK)]
(i) Ve [(alz) A r(z)) = 5()
(b) Statements (i), (iv), (v), and (vi) are true. Statements (i) and (iii) are false: z = 10
provides a counterexample for either statement.
c
© (i) I @ is a perfect square, then z > 0.
(i1} If z is divisible by 4, then z is even.
(iii) If z is divisible by 4, then z is not divisible by 5.
(iv) There exists an integer that is divisible by 4 but it is not a perfect square.
(d) i) Let z =0. (iii) Let z = 20.

8. (a) True {(b) False: For 2z =1, ¢(z) is true while p(z) is false.
(c) True (d) True (e) True (f) True
(g) True (h) False: For z = —1, (p{2) V ¢{z)) is true but r(z) is false.

9.
(a) (i) True (it} False -~ Consider z = 3.
(iit) True (iv) True
(b} (i) True (ii) False - Consider z = 3.
(iii} True (iv) True
{¢) (i) True (it) True
(i) True {iv) False- For z = 2 or 5, the truth

value of p{#) is 1 while that
of r{z} is 0.

10. (a} ¥Ym,n Alm,n] >0
{(b) ¥Ym,n 0 < 4lm,n] <70
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11.

12.

13.

14.

15.

16.

i7.

(¢} Fm,n Alm,n]> 60

(d) Vm [(1<n<19) — (A4im,n] < Alm,n + 1])]

(e) ¥n [(1<m<9)— (Alm,n] < Alm + 1,n})]

() V1<mi<3V 1<n,j<20{((m,n)#,75)) — (Alm,n] # Ali,5])]

(a) In this case the variable z is free while the variables y, 7 are bound.
(b) Here the variables 2,y are bound; the variable z is free.

(a
: (i) False (ii) True (iii) True
(iv) False,ifz =0 (v) False,ifz=0 (vi} True
(vii) False —Ify=0then 2 0;ify #0, let = = 2y.
(vii) False — Let z = 2 and y = -2, for example.

(b) Statements (iv), (v), and (viil) are now true — because of the change in universe.

(¢} (i) True (i1) True (iii) True
(iv) False — For any y consider z = 2y.

(a) p(2,3) Ap(3,3) Ap(5,3)
(b) [p(2,2) v p(2,3) v p(2,5)] V [p(3,2) V p(3,3) V p(3,5)] v [p(5,2) V p(5,3) V p(5,5)]
(c) [p(2,2) v p(3,2) V p(5,2)] A[p(2,3) V p(3,3) V p(5,3)] A[p(2,5) V p(3,5) V p(5, 5)]

Statements (a), (b), (&), and (f) are logically equivalent and each may be expressed as
Ynlg(n) — p(n)]. Statements (c), (g) are logically equivalent and each may be expressed
as Vn[p(n) — g¢(n)]. Statement (d) is not logically equivalent to any of the other six
statements.

a) The proposed negation is correct and is a true statement.
b} The proposed negation is wrong. A correct version of the negation is: For all rational
numbers z,y, the sum z + y is rational. This correct version of the negation is a true
statement.
¢) The proposed negation is correct — but false. The (original) statement is true.
d) The proposed negation is wrong. A correct version of the negation is: For all integers
z,¥, if z,y are both odd, then zy is even,

The (original} statement is true.

{(a) Some student in Professor Lenbart’s C++ class is not majoring in either computer
science or mathematics.
(b} ¥ a student is in Professor Lenhart’s C++ class, then that student is not majoring in
history.

or, No student majoring in history is in Professor Lenhart’s C++ class.

a) There exists an integer n such that n is not divisible by 2 but n is even (that is, not
add}.

b} There exist integers k, m,n such that £ — m and m — n are odd, and &k — n is odd.
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18.

19.

20.

¢) For some real number z, z> > 16 but —4 < z < 4 (that is, ~4 < z and z < 4).
d) There exists a real number z such that |z — 3{ < 7 and either # < —4 or z > 10.

(2) Vz [=p(z) A —q(z)]

(b} Jzr [-p(a) V o(x)]

(c) 3z [p(z) A—g(z)]

(d) Yz [(p(z) V ¢(z)) A —r(z)]

(a) Statement: For all positive integers m,n, if m > n then m? > n®. (TRUE)
Converse: For all positive integers m,n, if m? > n? then m > n. (TRUE)

Inverse: For all positive integers m,n, if m < n then m? < n?. (TRUE)

Contrapositive: For all positive integers m,n, if m? < n* then m < n. (TRUE)

(b) Statement: For all integers a,b, if a > b then @ > b®. (FALSE — let ¢ = 1 and
b= -2.)

Converse: For all integers a, b, if a® > b then a > b. (FALSE — let a = —5 and b = 3.)
Inverse: For all integers a, b, if @ < b then o < %, (FALSE — let ¢ = —5 and b = 3.)
Contrapositive: For all integers a,b, if a® < §” then a < b. (FALSE — let ¢ = 1 and

b= 2.}
(c) Statement: For all integers m,n, and p, if m divides n and n divides p then m divides
p. (TRUE)

Converse: For all integers m and p, if m divides p, then for each integer n it follows that
m divides n and n divides p. (FALSE —let m =1, n =2, and p = 3.)

Inverse: For all integers m,n, and p, if m does not divide n or n does not divide p, then
m does not divide p. (False —let m=1,n=2, and p=3.)

Contrapositive: For all integers m and p, if m does not divide p, then for each integer n
it follows that m does not divide n or n does not divide p. (TRUE)

(d) Statemeni: Vz [(z > 3) — (2* > 9)] (TRUE)

Converse: ¥z {(z® > 9) — (z > 3)] (FALSE — let z = -5.)

Inverse: ¥z [(z <3) — (22 < 9)] (FALSE — let z = —5.)

Contrapositive: Vz [(z? < 9) — (z < 3)] (TRUE)

(¢) Statement: Vz [(z® +42—21>0) — [(z > 3)V(z < ~T7)]] (TRUE)

Converse: Vz [[(z > 3)V{(z < -7)] = (2% + 4z — 21 > 0)] (TRUE)

Inverse: Vr (2442 -21<0)—=[{z <3 A(z 2 -7}, or ¥z [{2® + 42 — 21 < 0) —
{(~7 <z < 3)] (TRUE)

Contrapositive: Vo [[(# <3 Az 2 -T)] = (2 +42 - 21 <0, or Ve [(-T <2 <3) —
(z* + 4z — 21 < 0)] (TRUE)

For each of the following answers it is possible to have the implication and its contrapositive
interchanged. When this happens the corresponding converse and inverse must also be
interchanged.

(a) Implication: If a positive integer is divisible by 21, then it is divisible by 7. (TRUE}
Converse: If a positive integer is divisible by 7, then it is divisible by 21. (FALSE —
consider the positive integer 14.)
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21.
22.

23.

24.

25.

26.

1.

Inverse: If a positive integer is not divisible by 21, then it is not divisible by 7. (FALSE
— consider the positive integer 14.)

Contrapositive: If a positive integer is not divisible by 7, then it is not divisible by 21.
(TRUE})

{b) Implication: If a snake is a cobra, then it is dangerous.

Converse: I a snake is dangerous, then it is a cobra.

Inverse: If a snake is not a cobra, then it is not dangerous.

Contrapositive: If a snake is not dangerous, then it is not a cobra.

(¢) Implication: For each complex number z, if z° is real then z is real. (FALSE — let
z=1.)

Converse: For each complex number z, if z is real then z° is real. (TRUE)

Inverse: For each complex number z, if z? is not real then z is not real. (TRUE)
Contrapositive: For each complex number z, if 2 is not real then z? is not real. (FALSE
—let z =1.)

() True (b) False (¢) False (d) True (e) False
(a) True (b) False {c) True (d) True (e) True

(a) Va3bla+b="5+a=0]

(b) 3uVa lau = ua = 4]

(¢) Va3# 03b[ab=ba=1]

(d) The statement in part (b) remains true but the statement in part (c) is no longer
true for this new universe.

{a) True (b) False (c¢) False (d) True

(@) 3zdyl(z>y)A(z-y<0)]
(b) FzIylz <y)AVzlz 22V 22yl
(¢) 3z Iy [(la] = ) A (y # £2)]

7%%?’,;#L#§f>0\ik>ﬁ3n[{n>k}/\irn-LIZe]

Section 2.5

Although we may write 28 =25+ 14+ 141 = 16 + 4 4 4 -+ 4, there is no way to express
28 as the sum of at most three perfect squares.

Although 3=1+141and 5 =4+ 1, when we get to 7 there is a problem. We can write
7 =4+ 141+ 1, but we cannot write 7 as the sum of three or fewer perfect squares,
[There is also a problem with the integers 15 and 23.]
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Here we find that

0=2504+4+1 40 =36+ 4 50 = 25 4 25
32=16+ 16 42 =254+16+1 52 =36+ 16

34 =25+9 44 =36 +4+4 54 =25+ 25+ 4
36 = 36 46=36+9+1 56 =36+ 16+ 4
=36+141 48 = 16 + 16+ 16 58 =49+9
4=2-+2 16 =13+3 28 =23+4+5

6=3-+3 18 =13+5 30 =17+ 13

8=3+45 20=17+3 32 =194+ 13

10=5+5 22 =17+35 34 = 17+ 17

12=T+5 24 = 17T+7 36 =19+ 17

14=T7T+7 26 =194+7 38 =194 19

(a) The real number 7 is not an integer.

(b) Margaret is a librarian.

(c¢) All administrative directors know how to delegate authority.
(d) Quadrilateral M N PQ is not equiangular.

(a) Valid — This argument follows from the Rule of Universal Specification and Modus
Ponens.

(b) Imvalid — Attempt to argue by the converse.

(¢) Invalid — Attempt to argue by the inverse.

(a) When the statement 3z [p(z) V ¢(z)] is true, there is at least one element ¢ in the
prescribed universe where p(c) V ¢(c) is true. Hence at least one of the statements
p{c), ¢(c) has the truth value 1, so at least one of the statements 3z p(z) and 3z ¢(z) is
true. Therefore, it follows that 3z p(z) V Iz ¢(z) is true, and Jz {p(z) V ¢(z)] =
Jz p(z) V 3z g(z). Conversely, if Iz p(z) V Iz ¢(z) is true, then at least one of
pla), g(b) has truth value 1, for some a, b in the prescribed universe. Assume without loss
of generality that it is p{a). Then p{e) V ¢(a) has truth value 1 so Iz [p(z) V ¢{z)] is a
true statement, and Iz p(z) V 3z ¢(z) = Jx [p(z) V ¢(z)].

(b) First consider when the statement Yz [p{r) A ¢(z)] is true. This occurs when
pla) A g(a) is true for each a in the prescribed universe. Then p{a) is true (as is g(a))
for all a in the universe, so the statements Vz p(x), Yz ¢{(z) are true. Therefore, the
statement Yz p{z) A Vz ¢(z) is frue and Ve [p(z) A ¢{z)] == Ve p(z) A Yz ¢(z).
Conversely, suppose that Ve p(z) A Ya ¢(z) is a true statement. Then Yo p(2), Vz ¢(=)
are both true. So now let ¢ be any element in the prescribed universe. Then p{c), ¢(c), and
ple) A glc) are all true. And, since ¢ was chosen arbitrarily, it follows that the statement
Vo [p{z) A ¢(z)] is true, and Vo pz) A Va ¢(z) = ¥z [p(z) A ¢(z)].

{(a) Suppose that the statement Vz p(z) vV Vz ¢(z) is true, and suppose without loss of
generality that Vz p(z) is true. Then for each ¢ in the given universe p(c) is true, as is
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?(c) V g{c). Hence Va [p{z)}V ¢(z)] is true and Vx p(z) V Yz ¢(z) = Vz [p(z) V ¢(z)].
{(b) Let p(z}): >0 and ¢(z): 2z <0 for the universe of all nonzero integers. Then
Va p(e),Vz q(z) are false, so Vz p(z) VVz ¢(z) is false, while Vz [p{(z) V ¢(z)] is true.

(1) Premise

(2) Premise

(3) Step (1) and the Rule of Universal Specification

(4) Step (2) and the Rule of Universal Specification

(5) Step (4) and the Rule of Conjunctive Simplification
(6) Steps (5), (3), and Modus Ponens

(7) Step (6) and the Rule of Conjunctive Simplification
(8) Step (4) and the Rule of Conjunctive Simplification
(9) Steps (7), (8), and the Rule of Conjunction

(10) Step (9) and the Rule of Universal Generalization

(4) Step (1) and the Rule of Universal Specification
(5) Steps (3), (4), and the Rule of Disjunctive Syllogism

(6) Premise :

(7) Step (6) and the Rule of Universal Specification

(8) Step (7) and —g¢(a) V r(a) & ¢(a) — r(a)

(9) Steps (8), (8), and Modus Ponens (or the Rule of Detachment)
(10) Premise
(11) Step (10) and the Rule of Universal Specification
(12) Step (11) and s(a) — —w(a) & —~-r(a) — ~s(a) & r(a) — —s{a)
{(13) Steps (9), (12), and Modus Ponens (or the Rule of Detachment)

Consider the open statements
w(z): z works for the credit union
£(z): = writes loan applications
e{z): z knows COBOL
g{z): 2z knows Excel
and let r represent Roxe and ¢ represent Imogene.

In symoblic form the given argument is given as follows:
Vz [w(z) — c(z)]
Va [(w(z) A £(z)) — glz)]
wir) Ag(r)
gli) A —e(i)
2o (1) A —w(i)

The steps {and reasons) needed to verify this argument can now be presented.
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12.

13.

(1)
(2)
(3)
4)
(5)
(6)
(7)
(8)

(9)
(10)
(11)

Steps

Yz [w(z) — o(z)]

g(2) A ~e(t)

(i)

w(s} — (i)

—(z)

Vz [(w(z) At(z)) — q(z)]
w(r) A —q(r)

—g(r)

(w(r) Al(r)) — ¢lr)
ﬂgw)('r) AL(r))

Reasons

Premise

Premise

Step (2) and the Rule of Conjunctive Simplification

Step (1) and the Rule of Universal Specification

Steps (3), (4), and Modus Tollens

Premise

Premise

Step (7) and the Rule of Conjunciive
Simplification

Step (6) and the Rule of Universal Specification

Steps (8), (9), and Modus Tollens

Step (7) and the Rule of Conjunctive

Simplification

Step (10) and DeMorgan’s Law

Steps (11), (12), and the Rule of Disjunctive
Syllogism

Steps (13), (5), and the Rule of Conjunction

(12) —w(r) Vv ~r)
(13) —&(r)

(14) .5 ~€(r) A ~w(3)

(a) Proof: Since k,f are both even we may write k = 2¢ and £ = 2d, where c,d are
integers. This follows from Definition 2.8. Then the sum k+ £ = 2¢+ 2d = 2(c+ d) by the
distributive law of multiplication over addition for integers. Consequently, by Definition
2.8, it follows from k -+ € = 2(c + d), with ¢ + d an integer, that k + £ is even.

(b) Proof: As in part (a) we write £ = 2¢ and ¢ = 2d for integers ¢,d. Then —
by the commutative and associative laws of multiplication for integers — the product
kl = (2¢)(2d) = 2(2¢d), where 2cd is an integer. With (2¢)(2d) = 2(2¢d), and 2¢d an
integer, it now follows from Definition 2.8 that kZ is even.

(a) Contrapositive: For all integers k and £, if &, £ are not both odd then k¢ is not odd.
— OR, For all integers k and 7, if at least one of &, £ is even then kf is even.

Proof: Let us assume (without loss of generality) that k is even. Then k = 2c¢ for some
integer ¢ — because of Definition 2.8. Then k€ = (2¢)f = 2(cf), by the associative law of
multiplication for integers — and ¢f is an integer. Consequently, k€ is even — once again,
by Definition 2.8. [Note that this result does not require anything about the integer £.]

{b) Contrapositive: For all integers & and £, if k£ and £ are not both even or both odd
then & + £ is odd. — OR, For all integers k and £, if one of k, £ is odd and the other even
then &k + £ is odd.

Proof: Let us assume {without loss of geperality) that k is even and £ is odd. Then i
follows from Definition 2.8 that we may write £ = 2¢ and £ = 2d + 1 for integers c and d.
And now we find that ¥+ £ = 2c+ (2d 4 1) = 2(c + d) -+ 1, where ¢+ d is an integer — by
the associative law of addition and the distributive law of multiplication over addition for
integers. From Definition 2.8 we find that k + £ = 2(c + d) + 1 implies that &k + £ is odd.
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14.

15.

16.

17.

18,

19.

Proof: Since n is odd we may write n = 2a + 1, where a is an integer — by Definition
2.8. Then n? = (2a + 1) = 4d® + 4a + 1 = 2(2¢% + 2a) + 1, where 2a¢® + 2a is an integer.
So again by Definition 2.8 it follows that n? is odd.

Proof: Assume that for some integer n, n? is odd while n is not odd. Then n is even
and we may write n = 2a, for some integer ¢« — by Definition 2.8. Consequently, n? =
{2a)* = (2a)(2a) = (2 2)(a - a), by the commutative and associative laws of multiplication
for integers. Hence, we may write n? = 2(24?), with 2a? an integer — and this means that
n? is even. Thus we have arrived at a contradiction since we now have n? both odd (at the
start) and even. This contradiction came about from the false assumption that n is not
odd. Therefore, for every integer n, it follows that n® odd = n odd.

Here we must prove two results — namely, (i) if n? is even, then n is even; and (ii) if n is
even, then n? is even.

Proof (i): Using the method of contraposition, suppose that n is not even — that is, n is
odd. Then n = 2a-1, for some integer a, and n* = (2a+1)? = 4a®*+4a+1 = 2(2¢2+2a)+1,
where 2a? + 2a is an integer. Hence n? is odd (or, not even).

Proof (ii): I n is even then n = 2c¢ for some integer c¢. So n? = (2¢)? = (2¢)(2) =
2(e(2e)) = 2A(c-2)c) = 2((2c)c) = 2(2¢?), by the associative and commutative laws of
multiplication for integers. Since 2¢? is an integer, it follows that n? is even.

Proof:

(1) Since n is odd we have n = 2a 4 1 for some integer a. Thenn +11 = (2a¢+ 1)+ 11 =
2a + 12 = 2(a + 6), where a + 6 is an integer. So by Definition 2.8 it follows that n + 11 is
even. .

(2) If n+11is not even, then it is odd and we have n 4 11 = 2b+ 1, for some integer b.
Son = (2b+1)~11 = 2b — 10 = 2(b — 5), where b — 3 is an integer, and it follows from
Definition 2.8 that n is even — that is, not odd.

(3) In this case we stay with the hypothesis — that n is odd — and also assume that
n + 11 is not even — hence, odd. So we may write n 4+ 11 = 2b+ 1, for some integer b.
This then implies that n = 2(b — 5}, for the integer 5 — 5. So by Definition 2.8 it follows
that » is even. But with n both even (as shown) and odd (as in the hypothesis) we have
arrived at a contradiction. So our assumption was wrong, and it now follows that n 4 11
is even for every odd integer n.

Proof: [Here we provide a direct proof.] Since m,n are perfect squares, we may write
m o= o’ and n = B, where a,b are (positive) integers. Then by the associative and
commutative laws of multiplication for integers we find that mn = (a®){$*) = (aa){(bb) =
{({aa)b}b = {a{ab)}b = ({(ab)a)b = (ab} ab) = (ab)?, so mn is also a perfect square.

This resuli is not true, in general. For example, m = 4 = 22 and n = 1 = 1? are two
positive integers that are perfect squares, but m +n = 2%+ 1% = 5 is not a perfect square.
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20.

21.

22.

23.

24.

Let m =9 = 3% and n = 16 = 4. Then m + n = 25 = 5%, so the result is true.

Proof: We shall prove the given result by establishing the truth of its (logically equivalent)
contrapositive.
Let us consider the negation of the conclusion — that is, ¢ < 50 and y < 50. Then with
z < 50 and y < 30 it follows that « + y < 50 4+ B0 = 100, and we have the negation
of the hypothesis. The given result now follows by this indirect method of proof {by the
contrapositive).

Proof: Since 4n+7 =4n+6+1 = 2(2n + 3) + 1, it follows from Definition 2.8 that dn+7
is odd.

Proof: If n is odd, then n = 2k + 1 for some (particular) integer k. Then Tn + 8 =
72k +1)+8=14k+7+8 =14k + 15 =14k + 14 + 1 = 2(Tk + 7) + 1. It then follows
from Definition 2.8 that 7Tn + 8 is odd.

To establish the converse, suppose that n is not odd. Then n is even, so we can write
n = 2t, for some (particular) integer £. But then Tn 4+ 8 = 7(2t) + 8 = 14¢ + 8 = 2(7t + 4),
so it follows from Definition 2.8 that Tn-+8 is even — that is, Tn+8 is not odd. Consequently,
the converse follows by contraposition.

Proof: If n is even, then n = 2k for some (particular) integer k. Then 31In + 12 =
31(2k) + 12 = 62k + 12 = 2(31k + 6), so it follows from Definition 2.8 that 31n + 12 is
even.

Conversely, suppose that n is not even. Then n is odd, so n = 2t + 1 for some (particular)
integer . Therefore, 31n+12 = 31(2+1)+12 = 62t +31+12 = 62t +43 = 2(31¢-+21)+1,
so from Definition 2.8 we have 31n+ 12 odd - hence, not even. Consequently, the converse
follows by contraposition.
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It follows from the results in columns 5 and 7 that [p < (¢ = r)] © [(p > g) « 7).

(b) The truth value assignments p : 0; ¢ : 0; r : 0 result in the truth value 1 for
[p— (g —r) and 0for {(p — ¢) — r]. Consequently, these statements are not logically
equivalent.

perge=(po QA (g p)e> (pVOA(mgVp),s0 ~(p e q) &
~(=pV @)V (g Vp) <> (pA-g)V{gA-p)

Since pV —g & =—pV =g & —p — g, we can express the given statement as:
(1) I Kaylyn does not practice her piano lessons, then she cannot go to the movies.

But pV ¢ & ~¢ V p & g - p, so we can also express the given statement as:
(2) M Kaylyn is to go to the movies, then she will have to practice her piano lessons.

2) p— (gAT)
Converse: (gAr)—p

Taverse: [p — ~(q Ar)] 4 [p = (~g V )]
Contrapositive: [={g A7) — =p] & [(—=g V —r) — —p]

b) (pVg)—r

Converse: r — (pV q)

Inverse: [~(pV g} — ~r] & [(-pA—g) — -]
Contrapositive: [~v ~ =(pV ¢)] & [~r — (=p A =g)]

(a) (pV-q)A(BVp)Ap
(b) {(~pV - A(FoVp)Ap
= (pVgAlphAp) Fyvpesp
G (pV gl Ap Idempotent Law of A
= pA{—pV g) Commutative Law of A
&= (pA-p)Vi{pA-g) Distributive Law of A aver V
<=3 FyV(pA~g) pA-p &> Iy
&= pA-yg Fy is the identity for V.

35
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8‘

10.

(8) (pA-g)V(-rAs)

(b) Since p — (@A =r As) & —pV{gA-rAs)it follows that [p — (g A —r A s)j? &
“pA(gV-rVs)

(¢) pAFYV{gATIAIr VsV F

(a) contrapositive (b} inverse {¢) contrapositive
(d) inverse {e) converse

Proof by Contradiction

(1) ~(p—s) Premise {Negation of Conclusion)

(2) pA-s Step (1), (p — s) <= —pV s, DeMorgan’s Laws, and the Law
of Double Negation

3y »p Step {2) and the Rule of Conjunctive Simplification

4) p—g Premise

(3) ¢ Steps {3), (4), and the Rule of Detachment

6) r Premise '

(7) gqAr Steps (5), (6), and the Rule of Conjunction

(8) (gAr)—s Premise

9) s Steps (7), (8), and the Rule of Detachment

(10) s Step (2) and the Rule of Conjunctive Simplification

(11) sA=s (<= Fy) Steps (9), (10), and the Rule of Conjunction

(12) Sop— s Steps (1), (11), and the Method of Proof by Contradiction

Method 2

(1) (gAr)—s  Premise
(2) r—(g—s) To(gosE>(ghr) s

3 r Premise

(4 g-—s Steps (2), (3}, and Modus Ponens

(8 p-—y Premise

6. .p—s Steps (4}, (3), and the Law of the Syllogism

5? .
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Method 3

(1) {(gAr)—s  Premise

{2) s — (g Ar) Step (1) and for primitive statements u,v
#% - v <> - — —y — and the 1st Substitution Rule.

{3) sV-{gAr) Step (2) and for primitive statements u,v,u —+ v &= ~u Vv —
and the lst Substitution Rule. Also, -8 <= s.

(4) (sv-—g)V-r Step(3), DeMorgan’s Law, and the Associative Law of V

5) r Premise

6) sV-q Steps (4), (8), and the Law of Disjunctive Syllogism
(7) q—s Step () and sV —g <= ~qV s <> ¢ — s

8) p—g Premise

9. sp—s Steps (7), (8), and the Law of the Syllogism

Method 4 {Here we assume p as an additional premise and obtain s as our conclusion.)

1y p Premise (assumed)

(2) p—y¢ Premise

3) ¢ Steps (1), (2), and Modus Ponens

4 Premise

(3) gqAr Steps (3), (4), and the Rule of Conjunction

(6) {(gAr)-+s  Premise

(7) s Steps (5), (6), and Modus Ponens
11. {a) = ‘

plajrip¥Yal(p¥Y g ¥riqg¥ripV(g¥r)

010610 0 0 0 0

0011 0 1 1 1

01116, 1 1 1 1

01111 1 0 0 0

11068 1 1 0 1

11011 1 0 1 0

11110 0 0 1 0

11141 0 1 O 1

It follows from the results in columns 5 and Tthat [(p ¥ ¢) M rie{p ¥ (g ¥ 7).
{b) The given statements are not logically equivalent. The truth value assignments
pil; ¢:0; r: 0 provide a counterexainple.
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12.

13.

14.

15.

16.

p: The temperature is cool on Friday.
g: Craig wears his suede jacket.
r: The pockets (of the suede jacket) are mended.

p—r(r—g)
pATr

efn g

The argument is invalid. The truth value assignments p:1; ¢:1; r:0 providea
counterexample.

{a} True (b} False (¢} True {(d) True
(e} False {(f} False (g) False (h) True

a) This statement is true. Note that 1 = 7(-2) + 5(3), so for each integer z, z =
7(—2z) + 5(3z).

b) Since 2 divides both 4 and 6, it follows that 2 divides 4y + 62. Consequently, the result
is false for each odd integer z. [Since 2 = 4(~1} + 6(1), the result is true for each even
integer z.]

Suppose that the 62 squares in this 8 x 8 chessboard (with two opposite missing corners)
can be covered with 31 dominos. We agree to place each domino on the board so that
the blue part is on top of a blue square (and the white part is then necessarily above a
white square}. The given chessboard contains 30 blue squares and 32 white ones. Each
domino covers one blue and one white square — for a total of 31 blue squares and 31 white
ones. This contradiction tells us that we cannot cover this 62 square chessboard with the
31 dominos.

Suppose that the 60 squares in the 8 x 8 chessboard (with two squares — one blue and
one white — removed from each of two opposite corners) can be covered with 15 of these
T-shaped figures. When covering the chessboard we agree to place each T-shaped figure
on the board so that the color of each square in the T-shaped figure matches the color of
the chessboard square that it covers. Let n be the number of T-shaped figures with three
blue squares {and one white one) used in the covering. The chessboard contains 30 blue
squares, so it follows that
In+1-(15n —~n) = 30.

Consequently, 2n = 15 — so 15 is both odd and even. This contradiction tells us that we
cannot cover the given chessboard with these T-shaped figures.

58
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2.

10.

11,

CHAPTER 3
SET THEORY

Section 3.1

They are all the same set.
All of the statements are true except for part (f).
All of the statements are true except for parts (b) and (d).

All of the statements are true except for parts (a) and (b).

(a) {0,2}1 R
(b) {2’25735355’77?}
(¢) {0, 2, 12, 36, 80}

(a) True (b) True {¢) True
(d) False {e) True (f) False

(a) Velz€eA—z€BlAJzjzeB A a¢g Al
(b) JxlzcAANzgBlVVelzgB Vz € 4]

(a) 27=128 (b) 128 —1 =127 (We substract 1 for §).

(¢) 128 ~1=127 (We subtract 1 for A) (d) 126 () () =35

(f} For each of the other five elements of A there are two choices: Include it with 1,2
in a subset or exclude it from a subset that contains 1,2. By the rule of product there are
25 subsets containing 1,2.

@ () @ @)+ + )+ () =64 @ O+O+Q+ () =04
(a) |Al=6 (b) 1B|=7

(¢} ¥ B bhas 2° subsets of odd cardinality, then |[B|=n+ 1
The only nonempty sets are in parts (d) and (f).

(a) There are 2° — 1 = 31 nonempty subsets for the set consisting of one penny, one
nickel, one dime, one guarter and one half-dollar,

(b) 30 () 28

59
www.youseficlass.ir



12.

13.

14.

15.

16.

17.

18,

8

(2 (5)
(b) Since the smallest element in A is 5 we must select the other four elements in A from

{6,7,8,...,29,30}. This can be done in @5) ways.

(¢) Let z denote the smallest element in A. Then there are four cases to consider.

{z = 1) Here we can choose the other four elements in (2;9) ways.

(z = 2) Here there are (248) selections.

(z = 3) There are (%:) subsets possible here.

{z = 4) In this last case we have ((";6) possibilities.
In total there are (2;9) + (‘18) + (247) + (?} subsets A where [A] = b and the smallest element
in A is less than 5.

(a) (%) =924 ) (D) =225 () 2°—1=63

(a) There are 2'* subsets for {1,2,3,...,11}, and 2° subsets for {1,3,5,7,9,11}. The
2% subsets of {1,3,5,7,9,11} contain none of the even integers 2,4,6,8,10. Hence, there
are 2'! — 2% = 1984 subsets of {1,2,3,...,11} that contain at least one even integer.
(b) 2'% - 26 = 4032

(¢) For n =2k + 1, where k > 0, the number of subsets of {1,2,3,...,n} containing
at least one even integer is 2" — 2841,

For n = 2k, with k > 1, the number of such subsets is 2" — 2%,

Let W= {1}, X = {{1},2}, ¥ = {X,3}.

(n = 6) 1 6 15 20 15 6 1
(n="1) 1 7 21 35 35 21 7 1
{n=8) 1 8 28 56 70 56 28 8 1

(a)Let x € A. Since ACB,z€B. Thenwith BCC,2€C. So z€ A=z6C
and ACC.

(b) Since A C B = AC B, by part (a), A C C. With A C B, there is an element
z € B suchthat 2 & A Since BT C, 2 € B =%z € (C, so there is an element
¢ € C with € A and ACC.

(¢) Since B ¢ C it follows that B € C, so by part (a) we have A C C. Also,
BCcC=s3zecld{z €« CAhz ¢ B). Since ACB, z § B=>2z ¢ A Sc ACC
and Jzeld(z € CAz ¢ A). Hence ACC.

(d) Since A C B == A C B, the result follows from part (c}.

False. Let A= {1}, B = {1,2}, and C = {1,3}.
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19,

20'

21.

22.

23.

(a) Forn,k € Z* withn > k+1, consider the hexagon centered at (7). This has the form
&) )

® (c52)
7 GH

where the two alternating triples — namely, (Zj}, (k:‘l), ("f‘) and (n}j}, (Zﬁ), {kiJ -

satisty (373) (22) (1) = (7 () (00)-
(b) Forn,k € Z* with n>k+1,

(Z : i) (k Z 1) (n : 1) - {(k -««-(T;);;;)—,- k)’} [(k + 1)!(:!- k— 1)i} {k!(fﬁi—ilﬂi k)!}
_ (n—1)! (n+ 1) n! _

{k!(n —-1- k)'} {(k + 1)¥n - k)‘] {(k ~Dln~k+ 1)!}
pianian

(a) Each of these strictly increasing sequences of integers corresponds with a subset of
{2,3,4,5,6}. Therefore there are 2° such strictly increasing sequences.

(b) 2°

(¢) 2% and 2%

(d) Let m,n be positive integers with m < n. The number of strictly increasing sequences
of integers that start with m and end with n is 2(r—m)+1l-2  gn-m-1,

(1 /4)%’;) = ("7') = (/DI(n)/(8}(n—5))] = (n—1)!/(4(n~5)!) => n! = 20(n—1)t =
n o= 20.

(%)

a) 2n b) 4n = 2%n ¢} 2%n

For a given n € N, we need to find k € N so0 that the three consecutive entries (2}, (;;;1)’

(&f;g) are in the ratio 1 : 2 : 3. [Consequently, n > 2 (and k > 0).] In order to obtain the

given ratio we must have

(a) =2() = (5e) =)

From (kil) = 2(:), it follows that Z(H}{fwk}! = (k+1}5{’:»§wk_m 02k4+2=n—k orn=

2 + 3k. Likewise, (hf;z) e 3{2) implies that 37 7;5»».%35 = Wﬁﬁ}:ﬁﬁﬁ’ and we find that
HE+2)(k+1) = (n—k){(n—k—1). Consequently, with n = 243k, we have 3(k+2)(k+1) =
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24.

25,

26.

27.

28,

(24 2k)(1 +2k), or 0 = k? — 3k — 4 = (k — 4)(k + 1). Since k > 0, it follows that k = 4
and n = 14. So the 5th, 6th, and 7th entries in the row for n = 14 provide the unique
solution.

0000 ¢ 0011 {y, 2}
1000 {w} 1011 {w,y,z}
1100 {w,z} 1111 {w,z,y,2}
0100 {z} 0111 {z,y,2}
0110 {z,y} 0101 {z,z}
1110 {w,z,y} 1101 {w,z,z}
1010 {w,y} 1001 [w, 2}
0010 {y} 0001 {z}

As an ordered set, A = {z,v,w, z,y}.

)+ (1) + (59 ()4 () () = () (1) 4 ()4 ()
(n+r-— ) (n+r) (n+2) + (n+2) + (n;ﬂ) +...+ (n:—:;l) + (njr) - (n-;—ﬂ) + (n-;'o‘) 4.+
{n—:—:-l- ) + (n-:—r) — (n—:§4> 4.+ (n+r-}) + (n-i»r) == (:j—;) + (n:r) — <n+:~1)

(a) S €S, thensince S = {4|A ¢ A} wehave S ¢ S.

(b) ¥ § &5, then by the definition of § it follows that § € S.

(b)

10 Random

20 Dim B(12), S(6)

30 B(1})=2:B2)=3B38)=5B4)=7

40 B(5) = 11: B(6) = 13: B(7) = 17: B(8) =

50 B(9) = 23: B(10) = 29: B(11) = 31: B(12) = 37
60 Forl=1Tob

w0 S(I} = Int(Rnd*40) + 1

80 ForJ=1Tol-1

90 If S{(J} = S(I) Then GOTO 70
100 Next J

110 Next I

120 Forl=1Ts 6
130 Ford=1Tc 12

140 I 8(I} = B{J) Then GOTO 170
1580 Next J

160 GOTO 240

170 Next

180 Print “The subset § contains the elements”;
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180 Forl=1Tod

200 Print S(I); “, 7

210 Next I

220 Print 5(6); “ and is a subset of B”

230 GOTO 290

240 Print “The subset S contains the elements”;
250 ForI=1To b

260 Print 8(I); “, 7;

270 Next I

280 Print 5(6); “ but it is not a subset of B”
200 End

procedure Subsetsf(i,z,k, I positive integers)
begin
fori:=1to 4 do
for j:= ++1 to 5 da
for k:= j+1 to 6 do
for l:=k+1to 7 do
print ({1,5,k,1})

end

Program List_subsets4 (Input, Output);
Const
Size = 10;
Type
Member. type = 1..Size;
Set.type = set of Member_ type;
Var
n: 1..8ize;
S: Set_type;

Procedure Write.set (5: Set_type);
Var

ir 1..5ize;
Begin

Write (*{");

For i := 1 to Size do
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Ifiin S then

Begin
S:= 8- [i;
IfS <> [], then

- Write (i:3, ¢

Else Write (i: 3);

End:

Writeln (‘});
End;

Procedure Subsets (LR : Set_type; i: Member_type);
Begin
Ifi <= nthen
Begin
Subsets (L + [i}, R, i+1);
Subsets (L, R + [i], i+1);
End
Else
Begin
Write.set (L);
Writeset (R);
End;
End;

Begin
Write (‘What is the value of n7’});
Readln (n);
Subsets ({1}, 1,2);

End.

Section 3.2

{a’} {iﬁﬁ;f}:} : i%} A {C> U~ {2}

(d) U-{2; {e) {48} () {1,2,3.4,58}

(&) ¢ (b} {2,4,8} @ {1,34,58}

(2} [2,3] (b) [0,7) {C} (~00,0) U (3, +00)
(d) [0,2)U(3,7) (e) [0,2) H 6N

(a) Since A = (A~ BYU(AN B) we have 4 = {1,3,4,7,9,11}. Similarly we find B =
{2,4,6,8,9}.
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6.

(b) C = {1,2,4,5,9}, D = {5,7,8,9}.

{a) (1) True {ii) False (1ii) False
(iv) True (v) True {vi} False

() () E Gi) B (i) D
(iv) D (v} Z—-A={2n+1n€ Z} = The set of all (viy E

{positive and negative) odd integers

(a) True (b) True (c) True (d) False (e) True
(f) True (g) True (k) False (1) False

(a) e ANC = (€4 and z€C)=>(z€ B and z € D), since A C B and
CCD=zecBND,so ANCCBND.

€ AUC =2 €A or z€C. If 2z € A, then 2z € B, since A C B. Likewise,
z€C==2>z¢€D Inecithercase, s € AUC =z € BUD,so AUCCBUD,

(b) Let AC B. We alwayshave § C ANB,solet 2€ ANB. Then 2 € A and z € B.
z€A=>z€ B, since ACB. z€B zcB=>zeBnNB==§,s0 AnB =§.
Conversely, for ANB =0,let t€ A. f z ¢ B, then z € B,so z € AN B = {. Hence
x€ B and ACB.

(c) Follows from part (b) by the principle of duality.

(a) False. Let U = {1,2,3}, A= {1}, B= {2}, C={3}. Then AnNC=BnC but
A # B.

(b} False. Let U = {1,2}, A= {1}, B={2}, C = {1,2}. Then AUB=AUC but
A # B.

(¢) z€A=>2€cAUC=2€ BUC. Soze€Borze (. ¥ z € B, then we
are finished. f z € C,then 2 € ANC =BNC and z € B. In either case, z € B s0
AC B, Likewise, y €« B=2> y c BUC =AU, soyc€ Aory € C. Hy € C, then
y € BNC =ANC. Ineither case, y € A and B C A. Hence A = B,

(d) Let z € A. Consider two cases: (i) z € U =22 ¢ AAC = ¢ ¢ BAC = z € B.
(ii) z¢C =%z AAC == ¢ § BAC == z € B, In either case A C B. In a similar
way wefind BC A, so A= 25,
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10.

11.

12.

13.

i4.

(2)

_.
AA(BNC) (AAB)N(4AAC)

From the Venn diagrams it follows that AA(B N C) # (AAB) N (AAC), so the result is
false.

(b) True (¢) True

(ANB)UC = {d,z,z} which has 2% —1 =7 proper subsets; AN (BUC) = {d} which
has 1 proper subset.

(a) © (b) Oand1

(a) $=(AUB)N(AUB)N(AUB)N(AUB)
(b) A=AU(ANB)

(¢) ANB={(AUB)N{(AUB)N(AUB)

(d) A=(ANBYU(ANY)

The dual of the statement ANB = A is the statement AUB =A4. But AUB = 4 <=
B C A, so the dual of the statement A C B is the statement B C A.

(a) False. Let U ={1,2,3}, A= {1}, B = {2}. P(A) = {0, A}, P(B) = {8, B},
P(AUB) = {8,{1},{2},{1,2}}, and {1,2} ¢ P(4) U P(B).

(b) X e PA)INP(B)<+=> X € P(A) and X € P(B) 4= X C A and X C B <=
X CANB <= X € P(AN B), so P(4)NP(B) = P(ANB).

(a) & (<)
A BiANBIANEB |AUuB | AU(ANB)
siol © 1] 1 0
6l1; 0 1 1 0
110 g 1 1 1
11} 1 0 0 1
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P

b)
ATAUA

0 0

1] 1
(d)
A|B|CIANB|AnC|(ANBU(ANC)
0j{0{0] © 0 1
olol1] o0 1 0
0j1{0]| © 0 1
0j1{1 0 1 0
1/0/0; 0 0 1
10111 0 0 1
1l1(0}f 1 0 0
1111 1 0 0
ANB|ANC | (AnBYu(AnT)

0 1 1

0 0 0

0 1 1

0 0 0

1 0 1

1 0 1

0 0 0

g 0 0
(a) 2°=64 (b) 2¢

(¢} In the columns for A, B, whenever a 1 occurs in the column for 4, a 1 likewise occurs
in the same position in the column for B.
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www.youseficlass.ir



16.

17.

18.

19.

20.

oy
£l
e

A{B|ClAUB|AnB|BNnC |{(AnB)u(BNC)

06j0:0 1 0 1 1

01011 1 0 1 1

01110 0 0 1 1

0:1411 0 0 0 0

11010 1 0 1 1

11071 i 0 1 1

13110 1 1 1 1

1111 1 1 0 1
Steps Reasons
(AnBYuBNn({(CnDyu(CnD))

= (AnBYU[Bn(CNn(DUD)) Distributive Law of N over U

= (ANBYU[BN(CNU)] DuUD=U

= (ANBYU(BNC) Identity Law [CNU = (]

= (BnA)yu((BnC) Commutative Law of N

= BnN{(AUC) Distributive Law of N over U

(a) AN(B~A)=AN(BNA)=Bn(AnA)=Bnih=49

(b) (ANBY)U(ANBNCND)|U(ANB)=(ANB)U(An B) by the Absorption Law
=(AUA)NB=UNB=F8

(c) (4~ B)U(AQB)W(AHB)U(AHB)-—An(BbB).nAﬂu A

(d) AUBU(AHBHC)“(AFB)U(AﬂB)H Cl=[{ANBYUANB)IN[ANBUC| =

(ANBYuT)=AuBuUT

e 7
U A = 47 = {1,2,3,4,5,6,7}, ) An = 4; = {1}.
[Fe=3 1 nw=l

ki W

UAnxAm3{1,2,3,...,?71»-”},&71}? ﬂA = Ay = {1}.
(a} [-6,9] (b) [-8,12] {c) B (d) [-8,—6)u(9,12]
@ 142 ® 23 @ R (&) [-23

mﬁﬁzmﬁﬁ'ﬂfigmatgﬁg for at least onet € [ <= 2 € 4;
sef sef

for at least ope s € I <= z € | J 4.
i€
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Section 3.3

Here the universe I{ comprises the 600 freshmen. If we let A, B C I{ be the subsets

A: the freshmen who attended the first showing

B: the freshmen who attended the second showing,

then U] = 600, |A] = 80, | B] = 125, and |4 N B| = 450.

Since [AN B} = [AU B| = 450, it follows that |4 U B| = 600 — 450 = 150. Consequently,
[AN B} = |A]| + |B| ~ |[AU B| = 80 + 125 — 150 = 55 — that is, 55 of the 600 freshmen
attended the movie twice.

Here the universe U comprises the 2000 automobile batteries. If we let A, B C I be the
subsets
A: the batteries with defective terminals

B: the batteries with defective plates,
then U/} = 200, |[AN B| = 1920, |B| = 60, and |4 N B} = 20.

Since AN B = AUB, it follows that |A U B| = 2000 — 1920 = 80. From |A U B| =
|A]l + |B| — AN B| we learn that |A] = |[AU B| — |B|+ AN B| = 80 ~ 60 + 20 = 40 ~ that
is, 40 of her 2000 batteries have defective terminals.

There are 2° such strings that start with three 1’s and 22 that end in four 0’s. In addition,
2% of these strings start with three 1’s and end in four 0’s. Consequently, the number that
start with three 1’s or end in four 0’s is

2% 4+ 28 - 2% = 512 4 256 — 32 = 736.

(a) Here AUBUC = C, so JAUBUC| = |C| = 5000.

(b) Here ANBNC = § as well, so it follows from the formula for |JAUBUC| = [A]+|B|+|C| =
50 + 500 + 5000 = 5550.

() |[AUBUC| = |[A|+|B|+|C|-ANB| - |[AUC|-|BNC|+[ANBNC| = 50+ 500 +
5000 -3 ~ 3 —~ 3+ 1 = 5542.

9! 4 9! — 8! 6. {a) 12 by 2 (¢) 186

{a) There are 24! permutations containing each of the patterns O U T and D I G. There
are 22! permutations containing both patterns. Consequently there are 2(241) — 22!
permutations containing either O U Tor DI G.

(b} There are 26! permutations in total. Of these there are 24! that contain each of the
patterns M A N and A N T and 23! that contain both patterns (i.e., contain

M A N T). Hence there are 2(24!) - 23! permutations that contain either M A N or
AN T and 26! — [2(241) — 23!} permutations that contain neither pattern.

For the pattern F U N we consider four cases.

(a) F U N __ .. Here the blanks can be filled in (36)° ways.
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ia.

(b} _-F UN ... Here the blanks can be filled in (26)(36)> ways.

(¢} --FUN _. Again there are 26(36)* ways to fill in the blanks.

(d) -..F U N. There are also 26(36)* ways to fill in the blanks here.

Consequently the number of six character variable names containing F U N is (36)° +
3(26)(36)? — 1, because the variable F U N F U N is counted in both case (a) and case (d).
There are also (36)° + 3(26)(36)? — 1 of these variables that contain T I P and two that
contain both ¥ U N and T 1 P. Consequently, the number of these six character variables
that contain either F U N or T I P is 2[(36)° 4 3(26)(36)% — 1] — 2.

The circle labeled (i) is for the arrangements with con-
%%i) (’5%}! sseutive S’s; circle (i1} is for consecutive E’s; and circle

{iii) for consecutive L’s. The answer to the problem
ig the number of arrangements in region 8 which we
obtain as follows. For region 5 there are 10! ways
to arrange the 10 symbols M,I,C,AN,0,U,SS,EE,LL.
For regions 2,4,6 there are (11!/2!) — 10! arrange-
ments containing exactly two pairs of consecutive let-
ters. Finally each of regions 1,3,7 contains (12!/(2121))~
2[{111/21)~10!1] 10! arrangements, so region 8 contains
- [131/(21°]—3[121/(2121)]+ 3(111/21) —~ 10! arrangements.

The number of arrangements with either H before E, or E before T, or T before
M equals the total number of arrangements (i.e., 7!} minus the number of arrangements
where E is before H, and T is before E, and M is before T. There are 3! ways
to arrange C, I, S. For each arrangement there are four locations (one at the start, two
between pairs of letters, and one at the end) to select from, with repetition, to place M, T,

E, H in this prescribed order. Hence there are (3!)(4*"2”1) = (3!)(:) arrangements where

M is before T, T before E, and E before H. Consequently, there are 7! — (3!) (Z)
arrangements with either H before E, or £ before T, or T before M.

Section 3.4

(a) Pr(A)=|Al/IS|=3/8
{(bY Pr(B)=|B|/IS|=4/8=1/2

(¢ AnNB={ac}so PriANB)=2/8=1/4

(d) AU B = {a,b,c,e,4} so Pr{AUB) = 5/8

{e) A={de fg,h} and Pr(Ad) =5/8 =1~3/8 =1~ Pr(4)
(fy AUB = {a,c,d,e, f,g,h} with Pr{AUB) =T7/8

(g) ANE = {b} so Pr(AnDB) =1/8.

(a) §={{z,y)lz,y € {1,2,3,...,20}}
{b} 8= {(’:E’i ?})53‘73 €{1,2,3,...,20},2 # ¥}
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1&0

Here each equally likely outcome has probability = = 0.04. Consequently, there are

25
024 __ :
e = 6 outcomes in A.

The probability of each equally likely outcome is 9&}2 = 0.02 = -f; Therefore, n = 5%;5 = 50.

(a) (§)/(%) =15/66 = 5/22 = 0.2272727 ...
®) (D) + )6+ QO (E) =21/ =7/22=1-1(5)/(3)]

S = {{z,y}z,y € {1,2,3,...,99,100}, 2 # y}
A= {{z,z+ 1}z €{1,2,8,...,99}}

18] = (17" = 4950; |A| =99

Pr{A) = 89/4950 = 1/50

S ={{z,yHz,y € {1,2,3,...,99,100},z # y}
A= {{z,y}{z,y} € 8,2 +y is even}
= {{z,y}{z,y} € 5,2,y even} U {{z,y}|{z,y} € 5,2,y odd}
181 = (1) = 4950; |4] = (¥) + () = 2450
Pr(A) = 2450/4950 = 49/99

8§ = {{a,b,c}la,b,c € {1,2,3,...,99,100}, a # b, e # ¢, b 5 ¢}

A = {{a,b,c}|{a,b,c} € S,a+ b+ cis even} = {{a,b,c}{a,b,¢c} € §, a,b,c are even, or
one of a, b, ¢ is even and the other two integers are odd}

181 = (') = 161,700; }4] = () + (7) (%) = 19,600 + 61,250 = 80,850

Pr{A) = 80,850/161, 700 = 1/2.

The sample space § = {{(zy, %3, 23, T4, T5, 76 )|7; = Hor T, 1 < i < 6}. Hence [§] = 2° = 64.
(a) Here the event A = {HHHHHH} and Pr(A) = 1/64.
(b) Theevent B = {HHHHHT, HHHHTH HHHTHH HHTHHH HTHHHH,
THHHHH)} and Pr(B) = 6/64 = 3/32.
(¢} There are 6!/(4!12!) = 15 ways to arrange two heads and four tails, so the probability
for this event is 15/64.
{(d}) 0 heads: 1 arrangement

2 heads: [61/{2M41}] = 15 arrangements

4 heads: [61/{4121)] = 15 arrangements

6 heads: 1 arrangement
The event here includes exsetly 32 of the 64 arrangements in §, so the probability for an
even number of heads is 32/64 = 1/2.
(e) 4 heads: [61/(412!}] = 15 arrangements

5 heads: [61/(5!1!)] = § arrangements

6 heads: 1 arrangement
Here the probability is 22/64 = 11/32.

@ () (E)/(%) = (4-4845)/177100 = 0.10943
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i1.

12,

13.

14.

15.

16'0

by (O ()/(%) = (364 45)/177100 = 0.09249

@© GO )/(E) =4-9-45)/177100 = 0.00915
{a) Let § = the sample space = {{(z1,22,23)]1 € 2; £6, 1 =1,2,3}; |§] = 6* = 216.

Let A = {{z1, 22, 23|21 < 23 8nd 2y < 23} = U{(n Z3,Z3)in < 25 and n < z3}.

nal

For 1 <n <5, {{n,z3,23)irn < 23 and n < 23} = (6 — n).
Consequently, |A| = 5% + 4% + 3% 4+ 22 4 1% = B5.
Therefore, Pr{ A) = 55/216.
(b) With S as in part (a), let B = {{(z1, 22, 23)lz1 < 22 < 23}.
Then [{(1,z3,23)]1 < 23 < z3}] = 10,

H(2,22,23)2 < 23 < a3}| = 6,

g{(:}s '7:2)333)}3 <zp < 563}5 = 37 and

!{(4, .’132,.'33)!4 < By X %3” =1,
s0 |B| = 20 and Pr(B) = 20/216 = 5/54.

(a) 10 (b) 1 (c) 4/15

(a) W=1 (b) [(141) + (141)]/(15!) = 2(141)/(15!) = 2/15
(c) (2)(9){13‘)/ (151) = 3/35

{a) 24/300 = 0.08
(b) (i) There are 180 students who can program in Java. Two can be selected in

12@ ways. The sample space consists of the (320) pairs of students. So the proba-

bility that two students selected at random can both program in Java is (126) / (3?}) -
(180)(179)/(300)(299) = 0.36. (i) (*7*)/(°") = 0.29.

Pr(A) = 1/3; Pr(B) =7/15, Pr(ANB) = 2/15; Pr(AUB) = 2/3 Pr(AUB)=2/3 =
(1/3) + (7/15) — (2/15) = Pr(A) + Pr(B) — Pr(AN B).

(a) 2[(51/201/1(71/(2121))] = 120/1260 = 0.0952

(b) [(T1/(212D) - 2((61/21) — 51) — BT/ (2121))] =
[(71/(2121)) — 2(6!/21) + BT/ (212))] =
[1260 - 720 + 120]/(1260) = 660/1260 = 0.5238

Section 3.5

Prid)y=1-Pr(d)=1~04=08

PrB)=1~Pr(B)=1-03=07

Pr(AUB) = Pr(4)+ Pr(B)~Pr(ANB)=04+03-02=05
PriAUB)=1-Pr{AUB)=1~05=05

Pr{ANEB) = Pr(A)— Pr(ANB) because A = (ANBYU{ANB) with (ANB)nN(ANB) = §
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So Pr(ANB)=04~02=02

Pr(ANB)= Pr(B)~ Pr(ANB)=03-02=0.1
Pr{AUB)=Pr(AnB)=1~Pr(ANB)=1-01=09
PrAUB)=Pr(ANB)=1~Pr(ANB)=1-02=08

(@ ()& = () () = 0.109375

) (&G + (06 }7 D+ (3@ =GO + () + ()1 = 0.144531
() (§)(3)*(2)" =0.100375 |

@ )3+ DA+ ()ErG = GrIE) + ) + ()1 = 0144531

(a) S = {(x’y)!xﬂy E {19273'}"'? 10}7:5 # y}'

(b) For 1 £ y <9, if y is the label on the second ball drawn, then there are 10 — y possible
values for z so that (z,y) € § and z > y. Counsequently, if A denotes the event described
here, then |A] =9+ 8+ 7+ .- +1 =45 and Pr(4) = |A|/|S] = 45/90 = 1/2.

(c) Let B = {(v,w)|v even,w odd}. Then we want Pr(BuUC) where BNC = §. So
Pr(BUC)=Pr(B)+Pr(C) =84+ 8 =2 =3

Here Pr{A) = 52, Pr(B)=%, Pr(C)= g, Pr(ANB)= &, Pr(AnC) =
PrBnC) =L and Pr(ANBNC)=%. So
Pr(AUBUC’) ;’;‘+§g+§.§.—§%w%_%+%“ﬁm%_

Since A, B are disjoint we know that Pr(AUB) = Pr(A)+ Pr(B),so Pr(B) =0.7-0.3 =
0.4.

Pr(AAB) = Pr(A) + Pr(B) - 2Pr(AN B)

(a) Let p be the probability for the outcome 1. Then for 1 < n < 6, the probability for the
outcome n is np and p+ 2p + 3p + 4p -+ 5p+ 6p = 1. Consequently p = 1/21.

So the probability for a 5 or 6 is 3 + 2= %
2

(b) The probability the outcome i is even is 4 2444812
(1-B=2=24 242,

{(a) Let z be the outcome on the first die and y the outcome on the second die. Here we
want Pr(z =6,y = 4) 4 Pr(z =5,y = 5} + Pr(z = -i ,¥ = 6)). So the probability a 10 is
rolled is (X&) +(EHE) + (& }(23} = 2424 iU = B 2, 165533

{(b) The prohabxhtv of rolling an 11 i (EXZ)+(EX 21} = & For 12 the probability is
(EXE o 4:&1 So the probability of rolling at least 10 is mﬁiﬁi = 182 = 0.383220.
(c) (31}2 A+ (EV 4 ()R = MEEEREIIANE0 - B = 0.206349.

Here the sample space § = {zy2z334a5le; € {H, T}, 1 < ¢ < 85} So |8 = 2% = 32. The
event A of interest here is A = {HHHHH HHHHT BHHTH HHHTT,HHETHT,

Pr{d)=38 = & = 13 =052 Pr(B) = S£30415 = 105 - 21 = (.84
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11.

12.

13.

14.

15.

16.

i7.

Pr{ANB)= & = 12 = (.48

Pr(AUB) = Pr(A} + Pr(B) — Pr(AN B) = 0.52 + 0.84 — 0.48 = 0.88
Pr(A) =1 Pr(A)=0.48 Pr(B) =1~ Pr(B) =0.16
Pr(AUB)=Pr(A0NB) =1~ Pr(ANB) = 0.52
Pr(ANB)=Pr(AUB)=1~Pr(AUB)=0.12

Pr(AAB) = Pr(4) + Pr(B) ~2Pr{ANB) = 0.52 + 0.84 — 2(0.48) =

(2) () % 241 1—« 2= 3—? = 0.710526
g

{b\! (l *;;'5*“%”5';6;“"1‘“8'(}223377 .
() £ -&+F% 8 =35+ = 35 = 0.049861

(i) PrAUB) =1~ Pr(AUB)=1-1=4

(it Pr{AU B) = Pr(A) + Pr(B) - Pr(A N B). Here Pr{A) = Pr(B), so Pr(AU B) +
Pr(An B) = 2Pr(A), or 2Pr(A) = $ + § = 1. Hence Pr(4) =

(iii) Pr(A — B) = P{(AN B). SmceA (AF‘;B)U(AHB) Where (ANB)N{ANDB) =

we have Pr(A — B) = Pr(4) — Pr(ANB)=1-1=

5

(iv) Pr(AAB) — Pr(A) + Pr(B) - 2Pr{(ANB) =1 + % _o(ly =2,

i(if’) (f;’) +(DE)+ M+ EOWE) - () - ()
= [(252)(126) -+ (210)(84) + (120)(36) + (45)(9)]/[92378 — 1 — 10]
= (31752 + 17640 + 4320 + 405)/92367 = 54117/92367 = 0.585891.

(a) Ann selects her seven integers in one of (3:) ways. Among these possible selec-
tions there are (1;) that are winning selections. So the probability Ann is a winner is

(1;)/@0) = 330/3,176,716,400 = 0.000000104. [Using a computer algebra system one
gets 0.1038808501 x 1078,
{(b) The probability of having two winners is (0.000000104)* = 0.1079123102 x 10~1% -

NOT very likely.

In general, B = BNS = BN(AUA) = (BNA)U(BNA). With A C B it follows
that B = AU(BNA), and since AN(BNA) = BN{ANA) = Bnb = @, we have
Pr(B) = Pr{A)+ Pr(BnA). From Axiom (1}, Pr(A), Pr(BN4) > 0, so Pr(B) > Pr(A).

Since AU B C 8, it follows from the result of the preceding exercise that Pr{d U B) <
Pr(§)y =1. Sol 2 PrlAdUDB) = Pr(d) + Pr(B) ~ Pr(AN B), and Pr(AN B >
PriAY+ Pr(B)~1=07+05-1=02
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Section 3.8

Let A, B be the events
A: the card drawn is a king
B: the card drawn is an ace or a pmture card.

Pr(A%B)x r(ANB)/Pr(B) = (£)/(8) =4 = 1 =0.25.

Pr(AnB) Pr(A)+ Pr(B) — Pr(AU B)
0.64+04-0.7=03

Pr(AlB) = Pr(ANB)/Pr(B)=2=2=075

A=An(BUB) = (AN B)U (4N B), with (AnB)m(An"’E) = ANH = B, so
Pr(A) = Pr(AN B)+ Pr{ANB).

Therefore, Pr(AN B) = Pr(A) - PT(A n B) 0.6 — 0.3 = 0.3, and Pr(A|B) =
Pr(ANB)/Pr(B)=03/[1-04] =93 = 1= = 0.5.

ihonou

Let A, B be the events
A: Coach Mollet works his football team throughout August
B: The team finishes as the division champion.
Here Pr(B|A) = 0.75 and Pr(A) = 0.80, so Pr{(ANB) = Pr(A)Pr(B|A) = (0.80)(0.75) =
0.60.

Let A, B be the events
A: a given student is taking calculus
B: a given student is being introduced to a CAS.

{a) Here we want Pr{BlA).
Pr{A) = (170 + 120)/420 = 29/42
Pr(BnA)=170/420 = 17/42
So Pr{BlA) = Pr(BnN A)/PT’(A) () /(&) =1

{(b) In this case the answer is Pr{A|B).
Pr(B) =1~ Pz (B) =1~ [(170 +80)/420] =1~ 2 = I
P?(gﬁ ﬂ) = “ﬁ‘* “”mg%
So Pr(A(B) = Pr(AnB)/Pr(B) = (3)/(3) =

In general, PriA U B) = Pr(A) + Pr(B) — Pr{A D E}. Since A, B ave independent,
Pr{An B) = Pr(A)Pr(B). So

Pr{AUB) Pr(A)+ Pr(B) — Pr{A)Pr(B)
Pr{A) +[1 — Pr(A)|Pr(B)

Pr{A) + Pr{A)Pr({B).

I

The proof for Pr(B) + Pr{B)Pr{A) is similar.
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10.

Let A, B denote the events
A: first toss is a head
B: three heads are obtained in five tosses.
(a) Pr(B|A) = Pr(BNA)/Pr(A) = ( )( )*/(3) = £ = 3. [For the event BN A we consider
?35 }number of ways we can place two Hs &nd two Ts in the last four positions. This is
2}

(b) Pr(B{A) = Pr(BnA)/Pr(A) = (1) /(})=4=1

Let A, B denote the events
A: Bruno selects a gold coin
B: Madeleine selects a gold coin

(a) Pr(B) = Pr(BnA)+ Pr(BnA)

= Pr(A}Pr(B!A) + Pr (X)Pr(Bg'A’)

= (15)( ) + (15)( 255 igg g_g
(b) Pr(A|B) = P;(:i;m = "’T"ﬁ»’:’;f” ’

(B}
{(15}( ]/( mﬁ§~%
A {TH,TT}, Pr(4) = (})(3) + (1) =

2_
ste=5=3
= {TT,HH}, PT(B)"(}“)Z"F( )2 sts=3
Aﬂ B = {TT}, Pr(Aﬂ By=(1}=1
Pr(ANB)=1=2 4 18 =(3)(%) = Pr(A)Pr(B), so A, B are not independent.

Pr(AUB) = Pr(A)+ Pr(B) - Pr(ANB)
= Pr{A)+ Pr(B) -~ Pr(A)Pr(B),
because A, B are independent.
06 = 0.3+ Pr(B)—(0.3)Pr(B)
0.3 = 0.7Pr(B)
So Pr(B) =73

(a) Let 4, B denote the events
A: Alice gets four heads (and three tails)
B: Alice’s first toss is a head.

Pr(A|B) = Pr(AN B)/Pr(B) = &) ﬁﬁ“"“l}“ = ()P =2 =& =031%.

{(b) Let A, C denote the events
A: Alice gets four heads {(and three tails)
C: Alice’s first and last tosses are heads.

Pr{AIC) = Pr(ANC)/Pr{C) = & ’{z}jj}’;{; LU ()

() = B = & = 0.3125.
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12.

13.

14.

ib.

is.

17.

Pri) = Q@@+ EEEr+ Q6
P10+ =8=1
Pr(B) = 1
Pr(AnB) = (DG + () @07+ (3
(+641=4=}
Since Pr(ANB)=1=()}) = p?”(A)P?"(B), the events A, B are independent.
(0.95)(0.98) = 0.931

Let A, B be the events
A: Paul initially selects a can of lemonade
B: Betty selects two cans of cola.

Pr{AlB) = £ ;’fig)ﬁ = B ’5’;?;’55;9*"3
Pr(A) = ‘1‘1" _ _
Pr(B) = Pr(A)Pr(BlA)+ Pr(A)Pr(B|4)
= (11)(13)( )+(11)(13)(12)
- {n){m)(n) — 6 . 8 __ %
So Pr(AlB) = ym(4) s EnEE) = @426 = 3 = 5°

Pr(AUBUC) = Pr{A)+ Pr(B)+ Pr(C)— Pr(ANB)— Pr(AnC) - Pr(BNC)+
Pr(ANBNC) = Pr(4)+ Pr(B) + Pr(C) — Pr(A)Pr(B) — 0 — Pr(B)Pr(C)+0.
Note: 4, C disjoint = ANC=8= ANBNC=0=Pr(ANBNC)=
0.8 = 0.2+ Pr(B)+ 0.4~ 02Pr(B) - 0.4Pr(B)
02 = 04Pr(B)
So Pr(B) = $=05

Let A, B denote the events
A: the first component fails
B: the second component fails.

Here Pr(A) = 0.05 and Pr(B|A) = 0.02. The probability the electronic system fails is

Pr(ANB) = Pr(A)Pr(B|4) = (0.05)(0.02) = 0.001.

Let R, B, W denote the withdrawal of a red, blue, and white marble, respectively. Here

we are interested in the following cases (with their corresponding probabilities).

RRE: Pr(RRR) = ()& )5)

RRB,RBR,BRR:  Pr(RRB)= (&) &)%) [= Pr(RBR) = Pr(BRR)]
RRW,RWR,WRR: Pr(RRW) = (E£}Z)) [= Pr(RWR) = Pr(WRR)]
RBB,BRB,BBR: Pr(RBB)= (3} E)$) [= Pr(BRB) = Pr(BBR)|

Consequently, the probability Gayla has withdrawn more red than white marbles is

SUBM TP UORRIO 2OMUAH O HOENE 247 s nx
L %ms}(i% S o T4 o 198 = (597523,

in gez:xaml, PriAUBUC) = Pr{A)+ Pr(B)+ Pr(C)~ Pr(ANB) - Pridn ()~
PrBNC)+ Pr(ANn BnC). Since A, B, C are independent we have
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18.

19.

20.

21.

22.

1 — Pr(AUBUC) = Pr(A)+Pr(B)+Pr(C)Pr(A)Pr(B)—Pr(A)Pr(C)~Pr(B)Pr(C)+
P?"(A)P?“(B)PT‘(C) =(3}) +( )+ P?"(C) = ($)5) = (RPr(C) — (HPr(C) + G)HPr(C).
Consequently, + — 1 — ;} +E=1-1~-14+21Pr(C) and Pr(C)= £

Let A, B, C, D denote the following events

A: the graphics card comes from the first source

B: the graphics card comes from the second source

C: the graphics card comes from the third source

D: the graphics card is defective.

Then

Pr(A) = 0.2, Pr(B) =035, Pr(C) =045

Pr(D|A) = 0.05, Pr(D|B) = 0.03, Pr{D|C) = 0.02

(a) Pr(D) = Pr{DNA)+ Pr(DNB)+ Pr(DNC) = Pr{A)Pr(D|A) + Pr(B)Pr(D|B) +
Pr(CYPr(D|C) = ({).2}(0.(}5) +(0.35)(0.03) + (0.45)(0.02) = 0.0295.

So 2.95% of the company’s graphics eard are defective.
(b) Pr(C|D) = P4O00) — BOPAIIC) = [(0.45)(0.02)]/(0.0295) = 18/59 = 0.305085

Here A = {HH,HT} and Pr(4) = ;;—; B = {HT,TT} with Pr(B) = }; and C =
{HT,TH} with Pr(C) = 1.

Also AHB = {HT}, so PriANB) = 1= (3)3) = Pr(A)Pr(B); ANC = {HT}, so
Pr(AnC) =1 =(3)}) = Pr(4)Pr(C); and BNC = {HT} with Pr(BNC) = (3) =
3= Pr(B )Pr( C’). Consequently, any two of the events A, B, C are independent.

However, ANBNC = {HT} so Pr(ANBNC) = ; # 1 = (1(3X3) = Pr(4)Pr(B)Pr(C).
Consequently, the events 4, B, C are not independent.

(0.75)(0.85)(0.9) + (0.75)(0.85)(0.1) + (0.75)(0.15)(0.9) + (0.25)(0.85)(0.9) = 0.57375 +
0.06375 -+ 0.10125 + 0.19125 = 0.93. |

(a) For 0 < k £ 3, the probability of tossing k heads in three tosses is (3)(1)"’ 1)3" =
()(L)?’ The probability Dustin and Jenmfer each foss the same number of heads is

mﬂ(k} PP =(3 }6() {) (} () 1=0GF1+9+9+1] =2 = £ % 0.3125.
{b) Let z count the number of heads in Dustin’s three tosses and y the number in Jennifer’s.

Here we consider thecases wherez = 31y =2, 1,00 iz =2y = lor Oy 2z = 1 y = 0. Thc
probability that Dustin gets more heads than Jennifer is ( )(3“ ¥l (2)(1)2{ )+ ( }(i)(

(; )(f—}ﬁ BIOZOIRIO )* &+ e = {é}ﬁimwwu)ﬁw}m
1+ (3PE)ND = (51(22) =

(¢} Here the answer is Eiﬁmwi&@ %«iy

{Note: The answers in parts (2}, (b}, and {¢) sum to 1 because the union of the three events

for these parts is the entire sample space and the events sre disjoint in pairs. Consequently,

upon recognizing how the answers m parts (b}, (c) are related we see that the answer to

part {b) is (%){1 - m} ( )(l ) = w 3

We need the {equal) probabilities for the disjoint events: {1} One cousin gets a head and
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23.

24.

2&0

286.

the other four get tails; (2) One cousin gets a tail and the other four get heads.

The probability for event (1) is (5)(1)° = £. So the answer is 5 + & = 2.

Let A, B denote the following events:

A: A new airport-security employee has had prior fraining in weapon detection

B: A new airport-security employee fails to detect a weapon during the first month on the
job. ‘

Here Pr(A) = 0.9, Pr(4) = 0.1, Pr(B|4) = 0.03 and Pr(B|4) = 0.005.

The prdbability a new airport-security employee, who fails to detect a weapon during the

first month on the job, has had prior training in weapon detection = Pr{A|B) = !i%é(g%ﬂ =

Pr(A)Pr(BIA). _ _ Pr{A)Pr(B|A) _ = .
Pr{BnA)+Pr(BnA) Pr(A)P'r{BiA}»e»Pr(A)Pr(BiA) = (0.9)(0.005)/[0.9)(0.005) + (0.1)(0.03)] =
0.0045/[0.0045 -+ 0.003] = £ = 2 = 0.6.

Let 4, B, € denote the events

A: the binary string is a palindrome

B: the first and sixth bits of the string are 1

C: the first and sixth bits of the string are the same

(a) Pr(A]B) = Pr(AN B)/Pr(B)

Pr(B) = (1)(Q)(AX1)(1)1) = %, where each 1 is the probability that a given poe;lt:oa
(second, %hxrd fourth, or fifth) is ﬁlled with a 0 or 1.

Pr(ANB) = (%)(1)(1}(%)(%)(%) = i, where, for example, the first 1 is the probability
that the second position is filled with a 0 or 1, and the third } is the probability that the

bit in the fifth position matches the bit in the second position.

Pr(AIB) = Pr(An B)/Pr(B) = ()/(}) = 5

(b} Pr(A|C) = Pr(ANC)/Pr(C)

Pr(C) = ()(YDO))F) + (OB
for the two disjoint events where the binary strings start and end with 0, or start and end
with 1,

PriAnC) = (1)51“‘(1)(3“}( ) + (A )3

PriA|C) = [§ + /1% "‘””{)U"”

{a) There are (Z) = 10 conditions ~ one for each pair of events; { z\} = 10 conditions - one
for each triple of events; [:i) = 5 conditions —~ one for each quadruple of events; and (Z} =1

condition for all five of the events. In total there are 26 [= 2° — {g) - {‘:’}} conditions to be
checked.

{(by 2" ~ (“} - ( } = 2"~ ] ~n = 2" — (n + 1) conditions must be checked to establish the
independence of 1 events.

Since 0.3 = Pr{An B= Pr{AUB), it follows that PriAUB) =1~ 0.3 =0.7.
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27.

28.

29.

30.

2.

Pr(AABJAU B) = PHUALAIOLEP) = Pr(AAB)/Pr(AUB) =

[Pr(AU B) — Pr(ANB)|/Pr(AU B) = (0.7 - 0.1)/(0.7) = 0.6/0.7 = 6/7.

Let By, By, B,, B;, and denote A denote the events

B;: for the three envelopes randomly selected from urn 1 and transferved to urn 2, ¢
envelopes each contain §1 while the other 3 — 1 envelopes each contain $5, where 6 <1 < 3.
A: Carmen’s selection from urn 2 is an envelope that contains §1.

Here, Pr(A) = Pr(AN By) + Pr(AN By)+ Pr(AN By) + Pr(AnN Bs)
== PT(B@)PT(A§BQ) 4 PT(B;)PT{.‘HB}} -+ Pr (Bg PT(A&BQ) - PT(B;;)P‘:’“(A}B;},)

= 1(e) 6)/ (NG + 16) G)/ (16 + 1G) C)/ GG + LG )/ (i) =
(33)(11)+( )( )+( ){11)'{'(91)&11}*
(91)(“)[42 + 168 + 150 + 30] == 390/10@1 = 30/77

Pr(Bl|A) < Pr(B) = Pr(BN A)/Pr(A) < Pr(B) = Pr(BN A) < Pr(A)Pr(B).

Consequently, Pr(ANB) = Pr(BNA) < Pr(A)Pr(B), so Pr(A|B) = Pr(ANB)/Pr(B) <
Pr(A).

0.8 = Pr(A|B) + Pr(B|A) = PGPl + HBOA) — Pr(4 n B)[(1/0.3) + (1/0.5)], so
(0.15)(0.8) = Pr(An B)[0.5 + 0.3] = (0.8)Pr(A N B). Consequently, Pr(AN B) = 0.15.

Pr(AU B) — Pr(AAB) = Pr(AN B) = 0.7~ 0.5 = 0.2. Since 0.5 = Pr(A|B) = Pr(AN
B)/ Pr(B), it follows that Pr(B) = Pr(AN B)/0.5 = 0.2/0.5 = 0.4. '

0.7= Pr(AUB) = Pr(A)+ Pr(B) —~ Pr(AN B) = Pr{A) + 0.4 — 0.2, so Pr(A) =

Section 3.7

(a) Pr(X = 3) = }

B PrX )=, o PriX=a)=F+i+i++1=1
() PrX>0) =i, PriX =z)=1+is+isict
(PrlcX <3 = m.-IPr(X»@ngi.@.gmg
- PriX=2and X <3) Pr(X=2) 1 1
\ Ee < = —
(e}P?‘(X Qi}A 3) P?(XﬂS) P{ng} {}/i +4+4}

( Wiz )m< o )“"’“
(ﬁ}?r{X(iarX é}m?’r(X {})“%*Pr{XMI)TPr(X f)=1+14+1=

£ s

(a) Pr(X =3) = %1 - 10 - &
{b}}%{}&'f’ﬁm}:’r{j&’wﬁ}%?mxm}_} m+uim}+1m§2+é £
() Pril< X <3)=Pr(X = )4+ Pr(X =2)= iﬁ”i ﬁf«mwe‘§+«-wﬁml

(d) Pr{X > -2 = xma Fr{X = 1,) - 3{0}‘«5-1 + 3{1};»1 “%M 3{23~H + 3{3§+1 - H«Mu.m - gg =1
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3D +1 3(2) +1 4 1

22 A 22)/( T2
B 1ig
(a) PriX =z) = %l,waEQ s 5.
10 )
(b) Pr(X = 4) = (s (Z&} ) - k(gé?'fgi}?é = 193::;’21“8&%24 = 2,22;,57343 = 0.000121

LAY S ¥1 10 110

@ Pr(X 2 4) = Pr(X =)+ Prx =5) = B8 GIE) sz _ g
139 — = 0.000123.

1,134,303
(d) PriX =1X <£2)=
(10)(i20)/(120)
{((lﬁ)(110)/(1%))+{(10)(1iﬂ);(l%))+((10)(119)/(120))l
110 10 116 10 110 10 1310

= (1)(4)/((9)(5)%" )+ (2}(3)2
= (10)(5, 773,185)/[(1)(122, 301, 522) + (10)(5, 773, 185) + (45)(215, 820)]
— 57,731, 850/[122, 391, 522 + 57, 731,850 4- 9, 711, 900]
= 57,731, 850/189, 835,272 = 2675/8796 = 0.304116.

(a) Xyv PrXi=uazy) = é;%(%)m(%):i-—z; — %31;(%)3 2y =0,1,2,3.

Xy Pr(Xe=2z3) = 5‘2 (3= = 5’2 (1) 22 =0,1,2,3.

X Pr(X=-3) = Pr(X;=0)Pr(X;=3[X;=0)=(J)3)31) =)
Pr(X =-1) = Pr(Xy=1Pr(X,=2|X;=1)= %? GPO) = B)3)
PriX=1) = Pr(X;=2Pr(X;=1)X;=2)= 3)(1)3(1) = (3)(1)°
Pr(X=3) = Pr(X;=23)Pr(X,=0/X=3)= (3)(1)°(1) =}y

() B(OXG) = T2 ei Pr(s = 1) = 0- ()37 +1- ()37 +2- ()3 +3- ()3 =
0+2+84i=U=3= 3(%) = np, since X is binomial with n = 3 and p = 1].

E(.Xz, == %

E(X) = (-3)(3) + (-1} + (DAY +3(3)° = 0= E(X;) ~ B(X,)].

(a) Pr(X > 3} wm e P X =2)=Pr(X =3+ Pr(X =4)+ Pr(X =5)+ Pr(X =
B)=g+5+5 ~‘i~w“§"’"*
(b)) Pr2 < < X L) =30, PriX =2)=Pr{X =2+ Pr{X =3)+Pr(X =4)+ Pr(X =
Sy=i+l+l4l=2=1

AL Pr(X=4adX>3) _Pr(X=4)
o) PriX =4]X > 3) = T2 (1/6)/(4/8) = 1/4.
(A BEX)=TS aPriX =2)=T5_, x-{é) = (W1 +24+3+445+86) = (3)21)=T/2
() B(X) = ey o' Pr(X =2)=(){1+4+9+16+25+36) = (3)(01) = &

PriX=1and X <2) Pr(X=1)
Pr(X < 2) T Pr(X <2)

Var {X) = E(X? - B(X)?
= (W) (1P =8 4 1mnd B
6 2 [ 4 12 12

@1=cTin g S=co(ld i+ 34+ )= (BRI o C(m} =), s0c= L.
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10.

11&

{(b) Pr(X >3) = Pr{X ;32)—;— Pr(X = - ;) + F;(X};(S)%* c()g i ;ﬁ + A2 12{} (43)( —fé.
r{X = 4 an >3 7 4 3

(c) PrX =4{X 23) = Pr(X >3) L PrXz®) " }(24)/ (43 57

{(d) B(X) = - 1 € PT(X = ) “-( )z:e_l

= (43)}:5:1 f:v = (43){1 "5' + % Z+ g: + ggi

= (43)( 317) = 3L 9 457364

(e) E(XZ) — (:% 25:1 %{ — (43)[1 + i8 + &1 + 2;? ?gg] (43)(321 e 30?

Var (X) = B(X?) — B(X)? = 2 — (A2 = 158 - 17300505,

(a) 1= x“iPr(Xmw)—"c‘}_:z..l(ﬁmx)wc(5+4+3+2+1)~10c 300”1/15
(b) Pr(X £ 2} =Pr{X =1) -%—PT(X =2)=(LE-D+{(F)E-2)=L=2

(c) E(X) = 1-7” -PriX =z)= —-1’” (15)(6 z)

= (A)N1-5+2 4+3-3+4-245-1] = (3)(35) = 2

(d) B(X?) = ¥, 0% (FH6—2) =

(L)1-5+4-4+9- 3416-24 25 1] = (L)(105) =
Var (X) = B(X?) — (X)) =7T— (}) = 8 _ s

Let the random variable X count the number of heads in the 100 tosses. Assuming that
the tosses are independent, this random variable is binomial with n = 100 and p = 2. So
Wayne should expect to see E(X) = np = 100(2) = 75 heads among the results of his 100

tosges.

Since X is binomial, E(X) = 70 = np and Var (X) = 45.5 = npg. Hence, we find
that 45.5 = 70g, so ¢ = 45.5/70 = 0.65. Consequently, it follows that p = 0.35 and
n = 70/p = 70/0.35 = 200.

Let the random variable X denote the player’s net winnings and let C denote the cost of
playing one round of this carnival game. The probability distribution for X is as follows:

z Pr(X = z)
A
- 582“”3?3
-C 52 13
C 36"'3—

52
Here 0= B(X) =403~ O+ 2B~ C)+ E(-C)= 2+ 2 - Cand O = £ = 2. So the

game is fair if the player pays two dollars to play each round.

Here X is binomial with n = 8 and p = 0.25.

(a) Pr(X = 0) = (§}(0.25)°(0.75)* = 0.100113

(b) Pr(X = 3) = (3)(0.25%(0.75)° = 0.207642

(¢) Pr(X 2 6) = Pr(X = 6)+ Pr(X = 7)+ Pr(X = 8) = ($)(0.25)%(0.75)" +
(3)(0.25)(6.73)" + (£)(0.25)%(0.75)° = 0.004227.

, PriX 26and X >24) Pr(X 26)
(d) Pr(X 2 61X 24) Pr(X > 4} Pr(X > 4)
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12.

13.

14’

15.

16.

17.

Pr(X 2 4) =52, (3)(0.25)7(0.75)%= = ($)(0.25)%(0.75)* + (£)(0.25)°(0.75)>+
(5)(0.25)%(0.75)? + (5)(0.25)7(0.75)" + (3 )(0 25)8(0.75)° = 0.113815

So Pr(X > 61X > 4) = 0.004227/0.113815 = 0.037139..

(e) B(X)=np=28(025}=2.

(f) Var (X) = np(1 - p) = 8(0.25)(0.75) = 1.5

Here ox = /9 = 3.

(2) Pri11 < X £23) = Pr(11 - 17T < X - 17 <23 - 17) = Pr(— 6<X«~1?<6)

= Pr(JX — 17} £ 6) = Pr(|X - E(X)I(ZUx)>1—«“‘““1"”“‘§

by Pril0 € X <24) = Pr({X ~ 17| < T) = Pr(IX —EX)| £ $)ox) 2 1 - 1/(£P =
1--«-M‘m

(c) Pr(s Sx< 26) = Pr(lX —17] < 9) = Pr(]X — E(X)| <30x) 21— =1-1=

@i

In' Chebyshev’s Inequality PrﬂX EX) L kox) 2 1~ ,}2 If1— & = 0.96, then
1-0.96 =004 =%, and k* = zL;. Since k > O we have k = - = 5.
Here Var (X) =4 soox =2and c=koy = §-2 = 10.

Here X is binomial with n = 20 and p = 1/6. So E(X) = np = (20)(}) = £ = 12 and
Var (X) = np(1l - p) = 20)(3)(2) = 5

Let D denote a defective chip and G a good one. T hen the sample space § =
{D,GD,GGD,GGG} and X(D) =1, X(GD) = 2, and X{GGD) = X(GGG) = 3.
(a) Pr(Xml) = A=1
Pr(X =2) = (16)( §) =3
PrX =3) = (FNZ7 )(18) +(UBIED) =
(b) Pr(X <2)= Pr(X~1)+Pr(Xm2)~3+1§-—§§-{)’— .
PriX=1land X < Pr(X =1 19
=z < == W e
(¢) Pr(X =1]X <2) Fr(X <2) Pr(X <) = (5 )/{19
(d) B(X) = SiePr(X = o) = 19 +2() +3(B) =3+ F+ 5 = E%&Q =% =
2.431579
(€) E(X?) = Tomy 2’ Pr(X =) = 1D +4(F) +9() = s+ G+ T = G0 = F

95 86

= (.645319

Var (X) = B(X?) - B(X) = 22 (231) 5824 5824

95 ~\95/ " (952 9025

(a) E(aX +8) = D faz+b)PriX =) = a L aPr(X =z)+0 3, Pr{X = a) = aB{X)-+5,
since 3, Pr{X = 2) =1,
{h} Vor (aX + 8) = T [{az 4 B) ~ ElaX 4 BPFPr(X = 1) =

¥ ol{az + b) — {aﬁ?‘(k’} + )P Pr(X = ) [from part (a)] = ¥ (ax — e E{(X)PPr(X =z) =
o Doz~ B(X)¥Pr(X = z) = o Var (X)

(a) B(X(X - 1)) = Liago(z — i}P?“(}{' = )
= Thepala = DPr(X = ) = Sl s(e — ) (oo
=50 dy,{g%).z:(m - Ljp®g™~®

83
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= T oo 0" = pn(n ~ 1) 1, T g

= p’n{n — 1) 1022 T%ﬁp g+ substituting z — 2 = y,

= pPn(n — 1) T srlatgpbe i

= p’n{n ~ 1)p ~§~ ¢)" % by the Binomial Theorem

= p’n(n — 1)(1)*? = p*n(n ~ 1) = n’p’ ~ np*

(b} Var (X) = E(Xz) E(X)z E(X(X ~ 1))+ E(X)] ~ E(X)? = [(n?p? ~ np?) +np] ~

(np)? = n?p? ~ np® + np — n?p? = np — np® = np(l - p) = npqg.
18, (a)Pr(X >1)=Pr(X =2)+Pr{X =3)+Pr(X =4)=03+02+01=06=1-04=
1-—-Pr(X <1
(b) Pr(X =3|X > 2) = = X ; &a‘f 2}; 22) _ Pr(X =3)/Pr(X > 2) =
Pr(X =3)/[Pr(X =2) + Pr(X =3) + Pr(X =4)] = 0.2/0.6 = 1 /3
() E(X)= Z;wl ePri{X = z) = 1(0.4) + 2(0.3) + 3(0.2) + 4(0.1) =
() E(X?) =12, 22Pr(X = z) = 12(0.4) + 2%(0.3) + 3%(0.2) + 42(0 1)=5
Var (X)=B(X) -~ E(X)P? =5-22=5~4=1

(2) Word z, the number of letters and apostrophes in the word
i 4
make 4
him 3
an 2
offer 5
he 2
can’t 5
" refuse 6
T Pr{iX = z)
19, 2 2/8=1/4
3 1/8
4 2/8=1/4
5 2/8=1/4
6 1/3
(b)Y E(X) g @ Pr(X = z)

= 2(1/4) + 3(1/8) + 4(1/4) + 5(1/4) + 6(1/8)
= (1/8)[4 + 3 + 8 + 10 + 6] = 31/8
(¢} E(X?) =31i,a* Pr{X=2)
= 4(1/4) + 9(1/8) + 16(1/4) + 25(1/4) + 36(1/8)
= (1/8)[8 + 9 + 32 + 50 + 36] = 135/8
Var (X) = E(X?) - E(X) = (135/8) ~ (31/8)% = [1080 — 961]/64 = 119/64

20. () Pr(X = 0) = (0.05)(0.1)(0.12) = 0.0006
Pr(X = 1) = (0.95)(0.1)(0.12) + (0.05){0.9)(0.12) + (0.05)(0.1)(0.88) = 0.0114 + 0.0054 +
0.0044 = 0.0212.
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21.

4.

Pr(X = 2) = (0.95)(0.9)(0.12) + (0.95)(0. I)(G 88) + (0.05)(0.9)(0.88) = 0.1026 + 0.0836 +
0.0396 = 0.2258
Pr(X = 3) = (0.95)(0.9)(0.88) = 0.7524
[Note that 0 _o Pr(X = z) = 0.0006 + 0.0212 + 0.2258 + 0.7524 = 1]

> wd X >
(b) Pr(X > 2X > 1) = = T(Xp;« (‘?):ii g D - Pr(X > 2)/Pr(X > 1) = [0.2258 +
0.7524] / [0.0212 + 0.2258 + 0.7524] = 0.9782/0.9994 = 0.978787272
(¢) B(X) = T - Pr(X =) = 0(0.0006) + 1(0.02122) + 2(0.2258) + 5(0.7524) = 2.73.
(d) E(X?) = $2_,2* - Pr(X = z) = 0*(0.0006) -+ 1%(0.0212) + 22(0.2258) + 32(0.7524) =
7.696 .
Var (X) = E(X?) — E(X)? = 7.606 — (2.73)? = 0.2431.

PrX =2 =1Q) V() =110 Pr(X =3)=[()())/() = 2/10

Pr(X =4) = () (V) =3/10 Pr(X =5)={({) () (t) = 4/10

E(X) = (1/10)(2)+(2/10)(3) +(3/10)(4) +(4/10)(5) = (1/10)[2+6+12+20] = 40/10 = 4
E(X?) = (1/10)(4) + (2/10)(9) + (3/10)(16) + (4/10)(25) = (1/10)[4 + 18 + 48 + 100] =
170/10 =17

Var(X) = E(X?) - E(X)! = 17— 16 =1, 50 0x = V1=1.

Supplementary Exercises

Suppose that (A~ B)C C and 2 € A—C. Then z€ A but 2¢C. ¥f z ¢ B,
then [t € AN ¢ Bl=>2€(A~B)CC. Sonow we have z ¢ C and z € C. This
contradiction gives us z € B,s0 (A~ C) C B.

Conversely, if (A—-C)C B,let yc A~ B. Then y€ A but y¢ B. If y & C, then
lye ANygCl=>ye(A—-C)C B. This contradxctxon, ie, y€ B and y € B, yields
yeC,s0 (A-B)CC.

Let § = {z,y,a1,02,...,0,}. There are ("’jz) subsets of S containing r elements,
where r 2 2. These subsets fall into three categories. (a) Neither = nor y is in the
subset. There are (':) of these. (b) Exactly one of z and y is in the subset. These

account for 2{ rfi) subsets. (¢) Both 2 and y are in the subset. There are (?22) such
subsets. :

(a) U=1{1,23}, A={1,2}, B= {1}, C = {2} provide a counterexample.
(b) A= ANU = An(CUC) = (ANCY(ANC) = (ANCYW(A~-C) = (BNCY(B~C) =
(BnyuBnO=Bn{Cul)=BnlU =28

{c} The set assignments for part {a} also provide a counterexample for this situation.

{8} Consider m -+ n objects denoted by {zi,29,..., 2. U {ym,¥2,.- stn) Let 4 =
{4y s Tty B = {yh ¥t In selecting r elements from AUPB weselect L elements
from A (0 <k <m), and (r—k} elements from B (0 < r —k < n). Consequently, the
number of subsets of AUB with r elementsis (m:“) = (m)( )«i»( )(rn—x}‘é" . ~i~(*:) (;’;) =

85
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Theo (5) (0)-

(b) Replace m by n and r by n in part (a), and use the fact that (:’) (nfk) z‘(:’)ﬁ.

5. (a) 126 (if teams wear different uniforms); 63 (if teams are not distinguishable).
(b) 2% — 2;(1/2)(2" - 2). 2" — 2 — 2n; (1/2)(2" — 2 — 2n),

6. (a) False: Let A= {0,1,2,3,...}, B = {0,~1,-2,...}. Then A,B are infinite but
AN B =[{0}| =1 |
(b) Falser Let A= {1,2} and B =Z*.
(¢} True
{(d) False: Let A=1{1,2} and B =2Z"

7. (a) 128 (b) 4] =28
8. (a) 2 ) (e © (0
(d) 10 Random
20 Dim S(8)
30 Forl=1To08
40 5(I) = Int(Rnd * 15} + 1
50 ForJ=1Tol-1
60 If S(I) = S(J) Then GOTO 40
70 Next J
80 NextI
90 C=20

100 Rem C counts the odd elements of the subset
110 ForI=1To 8

120 H({S(I)/2) <> Int (8(1)/2) Then C = C + 1
130 Next i

140 Print “The cight-element subset generated ”;
150 Print “in this program contains the elements”
160 For I =1To 7

170 Print S(I); “”;

180 Next I

190 Print “ and ”; S(8); ¢, and 7; C;

200 Print “ of ﬁmﬁe elements are ﬁdd”

210 End

9. Suppose that (ANBYUC = AN(BUC) andthat 2 € C. Then 2z € C = 2 €
(ANBYUC =2z AN{BUC)C A,s0 z€ A,and CC A
Conversely, suppose that O C A. ‘
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10.

11.

12.

13.

14.

(1) ¥ ye{(AnB)UC,then ye ANB or ye C. (i) y€ ANB = y ¢
(ANBYU{ANC) =y e AN(BUC). (i) yeC =3 y¢€ 4,since CC A Also,
yeC=>yeBUC. So y € AN(BUC). In either case ((i) or {ii)) we have
yeAN(BUC),s0 (ANB)UCCAN(BUC).

(2) Nowlet z€ AN{BUC). Then z€e AN(BUC)=(ANB)U(ANC)C(ANBYUC.
From (1) and (2) it follows that (ANBYUC = AN(BUC).

(a) Here |AU B|~ |AN B| =5, so there are 2° subsets ¢ where ANB CCC AUB.
The number containing an even number of elements is (i‘) (for |C] = 4)+ (g) {for
iCl=6)+ (3 (for |C]=8)=16.

() 25 (5) + () + (3) = 6.

(a) [0,14/3] -~ ® {uey (c) [0,+00) @ ¢

(a) AAB=(A-B)U(B-A)=(B~A)U(A-B)=DBAA
(b) AAA=(A-~A)U(A-A)=AUd=U
(¢) AAU=(A-UNUU-A)=BUA=4
(d) AAB=(A-Bul-4)=Aub=A4

(a) |A|BIANB ,
—s 101 0 -0 Since A C B, we only consider rows 1,2,
e O} 0 and 4 of the table. In these rows A and
110 0 AN'B have the same column of results, so
— 1111 1 ACB= A=ANB.
(¢) |A|BICIANC | AnB | BNnC | (AnBYu(BNC)
—3 101070 ] O 0 0 0
010611 0 0 0 0
01110 0 0 1 1
61111 0 0 g 0
~s 111010 i 1 0 1
11011 o 1 0 1
—s+ {11110 1 0 1 1
—3 11111 £} ] 0 0

We counsider only rows 1,5,7, and 8. There ANC =(AnBYu(BNO).

{b) & {d) The results for these parts are derived in a similar manner.

(a) BCA=>AUB=A.
(b) (AUB=A) and (BNC=C)=+ANBNC=C.
(c) CDBDA=(AUB)N(BUD)=4uUT.
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15.

16.

19’?

&ﬂ*

(d) (AUB)N(BUZA)=C=>(AUC)N(CUA)=B and (BUC)N(CUB) = 4.

() The r O’s determine r + 1 locations for the m individual U's. If v 4+ 12> m, we

. 3
can select these locations in ("f} ways.

(b) Using part (a), here we have k 1's (for the elements of A) and n —k 0’s (for the
elements in U — A). The n -k 0's provide n— k<41 locations for the k¥ 1’s so that no
two are adjacent. These k locations can be selected in (“’”ZH) waysif n—k+12k
or 2k < n+ 1. So there are (’“’Z“) subsets A of U with |A]| =k and such that A
contains no consecutive integers. :

2/7 ' 17. (a) 23 (b) 8 18. 7

For the given figure let circles (i), (ii}, and (iii} denote
the subset of assignments where no one is working on
experiments 1,2,3, respectively. For each assistant there
are seven possibilities: the seven nonempty subsets of
{1,2,3}. So there are 7** possible assignments. To de-
termine the number of assignments in region 8 we need
to determine the number of assignments in the union
~of the three subsets. Region 5 has 0 elements, while
regions 2,4,6 each contain 1 element (e.g., for region 2,
" if all assistants are assigned only to experiment 3 then
this is the one way that everyone is working on an ex-
(i) periment, but no one is working on experiments 1 and

2).

In each of regions 1,3,7 there are 3**—2 elements (e.g., for regions 1,2,4,5 there are 3 cases
to consider where no one is working on experiment 1 - for each assistant can be working
on only experiment 2 or only experiment 3 or both experiments 2,3). The number of
assignments where at least one person is working on every experiment is 7' —3[{3"5 —2]-3.

Consider the Venn diagram shown on the left. From the
information given we know that
iy adbtetrdtet f=21—9=1%
(i) bdcet+f=h
{il} a+cte=7T and
{iv) a+b+d=6. _

- Adding equations (ii), (3ii) and (iv) we find that 2{a -+
bte)+(dte+ f)=18,80 12={a+b+c)+ {18~
%{a-+ b+ ¢)], and the number of students who answered
‘exactly one question is a4+ b+ ¢ = 6.
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21.

22.

Since |[ANB] =0, |AU B| =12 4+ 10 = 22. There are (22} ways to select seven elements

7
from AUB. Among these selections (142) ( l_f) contain four elements from A and three from

B. Consequently, the probability sought here is (142) (lf) / (2?2) = (495)(120)/(170, 544) =
0.3483.

(a‘) P(“) = {05{}*}9{2}&{3}1{312}7{153}9{2?3})1’{} and ZAE'P{M) O’(A) =1+2+3+
A+2)+(0+H+2+3)+14+24+3)=41+2+3)=2%(1 +2+3) = 24,

(b) 2(1+2+3+4) =280 () 241424 3+4+5)=240

(d) 211 +2+3+...+n)

Proof (1): Let z € &{. Then z appears in 1 subset by itself, (“;3‘) subsets of size 2,

(";1) subsets of size 3,..., (g:f) subsets of size k,..., and (::i) subsets of size n.

Hence z appears in a total of [("51) + (“1"1) + (“;1) e (ﬂ:i)} = 2"~% gubsets. So
Taepeno(A) =27 Loz =201+ 243 +... +n). _

Proof (2): Let € U. For each subset A CU, if z € A then z € A. Hence for each pair
(A, A) of subsets of U, exactly one of them contains z. How many such pairs are there?
(1/2)(2") = 2. Consequently, each z € U can be found in exactly 2" subsets of U
and the result for 3 cpp 0(4) follows. \

(e) Using the result from part (d) it follows that T ,cpgyo(4) = 27 1s.
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23.

24.

25.

46.

27.

(2)
by e - @en

S ot R — Moy g’
no diagonal one diagonal two diagonal
moves move moves
10} 1431 8 (o441 6 rr451
- (5> ( 5 ) + 4]\ 4 ) + 3 ( 5 )
N o S Rt
three diagonal four diagonal five diagonal
moves moves moves
43 5461 2\ (3471 0) (1481
e+ e+ e
e’ St . St
six diagonal seven diagonal eight diagonal
moves moves moves

EE) 0 )-E061)

® @ ()2 (D)6

(@) () (7)/ =5 (1) (G2) .

(@ ((5)+ (@) E) +OF) + Q@)+ QR =% () )
22— Tz2=-12=2"-T24+12=0= (2 -4) e - 3)=0=>z=4,2=3.

2P ez=6=2"-2-86=0=(z2-3)z+2)=0=>2=3,z =2
Consequently, AN B = {3} and AU B = {-2,3,4}.

2Tz < ~12=3 2 -T2 +12<50= (2 ~3)(z~4) 0= [(z—-3) <0 and (z —4) > 0]
orf{(z~3)>20and{z~-4)<0}=>[z2<3andec>4orfzr >23ande <4]=3<z <4,
so A= {z[3 <z <4} = [3,4]. :

22 -2<6=22~2-6<0=2(2-3)2+2)<0={z~-3)<0and{z+2)2>0 or
{(z-3)>20and(z4+2)<0l=>{z<3andz > ~2lorfz > 3and x> -2 = -2 <2 <3,
so B={2]-2<2 <3} =[-23]

Consequently, ANB = {3} and AUB = [-2,4].

The probability that all four of these torpedoes fail to destroy the enemy ship is
{(1--0.75){1 ~0.80){1 ~0.85){1 —0.90) == {(0.25)(0.20)(0.15)(0.10) = 0.00075. Consequently,
the probability the enemy ship is destroved is 1 — 0.00075 = 0.99925.

There are ﬁwz:e cases o mm:der
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28.

29.

30.

31.

32.

33.

34.

Consequently, the answer is the sum of these two probabilities — namely, ;,% + %GQ% = -;;%g— =
0.263672.

Let 8§ be the sample space for an experiment £, with events A, B C §. Prove that
Pr(A|B) > BRIl

Proof: P(A|B) = Pr(AnN B)/Pr(B) = [Pr(A) + Pr(B) — Pr(A U B)]/Pr(B). Since
AU B C 8, it follows that Pr{AU B) £ Pr(S) = 1. Consequently, —Pr(AUB) > ~1 and
Pr{A|B) > [Pr(A) + Pr(B) 1]/ Pr(B).

Pr(AnN{BUC)) = Pr{{ANBYU(ANC)) = Pr{ANB)+Pr(ANC)—Pr{(ANBIN(ANC)).
Since A, B, C are independent and (ANB)N(ANC)=(ANAIN(BNCY=ANBNC,

Pr(An(BUC)) = Pr(A)Pr(B) + Pr(A)Pr(C) — Pr(A)Pr(B)Pr(C) = Pr(A)[Pr(B)+
Pr(C) — Pr(B)Pr(C)] = Pr(A)[Pr(B}+ Pr(C)~ Pr(BNC| = Pr(A)Pr(BUC),s0 A
and B U C are independent.

Suppose we toss a fair coin n times and we let the random variable X count the number
of heads among the n tosses. Here we want Pr(X > 2) > 0.95, or 3}, (2)(%)*’(%)"”"‘ =

i, (B = 0.95.

Now i, ()2 2 095 = — 55, (G < =095 = 1 - 5, ()" < 1-0.95 =
Theo ()G < 0.05 = (1) +n(l)" = (n + 1)(3)" < 0.05
For n =7, (n+ 1)(1)" = 8( )"—~i-§§-0062.3

For n = 8, (n~%—1)( ¥ -*9( ¥ = ~—- = (.035156
Consequently, the minimum number of tosses is 8.

(a) The probability that both tires in any single landing gear blow out is (0.1)(0.1) = 0.01.
So the probability a landing gear will survive even a hard landing with at least one good
tire is 1 — 0.01 = 0.99.

{(b) Assuming the landing gears operate independently of each other, the probability that
the jet will be able to land safely even on a hard landing is (0.99)° = 0.970299.

For 4, B C 8,1 = Pr(S) 2 Pr(AUB) = Pr(d) + Pr(B) — Pr{A N B). Consequently,
Pr{AN B) > Pr(A) + Pr(B) - L

Iet A, B denote the events

A: the exit door is open

B: Marlo’s selection of two keys includes the one key that opens the exit door

The answer then is given as FPr{4) + Pr{'zﬁ B) = Pr{A) 4+ Pr(A)Pr(B) = (22,) +
OO =0+DBH=O+EH=5=1%

Let A, B, C denote events
A: the first and last outcomes are heads
B: the first and last outcomes are tails
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35.

36.

37.

38.

39.

40.

C: the eight tosses result in five heads and three tails.
The answer to the problem is Pr(C|AUB } But Pr(Cl4AUB) = Prggﬁgf» == Pr(({i}?ﬁggc;nm} .

Since A, B are disjoint, it follows that C' N A, € 1 B are disjoint. Further,

Pr(AUB) = Pr(4) + Pr(B)=(})*+ (1) =1

Pr((CNA)U(CNE)) = PrCnA)+Pr(CAB) = (DI DPEIG+DIE) G DIG) =
(3)%(20 +6) = 13()7 |

Consequently, Pr(C|AU B) = [13(3)]/(3) = (13)(3)y¥ =&

(3)(0.8)%(0.2)% + (£)(0.8)%(0.2) + (5)(0.8)° = 0.2048 -+ 0.4096 + 0.32768 = 0.94208

Pr(19,000 < X < 21,000) = Pr(—1000 < X — 20,000 < 1000) = Pr(|X — E(X)| < 1000)
Since Var {X) = 40,000 boxes? f we ha-we ax 200 boxes. So Pr(|X — E(X}| £ 1000) =
Pr(X - E(X)|<Box)>1-h=1-L=%= = 0.96.

Success: one head and two tails — the probability for this is (?)(%)1( %)z = %.
n=4,p=32
Among the four trials (of tossing three fair coins) we want two successes. The probability

for this is (3)(2)%(3)? = (6)(9)(25)/2" = 675/2" = £I&.

(@ (¥)/(F) =% -1 1 =21 =0363636

®) 3 E)/(%) = (3*)(m>(n><m> = 98 = 0.249351
(¢) i(z)(,) + ()/(2) - Bl _ s - 0200000

(8) 1 = T2 o Pr(X = z) = [0+ 4) +e(l+4)+ec(4+4)+c(0+4)+c(16+4) =
cld+ 5+ 8+ 13+ 20] = 50¢, so c = % = 0.02

(b)Y Pr(X > 1) =Pr(X > 2) = Pr(X = 2} + Pr(X = 3) + Pr(X = 4) = (0.02)(8) +
(0.02)(13) + (0.02)(20) = 0.02(8 + 13 -+ 20) = (0.02)(41) = 0.82
X=3and X >2) Pr(X=3)

(¢) Pr(X =3|X > 2) = 2 P = Pt e ~ ORS00 =
2 <0707 ~

(d) B(X) =4 gz PriX = z) = 0-(c)(4) + 1- (}(5) + 2+ (c)(8) + 3 (c){13) + 4 (e)(20) =
gsmwsswﬁ} = 140c = 2.8

(6) B(X?) = T4 0 2% Pr(X = z) = 0 (4 + 12. (Be) 4 2% - (8c) + 32 - (13¢) + 42 - (20¢) =

474¢ = 9.48

Var (X) = BE(X?) — B(X)* = 9.48 ~ (2.8)* = 1.64

For each student the probability that all five marbles are green is (7/11)°. Therefore, the
probability all 12 students draw only green marbles is [(7/11Y]*? = (7/11)®. Consequently,
the probability that at least one student draws at least one red marble is 1 — (7/11)%,
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41.

42.

43.

44.

{a) To finish with a straight flush, Maureen must draw (i) the 4 and 5 of diamonds; (ii)
the 5 and 9 of diamonds; or (iii) the 3 and 10 of diamonds. The probability for each of
these three situations is (g) / (‘ff) so the answer is 3/ ( )

(b) Maureen will finish with a flush if she draws any two of the remaining ten diamonds,
which she can do in ( ) ways. However, for three choices [as described in part (a}], she

actually finishes with a straight flush. Consequently, the answer here is {({f ) - 31/ (42?).

{c) To finish with a straight from 4 to 8, Maureen must select one of the four 4s and one

of the four 3s. This she can do in {‘;) (‘;) ways. For the straights from 5 to 9 and 6 to

10 there are likewise (g‘) (‘;) possibilities. However, these 3(:) (g} straights include three

 straight flushes, so the answer is [3 (‘:) (;‘) - 3}/ A(‘g’) .

HOOOOOGEE/E)

The total number of chips in the grab bagis 1+ 2+ 34 -+ n = n(n + 1)/2, and the
probability a chip with ¢ on it is selected is 2i/[n{n + 1)]. Let A, B be the events.

A: the chip with 1 on it is selected

B: a red chip is selected.

Pr(A|B)= Pr(AN B)/Pr(B) = Pr{A)/Pr(B).

Pr(4) =1/[n(n +1)/2] = 2/[n(r + 1)].

Pr(B) = [1+2+3+ - +m}/[a(n+1)/2] = [m(m+1)/2/[n(n+1)/2) = [m(m-+1)}/[n(n+1)].

Consequently, Pr(A|B) = Wﬁ%ﬁ% = 2/[m(m + 1)].
(a) 2z . Pr(X=uz)
I $1(1/6)° = 1/36
2 {3)(/6) =15/36 = 5/12
3 2)(1/6)% = 20/36 = 5/9
(b) B(X) =350,z Pr(X =z)=(1)(1/36) + (2)(15/36) + (3)(20/36)

= { 1/36)[1 + 30 + 60] = 91/36
(¢) E(X?) =33,2% Pr(X =z)=(1)(1/36)+ (4)(15/36) + (9)(20/36)
= (1/36)[1 + 60 + 180] = 241/36
Var {X} = B(X?) — B(X)? = (241/36) - (91/36)
== [8676 — 8281}/1296 = 305/1296
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45.

{a) Outcome

HHH
HHT
HTH
THH
HTT
THT
rTH
T

Probability z, the number
of Outcome of runs
(3/4)° = 27/64 1
(3/47(1/4) = 9/64
(3/4)(1/4)3/4) = 9/64
(1/4)(3/4)" = 9/64
(3/4)(1/4)* = 3/64
(1/4)(3/4)(1/4) = 3/64
(1/4)%(3/4) = 3/64
(1/4 = 1/64

Lan i o T - SN 2

The probability distribution for X:

1
2
3
(b) E(X)

(0 E(X?)

Pr(X = z)

(27/64) + (1/64) = 28/64 = 7/16

(9/64) + (9/64) + (3/64) + (3/64) = 24/64 = 3/8

(9/64) + (3/64) = 12/64 = 3/16

= 3 =1 T Pr(X =z) = (1)(7/16) + (2)(3/8) + (3)(3/16)
=(1/16)[7T+ 12+ 9] = 28/16 = 7/4

= Tom &0 Pr(X =z} = (1)(7/16) + (4)(3/8) + (9)(3/16)
= (1/16)[7 + 24 + 27] = 58/16 = 29/8

Var (X) = E(X?) - E(X)? = (20/8) — (7/4)* = (29/8) — (49/16)

So Ty

= (58 — 49)/16 = 9/16
= 1/9/16 = 3/4.
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CHAPTER 4
PROPERTIES OF THE INTEGERS: MATHEMATICAL INDUCTION

Section 4.1

(8) S(n): 12 +32 4+ 5%+ ...+(2n - 1) = (n)}(2n ~ 1)(2n +1)/3.

S(1): 1% = (1)(1)(3)/3. Thzs is true.

Assume S(k): 124+ 3% + ...+ (2k — 1)? = (k)}(2k — 1)(2k + 1)/3, for some k > 1.

Consider S{(k+1). [1?+32+ A2k 12+ (2k+1) = [(F) 2k - 1)(2k+1) /3] +(2k+1)? =
[(2k + 1)/3)[k(2k — 1) + 3(2k + 1)} = [(2k +1)/3][2k* + 5k + 3] = (k + 1)(2k + 1)(2k + 3)/3,
so S(k) = S(k+1) and the result follows for all n € Z* by the Principle of Mathematical
Induction.

(C) S(n) Eﬁ z(zil) nii

g(l) Zz-— i(t+1) = 'i'(ij = i‘;‘i‘, SO 5(1) 1s true.

As;sume S(ky: T, ;(‘ +1) Consxder Sk + 1)

szll i(i+1) Ez:l #{i41} + (k+1)(k+2) (k+1) + (k+1)(k+2) {k(k + 2) + 1}/{(1‘3 + 1)("’ + 2)} =
(k+ z)/(k +2), so S(k) == S{k+1) and the result follows for all n € Z* by the Principle
of Mathematical Induction.

The proofs of the remaining parts are similar.

(a) 5(r) : ¥iy 2t =2n -1

S(1): Ti, 27t =2t =2~ 1, s0 S(1) is true.

Assume S(k) Ewl 21 = 2% — 1. Consider S(k + 1).

T g1 o 3o 9i-1 O = 9k 1 4 0k = 2FH ) 50 S(E) == S(k 4 1) and the result

is true for all n € Z"' by the Principle of Mathematical Induction.

(b) Forn =1,T}, z(2’} =2 = 24 (1~ 1)2'*, so the statement S(1) is tme Assume

S(k) true ~ that is, 18, #(27) = 2+ (k ~ )28, Forn =k + 1,501 4(20) = T8 (29 +

(B 4+ 102 = 24 (k — 12 4 (B 4+ 1028 = 2 4 (28)2% = 24 k- 2%% 50 S(H} is true

for all n € Z* by the Principle of Mathematical Induction.

(¢} Forn =1, wefind that ., ()(#!) = 1 = (1 4+ 1}l — 1, s0 S(1) is true. We assume the

truth of Sf?s} - thaﬁ is, 8 i(i!) = (k+1)! — 1. Now for the case where n = k + 1 we have
S i(1) = T 60+ (1) (1 = (DI 14+ (k) (kD! = 1+ (k4 DR 1) -1 =

(k+2)(k+ 1}3 1= (k+2)!~1. Hence S{(k} == S{(k+1), and since S(1} is true it follows

that the statement is true for all n > 1, by the Principle of Mathematical Induction.

(a) From $2, 2+ (n+1P = T h (P43 +3i+1) = L, -+ 3, P +3 0 i+ 52, 1,
wehave (n+ 1P =330, ?+3 i+ (n+1). Consequenﬂy,
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6.

30, %2 = (P43 +3n+1)-3[n)n+1)/2] —n -1
= 0?4+ (3/2n* +(1/2)n
= (1/2)[2n® + 3n? + n] = (1/2)n(2r? + 3n + 1)
= (1/2m{n+ 1){(2n + 1), so

B it = (lfﬁ)n(n + 1}(2n 4+ 1) {as shown in Example 4.4).
(b)Y From Y0, i*+(n+ 1) = L0 JG+1) = T8 (04 4+453 462 +4i+1) = )1_,1 ORE S D
630 2+ i+, 1, it follows that (n+1)f =430 46370, 24430, 3‘§“L,wg
Consequently,
430 P = (n+ 1) —6n{n+1)(2n+1)/6] —4[n(n+1)/2] - (n+1) = n* +4n® +-6n? +4n +
1—(2n+3n*+n)—(2n’+2n)—(n+ D =n*+2r3 + n? = nY(R?+ 2n+ 1) = n¥(n+ 1)
So %, 4% = (1/4)n*(n + 1)* [as shown in part (d) of Exercise 1 for this section].

From Y0 ,¢% + (n + 18 = T2+ 1) To(® 4+ Bt o+ 106® 4 1042 + 51 + 1) =
TR st 10T P10, ‘5’52@—-12“‘?2‘;%1 we have 330, i* = (n +
1P — (10/4)n*(n + 1)? — (10/6)n(n + 1){(2Zn + 1) ~ (5/2)n(n + 1) ~ (n + 1). So

550 10 = nS 450t + 10n% 4+ 10n% 4+ 5n + 1~ (5/2)nt
=513 — (5/2)n* — (10/3)n® — 5n? — (5/3)n — (5/2)n? — (5/2n —n — 1
= n®+ (5/2)n* 4+ (5/3)n® — (1/6)n.

Consequently, 37, i* = (1/30)n(n + 1}(6n® + 9n? +n — 1).

Let #y,23,...,%2; denote the numbers (in their order on the wheel), and assume that
3:1 + Ty +x3 < 39,254 23 + T4 <39, .., 29+ 2es+ 21 < 39, and 295+ 71429 < 39. Then
3 3x; < 25(39). But 5%, 32; = 3 ZMI v = (3)(25)(26)/2 = (39)(25).

(a) 7626 (b) 627,874

a) The typical palindrome under study here has the form abba where 1 < a <9 and 0 <
b < 9. Consequently there are 9 - 10 = 90 such palindromes, by the rule of product. Their
sum is Yo (30 oabba) = Y2 T8 o(1001a + 1108) = YT0_.[10{1001e) + 110%D 4] =

0 1{10010¢ + 110(9 - 10/2)) = 1001030, a + $°9_, 4950 = 10010(9 - 10/2) + 9(4950) =
450450 + 44550 = 495000.

b) begin
sum = 0
fora:= 110 9% do
for b:=0 to 9 do
sum = sum -+ 1001 2 g+ 110 % b
print sum
end
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10.

11.

12.

4n+110 = 6+8+10+4---+[6+(n~—1)2
= 6n+[0+2+4+ - +(n—1)2
= 6n+2[1+2+ --+(n—1)
= 6n+ 2[{(n — 1){(n}/2]
= 6n-+(n—1)}{n)=n*+5n
nt+n—-110 = (n+11)}n—10) =0,
s no = 10 — the number of layers.

Here we have iiz =(n)}n+1)2n+1}/6 = (2n}2n+ 1)/2 = %i,

and (n)(n+1)2n+1)/6 =(2n)2n +1})/2 = (n)}(n +1}/6 = (2n)/2 =

(r+1)f6=1=n+l1=6=>n=_5

(a) T2t = T2y i~ T2 i = [(33)(34)/2] - [(10)(11)/2] = 561 — 55 = 506
(b) iy % = L%, 4% — TiZ, i = [(33)(34)(67)/6] — [(10)(11)(21)/6] = 12144

100 4o Y104 580 4 = (100)(101)(102)/6 — (50)(51)(52)/6 = 171,700 — 22,100 =
149, 600.

8) Thyta = Dy B = T, (22 +4) = 250, 2 + TL, i = 2[(n)(n +1)(2n.+1)/6] +
n(n+1)/2] = [n(n + 1)(2n + 1)/3] + [n(n + 1)/2] = n(n + {222 4 ] = n(n +1)[2F] =
n{n + 1)(4n + 5)/6.

b) T1% 4, = 100(101)(405)/6 = 681,750.

¢) begin
sum :=
fori:=1to 100 do
sum = sum + (2% ) % (2% ¢+ 1)/2
print sun
end

(2) (cos 8 + isin8)® = cos’ P + Zsinbcosd — sin? G == (cos® § — sin? ) + i{2sinbeos ) =
cos 26 + i sin 26.

{b} S(n) @ {cos@ +isind)” = cosnd +isinnd. 51} is true, so assume S(ﬁ“} (cos b +
isin @Y = (cos k#+isin kg). Consider S{k+1): {cosb+isin)*+! = {cos O+4isind)*(cos 4+
isind) = (cos kB -+ isin k) - (cos @ + isinb) = (cos k# cos § — sin k¥ sin 8) + i(sin Fcos k6 +
sin k8 cos @) = cos(k + 1)8 + isin(k + 1)0. So S(k) == S(k + 1) and the result is true for
all n € Z* by the Principle of Mathematical Induction. '

() (1 +§)'% = 2%(cos 4500° + § sin 4500°) = 2%(cos 180° + i sin 180°) = —(29).
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13.

14.

15.

18.

17.

(2) There are 49(= 7%} 2 x 2 squares and 36(= 6%) 3 X 3 squares. In total there are
12 4+2243% 4+ 8 = (B)8+1)2-8+1)/6 = (B)(9)(17)/6 = 204 squares.

(b) For each 1 € k < n the n X n chessboard contains (n — k -+ 1)? k x k squares. In total
there are 12+ 22 4+ 3% + ... + n? = n{n + 1)(2n + 1)/6 squares.

For n = 4 we have 2* = 16 < 24 = 4!, so the statement $(4) is true. Assume the truth
of S(k) ~ that is, 2 < kL. For k > 4,2 < k+ 1, and [(2F < BB A (2 < k4 1)] =
(263(2) < (BD){(k + 1), or 2% < (k + 1)! Hence S(n) is true for all n > 4 by the Principle
of Mathematical Induction.

For n = 5,2% = 32 > 25 = 5% Assume the result for n = k(> 5) : 2 > k. For
B> 2,kk—2)> 1,00 k2 > 26+ 1. But 28 > k% == 28 4 2% > B2 4 k7 = 2WH1 >
k* 4+ k? > k% + (2k + 1) = (k + 1)*. Hence the result is true for n > 5 by the Principle of
Mathematical Induction,

(a) 3 (b) s3=2; s4=4
(¢) Forn>1,8,= 3, ;};zn.

Proof: Forn=1,8 = % == 1, so this first case is true and establishes the basis step. Now,

for the inductive step, assume the result true for n = k(> 1). That is, 84 = Z ;’: = k.
B£ACK,

For n = k + 1 we find that spqq; = Z ;1;::: Z f;—%— E ;}g, where the
BEACKisy $£BC X, {k+1}COC Kt

first sum is taken over all nonempty subsets B of X and the second sum over all subsets

C of Xp4y that contain k + 1. Then spp1 = s + [(537) + (gp)se] =k + (g) + (3y)k =

k+ (7)1 +k) = k+ 1. Consequently, we have deduced the truth for n = k-1 from that

of n = k. The result now follows for all n > 1 by the Principle of Mathematical Induction.

{a) Once again we start at n = 0. Here we find that 1 =1+ (0/2) < H; = Hyp, so this
first case is true. Assuming the truth for n = k(€ N) we obtain the induction hypothesis

14 (k/2) < Hy.

Turning now to the case where n = k41 we find Howr = Hyu +[1/(2* + D)1+ [1/(25 +2)]+
oA L2 2 By + {122 [1/(2F 4 2F)] .+ [1/(28 4 28)] = e 4 2M 1280 ] =
Hy +(1/2) 2 1+ (/2)+(1/2) = 1+ (k + 1)/2.

The result now follows for all n 2 0 by the Principle of Mathematical Induction,
(b} Starting with n = 1 we find that
1
2 GH; = Hy=1={(2)(1)/21(3/2) - [(2)(1)/4] = [(2)(1)/2]H, ~ [(2)(1)/4].

F=1

a8
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18.

19‘

20.

Assuming the truth of the given statement for n = &, we have
k
2 i Hy = [(k+ 1)(k)/2] Hya — [(k + 1)(k)/4).
—

For n = k& + 1 we now find that

b1
> iH;= Z.?H +(k”‘i”l)ﬂk-§i

F==1 J=1

= [(k+ )(k)/2Higs — [(k + 1)(E)/4] + (b + D Hiw
= (k + 1)1+ (k/2)]Hipr — [(k + 1)(k)/4]
= (k + 1L + (k/2)][Hrra — (1/(k + 2))] - [(k + 1)(k)/4]
= [(k +2)(k + 1)/2 Hyyo — [(k + 1)(k + 2)I/[2(k + 2)] - [(k + 1)(k)/4]
= [(k + 2)(k + 1)/2]Hppz ~ [(1/9)[2(k + 1) + k(k + 1)]]

= [(k + 2)(k + 1)/2 Hipa — [(k + 2)(k + 1)/4].

Consequently, by the Principle of Mathematical Induction, it follows that the given state-
ment is true for all n € Z%.

2n-41
Conjecture: Foralln € N, (R + 1)+ (n?+2)+(n*+3)+...+(n+ 1)’ = 3 (n*+i) =

P

n® 4+ (n+ 10

2041 It 2t
Proof: Z(n +i)=n®) 14 Y i=n*2n+ 1)+(2n+1)(2n~;—2}/2 =

s=xl [ |

2n% +n? +(2n+3){n+1)—-—2n +n? +2n +3n+1l=n*+R*+32+3In+1] =
n3 4+ {n+ 1)

Assume S{k) true for some k > 1. For S(k + ), T = e+ (/224 (k+1) =
(B 4+ k) +(1/4)+ 2k +2)/2 = [k + 1P + (b + 1)+ {1/4)}/2 = [(k + 1) + (1/2)}*/2.
8 §(k) == Sk + 3.} However, we have no first value of & where 5(%) is true:

Foreach kb > 1,50, ¢ = (k)}(k + 1)/2 and (k)(k + 1)/2 = [k + (1/2)]*/2 == 0 = 1/4.

For n = 0,5 = {g;} and 0 cz}mpzwimma are required. Since 0 = (- 2% the result is
true when n = 0. Assume the result for n = &(> 0) and consider the case n = b+ 1. ¥
18] = 2%t then § = $;US, where | 53] = |53 = 2*. By the induction hypothesis the number
of comparisons needed to place the elements in each of 57, 53 in ascending order is bounded
by k-2F. Therefore, by the given information, the elements in 5 can be placed in ascending
order by making at most a total of (£-27)4+(k-25)4- (28 +2% 1) = (k+1)2F1 1 < (k41)28
COMIPArisons.
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21.

22.

23.

For z,n € Z*, let S(n) denote the statement: If the program reaches the top of the while
loop, after the two loop instructions are executed n{> 0) times, then the value of the
integer variable answer is z(n!).
First consider ${1}, the statement for the case where n = 1. Here the program (if it reaches
the top of the while loop) will result in one execution of the while loop: z will be assigned
the value z-1 = z{1!}, and the value of n will be decreased to 0. With the value of n equal
to 0 the loop is not processed again and the value of the variable answer is z(1!). Hence
S(1) is true.
Now assume the truth for n = k: For 2,k € Z*, if the program reaches the top of the
while loop, then upon exiting the loop, the vaiue of the variable answer is z(k!). To
establish S(k + 1), if the program reaches the top of the while loop, then the following
occur during the first execution:

The value assigned to the variable z is (k + 1).

The value of n is decreased to (k4 1) — 1 = k.
But then we can apply the induction hypothesis to the integers z(k + 1) and k, and after
we exit the while loop for these values, the value of the variable answer is (x(k+1))(k!) =
z(k + 1)}
Consequently, S(n) is true for all n > 1, and we have verified the correctness of this
program segment by using the Principle of Mathematical Induction.

If n = 0, then the statement ‘n 3 0 is false so the while loop is bypassed and the va.lue
assigned to enswer is = z + 0 - y. So the result is true in the first case.
Now assume the result true for n = k — that is, for 2,y € R, if the program reaches the
top of the while loop with k € Z, k > 0, then upon bypassing the loop when k = 0, or
executing the two loop instructions k(> 0) times, then the value assigned to snswer is
z + ny. To establish the result for n = k 4 1, suppose the program reaches the top of the
while loop. Since £ > 0,n =k 4+ 1 > 0, so the loop is not bypassed. During the first pass
through the while loop we find that

The value assigned to z is z + y; and

The value of n is decreased to (k+ 1)~ 1 = k.
Now we apply the induction hypothesis to the real numbers z-+y and y and the nonnegative
integer n — 1 = k, and upon bypassing the loop when k = 0, or executing the two loop
instructions k(> 0) times, then the value assigned to answer is

(e+y)+ky=z+(k+1y.
The result now follows for all n € N by the Principle of Mathematical Induection.

{a) The result is true for n = 2,4,5,6. Assume the result is true for all n = 2,4,5,.
k—1,k where k > 6. Ifn = k+1, then n = 2+ (k — 1), and since the result is tme fcar
k — 1, it follows by induction that it is true for & 4+ 1. Consequently, by the Alternative
Form of the Principle of Mathematical Induction, every n € Z*,n # 1,3, can be written
as a sum of 2’s and §'s '

(b} 24 = 5—*5-%-?%*? 25=5+6+3+8+5 26=04+74+T+7
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24.

25.

26.

T=0+84+8458+7 28=T747+74+7
Hence the result is frue for all 24 < n < 28. Assume the result true for 2¢ < n < 28 <k,
and consider n = k+1. Since k-+1 > 29, we may write k+1 = [(k+1)—-5]+5 = (k—4)+35,
where k — 4 can be expressed as a sum of §’s and 7's. Hence k 4 1 can be expressed as
such & sum and the result follows for all n > 24 by the Alternative Form of the Principle
of Mathematical Induction.

(a) a3 =3 gg =5 o = 8 ag == 13 ay = 21

(by @ = 1 < (7/4)", so the result is true for n = 1. Likewise, a3 = 2 < £ = (7/4)* and
the result holds for n = 2.

Assume the result true for all 1 <n € k&, where k > 2, Now for n = k + 1 we have a4 =
o+ aoy < (T/4)" + (T/4)* 7 = (7/4)H{(7/4) + 1] = (7/4)*77(11/4) = (7/4)*71(44/16) <
(7/4)°-1(49/186) = (7/4)*"1(7/4)* = (7/4)**!. So by the Alternative Form of the Principle
of Mathematical Induction it follows that e, < (7/4)" for all n > 1.

E(X) = LeePr(X =)= L, =(;)=( )Z;‘.w~—~( L)[ret) =
E(X?) = T,aPr(X =) =Yi,e(}) = (1) Th,a? = (2 ){“{““’“““)1»f"“’gfw)

Var(X) = E(X*) - EX)Y = (n+1)(2n+1) (nil) _ (n+1)[3~»rb~ 1]
= (n 4 1)[t20nid)) L-H)(nmn -

12'

L=

- i~1 (0 v — 2
&} a4y = im0 éégﬂifi““}}wi = Eagﬂgag = gy

3-1 {1 {1
ag = 0 Gili(g 1)~ = apdy + ( )Glﬂ»ﬂ = 2%

]

b) ez = %5 (szl)ﬂﬂ{a»})—a =Y ho (2)<Eeaz~:
= @)ﬁaaz + (1)211&1 + (2)62%
= ao(2a8) + 2a3)(ad) + (2a3)a = 6}

¢} ay = v*é ( )a‘aﬂ wi}ei B Zzwl} (?)%%w
= (§)aoss+ (J)aar + () man + (3)osao
= ao(Bag) + 3(af)(2a7) + 3(2a5)(a]) + (Bag)(ao)
~ 2448

¢} Formn 20, a, = (nhag*t.
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27.

28,

2!

Proof: (By the Alternative Form of the Principle of Mathematical Induction)

The result is true for n = 0 and this establishes the basis step. {In fact, the calculations in
parts (a) and (b} show the result is also true for n = 1,2,3, and 4.] Assuming the result
true for = 0,1,2,3,..., k(= 0) - that is, that a, = (n!)a}*! for n = 0,1,2,3,..., k(> 0)
~ we find that

Appy = E?:O f L

= b, (6N - ik

= 5 ()00 - i)lak

= Zfzﬂ kiag+2 v

= (k- 1)[Elab*?] = (k + 1)lak*2 A
So the truth of the result for n = 0,1,2,... ,k(> 0) implies the truth of the result for
n = k + 1. Consequently, for all n > 0, a, = {rl)ai*' by the Alternative Form of the
Principle of Mathematical Induction.

Let T' = {n € Z%|n > ny and S(n) is false}. Since S(ng), S(ne + 1), S(ng +2),...,8(n1)
are true, we know that ng,ng + 1,ng +2,...,ny € T. If T # @, then by the Well-
Ordering Principle T' has a least element r, because T € Z*. However, since S{(ng),
S(ne + 1),...,5(r — 1) are true, it follows that S(r) is true. Hence T = @ and the result
follows.

{(a) (i) The number of compositions of 5 that start with 1 is the number of compositions
of 4, which is 241 = 2° = 8. :

Gy 221=2"=¢ ' (i) 2*2'=2'=2

(iv) 21 =22=1 (v) 1

(b) In total, there are 2("*1}~1 = 2" compositions for the fixed positive integer n + 1.
For 1 € i < n, there are 2("t1-9-1 = 9"~ compositions of n -+ 1 that start with 7. In
addition, there is the composition consisting of only one summand - namely, (n +1). So
we have counted the same collection of objects — that is, the compositions of n 4+ 1 ~ in
two ways. Thisgives us 2% = 32 27 41 = (2" 1 4 22 4. 273 4 ... 4224214 20 4 1 =
(420 4284 2P 202 9 1 = T 2041 1. Consequently, 000 20 == 27 - 1.

Section 4.2

(8} ¢ =T;and (d}) e1=7; and

Cagt = O+ T, for n 2 1. Cna1 == €p, f0r 12> 1L
(b} ¢ =17 and ' {e} ¢ =1;and

Cypy = ?ﬁﬁm for n 2 1. Cpyy = €p + 2n -+ }h, for n > 1.
(¢} ¢ =10 and (f) c1=3,c2=1; and

Cng1 = €y + 3, forn > 1. , Cpag == Cy, forn > 1.

(a) For any statements py,ps,. .., Pa, Pret1, We define
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B.

{1) the disjunction of p;,p; as p, V p3; and
(2) the disjunction of py,Pe, .+, PryPrtt BY DIV RV ..V PV Py &
(PrVP2V .. VPa)V Pagr-
(b} The result is true for n = 3. This is the Associative Law of V of Section 2.2.
Now assume the truth of the result for n =& > 3 and all 1 < 7 <k, that is,
B VPV VPRIV (P V. V) & (VR Vo VP Ve Vo V)
When we consider the case for n = k 4+ 1 we must account forall 1 <r < k4 1.
1) r=Fkthen (mVpV...VP) Ve < ;1 Vpa V... VP V pryr, from our
recursive definition.
2) Fori1<r<k,wehave (3 Vpo V...V IV (Bea V...V Visa) < (M Vo V
W VEIVIDr Vo V) Ve S (Ve Vo VRV (e VoV R Y Py &=

(PrVpPV. . Vo VP Vo Vo VP = Ve V.o VP Vo Voo VeV by
So the result is true for all n > 3 by the Principle of Mathematical Induction.

Forn € Z%,n > 2, let T(n) denote the (open) statement: For the statements p, g1,92,- .., qn,
V(@A Ag) = EVa)APVa)A.. . A(pV ).

The statement T(2) is true by virtue of the Distributive Law of V over A. Assuming
T(k), for k > 2, we now examine the situation for the statements p,q1,42,..., ¢, Qo1
We find that pV{(aa A@ A .. AGAGu) < V@ A@QA. .. AG) A Gl &
Vi AaA.  AGlAP@Y@Gu) = pVa)AGVa)A APV EIA(PY gn) &
(pVa )A{(pVa)A.. . APV A(PV Qky1). It then follows by the Principle of Mathematical
Induction that the statement T'(n) is true for all n > 2.

(a) For n = 2, the result is simply the DeMorgan Law —(p, V p3) <=+ —p; A—p;. Assuming
the truth of the result forn = k, we find for n =k + 1 that =(p: Vpa V ... 01 V prg1) =
PV V. Vo) V] =2 (i VP Vo VD) A mppgr = (o1 A-pa AL A D) A
~Prs1 > P A-Pa AL A -PE A Ppyy, 80 the result is true for all n > 2, by the Principle
of Mathematical Induction.

{b) This result can be obtained from part {(a) by a similar argument, or by the Principle
of Duality for statements.

(a} (i) The intersection of Ay, A3 is 4; N A,.

(31} The intersection of A;, As,.. ., An, Asyy s given by A1 N4 N...NA N A =
(A AN N AN Angy, the intersection of the fweo sets: A, N4, N... N4, and 4,.,,.
(b} Let S(n) denote the given {open) statement. Then the truth of S(3) follows from the
Associative Law of M. Assuming S(k) true for some k 2> 3 and all 1 < r < &, consider the
case for & 4 1 sets. Then we find that

1} For r = k we have {.ﬁl ﬂx‘igﬂ cae ﬁﬂ&}ﬂ/&k*] = Agﬂﬁgﬂeu ﬂfihﬁfik.m, This
follows from the given recursive definition.

2) Forl <r< k we have {Ai ﬁAzﬂ...ﬂAy)ﬁ(Af.g.iﬂ...mz‘ikﬂAk+1) == (fi} ﬂf’igﬁ
s”ﬁAr)ﬂHfgm.g ﬂﬂAk)ﬂA&@li == g{.‘iz ﬂAgﬁw.ﬁ&}ﬁ{Aﬂq ﬂ”,ﬂﬁkﬁﬂﬁ,ﬂgxg =
(Aj ﬁAgﬂu”ﬁﬂrﬂAy@,} ﬁu.&ﬂA}g}ﬂAk.*ﬂ} == Aiﬂﬁgﬂ.a.ﬂ‘&fﬂfiré& ﬂ..eﬂﬁkﬁf;k%z.
So by the Principle of Mathematical Induction, S(n) is true for all n > 3.

103
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9.

(i) For n = 2, the result follows from the DeMorgan Laws. Assuming the result forn =k >
2, consider the case for k + 1 sets Ay, Ag,. .., As, Aggr. Then AN AN N AN Agyy =
(AN AN, NA)N A = (ANAN. NA)UAL = [AAUA U UAJUAL, =
A U4z u. . .Uﬁum, and the result is true for all n > 2, by the Principle of Mathematical
Induction.

(ii) The proof for this result is similar to the one in part (i). — Simply replace each
occurrence of N by U, and vice versa. (We can also obtain (ii) from (i) by invoking the
Principle of Dua}ity — Theorem 3.5.)

For n = 2, the truth of the result AN(B; UBy) = (AN B,)U{AN B,) follows by virtue of
the Distributive Law of N over U.

Assuming the result for n = k, let us examine the case for the sets A, By, By, ..., By, Byyy.
We have Aﬂ(B} U32UUBkUBk+1) = AN {(B} UB;U... UB;;)UB;;,;.J = [Aﬂ
(Bl UB;U...UB};)]U(A.HB;:JA) = {(AHB1)U(AHBQ)UU(Aan)]U(AmBk+1) =
(ANBHU(ANBU...U(AN B U{AN Biy).

(a) (i) For n = 2,; + z, denotes the ordinary sum of the real numbers z; and z,.
- (ii) For real numbers @;,23,...,2,,Zp41, We have 21 + 2o+ ... + Ty + ZTpyr = (21 +
Za + ...+ Ty) + Tpya, the sum of the two real numbers z; + 22 + ... + 2, and z,4;.
(b) The truth of this result for n = 3 follows from the Associative Law of Addition — since
zy + (29 + z3) = (21 + 22) + 23, there is no ambiguity in writing z; + z; + z3.
Assuming the result true for all k > 3 a,nd all 1 <r <k, let us examine the case for k+1
real numbers. We find that

1) Whenr =k we have (21 + 22+ ... + &)+ Zppq =21+ 22+ ... + 2, + 2,43, DY
virtue of the recursive definition.

2) For1<r<kwehave (zi+2z:+ ...+ 2. )+ {Zu+... + 24 + Tpp1) = (231 + 22 +

vtz et Fnal=mitn b b)) (@ b o) T =

(g3 422+ ...t 2t eprt.o )T =Ty + T2+ F Te F Tegr F o T Ty
So the result is true for all n > 3 and all 1 < v < n, by the Principle of Mathematical

Induction.

a) (i) For n = 2, the expression ¥;7; denotes the ordinary product of the real numbers z;
and z3.
(i) Let n € Z% with n > 2. For the real numbers 2y, 2,,...,%,, Tniy1, We define
TyTz Taniy = (Z1%2 " Tn )Tty

the product of the two real numbers 232, -+ 2, and ,4,.
b} The result holds for n = 3 by the Associative Law of Multiplication {for real numbers).
So zy(zy23) = (@129 )%3, and there is no ambiguity in writing z;2,23.
Assuming the resulf true for some (particular) £ > 3 and all 1 < r < k, let us examine the
case for k 4+ 1 (> 4) real numbers. We find that

1) When r = k& we have

AT B )Ty = LTy BBy
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10.

11.

iz.

by virtue of the recursive definition.
2) For 1 £r <k we have

‘ (2129~ ﬁr}(xrﬁ* EpTper) = (2129 ’mr)«xr%—i T xk)xk-i-})

= ((a”’w'lxz o '$r)($r+z ver $k))$k+z = {551332 RTINS I '%)%m

= ZiZg e Tplpgt T TET k4,

so the result is true for all n > 3 and all 1 € r < n, by the Principle of Matl:xemamca,l
Induction.

The result is true for n = 2 by the material presented at the start of the probiem. Assuming
the truth for n = k real numbers, we have, for n = b+ L ley + 2 + ...+ & + Z441] =
Hzr+ 2+ b 2p) + Zhga] Slesd 2+ b+ o] <]+ 2] + k] + [ Ereal,
so the resuit is true for all n > 2 by the Principle of Mathematical Induction.

Proof: . (By the Alternative Form of the Principle of Mathematical Induction)
For n = 0,1,2 we have
(n=0) ao42 =0z =12(V2)%
(n=1) @142 =a03=ay+dap=2> 2= (v/2); and
(nm2) a2+g$‘-a43a3+&1 ‘—‘:2+1:3222(\/§)2
Therefore the result is true for these first three cases, and this gives us the basis step for
the proof. ,
Next, for some k > 2 we assume the result true for all n = 0,1,2,... k. Whenn =k +1
we find that '
Gh1)42 = Ghis = Gepa + e 2 (V2P + (V2P = [(V2)? + 1)(V2)? = 3(v/2)F2

= (3/2D(VIV? = (3/2)(V2)* > (V2)H!, because (3/2) = 1.5 > V3 (= 1. 414). This
provides the inductive step for the proof.
From the basis and inductive steps it now follows by the Alternative Form of the Principle
of Mathematical Induction that a, 3 > {\/-2-}" for all n € N.

Proof: (By Maﬁhrematical Induction)
We find that Fy = ZF =0 =1~1:= F; — 1, so the given statemeni holds in this first

case — and this pmvxdes the basis step of the proof.

For the inductive step we nssume the truth of the statement when n = & (> 0) — that is,
k

that XFQ = F%g —~ 1. Now we consider what happens when n = k 4+ 1. We find for this

ey
case that

b1
Y B = (EF} +Fk+i = (Fiyz — 1)+ Fipr = (Frpa + Fipr) — 1 = ka -1,
ol 1}

so the truth of é}he statement at n =k impﬁies the truthat n =k + 1.
Consequently, ZF Fuy2—1for all n € N — by the Principle of Mathematical Induction.
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14.

15.

Proof: (By Mathematical Induction),
Basis Step: When n = 1 we find that

1
Fia F3 Fiio
et =R/2=0=1-(2/2) =1~ =1~ -,
so the result holds in the first case.
Inductive Step: Assuming the given (open) statement for n = k, we have z s"l =1- F;:z .

(53]

When n = k -+ 1, we find that

EF, ¢ 1*1 F Firyo  F
N T R S

g2l PR

=14 (1/2)[F, — 2F1s) = 1+ (1/2")[(Fi — Frga) — Fraal
=1+ {1/2k+1){“’Fk+1 — Figa] =1~ (1/2k+1)(Fk+1 + Figa) =1~ (Fk+3/2k+1)*

From the basis and inductive steps it follows from the Principle of Mathematical Induction
that
Vn e Z* Z(le/z*) =1~ (Fo42/2").

i=1

Proof: (By Mathematical Induction)
For n = 1 we find
DP=12=1=(1)3)-2=ILL,~2,

so the result holds in this first case.
Next we assume the result is true when n = k. This gives us ZL = LyLgyy — 2. Then

EEa
k41

for n = k+ 1 we find that ZIﬁ ZLZ 4Ll =Ll — 2+ L = LyLy + L2, —

= Lppa( D+ Lipga ) — 2= Lkw}-iLkv&-? - 2
Consequently, by the Principle of Mathematical Induction, it follows that

Vang 2t 3 I3= Lolap — 2.

jm

Proof: (By the Alternative Form of the Principle of Mathematical Induction)

The result holds for n = { and n = 1 because

{ﬂ B 0‘) 5%4.3 5F2 = 5{1) S=T7—2 = L4 s Lg = L@+4 - La, and

(ﬂm 3.) 5ﬂ+2m5ﬁg——5(2)—m W0=11 1= Ls"'i:q »Lg.@;@*’izl

This establishes the basis step for the proof.

Next we assume the induction hypothesis — that is, that for some &k (2 1), 5F, 43 =
Lpg—Lpforalln =0,1,2,...,k~ 1,k It then follows that for n = &k + 1,
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5F(ks1)42 = BFiys = 5(Fipa + Fry1) = 8(Fiaz + Flr-ays2)

= 5Fpia + 5F 1)z = (Lipa — L) + (Lg—1)44 — Liw1) = (Liga — Li) + (Liya — Liy)

= (Lgpg+ Liys) — (Lk+ Liw1) = Lggs — Leps = Lgs1)44 — Ligr — where we have used the
recursive definitions of the Fibonacci numbers and Lucas numbers to establish the second
and eighth equalities.

It then follows by the Aliernative Form of the Principle of Mathematical Induction that

Yn & N 5Fn+2 = Ln+4 - Lu.

16. (a) Let E denote the set of all positive even integers. We define E recursively by
(1) 2€ E; and '
(2) Foreachn€ E,n+2€ E.
(b) If G denotes the set of all nonnegative even integers we define G recursively by
(1) 0€G;and '
(2) Foreachme G, m+2¢€G.

1 (a) Steps - Reasons
(1) o7 1o Part (1) of the definition
(2) (pVq) Step (1) and Part (2-i1) of the definition
(8) (-r) ' ~ Step (1) and Part (2-1) of the definition
4) (ToA(-r)) Steps (1), (3), and Part (2-iii) of the definition
(8) (pve)— (Ton(—r)) Steps (2), (4), and Part (2-iv) of the definition
{(b) Steps Reasons
(1} pq, 7,85 ' Part (1) of the definition
(2) (—p) ; Step (1) and Part (2-1) of the definition
(3) ((-p) = q) Steps (1), (2), and Part {2-v) of the definition
(4) (svFy) Step (1) and Part (2-1i} of the definition
(8) (ra(sV F)) Steps (1), (4), and Part (2-iii) of the definition
(6) (((=p) » @)= (r A(sV F}}) Steps (3), (5), and Part (2-iv) of the definition
i8.
{a) k=0: 1 321
‘ k=1: 4 132, 213, 231,312
b=12: i 123
(b) k=0: 1 4321 |
LESE 11 1432, 2143, 2431, 3142, 3214, 3241,
3421, 4132, 4213, 4231, 4312
E=2: 11 1243, 1324, 1342, 1423, 2134, 2314,
2341, 2413, 3124, 3412, 4123
k=3: 1 1234 .

{c} Two descents
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19.

20.

(d) {m —~ 1)~k =m —k —1 descents.
(e) (i) Five locations: (1} In front of 1; (2) Between 1,2; (3) Between 2,4; (4) Between
3,6; (5) Between 5,8. [The five locations are determined by the four ascents and the one
location at the start (in front of 1) of p.]

(i1} Four locations: (1) Between 4,3; (2) Between 6,5; (3) Between 8,7; (4) Following 7.
[The four locations are determined by the three descents and the one location at the end
(following 7) of p.] ‘

() wmp = (k+ D1 + (M — &) Fimei et

Let z: 24, 29,..., 2, denote a permutation of 1, 2 3,...,m with k ascents (and m — &k — 1
descents). (1) If m = Ty, or if m occurs in z;ma, 1 g 1 < m—2, with 2; > z;45 then the
removal of m results in a permutation of 1,2,3,...,m — 1 with k — 1 ascents — for a total

of [14 (m —k — Dl#peyp1 = (M — k)7 g g1 permutations. (2} If m = &, or if m occurs
inz;mzies, 1 <1 <m~2, with z; < 2,4, then the removal of m results in a permutation
of 1,2,3,...,m — 1 with k ascents — for a total of (k ++ 1)7p-14 permutations.

Since cases (1) and (2) have nothing in common and account for all possibilities the re-
cursive formula for 7, ; follows. [Note: These are the Eulerian numbers g, ; of Example
4.21.] ‘

(@) (&) + (57 = k(= 1)/2] + [(k + 1)k/2] = (B = k+ k* + k)/2 = k.

(@) () +4(R") + (42 = [k —1)(k~2)/6] +4[(k+1)(k)(k~1)/6]+ [(k+2)(k+1)(k)/6] =
(k[6)(k — 1)(k — 2) + 4(k + 1)(k — 1) + (k + 2)(k +1)] = (k/6)[6%?] = k3.

(@) Tpa k= Ty (8) +45m, (3 + S (559) = () +4(7) + (7%) =

1720 [(n+1){(n)(n—-1)(n - 2) +4(n+2)(n+ 1)n)(n - 1)+ (n+3)}(n+2)(n+ 1)(n)] =

{(;3(—%- 1)(?’;),;24}{(71 1)(n— 2)+4(n+2)(n 1)+(n+3)(n+2)} [(r+1)(n)/24][6n*+6n] =
n+ 1) /4

(e) k= (f:) + 11(’“‘“) + 11(k+2) + (k:s)

In general, k' = Y71 a; .3.( ) where the a;,’s are the Eulerian numbers of Example 4.21.
[The given summation formu}a is known as Worpitzky's identity.]

(a) Forn=2,{(; — p2) APz — pa)] = [(pr A p2) — psl, for if (p1 Apa) — ps
bas value 0, then p; and p; have value 1 and p; bas value 8. But then p; — py snd
{(ps — pa} A(pz — ps) both have value 0. Assume the result for n = k — 1, and consider
the case of n = k. Then [(p; — pa) Alpz — ma) A A (Prr — Pe) A(Pr — Prar)] =
peApaAe o Apioa) = Pe) Ape — prat)]l == [(Dr Apa Ao Ape) ~— praal. |
{b) Suppose that S(1) is true and that if S(k) is true for some k € Z*, then S(k) =>
5(k ++1). Then we find that [S(1) == S(2), S{2) = S5(3),..., (k) == 5(k + 1)] and by
part (), (S AS(2YA ... A S(k)) =% Si4a). So by Theorem 4.2, S(n) is true for all n.
Hence Theorem 4.2 implies Theorem 4.1.

(¢} ¥ n =1 the result follows. Assume the result for n = k (> 1), for some £k € Z%
and consider the case for n = k+ 1. I 1 € § then the result follows, If 1 ¢ 5, let
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1.

3.

7.

T = {z~1lz € S} # 0. Then k € T and by applying the induction hypothesis to T, T has
a least element ¢ > 1 and S has a least element 1 41 > 2.

(d) From part (c), Theorem 4.1 implies the Well-Ordering Principle. In the solution
of Exercise 27 of Section 4.1 the Well-Ordering Principle implies Theorem 4.2. Hence
Theorem 4.1 implies Theorem 4.2.

Section 4.3

(a)a=a-1,s01ja;0 = a0, so al0. -

(b) alb ==> b = ac, for some ¢ € Z. bla =% a = bd, for some d € Z. So b = ac = b(dc)
and d = ¢ =1 or —1. Hence a = b or a = .

(c) alb == b= az, blc == ¢ = by, for some z,y,€ Z. So ¢ = by = a(zy) and dlc.

(d) alb = ac = b, for some ¢ € Z == acz = br => a|ba.

(e) If ajz,aly then z = ac,y = ad for some ¢,d € Z. So z = z — y = a(c — d), and a|z.
The proofs for the other cases are similar.

(g) Follows from part (f} by the Principle of Mathematical Induction.

(a) alb == ax = b, for some x € Z*;e|d = cy = d, for some y € Z*. Then (ac)(zy) = bd,
so aclbd.

(¢) aclbe = ace = bc, for some z € Z% = (ax — bjc = 0 = [az — b = 0, since
¢ > 0] = az = b= alb.

The proof for part (b) is similar.

Since ¢ is prime its only positive divisors are 1 and ¢. With p a prime, p > 1. Hence

Pl = p = ¢.
No. 6{(2-3) but 6 /2 and 6 | 3.

Proof: (By the Contrapositive)

Suppose that a | bor a|ec.

I a|b, then ak = b 3k € Z. But ak = b = {ak)c = a(ke) = be = a | be.
A similar result is obtained if ¢ | c.

Proof: (By Mathematical Induction)

The result for n = 2 is true by virtue of part (a} of Exercise 2. So assume the result
for n = k (2> 2). Then consider the case for n = k + 1: We have positive integers
Gyy gy ooy Thy Cpal, Dty Ba, ..o By, bppr, where gill; for all 1 < i < bk +1. fwelet @ =
aqay - --a; and b = by --- by, then we know that alb by the induction hypothesis. And
since ab and apeqidpe, by the case for n = 2, it follows that a - ap1b- byyq, or
{a1-ag- -ap - ares )b - b2 br - by ).

Therefore the result is true for all n > 2 — by the Principle of Mathematical Induction.

a) Let a=1,b=25, c=2. Anotherexampleisa=5b=5,¢=3.

108
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10.

11.

12.

13.

14.

15.

b) Proof:
31}(Ba + 76+ 11c) == 31{{10a + 14b 4 22¢). Also, 31{(31a+ 315+ 31c), so 31|[(31a + 31b+
31c) - (10a -+ 14b + 22¢)]. Hence 31}(21a + 17+ 9¢).

Note that each of Eleanor’s 12 numbers is divisible by 6. Consequently, every sum that
uses any of these numbers must also be divisible by 6 {because of part (g) of Theorem 4.3
~ where each z; = 1, for 1 < ¢ < n). Unfortunately 300 is not divisible by 6, so Eleanor
has not received a winning card.

bla,bl(a + 2) == bllaz + (a + 2)y] for all 2,y € Z. Let 2 = —1,y = 1. Then 5 > 0 and 5{2,
so b=1or 2.

Let n=2k+1,k>0. n* -1 =(2k+ 1P ~1=4k* + 4k == 4k(k +1). Since one of k, k+ 1
must be even, it follows that 8)(n® — 1).

Let a =2m+1,b=2n+1, for some m,n > 0. Then a® + ¥ =4(m?> + m+n? +n) + 2,
so 2|(a? + %) but 4 f (a® + 8?).

(a) 23=3.-74+2, ¢=3,r=2.

(b) ~115 = (-10)-12+35, g=-10,r =5.
(¢) 0=0-424+0, ¢=0,r=0.

(d) 434 =14-3140, ¢=14,r=0,

Proof:

For n = 0 we have 7" — 4" = 7% -~ 4% = 1 — 1 = 0, and 3|0. So the result is true for this
first case. Assuming the truth for n = k we have 3|(7* — 4%). Turning to the case for
n = k+1 we find that 751 — 4541 = 7(7%) - 4(4F) = (3 +4)(T*) — 4(4%) = 3(T%) +4(7* — 4F).
Since 3|3 and 3|(7* —4*) (by the induction hypothesis), it follows from part (f) of Theorem
4.3 that 3|[3(7%) + 4(7% — 4%)], that is, 3|(7%! — 451}, It now follows by the Principle of
Mathematical Induction that 3{{7" - 4") for all n € N.

(2) 137 = (10001001); = (2021), = (211)s
(b) 6243 = (1100001100011), = (1201203), = (14143)s
(¢) 12,345 = (11000000111001), = (3000321) = (30071)s

Base 10 Base 2 Base 16
(a) 22 10110 16
(b} 527 1000001111 20F
{e) 1234 10011010010 4D2
(d) 6923 1101100001611 1B0B
110
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Base 16 Base 2 Base 10

(a) A7 10100111 167
16. (b) 4C2 10011000010 1218
(¢ 1CB2 1110010110010 7346
{d) A2DFE 10100010110111111110 667134
Base 2 Base 10 Base 16
(a) 11001110 206 CE
17.  (b) 00116001 49 31
(c) 11110000 240 FO
(d) 01010111 87 57

18. The base 7.

19. Here n is a divisor of 18 —-son € {1,2,3,6,9, 18}.

20. (a) 00001111 (b) 11110001 {c) 01100100
(d) Start with the binary representation of 65 65
1
01000001
Interchanges the 0’s and i
1’s to obtain the one’s complement 10111110
i
Add 1 to the one’s complement 10111111
(e) 01111111 {f) 10000000
21.
Largest Integer Smallest Integer
(a) 7T=2%~1 -8 = —(2%)
(by 1271=2"-1 ~128 = —(27)
(9 21 ~(2%)
(d) 2% -1 -(2*)
{8) znwi — 1 ___(znwl}
22.
(2) 0101 (=5) (b) 1101 (=-3)
+0001 (=1) 41110 (= -2}
0110 (=6} 1011 (= ~5)
(e} 0111 (=T} (d}y 1101 (= ~3)
41006 (= -8} +1010 (= -8)
1111 (= -1) 0111 (# —8) (overflow error)

23. ez = ay =% agr —ay = 0 = a{z ~ y) = 0. In the system of integers, if b,e € & and
be=0,thenb=0orc=0. Sincea(z —y)=0anda# Othen(z—y)=0andz =y

111
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24.

25'

26.

Program ChangeOfBase (Input,Output);
Var Number, Base, Remainder,
Power, Result, Keep : Integer;
Begin ,
Writeln (‘Input the base 10 number - positive integer - that is to be changed.’);
Write (‘Number = 7}; '
Read (Number);
Writeln (‘Input the base - an integer between 2 and 9 inclusive.’);
Write (* Base = "};
Read (Base);
Keep := Number;
Result := 0;
Power 1= 1;
While Number > 0 Do
Begin
Remainder := Number Mod Base;
Result := Result + (Remainder * Power);
Power := Power * 10;
Number :== Number Div Base
End; :
Writeln (‘The number ’, Keep:0, ‘when converted to’,
‘base ', Base:0, ‘is written as ’, Result:0)
End.

(i) fa=0,chooseg=r=0

(ii) Let a > 0,b < 0. Then —b > 0 so there exist ¢,r € Z with ¢ = ¢(—5) + r, where
0<r < (—b). Hence a = (~¢)b+r with 0 < r < [b].

(iii) Finally, consider the case where ¢ < 0 and b < 0. Then —a,~b > 0 50 —a =
-8+ with0 <y < (~b). Soa=¢gb—7" = (¢ +1)b+(~r"~b) = ¢gb+ r with
0<r=—b—v" < ~b=1{b].

For uniqueness, let a, b, € Z,b # 0, and assurne a = ¢ b4r; = gob+ry, where 0 < ry,ry < bl
Then 0 = (g ~ ga)b+ (ry — r2) and g1 — g{|b] = |ry —ral. I vy # ry, then |r; ~rzl > 0 but
fry ~ ral < |bl. Hence jg: — g l|b| < [l. This can only happen if g1 == ¢;. But then ry == vy,
80 g, 1 Are unigue.

Program Base_16(Input,Output}; |
{(* This program converts s positive integer less than 4,204,967,295 (= 16® — 1) to base
16.%)

Type :
subl = {..15;
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sub2 = 10..15;
subd = 0..8;
sub4 = -1..T;
Var '
remainders: subl;
larger: sub2;
positions: array [0..7] of sub 1;
i: subd;
 j: subd;
m,n: infeger;
Begin
Writeln (“What positive integer do you wish to convert to base 167°);
Readln (n});
Fori:=0to7do
positions [i] := 0;
== n;
1= 0 .
While m > 0.do
Begin
positionsli] := m mod 16;
m = m div 16;
1= i+1
End;
=1l
Write (*The integer ’, n:0, ¢ in base 16 is written ’);
Whilej > =0do
Begin
If positions]j] < 10 then
Write (positions]j] : 1)

Else
Begin
larger := positionslj];
Case larger of
10: Write (*A");
11: Write (‘B");
12: Write (‘C"};
13: Write (‘D’);
14: Write (*E’);
15: Write (‘F’)
End
End;
jmi~1
End;
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27.

28,

Writeln (4.}
End.

Program Divisors (input,output});

Var
N, Divisor: Integer;
Begin
Write (‘The positive integer N whose divisors are sought is N = );
Read (N);
Writeln;
IfN =1 Then
Writeln (‘The only divisor of 1 is 1.7}
Else
Begin
Writeln (“The divisors of ’, N:0, ‘are :*);
Writeln (1:8);
If N Mod 2 = 0 Then
Begin _
For Divisor := 2 to N Div 2 Do
If N Mod Divisor = 0 Then
Writeln (Divisor:8)
End
Else
For Divisor := 3 to N Div 3 Do
If N Mod Divisor = 0 Then
Writeln (Divisor:8)
End;
Writeln (N:8)
End.

Proof: Let ¥ = {3k | k € Z*}, the set of all positive integers divisible by 3. In order to
show that X = ¥ we shall verify that X CY and YV C X,

(i} (X € YY) By part (1) of the recursive definition of X we have 3 in X. And since
3=3.1, it follows that 3 is in ¥. Turning to part {2) of this recursive definition suppose
that for z,y € X we also have 2,5y € Y. Now z + y € X by the definition and we need
to show that z +y € ¥. This follows because z,y € ¥ = z = 3m,y = 3In for some
m,n € ZY = 24y = 3m+3n = 3(m+n), withm+n € Z¥ = z+y € ¥. Therefore every
positive integer that results from either part (1) or part (2) of the recursive definition of
X is an element in Y, and, consequently, X C V.
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29.

49

(ii) (Y € X): In order to establish this inclusion we need to show that every positive
integer multiple of 3 is in X. This will be accomplished by the Principle of Mathematical
Induction.
Start with the open statement

S(n): 3n is an element in X,
which is defined for the universe Z*. The basis step — that is, 5{(1) — is true because
3-1=23isin X by part (1) of the recursive definition of X. For the inductive step of
this proof we assume the truth of S(k) for some k (> 1) and consider what happens at
n =k + 1. From the inductive hypothesis S(k) we know that 3k is in X. Then from part
(2) of the recursive definition of X we find that 3(k +1) = 3k + 3 € X because 3k, 3 € X.
Hence S(k) => S(k + 1). So by the Principle of Mathematical Induction it follows that
S(n) is true for all n € Z* — and, cousequently, Y C X.
With X CY and YV C X it follows that X =¥,

(a) Since 2|10 for all t € Z%,2|n iff 2|rp. (b) Follows from the fact that 4{10f for ¢ > 2.
(c¢) Follows from the fact that 8{10° for ¢ > 3.
In general, 2% n i 2% (r, 107 4 -+ - 47y - 10 + 7).

Section 4.4

(a) 1820 = 7(231) + 203
231 = 1(203) + 28
203 = 7(28) + 7
28 = 7(4), so ged(1820,23) = 7
7 = 203 - 7(28) = 203 - 7[231 - 203] = (-7)(231) + 8(203) = (-7)(231) + 8[1820 -
7(231)] = 8(1820) + (-63)(231)
(b) ged(1369,2597) = 1 = 2597(534) + 1369(-1013)
(c) ged(2689,4001) = 1 = 4001(-1117) + 2689(1662)

() H as+ bt = 2, then ged{a,b) = 1 or 2, for the ged of a,b divides a,b so it divides
as -+ bt = 2.

(b) as + bt = 3 = ged{a, b) =1 or 3.

(c) as + bt = 4 = ged{a,b) = 1,2 or 4.

(d) as 4 b = 6 == ged(e, ) = 1,2,3 or 6.

ged{e,d) = d = d = az + by, for some z,y € Z. gedia,b) = d => a/d,b/d € Z.
1= {a/d)z 4+ (b/d)y == ged{a/d, b/d) = 1.

Let ged(e,b) = g, ged{na, nb) = h. ged(a,b) = g => g = a3 -+ bt, for some 3, € 4.
ng = (ra)s + (nb}t, so hlng. h = ged(na,nb) == h = (na)z + (nb)y, for some z,y € Z.
h = nlaz 4+ by) == nlh = nhy = h for some Ay € Z and by = oz + by. g = ged(a, b) ==
glhy == n{gh,) = h for some hy € Z. Since (ng)lh and Al(ng), with h,ng € Z*, it follows
that ged(na, nb) = h = ng = nged(a, ).
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10.

11.

12#

Proof: Since ¢ = ged (a, b) we have a = cz, b = ¢y for some z,y € Z*. So ab = (cz)(cy) =
c*(zy), and ¢* divides ab.

(a) 2 = i{n+ 2)+ (—~1)n. Since ged(n,n + 2} is the smallest positive integer that can
be expressed as a linear combination of n and n + 2, it follows that ged(n,n + 2) < 2.
Furthermore, gcd{n,n + 2){2. Hence ged(n,n + 2) =1 or 2. In fact, ged(n,n+ 2) = 1, for
n odd, and ged{n,n + 2) = 2, for n even.

(b} Arguing as in part (a) we have ged(n,n-+3) = 1 or 3. When n is a multiple of 3, then
ged{n,n + 3) = 3; otherwise, ged(n,n +3) = 1.

For ged(n,n + 4) we need to be cautious. The answer is not 1 or 4. Here we have
ged(n,n+4) =1 or 2 or 4. For n a multiple of 4, ged(n,n + 4) = 4. When n = 4¢ + 2,
t € Z*, we find that ged(n,n + 4) = 2. For n odd, ged(n,n +4) = 1.

(c¢) In general, for n,k € Z%, ged(n,n+ k) is a divisor of k. Consequently, if ¥ is a prime,
then ged(n,n + k) = k, for n a multiple of k, and ged(n,n + k) = 1, for n not a multiple
of k.

Let ged(a,b) = h, ged(b,d) = g. ged{a,b) = h == hla,hlb = hl(a -1+ bc) == hld.
hib,hld = hlg. ged(b,d) = g == glbgld == gl(d - 1 + b(—c)) => gla. glb,gla,h =
ged(a, b) == glh. hig, glh, with ¢, h € ZT => g = h.

ged(a,b) = 1 =2 az + by = 1 for some z,y € Z. Then ¢ = acz + bey. alc => ¢ =
ad,blc = ¢ = be, so ¢ = ab(ex + dy) and ablc. The result is false if ged{a,b) # 1. For
example, let a = 12,5 = 18,¢ = 36. Then alc, blc but (ab) [ec.

(2) If c € 2%, then ¢ = ged(a, b) if (and only if)
(1) c{aand c|b; and

(2) Vde Z[[(d|a)A(d|b)]=d]|]

(b) ¥ ce Z*, then ¢ # ged(a, b) if (and only if)
(1} efaoref bor

(2) 3deZl(dla)n{dib)r(d [ ).

I ¢ = ged(a — bya + b) then cl[{a — b)z + {a + b)y] for all z,y € Z. In particular, for
z =y = 1,¢|2q, and for z = —1,y = 1, ¢{2b. From Exercise 4, ged(2a, 2b) = 2 ged{a, b) = 2,
so¢j2 and c=1or 2.

ged{a, b) = 1 = ax -+ by = 1, for some a,b &€ Z. Then acz + bey = ¢. alace, albey (since
ajbe} = alc.

Proof: Let d; = ged(a,b) and dy = ged{a ~ b,5).
dy = ged{a—b,b) = [dyl{a—b) Adylb] = [d;][(a—b)+B]] by part (f} of Theorem 4.3 = dsla,
and [dggﬂt A Gfg;b] = dgg(gg.

d; = ged{a, &) = [dyje Ady|Bl = dilla+(~1)b], by part (f) of Theorem 4.3. Hence d;{(a—b).
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14.

15.

16.

17.

Since dy[(a — b) and dy b, it follows that d;|d;. Consequently, we find that [dy|d; A da]d; A
ged(dy, da) > 0] = ged{a, b) = dy = d; = ged(a — b, b).

Proof: We find that for each n € Z%, (5n+3)(7)+(Tn+4)(~5) = (35n+21)—(35n+20) = 1.
Consequently, it follows that the ged(5n 43, Tn+4) = 1, or 5n+3 and Tn + 4 are relatively
prime.

33z + 29y = 2490 ;
2cd(33,29) = 1,and 33 = (1)(29) + 4,29 = (7)(4)+ 1,80 1 = 20 - T(4) = 29— 7[33 — 29] =
8(29) — 7(33). 1 = 33(—7) + 29(8) == 2480 = 33(~17430) + 26(19920) = 33(~17430 +
20k) + 29(19920 — 33k), for all k € Z.

z = —17430 4 29k, y = 19920 — 33k

z > 0 == 20k > 17430 = k > 602

y > 0 => 19920 > 33k = 603 > &
E=602:z=28y=>54k=603:z=>57,y=21

We need to find z,y € Z* where y > z and 20z + 50y = 1020, or 2z + 5y = 102. As
ged(2,5) = 1 we start with 2(—2) + 5(1) = 1 and find that 2(~2) +5(1) =1 = 102 =
2(—204) + 5(102) = 2[~-204 + 5k} + 5[102 — 2k]. Since z = —204 + 5k > 0, it follows
that & > 204/5 = 40.8 and y = 102 — 2k > 0 implies that 51 > k. Consequently
k=41,42,43,...,50. Since y > = we find the following solutions:

k z = —204 + 5k y =102 — 2k
41 1 20
42 6 18
43 1 16

Proof: Suppose that there exist ¢,d € Z% with ed = a and ged(c, d) = b. Since ged{c,d) =
b, we have ¢ = bey, d = bd;. Consequently, a = ed = (be; )(bd;) = b*(e1dy), so ¥la.

Conversely, b*la =» bz = a, for some 2z € Z*. Let ¢ = bz and d = b. Then ¢d = a and
ged(e,d) = ged(bz, b) = b.

ged(84,990) = 6, so 84z + 990y = ¢ has a solution 2o, yo in Z if 6lc. For 10 < ¢ < 20, 6jc =
¢ = 12 or 18. There is no sclution for ¢ = 11,13,14,15,16,17, 19.

When ¢ = 12,84z -+ 990y = 12 (or, 14z + 165y = 2).

165 == 11(14) + 11

14 = 1(11) + 3
11 = 3{(3) + 2
3=12) + 1

Therefore 1 = 3 — 2 = 3 — [11 — 3(3)] = 4(3) — 11 = 414 — 11] — 11 = 4(14) — 5(11) =
4(14) — 5[165 — 11(14)] = 59(14) ~ 5(165)

1 = 14(59) + 165(—5)

9 = 14(118) + 165(~10) = 14(118 — 165k) + 165(—10 + 14k).
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19.

20.

21.

22.

The solutions for 84z + 990y = 12 are = 118 — 165k, y = —10+ 14k, k € Z.
When ¢ = 18, the solutions are ¢ = 177 — 165k, y = ~15 + 14k, k € Z.

Let a,b,c € Z*. If ax + by = ¢ has a solution o,y € Z, then azy + by = ¢, and since
ged(a, b) divides a and b, ged{a, b)|c. Conversely, suppose ged(a, b)ic. Then ¢ = ged(a, b)d,
for some d € Z. Since ged(e,d) = as + bt, for some s,t € Z, we have a(sd) + b{td) =
ged(a, b)d = ¢ or axy + by = ¢, and az + by = ¢ has a solution in Z.

Let ged{a,b) = g, lam{a,b) = h. ged{a,b) = g =% as + bt = g, for some s,t € Z.
lem(a, b) = h = h = ma = nb, for some m,n € Z*. hg = has + hbt = nbas + mabt =
ab(ns +mt) = ablhg. ged(a,b) = g = gla,glb, so (a/g)b = (b/g)a is a common multiple
of a and b. Consequently ki(a/g)b, and hz = (afg)b, for some z € Z, or ghz = ab. Hence
ghlab.

From Theorem 4.10 we know that ab = lem(a, b) - ged(a, b). Consequently,
b = [lem(a, b) - ged{a, b)]/a = (242, 500)(105)/630 = 40, 425.

lem(a, b) = (ab)/ ged(a, b)

(a) lem(231,1820) = (231) (1820)/7 = 60,060
(b) 1em(1369,2597) = (1369)(2597) = 3,555,293
(c) lem(2689,4001) = (2689)(4001) = 10,758,689

ged(n,n+ 1) =1, lem(n,n + 1) = n{n + 1)

Proof: The result follows from Theorem 14.10 and Exercise 4 for this section. We find

that lem (na,nbd) = é—;%‘%% = %—; = n[;——c&%@} = nlem(a, b).

Section 4.5

(a) 22-3%.5°.11 (b) 24.3.5%.72. 112
(c)32-5°-72.11-13

ged(148500, 7114800) = 27 - 3- 52 - 11 = 3300

lem (148500, 7114800) = 24 - 3% . 53 72. 11% = 320166000
2cd(148500, 7882875) = 37 . 5% . 11 = 12375

lem(148500, 7882875) = 22 3% . 5°. 7% . 11 - 13 = 94594500
ged(7114800, 7882875) = 3 - 52 7% - 11 = 40425

lem(7114800, 7882875) = 2% - 3% . 5%. 72. 112 . 13 = 1387386000

Fey . 2en 263 ey

m*:—.:pl P2 PR

3 .. e odez, 3es Sep
mo=py Py Py By
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10.

11,

12.

13.

The result is true for n = 1. From Lemma 4.2 the result follows for n = 2. For k > 2,
assume that pla;ay---ap ==> pla;, for some 1 < ¢ < k. Now consider plajay - - azapy;.
Then pl(ayas -+ - Gk Jars1 == plasas - - ay or plagss (by the case where n = 2) = pla; for
some 1 < ¢ < k (by the induction hypothesis) or plaiy; == pla; for some 1 < <k + 1.
The general result then follows by the Principle of Mathematical Induction. ‘

Proof: (The proof is similar to that given in Example 4.41.)

If not, we have /p = a/b, where a,b € Z% and ged(a,b) = 1. Then \/p=a/b = p =
a’/b® = pb® = a® = p | a® = p | a (by Lemma 4.2). Since p | a we know that a = pk
3k € Z*, and pb® = a® = (pk)? = p*k®, or B? = pk®. Hence p|{b? andso p| b Butifp|a
and p | b then ged(a,b) = p > 1 — contradicting our earlier claim that ged(a, d) = 1.

Here 25n + 10n +40n = 100k, so 75n = 100k, or 3n = 4k. From Lemma 4.2 it follows that
3lk. So k= 3-r. Then 3n =4(3-r) = n = 4r. So n is any positive multiple of 4.

(a) 3x4x4x2=96 (b) 270 (c) 144

a) There are (15)(10)(9)(11)(4)(6)(11) = 3,920,400 positive divisors of n = 2143%5%71911%13°3710,
b) () (14=3+1)(0—4+1)B-T+1)(10-0+1)B-2+1)5-0+1)(10-2+1) =
(12)(6)(2)(11)(2)(6)(9) = 171,072

(ii) Since 1, 166,400,000 = 2°3°5°, the number of divisors here is (14— 9+1)(9—6+1)(8—
54+1)(10—-0+ 13 -0+ 1)5-0-+1)(10 -0+ 1) = (6)(4)(4)(11)(4)(6)(11) = 278, 784.
(iil) (8)(5)(5)(6)(2)(3)(6) = 43,200

(iv) (T3} 4)(6)(1)(3)(6) = 9072

(v) (5)(4)(3)(4)(2)(2)(4) = 3840

(vi) (MAN2HD)(L)B) = 12

(vil) (3)(2)(2)(2)(1)(1)(2) = 48

From Theorem 4.10 we know that mn = lem{m, n)-ged(m, n), so ged{m,n) = mnflem(m,n) =
223151111 = 660. -

ged = 35211 = 285
lem =24 3% 5%. 7. 112 - 13 = 4,162, 158,000

248306544 = 28 . 3% . 11°, so there are (B + 1)}{6 4 1}{3 + 1) = 252 possibilities for n.

Since 2a is a perfect square we have a = 2z°, for some z € 2%, Likewise, 3a a perfect
cube =» a = 3% = (3y)%y for some y € Z*. To minimize the value of a choose y = 2 and
z =3y =6, Then a =72 = 2*. 3%

a) Proof: (i) Since 10]a* we have 5la* and 2]a’. Then by Lemma 4.2 it follows that 5la
and 2ja. So a = 3b for some b € Z%. Further, since 2|50 we have 2|5 or 2]b (by Lemma
4.2). Consequently, @ = 5b = 5(2¢) = 10¢, and 10 divides a.

{ii} This result is false — let a = 2.

b} We can generalize section (i) of part (a) by replacing 10 by an integer n of the form
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15.

16.

17.

18.

19.

PPy -+ Py, & product of ¢ distinet primes. (So n is a square-free integer — that is, no square
greater than 1 divides n.)

Proof: We find that abeabe = (abc)(1001) = (abe)(7)(11}(13).

Since 7! = 2% 3%. 5. 7, the smallest perfect square that is divisible by 7! is 2¢.3%2.52. 72 =
(35) x (7!) = 176, 400.

I n e Z% and n is a perfect square, then n = pi*p5? - - - pi*, where p; is prime and ¢; is a
positive even integer for all 1 < ¢ < k. Hence (e; + 1){(ea + 1)+ -{ex + 1) is & product of
odd integers. Therefore the number of positive divisors of n is odd.

Conversely, if n € Z% and n is not a perfect square, then n = pJ'p$ - .- pi* where each p;
is prime and ¢; is odd for some 1 < i < k. Therefore {e; + 1) is even for some 1 <i < k,
so (es + 1)(ez + 1)+ (ex + 1) is even and n has an even number of positive divisors.

For 1260 x n to be a perfect cube, the exponent on each prime divisor must be a multiple
of 3. Since 1260 = 22.3%.5.7, we want 1260 xn =2%-3%.5%.7% son = 2-3-52- 72 = 7350.

(a) Since 200 = 2°-5?, the number of times the 200th coin will be turned over is (4)(3) = 12,
the number of divisors of 200.
(b) The following coins will alsc be turned over 12 times:

() 2°-32 =72 (i) 2°-3 =06 (i) 2?-3° = 108 (iv) 2°-5 = 160
(c) The 192nd coin is turned over 14 times because 192 = 2° . 3.

(a) 4=2%8=2%16=2% 32 =2°

Considering the powers of 2, there are 5 different sums of two distinct exponents: 5 = 24-3;
6=24+4;7=24+5=3+48=3+5;9=4+5 Hence there are 5 different products
that we can form.

{b) Here we have 2" for n = 2,3,4,5 and 6. Now there are 7 different sums of two distinct
exponents: 5=2+43;6=2+4;7T=2+0=34+48=24+6=3+59=3+6=4+25;
10 =4+ 6; 11 = 5 + 6. Consequently, we can form 7 different products in this case.

(¢) The set here may also be represented as AU B where A = {2"n € Z7,2 < n < 6} and
B = {3k e Z*,2 <k <5}

If the product uses two integers from A then there are 7 possibilities. If both integers
are selected from B then we have § possibilities. Finally there are b x 4 = 20 products
using one number from each of the sets A, B. In total, the number of different products
is 74 85+ 20 = 32

(d} Cousider the set given here as AUBUC where A = {4, 8, 16, 32;@4}, B = {9,27,81,243,729}

and € = {25,125,625,3125}.
Here there are six cases to enwmerate.

(1) Both elements from A: 7 possibilities.
{2) Both elements from B: 7 possibilities.
{3) Both elements from C: 5 possibilities.
(4) One element from each of A, B: 5 x b = 25 possibilities.
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(5) One element from each of 4, C: 5 x 4 = 20 possibilities.

{6) One element from each of B, C: 5 x 4 = 20 possibilities.

In total there are 747 + 5 + 25 4+ 20 + 20 = 84 possible products.

{e) This case generalizes the result in part (d). Once again there are 84 possible products.

20. Program Primefactors (input,output);

Var
p, j; k, n, originalvalue, count: integer;
Begin
Write (‘The value of n is '};
Read (n);
originalvalue := n;
Writeln (“The prime factorization of °, n: 0 8 )
If n Mod 2 = 0 Then

Begin
count := {;
While n Mod 2 = 0 Do
Begin
count := count + 1;
n = n Div 2
End; ’
Write (‘2(’, count: 0, 97
End; -
- Hn Mod 3 =10 Then
Begin
count := 0;
While n Mod 3 = 0 Do
Begin
- count = count + 1;
n:=n Div3
End;
Write (‘3(’, count :0, ©} ')
End;
p=5 o
While n >= 5 Do
Begin
=1
Repeat
=i
k= p Mod

Until (k = 0) Or (§ = Trunc(Sqrt{p}));
Kk <> 0) And (n Mod p = 0) Then
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22.

23.

Begin
count = 0;
While n Mod p = O Do
Begin
count = count + 1;
n:=nDivp
End;
Write (p:0, °)’, count:0, ‘) ’)
End;
pi=p+2
End;
End.

The length of AB = 2® = 256; the length of AC = 2° = 512. The perimeter of the triangle
is 1061. "

(@ TI-1) = -

g=1

2n4-1
(b) ﬁ( 1) = (~ 1)(2n+1)(2n+2)/3___( 1)(2n+1){n+1) {
i==1

o TG - G2 () () G3) ) = 5558 ==

=4

@ Homr= () (5 G- (5 (3) -

=

[(2r)!/(n = DY/ (n + Dl = 20)/[(n - Di(n+ D) = (1) = (7,)

(a) From the Fundamental Theorem of Arithmetic 88,200 = 2°-3%.5%. 7% Consider the
set F' = {23,382 5% 7%}, Each subset of F determines a factorization ab where ged(a, b} = 1.
There are 2* subsets — hence, 2* factorizations. Since order is not relevant, this number (of
factorizations) reduces to {1/2)2* = 2%, Andsince 1 < & < n, 1 < b < n, we remove the
case for the empty subset of F' (or the subset F itself). This yields 2°~1 such factorizations.

1, for n odd

~1, for n even

(b) Heren =2%-3%.5%.7%.11 and there are 2* — 1 such factorizations.

{e) Suppose that n = p)" py® - p*, where py, pa, ..., are k distinet primes and

iy, fig, ..~ T = 1. The munber of unordered factorizations of n as ab, where 1 < a < n,
1<b<n,and geda, b) =1, is 257 — 1,

24. (3) JI@+5) (®) T +29 | (e) JI(1+a%)

$=3 F=a iy
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26.

27.

i.

Proof: (By Mathematical Induction)
2
For n = 2 we find that [[(1 ~ ) = (1 - %) =(1-3) =3/4=(2+1)/(2-2), 50 the

g2
result is true in this first case and this establishes the basis step for our inductive proof,

Next we assume the result true for some (particular) k € Z* where & > 2. This gives us
k
H(I - __.) = (k + 1}/(2k). When we consider the case for n = k + 1, using the inductive

step, we find that

k41 | 1
-0 = (10 2) 0 - i) = [0+ /OO - ] =

=2 g2
k+1] [(k+12—1] K +2k
2k (k+12 | (2k)(k+1)
The result now follows for all positive integers n > 2 by the Principle of Mathematical
Induction.

= (k + 2}/(2(1@: + 1)) = (kB + 1)+ 1)/(2(k + 1)).

(a) When n is a prime then it has exactly two positive divisors — namely, 1 and n.
(b) Ifn=p? wherepisa pnme, then n has exactly three positive divisors -— namely, 1,

p, and p*.

(c) Let p,g denote two distinct primes. If n = p® or n = pg, then n has exactly four
positive divisors — 1,p, p?, and p? for n = p®, and 1, p, ¢ and pq for n = pq.

(d) ¥ n = p*, where p is a prime, then n has exactly five positive divisors — namely,
1,p,p%, p*, and p*.

(a) The positive divisors of 28 are 1, 2,4, 7, 14, and 28, and 1 +2+4 4+ 7+ 14+ 28 =
56 = 2(28), so 28 is a perfect integer.

The positive divisors of 496 are 1, 2, 4, 8, 16, 31, 62, 124, 248, and 496, and 1 42+ 4 +
8+ 16 + 31 + 62 + 124 + 248 + 496 = 992 = 2(496), so 496 is a perfect integer.

{b) It follows from the Fundamental Theorem of Arithmetic that the divisors of
2m-1(2™ 1), for 2™~ 1 prime, arve 1,2,2%,23%,...,2™" and (2™~ 1), 2(2™ ~ 1), 23(2™ 1),
2*(2™ — 1),..., and 2™71(2™ — 1},

These divisors sum to [1 424224234, 427+ (2" - 1)1 +24+ 22+ 224 .+ 27 ] =
@™ -1+ (2" 12" - 1= (2" - D1+ (2™ — 1)} = 27(2™ — 1) = 2[2""1(2™ — 1}], s0
27-1{(2™ — 1} is a perfect integer.

ﬁuppiemamary Exercises

at+{a+d)+{a+2d)+.. ~«§~(d~%~{nm1)d} “zna%»?{n—-—» 1ndl/2. Forn=1,a=a+0,
and the result is true in this case. Assuming that 328 ,Ja + (i — 1)d] = ka + [(k — Dkd]/2,

we have S5 a + (i — 1)d] = (ka + [(k ~ 1)kd}/2) + (@ + kd) = (k + Da + [k(k + 1)d}/2,
so the result follows for all n € Z* by the Principle of Mathematical Induction.
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Let ¢ be the number of times the while loop is executed. Then we have
sum = 104+17+24+ ... +(10+7(¢ - 1)) = 10+ (10+ )+ (104 14) +. . .-+ (104 7(t - 1)).

From the previous exercise we know that for each t € Z+
at+{a+d)y+(a+2d)+...+(a+ (- 1)d) =ta+ [(t — 1){t)d]/2, so here we have

sum = 10f + (7/2)t(t — 1).
For t = 52, we have sum = 9802, and for £ = 53, we find sum = 10176, Therefore, n, the
last summand, is 10 + 7(52 — 1} == 367.

Conjecture: Y (~1)*1% = (=1)"*' 34, for all n € Z*.
[E31 =41
Proof: (By the Principle of Mathematicai Induection)

i n = 1 the conjecture provides Z( e = (- (1P =1 = (D)) = (1) L
gl
which is a true statement. Thls estabhshes the basis step of the proof.

In order to confirm the inductive step, we shall assume the truth of the result

Z( 1)-:+1 2 (ml)kﬂ iz

s=1 i==l

for same (pa.rticuiar) k > 1. When n =k + 1 we find that
Z( 1)¢+1 2 (E( 1)!-{-1 2)_4;_( 1}(k+1)+1(k+ 1)2

FE31 szl

= (“1)"“2%' + (=1 h+ 1) = (=1)(E)E + 1)/2 + (1) (k + 1)
=}
= (—1)*?[(k + 1)* — (k)% +1)/2]
= (—1)*3(1/2)[2(k + 1)* ~ k(k + 1)]
= (~1F(1/2)[28 + 4k + 2 — K — k]
= (—1)*H1/2)[k? + 3k + 2] = (—~1)**2(1/2)(k + 1)(k + 2)
k1
== {mi)k‘*’zzi, so the truth of the result at n = & implies the truth at n =k +1 — and
we have t};; lﬁnductive step.

It then follows by the Principle of Mathematical Induction that

i{ml}é—ﬁulé% = {w})m»i ii’

fud fad

for all n € Z%.

(8) S(n) : 5l(n® —n). Forn = 1,n* — n = 0 and 5|0, so 5(1) is true. Assume S(k) :
Bk — k), Form =k + 1,{(k+1)° ~{k+1) = (k* ~ k) + Bk* + 104® + 10k* + 5k. Based
on S(k),5{((k +1)* — {k + 1)) so ${(k) => S(k + 1) and the resuli is true for all n € Z*
by the Principle of Mathematical Induction.

{(b) 8(n) : 6{(n 4+ 5n). When n =1,n%+ Bn = 6, so §(1) is true. Assuming S(k), consider
S(k+1). (B+1P° +58(k+1) = (§* + 5k) + 6 + 3(k)(k + 1). Since one of k, k -+ 1 must be
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even, 6{[3(k)(k + 1)l Then assuming §(k) we have 6][(k + 1)’ + 5(k + 1)] and the general
result is true for all n € Z* by the Principle of Mathematical Induction.

(a) n n®4n+4l n n*4n+4l n n?4+nd4l
1 43 4 61 , 7 97
2 47 5 7 8 113
3 83 6 83 9 131

(b) For n = 39,n% + n + 41 = 1601, a prime. But for n = 40,n% + n + 41 = (41)?, so
S(39) #£=> S(40).

(b} s4=119/120 = (5! —1)/8!  s5=719/720 = (6! — 1)/6!
s¢ = 5039/5040 = (7! — 1)/7!

(c} 8 =[(n+ 1)1 = 1]/(n+ 1)
(d) Based on the calculation in part (a) the conjecture is true for n = 1. Assuming that

=[(k+ 1) = 1]/(k+ 1), for k € Z*, consider s;4,.
spp =8+ (k+D)/(k+2 =+ D) - 1/(k+ D)+ +1D/(k+2) = [(k+2)! — (k +
2+ (k+ D}/ (k42 = [(k 4+ 2)! — 1]/(k + 2)!, so the result follows for all n € Z* by the
Principle of Mathematical Induction.

(a) Forn =0,2"""'+1=2+1 =3, so the result is true in this first case. Assuming that
3 divides 2%%! 4+ 1 for n = k € N, consider the case of n = k + 1. Since 22(h+1+1 4 1 =
22643 11 = 4(2%41) 4 1 = 4(224+1 4. 1) — 3, and 3 divides both 2%%*! 4+ 1 and 3, it follows
that 3 divides 22¥*1+! L 1. Consequently, the result is true for n = k + 1 whenever i is
true for n = k. So by the Principle of Mathematical Induction the result follows for all
n € N.

(b) When n = 0,0°+ (0 + 1)® + (0 + 2)% = 9, so the statement is true in this case. We
assume the truth of the result when n = k > 0 and examine the result for n = k+ 1. We
find that (k+ 1P+ (E+2° + (k+3° = (k+ 1+ (B + 2% + [k* + 9k? + 27k + 27] =
(B3 4+ (k+ 1P +(k+2)°}+[9(k? + 3k + 3)], where the first summand is divisible by 9 because
of the induction hypothesis. Consequently, since the result is true for n = 0, and since
the truth at n = k (> 0) implies the truth for n = & + 1, it follows from the Prmcxple of
Mathematical Induction that the statement is true for aﬁ integers n > 0.

Proof: There are four cases to consider.

(1) n=10m + 1. Here n' satisfies the condition sought.

(2) n=10m+ 3. Here n? = 100m® 4 60m + 9 and n* = 10000m* + 12000m? + 5400m? +
1080m + 81 = 10{1000m* + 1200m> + 540m? + 108m + 8) + 1, so the units digit of n* is 1.
(3) n = 10m+ 7. Asin case (2} we need n®. For n® = 100m® + 140m + 49, and
nd = 10000m?* 4+ 28000m> + 29400m?* + 13720m + 2401 = 10(100m* + 2800m:® + 2040m? +
1372m + 240} + 1, where the units digit is 1.

{(4) n = 10m + 9. Fortunately we only need n® here, since n® = 100m? + 180m + 81 =
16(10m? + 18m 4 8) + 1.

[Note: For any n € Z*, where n is odd and net divisible by 5, we always find the units
digit in n* to be 1.]
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10.

11.

12.

13.

14.

Converting to base 10 we find that 81z + 9y + 2z = 36z +6y -+, and so 80z + 3y — 352 = 0.
Since 5/(80z — 352) and ged (3,5) = 1, it follows that 5ly. Consequently, y = 0 or y = 5.
For y = 0 the equation 80z — 35z = 0 leads us to 16z — 7z = 0 and 16z = 7z =» 16|z. Since
0 <z <5 we find here that z = 0 and the solutionis z = y = 2z = (.
Ify=>5then80z+15-352=0=1624+3-72=0. With0< 2,2 <5, 162 =723 = z
is odd and z = 1,3, or 5. Since 16 does not divide 4(= 7(1) — 3) or 18(= 7(3) — 3), and
since 16 does divide 32(= 7(5) — 3} we find that z =5 and z = 2. Hence z = 2, y = 5, and

= 5. [And we see that (zy2)e = 8lz+9y+2 = 81(2)+9(5)+5 = 212 = 36(5)+6(5)+2 =
36z + 6y + z = (2yz)s.]

From the Fundamental Theorem of Arithmetic we have 3000 = 2% . 3! . 5%, so 3000 has
(34 1)1+ 1)3 + 1) = 32 divisors. Since ged(n, n + 3000} is a divisor of 3000, there are
32 possibilities — depending on the value of n.

For n = 2 we find that 22 =4 < 6 = ( ) < 16 = 42, so the statement is true in this first
case.

Assuming the result true for n = & > 2 -ie, 2 < (;';f) < 4% we now consider what
happens for n = k -+ 1. Here we find that

(wm;) _ (2k+2) - [Mw_u} (2*) = 2[(2k + 1)/(k + 1)] (2“) > 2[(2k + 1)/(k + 1)]2% >

k+1 k1 (bt 1){k+1)
281 since (2k+1)/(k+1) = [(k+1)+k]/(k+1) > 1. In addition, [(k+1}+E)]/(k+1) < 2,

o1
for all n > 2 by the Principle of Mathematical Induction.

5o (2k+2 = 2[(2k + 1)/(k + 1)] (2") < (2)(2)(%) < 481 Consequently the result is true

For n = 1,72 + 8% = 855 = (57)(15). Assuming that 57](7F+2 4 82%+1) since 7T(:+1+24
BURHIHL o 7h3 o RIRHS = T(TRH2) 4 64(8%H1) = 64(T**?) + 64(8%41) — BT(T+?), we have
5T)(7H + 8%+3) 50 the result follows by the Principle of Mathematical Induction.

First we observe that the statement is true for all n € Z% where 64 < n < 68. This follows
from the calculations: :

64 = 2(17) + 6{(8) 65 = 13(5) 66 = 3(17) + 3(8) 67 = 1(17) 4 10(8) 68 = 4(17)
Now assume the result is true for all n where 68 < n < k and consider the integer % + 1.
Then £+ 1 = {k — 4} + 5, and since 64 < k — 4 < k we can write k — 4 = a(17) + §(5)
for some a,b € N. Consequently, k -+ 1 = 2(17) + (b + 1)(5), and the result follows for all
n > 64 by the Alternative Form of the Principle of Mathematical Induction. '

To find all such a, b we solve the Diophantine equation 12a 4+ 75 = 1. Since ged{12,7) = 1,
we start with the Euclidean algorithm:

12 = 1-7+5 - 0<5<7
7 = 1-5+42, 0<2<5
5 = 2241, <l<?2
9 = 2.1
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15.

i6.

17.

18.

19.

20.

Then 1=5—2-2=5~2[7— 5] = (=2)7 + 3(5) = (=2)7 + 3(12 — 7) = 12- 3 + 7(~5) =
12[3 + 7k} + 7[—5 — 12k}, k € Z. Hence

a=3+Tk b=-5-12, keZ.

(8) r = ro+ry 10472 10%+. +r,,, 10“ = ro+ri{9)+ri +72(89) +rat. . 47, (99...9) 47, =
m—-—...,——-./
n 9%
[Or;+99ry+...+(99.. Q)rn}+(r0+u+rg+ ). Hence Olr Hf l(rotritrat...4+ry).
!c)?;[tfarm-.-loréor?’ Gt forz =7, .

50z + 20y = 620 = 5z + 2y = 62
ged(5,2) = 1 and 1 = 5(1) + 2(—2) so 62 = 5(62) + 2(—124) = 5(62 — 2&) + 2(— 124 + 5k),
k€eZ. 2=62-2k20=2312ky=~-124+5k >0 =3 k > 24.8

Solutions: (1) k=25:2=12,y=1;(2)k =26:2z = 10,y = 6;(3)k = 27 : a:-8yw
15 (4)k =28 : 2 =6,y =16: (5)k =29: 0 = 4,y = 21;(6O)k = 30 : & = 2,y = 26;(k =
3l:z =0,y =31

(a) Let n=2%-3%.5%.7%.11% where e; +e3 + 3+ e4 + €5 = 9, with ¢; > 0 for all
1 < ¢ € 5. The number of solutions to this equation is (5*3‘1) = (7‘;’)

®) ()

(a) 24(1+243)54(1+243) » (b) 95(142+3) p4(1+24+344)

(c) 2UDH243)524)(4243) 74(4)(1) (d) 23W+243)34H(142)53(4)(14243)
(e) p°¢f, wheree=(n+ 1)1 +2+ -+ m)=(n+ 1}{m)}m+1)/2 and
f=m+1)(14+24+ - +n)=(m+1}(n)n+1)/2
(f) p°¢’r!, whene =(n4+ I}k + 1)1+ 2+ - +m) = (n+ 1)k + )(m)m + 1)/2,
F=m+Dk+1D{1+24+ - +n)=(m+ D+ D{n)n+1)/2, and
g=(m+Dn+1)A+2+ - +k)={(m+D{n+1)k)E+ 1)/2.

{a) 14,9 '
{(b) 1,4,9,16,...,% where k is the largest square less than or equal to n.

Proof: For 1 <t £ 5, it follows from the division algorithm that a; = 5¢; + r;, where
0<r <4 So now we shall consider the remainders: ry, vy, r3, rq,rs. For if a seleciion
of the remainders adds to a multiple of 5, then the sum of the corresponding elements of
A will also swn to a multiple of 5. (Note that for the remainders we need not have five
distinct integers. )

1} ¥ r; = 0 for some 1 < ¢ < 5, then 5jg; and we are finished. Therefore we shall assume
from this point on that r; # 0 for all 1 < ¢ < 5.

2 Kl =m=ry=ryg=r; S4 thenas +ag+ ...+ a5 =b{gy +ga+...q5) + 8ry,
and the result follows. Consequently we now narrow our attention to the cases where at
least two different nonzero remainders occur, ‘

Case 1: (There are at least three 4’s). Here the possibilities to consider are (i) 4 4 1; (ii)
4 4+ 4+ 2 and (i) 4+ 4 + 4 + 3 — these all lead to the result we are seeking.
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21.

22.

23.

24.

Case 2: (We have one or two 4’s). If there is at least one 1, or at least one 2 and one 3,
then we are done. Otherwise we get one of the following posszbzhties i)4+24+2+2
or (ii}4 +3 + 3.

Case 3: (Now there are no 4's and at least one 3.) Then we either have (i) 3 + 2; (ii) 3
+1+Lor(iii)3+3+3+ 1.

Case 4: (We now have only 1’s and 2’s as summands). The final possibilities are (i) 2 +
141+ Land ()24 2+ 1.

(a) Foralln € Z*,n>3,14243+...+n=mn(n+1)/2. {1,2,3,...,n} = AUB with
34 = 3g, then 254 = n(n+1)/2, ordsg. =n(n+1). Since 4|n{n+1) and ged(n,n+1) =1
then either 4ln or 4/(n + 1).

(b) Here we are verifying the converse of our result in part (a).
(i) I 4|n we write n = 4k. Here we have {1,2,3,..:,k,k+1,...,3k,3k+1,...,4k} = AUB
where A = {1,2,3,...,k,3k+ 1,3k +2,...,4k—~ 1,4k} and B = {k+ 1,k +2,...,2k, 2k +
1,3k — 1,3k}, with 4 = (1+ 243+ ...+ k) +[Bk+ 1)+ Bk +2)+ ...+ 8k + k)] =
(b +1)/2] + k(BE) + [k(k+1)/2] = k(k+ 1) +3k* = 4k* + k, and sp = [(k+ D)+ (k+2) +
BRI+ (20+2)+. . 42k K] = k(k)+[k(A+1)/2]+E(2E)+ [K(E+1)/2] =
3k + k(b + 1) =4k + k.
(i) Now we consider the case where n + 1 = 4k. Then n = 4k — 1 and we have
{1,2,3,...,k—L,k,...,3k - 1,3k,...,4k — 2,4k ~ 1} = AU B, with A = {1,2,3,...,k —
1,3k, 3k+1,...,4k -1} and B = {k, k+1,...,2k~ 1,2k, 2k+1,...,3k —1}. Here we find
4= [142434 .+ (k-] +BE+BE+1) 4. A+ Bk+ (k1)) = [(k—1)k)/2] + k(3k) +
[(E—1)k)/2} = 3k*+ k> —k = 4k* -k, and sg = [k+(k+1)+.. . +{k+(k—-1)]+[2k+(2k+
Db A2+ (k1)) = B +[(k—1)(k)/ 2]+ E(2k) +{(k—1)(k)/2] = 3K+ (k—1)k = 4k — k.

Let n be one such integer. Then 5n ~ 4 = 6s and Tn + 1 = 4¢, for some s,¢ € Z. Since
2|4 and 26, it follows that 2{6n because 5n — 4 = 6s. From Lemma 4.2 we have 2|n.
Consequently, as Tn + 1 = 4¢, we find that 2/1. This contradiction tells us that no such
integer n exists. '

{8} The result is true for @ = 1, so consider ¢ > 1. From the Fundamental Theorem
of Arithmetic we can write ¢ = p{'pd® - p{*, where m,pa, ..., pr, 8re ¢ distinct primes
and e; > 0, for all 1 < ¢ < ¢, Since &?|B* it follows ﬁ;ha,t; P |b® for all 31 < a < 4
So b = pgé'ip?f"’ pzf*a , where f; > e; for all 1 < i < ¢, and b = plipl*. .. pfc =
a{ph #a 22“"’ f “*)e, where f; —¢; > 0 for all < ¢ < ¢. Consequently, alb.

{b) This result is not necessarily true! Let ¢ = 8 and b = 4. Then a*(= 64) divides
(= 4}, but a does not divide b.

Proof: Suppose that n > 1. If n is not prime, then n = nyny where 1 < ny < n and
1 < ng < n. Since nin we have nining. So njn; or njny — where either result is impossible.
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25.

26.

27.

{a) Recall that

@+ = [(a+b)a®—ab+b?)
a+b8 = (a+b)a*~ a®b + a®h? — ab® + b?)

a? + ¥ - (a+b)(a? ! —a2b 4 - 4 bP1)
= (a+ b)f:a”“‘(mb)‘"l,
=1 -

for p an odd prime.

Since k is not a power of 2 we write k = r - p, where p is an odd prime and r > 1. Then
af + b = (a" WP+ (V)Y =(a + b”)ﬁ::az’*{”“é}(«—l‘)’)'(i"”p so a* + b* is composite.

(b) Here n is not a power of 2. If, i:;ddition, n is not prime, then n = r-p where pis an odd
prime. Then 27+ 1 = 27 4 1% = 277 4+ 17% = (2" +1T)§pj2’(?“’>(-—«1)'(*'“13 = (2" +1)§E_jz"(?*‘3,

fz=1 FE3 |
so 2" + 1 is composite — not prime.

Proof: Here the open statement S(n) represents: He» <1+ n, and for the basis step we
consider what happens at n = 0. We find that Hyn = Hpe = H; =1 <14+0=1+4n, so
S(n) is true for this first case (where n = 0).

Assuming the truth of S(k) for some k in N (not just Z*), we obtain the induction
hypothesis : '
S(k): Hu<1l+k.

Continuing with the inductive step we now examine S(n) for n = k + 1. We find that

Hoppsr = [1+%+%+"'+§E}+[m+m+"'+{'zkiQk)z
- 1 1 1
== sz + {(2k+1)+ (21;+2) + o + (2k+2k11.

Since k= < 4, for all 1 < j < 2%, it follows that

1
Ifikw < Hgk e (2"‘)(55) = sz + 1.
And now from the induction hypothesis we deduce that

Hyss SHp +1<(14+E) +1=1+(k+1),

so the result §{(n} is true for all n € N — by virtue of the Principle of Mathematical
Induction. '

Proof: For n = 0 we find that F; = 0 < 1 = (5/3)°, and for n = 1 we have F; =1 <
(5/3) = (5/3)!. Cousequently, the given property is true in these first two eases {(and this
provides the basis step of the proof).

Assuming that this property is true for » = 0,1,2,...,k — 1,k, where k > 1, we now
examine what happens at n = k + 1. Here we find that
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28.

29.

Fror = Fi+ Froy S (5/3)° + (5/3)%" = (5/8)F1((5/3) + 1] = (5/3)*~*(8/3)

= (5/3)*1(24/9) < (5/3)F1(25/9) = (5/3)"1(5/3)* = (5/3)"™.

It then follows from the Alternative Form of the Principle of Mathematical Induction that
F, £(5/3)" for all n € N.

Proof; When n = { we find that

o
LngLizQE?)“lng—*lﬁ-':LQ.}.z"‘E,
¢z
so the claim is established in this first case.
For some k € N, where k£ > 0, now we assume true that

k
LQ+L1+L2+'-*%~L;¢:ZLe':Lkm*1-

LEC
Then for n = k + 1{> 1) we have

b1 k
(*) Y Li=3 Li+Lip1 = (Lrya—1)+Ligs = (Liga+Lagr) =1 = Lpga—~1 = Ligy1ypa—1,
fmi} =0

and so we see how the truth at n = & implies that at & + 1. Consequently, the summation
formula is valid for all n € N by the Principle of Mathematical Induction.

[Note that for the equations at (¥), the first equality follows from the generalized associative
law of addition -— and the fourth equality rests upon the given recursive definition of the
Lucas numbers since k + 3 > 3(> 2).]

a) There are 9- 10 - 10 = 900 such palindromes and their sum is ¥°_, 52 59  abcba =
559 S0 (10001a-+1010b-+100c) = $°_, T [10(10001a + 10105)+ 100(9 - 10/2)] =

S_ 59 ,(100010a + 101005 + 4500) = 5°°_, [10(100010a) + 10100(9 - 10/2) + 10(4500)] =

wrgpmmg

1000100 5°°_, a+9(454500)+9(45000) = 1000100(9-10/2)+4090500+405000 = 49, 500, 000.

b} begin
sum = 0
fora:=110 9do
for b:=0to 8 do
for ¢c:= 0 to 9 do
sum = sum + 10001 2 a4 101064 100 ¢
priont sum
end

130
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30.

31.

32.

33.

34.

Proof: Let ¢ = ged(a, b), d = ged (%5, b).

Since a,b are odd, it follows that @ — b is even and ¢ — b = 2(%%), with % € Z*, Also,
¢ is odd since a, b are odd. Nowcwgcd(asb)zﬁciaandcib::>c§{a—f))z’;»cﬁ{
because ged(2, ¢) = 1. Consequently, ¢ | b and ¢ | (%52) = ¢ | d.

As d = ged(%52,b), it follows that d | 2(%5%) + b, that is, d | a. Since d | a and d | b, we
have d | c. :

Since ¢ | d and d | ¢ and ¢,d > 0, it follows that ¢ = d.

Proof: Suppose that 7jn. We see that Tin = 7l(n—21u) = Ti[(n u)—20u] = 7§{19(1“—1’-§‘— -
20u] = T|[10(2%5 — 2u)] = T|(%3* — 2u), by Lemma 4.2 since gca(7 10) = 1. [Note:
=t e ZF smce the units digit of n —u is 0.] Conversely, if 7/(%3* — 2u), then since
nou _ 2u = 252 we find that 7|(252%) = 7-10 -2 = n — 21y, for some x € Z*. Since 7|7

10 10
and 7|21, it then follows that 7|n — by part (e) of Theorem 4.3.

a) If 19m + 90 + 8n = 1998, then m = (1/19)(1908 — 8n). Since 1908 = 18(100) + 8, the
remainder for 81/19 must be 8. This occurs for n = 1, and then m = (1/19)(1908 — 8) =
(1/19)(1900) = 100.

b) In a similar way we have n = (1/8)(1908 — 19m). Here 1908 = 8(238) + 4, so the
remainder for 19m/8 must be 4. This occurs for m = 4 (and not for m = 1,2, or 3), and
then n == (1/8)(1908 — 76) = 229.

If Catrina’s selection includes any of 0,2,4,6,8, then at least two of the resulting three-digit
integers will have an even unit’s digit, and be even — hence, not prime. Should her selection
include 5, then two of the resulting three-digit integers will have 5 as their unit’s digit; these
three-digit integers are then divisible by 5 and so, they are not prime. Consequently, to
complete the proof we need to consider the four selections of size 3 that Catrina can make
from {1,3,7,9}. The following provides the selections — each with a three-digit integer
that is not prime.

(1) {1,8,7}:713=23-31

(2) {1,3,9}:913=11-83

(3){1,7,9} : 917=7-131

(4) {3,7,9} : 793 = 13 . 61

Let T = {a,b,¢,d, e, f, g, h} represent the eight element subset of {2,3,4,7,10,11,12,13,15}
that we use.

aldlid| e
dibie 9§
11 fleg ih

These numbers are placed in the table as shown in the figure. Since each row has the same
average, it follows that etbilite o dfbkeid o Lt/ieth Tikewise, from the columns of the
table we learn that 834 = 858 o 34*‘*“ = "*’Q"“h Consequently, both 3 and 4 divide
s={a+btetdtet fiyg ~§~ h+ 2@}, and smce d‘cd{?@ 4) = 1 it follows that 12 divides
8. So we may write s == 12k. The total of the nine given integers is 77. I we let i denote
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35.

3@5

the integer not in T, then s = (77 — ¢) + 29 so 77 — ¢ + 29 = 12k, or 106 — i = 12k.

As we examine the nine given infegers we see that
106 — 2 == 104 = 12(8) + 8 106 —T=99 = 12(8) + 3 106 — 12 = 94 == 12(7) + 10
106 ~ 3 = 103 = 12(8) + 7 106 — 10 = 96 = 12(8) 106 — 18 =93 = 12(7) + 9
106 — 4 = 102 = 12(8) + 6 106 —~ 11 = 95 = 12(7) + 11 106 - 156 =91 =12(T+7
Therefore we do not place 10 in the table. So T' = {2,3,4,7,11,12,13,15} and the 12
entries in the table total 674+ 29 = 96. It then follows that a+ b+ 144+ c=d 4+ 54+ e-+0 =
14+ f+g+h=32anda+d+1=b+8+f=1ld4+et+g=c+9+h=24.

From column 3 we have 14 + e+ ¢ = 24, so e + g = 10. The entries in T imply that
{e,g} = {8,7}; e = 3 = d = 15 (from the equation d -+ 5+ ¢+ 9 = 32). With d = 15,
from a+d-+ 1 =24 we have a = §, but 8 ¢ T. Consequently, e = 7 and ¢ = 3, and then
d = 32 — 21 = 11. Column 1 indicates that a +d+ 1 = 24 so ¢ = 12. From column 2 it
follows that b+ f = 19, s0 {b, f} = {4,15}. As b= 15= a + b+ 14 + ¢ > 32, it follows
that b = 4 and f = 15. Row 1 then indicates that ¢ =32 —a — b~ 14 = 2 and from row 3
(or column 4) we deduce that h = 13. The completed table is shown in the figure.

1214 1141 2
117317191
1715613 {13

Let z denote the integer Barbara erased. The sum of the integers 1,2,3, ...,z - 1,z +
Lz+2, ...,nis [n(n+1)/2] — 2, so [[n{n + 1)/2] — z]/(n ~ 1) = 35%. Consequently,
[n(n+1)/2]—z = (36%)(n — 1) = (602/17)(n — 1). Since [n(n+1)/2] —z € Z*, it follows
that (602/17)(n — 1) € Z*. Therefore, from Lemma 4.2, we find that 17|(n — 1) because
17 does not divide 602. For n = 1,18, 35, 52 we have:

n r = [n{n+1)/2] ~ (602/17)n — 1)
1 1

18 —~431

35 —374

52 ~428

When n = 69, we find that ¢ = 7 [and (522, ¢ — 7)/68 = 602/17 = 35%].

For n = 69+ 17k, £ > 1, we have
z = [(69+ 1TE}70+ 178)/2] — (602/17)[68 + 17k]
= 7+ (k/2}{1158 + 280k]
= (74 (1159%/2)] + (2895%)/2 > n.

Hence the answer is unique: namely, n =69 and 2 = 7.

Let §={1,2,3,...,100} be the sample space for this experiment and let A, B, C denocte
the following events:

A: Leslie’s selection is divisible by 2: {2,4,6,...,98, 100}

B: Leslie’s selection is divisible by 3: {3,6,9,...,96,98}
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C': Leslie’s selection is divisible by 5: {5,10,15,.. 95 100}

{(a) Pr(AUB) = Pr(A)+ Pr(B) - Pr(ANB) = B + 2 18 = 8L = §§7. [Note:
Here ANB = {6,12,18,...,96}, the set of integers between 1 and 100 (mcluswe) that are
divisible by 6 — that is, divisible by both 2 and 3.]

(b} PriAUBUC) = Pr(A)+ Pr(B)+ Pr(C)~ Pr(ANB) — Pr(AnC) - Pr(BNC) +
Pr(ANBNC)=2+ 2+ 218 106 3 - T (74

A common divisor for m,n has the form pPpi?py’, where 0 < »; < min{e;, fi}, for all
1 <¢<3 Let m =min{e, fi}, 1 £¢ < 3. Then the number of common divisors is

www.youséﬁ%lass.ir



CHAPTER 5
RELATIONS AND FUNCTIONS

Section 5.1

AxB=1{(1,2),(22),(3,2),(42),(1,5),(2,5),(3,5), (4 5)}
BxA=1{(21),(22),(23),(24),(5,1),05,2),(53),(54)}

AU(B x C)={1,2,3,4,(2,3),(2,4),(2,7),(5,3), (5,4),(5, 7)}

(AUB)XC = (AxCYU(BxC) = {(1,3),(2,3),(3,3), (4,3),(5,3),(1,4),(2,4), (3,4), (4, 4),
(5,4),(1,7),(2,7),(3,7),(4,7),(5,7)}

(a) {(1,2)}{(1,2),(1,4),(1,5),(2,2),(2,4)}; A x B
(b) {(1,1),(2,2),(3,3)1{(1,1),(1,2),(1,3),(2,2), (3,3)}; {(1,2),(2,1), (3, 3)}.

(a) |Ax B|=|4]|B|=29

(b) Since a relation from A to B is a subset of A x B, there are 2° relations from
A to B.

(c) Since |4 x A] =9, there are 2° relations on A.

(d) For the other seven ordered pairsin A x B there are two choices: include it in the
relation or leave it out. Hence there are 27 relations from A to B that contain (1,2)

and (1,5).
© () ® )+ +E6)
Ifeither A or B is § and when A4 = B.

{(a) Assume that AXxB C CxDandlet a € Aand b€ B. Then (a,b) € A x B, and since
Ax BCCxD wehave (a,b) € Cx D. But (a,b) e C x D= ae C and b€ D. Hence,
ccA=acC, 50 ACC,andbe B=be D, so BC D.

Conversely, suppose that A C C and B € D, and that {z,y) € A X B. Then (z,y) € A x
B=zecAandye B=>2¢C{since AC C)andy € D (since BC D) = (2,y) € Cx D,
Consequently, A x B C C x D.

(b} M any of the sets A, B, C, I} is empty we still find that
{ACO)A(BC D)= [AxBCCxDL

However, the converse need not hold. For example, let 4 =8, B = {1,2}, C = {1,2} and
D = {1}. Then A x B = § — if not, there exists an ordered pair (2,y) in 4 x B, and this
means that the empty set 4 contains an element z. Andso AX B =8 C C x D — but
B={1,2} ¢ {1} = D.

134
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7. (a) Since |A| = 5 and |B| = 4 we have |4 x B| = |A||B| = 54 = 20. Consequently, A x B
has 2% subsets, so [P(4 x B)| = 2%°.
(b) If |A] = m and |B| = n, for m,n € N, then |4 X B| = mn. Consequently, |P{4 x B)| =

2m=,
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10.

11.

12.

13.

14.

(b) Ax(BUC)={(z,y)lr€ A and ye (BUC)} ={(z,y)lz €4 and (y € B or
ye€C)} = {{z,y){z €4 and yeB) or (z€ A and y € C)} = {{x,y)lzc € A and
yeBlU{{z,y)le€d and ye C}=(AxB)u(4xC)

(c) & (d) The proofs here are similar to that given in part (b).

1+ 2+ 2(3) + 2(3)(5) = 39; 38

(z,y) e Ax(B-C)&e2z2¢ A and ye B-C <>z €A and (y € B and
ygC)<e> (e €A and ye B) and (r € A4 and y C) & (2,y) € AX B and
(2, )€ AxC &> (z,y) € (AxB)—~{4x ().

2018l = 4096 = 3|B| = 12 == |B| = 4.

(a) (1) (0,2) € R; and
(2) I (a,b) € R, then (a+1,b+5) € R.
(b} From part (1) of the definition we have (0,2) € R. By part (2} of the definition we
then find that
i) (0,2)eR=(0+1,24+6)=(L,7)eR;
G) (LN ER=(1+1,7+5)=(2,12) € R;
(i) (2,12) € R = (2+ 1,12+ 5) = (3,17) € R; and
(iv) (3,11 €eR=(3+1,17+5)=(4,22) e R.

(a’) (}) (131)$ (2, 1) € R; and
(2) U{a,b)c R, then (a+1,b+1)and (a-+1,5) arein R.
(b} Start with (2,1) in R — from part (1) of the definition. Then by part (2) we get
G) 21 eR=(2+1,1+1)=(3,2) € R;
(i) 3,2)eR=(3+1,2)={(4,2) € R; and
(i) (4,2)e R=(4+1,2)=(5,2) € R.
Start with (1,1) in R — from part (1) of the definition. Then we find from part (2) that
O (LDeR=(10+1,141)=(2,2)eR;
@) (2,2eR=2+12+1)=(3,3) € R; and
(i) (3,3)eR=3+1,3+1)=(4,4)€R.

Seciion 5.2

{a) Function: Range = {7,8,11,16,23,...}

{b) Relation, not a function. For example, both (4,2) and (4, —2) are in the relation.
{¢) Function: Range = the set of all real numbers.

{d} Relation, not a function. Both (0,1} and (0, —1) are in the relation.

{e) Since [R|> 5, R cannet be a function.

The formula cannot be used for the domain of real numbers since f(v/2), f(—+/2) are
undefined. Since x/ﬁ, /2 g Z the formula does define a real valued function on the

domeain £.
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10.

11,

(a) {(1,2),(2,2),(3,2), (4, 2)}, {(L, ), (2,v), 3, ¥), (4, W}, {(1,2),(2,2), (3, 2), (4, =)}
{(i,w),(Z,y}3{3,x},(4,y)}7{{i,x),(Z,y),{3,z),(4,m)}
(b) 3 (c) © (d) 4 (e) 24 () & (g) 3 (h) 3

3 = 2187 == |A| =T

(a) ANB = {(z,y)ly =22z +1 and y = 3z}
20 4+1=3z=z=1
So ANE = {(1,3)}.
(b) BNC={{z,x)ly=3zandy =217}
xr=z~7=2z=-7s0z=-T7/2
Consequently, BNC = {(-~7/2,3(-7/2)} = {{-7/2,-21/2)}.

(¢) AUC=ANC=AnC={{z,y)ly=2z+1andy =2z~ 7}
Now2a+1l=z—-7=>z=—8 andso ANC = {{-8,-15)}.

(d) We know that BUC = BN C, and since BNC = {(~7/2,~21/2)} we have BUC =

R? — {(~7/2,-21/2}} = {(2,y)lz # —T/2 or y # —21/2}.

@ @ AnB={13) () BAC={=0
(i) AUC = {(-8,-15)} (ivy BUC=Z*=ZxZ
(b) () ANB={{13)} (i) BnC={}=0
() AuC=4¢ (iv) BUC=Z*xZ*
(a) {23-16]={07=0 _ (b) |23]-[18]=2-1=1
(c) [3.4]]62 =4.6=24 (d) |34][6.2] =3-7=21
(e) |27] =86 (f) 2[x] =8
{a) True (b} False: Let a=1.5. Then [1.5] =1 # 2 = [1.5]
(¢} True (d) False: Let a=1.35. Then —[a] = ~23# —1 = [~a].
(a) ...[~1,~6/T)UI0,1/T)UIL,8/7)U[2,15/T)U...
(b) [1,8/7) (c) % (d) R
R
(a) ..LJ(~7/3, 2] U(—4/3, - U(-1/3,0]U(2/3,1]U(5/3,2}U... = |J (m~1/3,m]

wE

() . U((~2n—1}/n, 2} U((~n—1}/n, —1]U(~1/n, 0} U((n— 1)/n, JU(2n ~ 1}/n,2]U. ..

= {J (m—1/n,m]

mELt
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12.

13.

i4.

Proof: (Case 1: kin) Here n = gk for ¢ € Z*, and (n — 1)/k = (¢k — 1)/k = g — (1/k)
with ¢ — 1 < ¢ — (1/k) < g. Therefore [n/k] = [¢gl =q=({g— 1D+ 1= |(n - 1)/k] + 1L
(Case 2: ¥ [n) Now we have n = gk +r, where ¢,r € Z% with » < k, and n/k = ¢+(r/k)
with 0 < (r/E) < 1. Son—1=gk+{(r—1})and (n ~1)/k = g+ (v — 1)/k] with
0 < [{(r ~ 1)/k] < 1. Consequently, [n/k] = [¢+ (r/k)] = ¢+ 1= |{n - 1)/k] + 1.

a) Proof (i) If e € Z*, then [¢] =a and [[a]/a] ={l]l =1 Ha g Z" writea=n+¢,
where n € Z7 and 0 < ¢ < 1. Then [al/ea=(n+ 1)/(n+¢c) =1+ (1 —¢)/(n + ¢), where
0<(l—e)f(n+ec) <l Hence [[a]/a] = {1+ (1 ~c)/(n+c}] =1

Proof (ii): Fora € Z%, || = aand [[a]/a] = [1] =1. Whena ¢ Z*, let @ = n+c, where
n€Z"and 0 < e <1l Thenlal/a=n/(n+e)=1-[¢/(n+c)l, where 0 < ¢f(n+¢) < 1.
Consequently {|a|/a] = [1 - (¢/(n+¢))] =1L

b) Consider a = 0.1. Then
(i) {[al/e} = [1/0.1] = [10] = 10 # 1; and
(i) Tlal/a] = [0/0.1] =0 # 1,

In fact (ii) is false for all 0 < a < 1, since [|a]/a] = 0 for all such values of a. In the case
of (i), when 0 < a < 0.5, it follows that [al/a > 2 and |[a]/a] > 2 # 1. However, for
05 <a<1l,fal/a=1/a wherel1 < 1/a<2,and so {[a]/a] =1for 0.5 <a< L.

(a) a3 =2a)3/5 = 2a0; =2
g == 2&{3/2} == 2&1 = 2
ag = 2(1«;.4/21 = 2&2 =4
as = 2ai53) = 2a; = 4
g =~ 2&{3/2} = 2(13 =4
ar = 2ayrp21 = 263 =4
g == 2(1;_3/2_; = 2(154 = &

{b) Proof: (By the Alternative Form of the Principle of Mathematical Induction)

For n = 1 we have a; = 1 < 1, so the result is true in this first case. (This provides the
basis step for the proof.)

Now assume the result trueforsome bk 2> landalln = 1,2,3,...,k—-1,k Forn =%£41 we
have a4 = 20ie1)2y S 21(k + 1)/2], where the inequality follows from the assumption
of the induction hypothesis.

When k is odd, then, {{k 4+ 1)/2] = (k + 1)/2 and we have gy < 2{{k+ 1}/2] =k + 1.
When k is even, then [{(k + 1)/2] = [{k/2) + {1/2}] = (%/2), snd here we find that
In either case it follows from aygayz; < 1k + 1)/2] that apyy
established the inductive step of the proof.

Therefore, it follows from the Alternative Form of the Principle of Mathematical Induction
that

< k4 1. So we have

Ve Zt a, <n.
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15.

16.

17.

18.

19.

20.

21.

22.

(a) One-to-one. The range is the set of all odd integers.

(b} One-to-one. Range = Q

(¢) Since f(1)= f(0),f is not one-to-one. The range of f = {0,+6,4+24,%60,...} =
{n® —n|n € Z}.

(d) One-to-one. Range = (0, +c0) = R¥

(¢) One-to-one. Range = [~1,1]

(f) Since f(w/4)= f(3n/4),f is not one-to-one. The range of f = [0,1].

(a) {49} (b) {49} (e) [0,9)
(d) [09) (e) [0,49] (f) [9,16) U [25,36]

The extension must include f(1) and f(4). Since [B| == 4 there are four choices for
each of 1 and 4, so there are 4% = 16 ways to extend the given function g.

Let A= {1,2},3 = {334} and f = {(113)3(27 3)} For A; = {1}:*’42 = {2}1 f(AlﬂAz) =
f(8) =90 while f(A4:)N f(4A)= {3} N {3} ={3}.

() f(A4UA)={y€Bly=f(z), € AUA} ={y € Bly= flz), z € 4 or
z€ Ay} ={y € Bly=f(z), € 41} U{y € Bly = f(z), v € A3} = f(A;) U f(4y).

() y€ fA)D flA) => y = f(z:) = f(22), 21 € A1, 23 € Ay => y = f(a1) with
Z1 = Ty, since [ is one-to-one == y € f{A; N A;).

The number of injective (or, one-to-one) functions from A4 to B is ([B{)/(|B|-5)! =
6720, and |B|=8.

No. Let A= {1,2}, X = {1}, Y = {2}, B = {3}. For f = {(1,3),(2,3)} we have flx, fly

one-to-one, but f is not one-to-one.

(a) A monotone increasing function f : X; — X determines a selection, with repe-
titions allowed, of size 7 from {1,2,3,4,5}, and vice versa. For example, the selection
1,1,2,2,3,5,5 corresponds to the monotone increasing function g : Xy —» Xy, where g =
{(1,1),(2,1),(3,2),(4,2),(5,3),(6,5),(7,5)}. (Note the second components.) Consequently,

the number of monotone increasing functions f : Xy — Xj is (5””;“1> = (’;}) = 330.

by (%51 = () = 3008,

[ i)

(¢} For m,n € Z*, the number of monotone increasing functions f: X, — X, is ( -

(d) Since f(4) = 4, it follows that f({1,2,3}) € {1,2,3,4} and f({5,6,7,8,9,10}) C
{4,5,6,7,8} because f is monotone increasing. The number of these functions is

(%) = (6(2) = orato) = o

@ () =0
(f} Let mn, ke Z¥withl <k <mand 1 <€ < n If f: X, — X, is monotone
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23.
24.

25.

26.

2?‘

increasing and f(k) = £, then f({1,2,...,k -1} C {1,2,...,£} and f({k+1,...,m}) C
{£,6+1,...,n}. So there are

(o) (SR = (R (Msi®) such functions.

(8) flay)=12-1)+5  (b) flay)=10G~ 1)+ () flay)=7(i—-1)+]
gla) =m{j —1)+1

(a) (i) flag)=nli-1)+{k=-1)+]
(i) glay)=m(j-1)+(k—-1)+i
by kE+{(mn—-1)<r

{a) There is only one function in §;, namely f : A — B where f(a) = f(b) = 1 and
f(c) = 2. Hence |S;| = 1.

(b) Since f(¢) = 3 we have two choices — namely 1,2 — for each of f{a) and f(b).
Consequently, |55] = 2%

(¢) With f(c¢) = ¢+ 1 there are ¢ choices — pamely 1,2,3,...,¢ — 1,4 — for each of f(a)
and f(b), so |S;] = 2.

(d} Any function f in T is determined by two elements z,y in B, wherel <2 < y <n+1
and f(a) = f(b) = z, f{c) = y. We can select these two elements from B in (”;i) ways,
50 ’Tli = (ﬁ;l).

{e) For T, we have f(a} < f(b) < f(c), so we need three distinct elements from B, and
these can be chosen in (n’gl) ways. The argument for T3 is similar.

(f) §=5U8US5U...US,, where $;NS; =fforalil <i<j<n,and S=TyUTUT;
with TjﬂTg == T;ﬁT3 ﬁszTg = @

(&) From part (f) we have |S] = S8 = 3 = ST} = ( : 1) + z(”" + 1). Hence

1=l eS| Jal

S8 = (0 + D)2 + 20+ D)~ D/6 = (n + Dm(1/2) + (n - /3] =
(n + D(r)(3 + 2n — 2)/6] = n(n + 1)(2n + 1)/6.

(8) A(1,3) = A(0,A(1,2)) = A(1,2)+1 = A0, AL, 1) +1 = [AQ, 1) +1]+1 =
A(L,1)+2 = A(0, A(1,0))+2 = [A(1,0)+1]+2 = A(1,0)+3 = A(D,1)+3 = (1+1)+3 =5

A(2,3) = A(1, A(2,2))

A(2,2) = A(1, A(2,1))

A(2,1) = A(1, A(2,0)) = A(1, AL, 1))

AL, 1) = A(D, A(L0)) = A(LO) 4+ 1= A0, 1) +1=(1+1)+1=3

A(2,1) = A(1,3) = A(D, AQ,2)) = A(1,2) + 1 = A(0,A(1,1)) = [A(L, D+ 1]+ 1 =5

A(2,2) = A(1,5) = A(0,A(1,4)) = A(1,4) +1 = A(0, A(1,3)) + 1 = A(1,3)+ 2 =
A0, A(L,2) +2=A(1,2) +3 = A(0, A(1,1)) + 3 = A(L, 1) + 4 =T

A(2,3) = A(1,T) = A(0, A(1,6)) = A(L,6) + 1 = A0, A(L5)) +1 = A(0, )+ 1 =
(T+1)+1=9
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(b) Since A(1,0) = A(0,1) = 2 = 0 + 2, the result holds for the case where n = 0.
Assuming the truth of the (open) statement for some k (> 0) we have A(1,k) = &k + 2.
Then we find that A(1,k+1) = A0, A(LE) =A(LE)+1=(k+2)+1=(k+1)+2,80
the truth at n = k implies the truth at n = k + 1. Consequently, A(1,n) = n + 2 for all
n € N by the Principle of Mathematical Induction.

{¢) Here we find that A(2,0) = A(1,1) = 1+ 2 = 3 (by the result in part(h)). So
A(2,0) = 3+ 20 and the given (open) statement is true in this ficst case.

Next we assume the result true for some k (> 0) — that is, we assume that A(2, k) = 34-2k.
For k + 1 we then find that A(2,k + 1) = A(1, A(2,%)) = A(2,k) + 2 (by part (b)) =
(3 + 2k) + 2 (by the induction hypothesis) = 3 + 2(k 4+ 1). Consequently, for all n € N,
A(2,n) = 3 + 2n — by the Principle of Mathematical Induction.

{(d) Once again we consider what happens for n = 0. Since A(3,0) = A(2,1) = 3+ 2(1)
(by part {¢)) = 5§ = 2°+3 — 3, the result holds in this first case.

So now we assume the given (open) statement is true for some k (> 0) and this gives
us the induction hypothesis: A(8,k) = 2¥3 — 3. For n = k + 1 it then follows that
A3, k+1) = A(2, A(3,k)) = 3+ 2A(3, k) (by part (c)) = 3+ 2(2%*3 — 3) (by the induction
hypothesis) = 2143 _ 3 50 the result holds for n = k 4+ 1 whenever it does for n = k.
Therefore, A(3,n) = 2"~ 3, for all n € N — by the Principle of Mathematical Induction.

@ Qe+ (F+ (e + (O =@+ - (- (=5 -0 1

(b) ( m )nm—l 4 (ﬁ:f:g)nm“‘g R ("?)nl == (n -+ l)m e A

¥y e}

Section 5.3

Let A={1,2,3,4},B = {v,w,z,y,z}: {(a) f={(1,v),(2,v),(3,w),(4,z)}

(b) F={1v),(2,2),(3,¥),(4,2)}

(¢) Let A=1{1,2,3,4,8},B={w,z,y,2},f = {{1,w),{2,w),(3,2),{4,9),(5,2)}.
(d) Let A={1,2,3,4},B = {w,z,y,2}, f = {(1,w),{(2,2),(3, %), (4, 2)}.

{a) Ome-to-one and onto.

(b} One-to-one but not ento. The range consists of all the odd integers.

{c} One-to-one and onto.

(d) Since f(~1) = f(1), f 1is not one-to-one. Also f is not onto. The range of
F=10,1,4,9,16,...}.

{e} Simee f(0) = f{-1}), fis not oneto-one. Also f is not onto. The range of
f=1{0,2,6,12,20,...}.

{f} One-to-one but not onto. The range of f = {...,—64,-27,~8,-1,0,1,8,27,...}.

(1), (b}, (¢), {f) One-to-one and onto.
{d} Neither one-to-one nor onto. Range = [0, +o0)
(e) Neither one-to-one nor onte. Range = [~1/4, +o00)
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5.

10,

(a) 6% 6!/2%; 0 (b) 45 (41)5(6,4); 0

For n=5,m =3, Tho(~1F(,2,) (6~ £ = (-1° ()57 + (-1 (@ + (-1 () (3)° +
(-1 ()@ + (1)) + (1P (§) (0 = 125~ 320+ 70— 80+ 5 =0

(a) Z( )EDS 8 = ()anse ) + (@S 2) + ()6)S(7,3) + )4, 4) +

()"5')5(? v) (8)(1)(1) + (10)(2)(63) -+ (10)(6)(301) + (5)(24)(350) + (1)(120)(14) =
78,125 = 5.

(b) The expression m" counts the number of ways to distribute n distinct objects among
m distinct containers.

For 1 <1 < m, let i count the number of distinct containers that we actually use — that
is, those that are nol empty after the n distinct objects are distributed. This number of
distinct containers can be chosen in ("f) ways. Once we have the ¢ distinct containers we
can distribute the n distinct objects among these ¢ distinct contamers, with no container

left empty, in {i!)S(n,:) ways — where S(n,?) = 0 when n < i. Then E( )(z‘)S(n i) also

counts the number of ways to distribute n distinct objects among m dlstmct containers.

Hence m” = E( )(z‘)S(n i).

(a) (i) 215(7,2) Gi) (3)215(7,2)] (i) 315(7,3)
(v) (5)i315(7,9)] (v} 415(7,4) (vi)  (5)1ars(7,4)]

() (7)[EIS(m, k)]

Let A be the set of compounds and B the set of assistants. Then the number of
assignments with no idle assistants is the number of onto functions from set A to set B.
There are 515(9,5) such functions.

For each r € R there is at least one a € B such that o® — 2a? + a —r = 0 because
the polynomial % — 22? 4+ z ~ r has odd degree and real coefficients. Consequently, f
is onto. However, f{(0) =0 = f(1}, s0 f is not one-to-one.

() (41)5(7,4)
(b} (31)5(6,3) (Here container II contains only the blue ball) + (41)5(6,4) (Here
container II contains more than just the blue ball).

(c) S(7,4)+ S(7,8) + S(7,2) + S(7, 1).
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12.

13.

14.

n|l 2 3 4 3 6 1 8 ¢ 10
™m

9 1 255 3025 7770 6951 2646 462 36 1

10 |1 511 9330 34105 42525 22827 5880 750 45 1

{(a) Since 31,100,905 = 5 x 11 x 17 % 29 x 31 x 37, we find that there are 5(6,3) = 90
unordered factorizations of 31,100,905 into three factors — each greater than 1.
{(b) H the order of the factors in part (a) is considered relevant then there are (31)5(8,3) =
540 Slélch factorizations.
(c) D.5(6,¢) = 5(6,2)+ S(6,3) + S(6,4) + S5(6,5) + 5(6,6) = 31 + 90+ 65+ 15+ 1 = 202

=i

6

(d) D_(1HS(6,1) = (21)5(6,2) + (31)5(6,3) + (41)5(6,4) + (5!)5(6, 5) + (6!)5(6,6) =

py

(2)(31) + (6)(90) + (24)(65) + (120)(15) + (720)(1) = 4682.

(a) Since 156,009 = 3 x 7 x 17 x 19 x 23, it follows that there are §(5,2) = 15 two-factor
unordered factorizations of 156,009, where each factor is greater than 1.

5
(b) 3°S5(5,i) = S(5,2) + 5(5,3) + S(5,4) + 5(5,5) = 15+ 25+ 10+ 1 = 51.
=2

(e} 3 _S(n,7).

=2

10 Dim 5(12, 12)
20 ForI=17T012

30 S(LI) =1

40 Next I

50 Print “M = : 17

60 For M =2 To 12

74 Print “M ="; M; “ 1, ™
80 For N = 2 To M-1

90 S(M,N} = S5{M-1,N-1) 4+ N*S(M-1,N)
100 Print S(M,N); , 7,
116 Next N

120 Print ¢ 17

130 Next M

140 End

4 5
15. a) n=4 y i#5(4,i); n=05 Y i5(5,1)

3 dax1

www.yousefiglass.ir



16.

17.

18.

" :
In general, the answer is »_i15(n,i).

FE5 ]

12
b) (1)3i18(12,4).

[ES ]
a) (i) 10!
(ii} The given outcome — namely, {C3, Cs,Cr}, {C1,C4, Cy, Cio}, {Cs}, {Cs,Cs} — is
an example of a distribution of ten distinct objects among four distinct containers, with
no container left empty. [Or it is an example of an onto function f : A — B where
A= {C,Cy,...,Cio} and B = {1,2,3,4}.] There are 4!5(10,4) such distributions [or

functions].

10
The answer to the question is Y _#15(10,1).
’ i=1
Gir) ()3 i8(7,9).
(23 1
7
b) (5)X418(7,4)
il

¢) For 6 < k <9, the number of outcomes where Cj is tied for first place with & other

9~k
candidates is (z) > i1S(9 — k,i). [Part (b) above is the special case where k = 3 — 1 = 2.]

gus]

9 9~k
Summing over the possible values of & we have the answer Z (Z) Z iS(9 — k,1).

k=0 i=}

Let ay,ag,...,an,2 denote the m + 1 distinct objects. Then S,(m + 1,n) counts the
number of ways these objects can be distributed among n identical containers so that each
container receives at least r of the objects.

Each of these distributions falls into exactly one of two categories:

1) The element z is in a container with r or more other objects: Here we start with
Sy (m, n) distributions of 4y, ay, . . ., @, into n identical containers - each container receiving
at least r of the objects. Now we have n distinet containers — distinguished by their
contents. Consequently, there are n choices for locating the object z. As a result, this
category provides nS,.(m,n} of the distributions.

2} The element x is in a container with r — 1 of the other objects: These other v — 1
objects can be chosen in (:fz) ways, and then these objects — along with = ~ can be
placed in one of the n containers. The remaining m + 1 — r distinct objects can then be
distributed among the n — 1 identical containers — where each container receives at least r
of the objects —in S;(m 4+ 1 —r,n — 1) ways. Hence this category provides the remaining
(vffft) Sp{m 4+ 1 —r,n— 1) distributions.

{a) For n > m we have s(m,n} = 0, because there are more tables than people.
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2.

{(b) For m 2 1, (i) s(m,m) = 1 because the ordering of the m tables is not taken into
account; and, (i) s(m,1) = {m — 1)}, as in Example 1.16.

{c} Here there are two people at one table and one at each of the other m — 1 tables.
There are (’;‘) such arrangements.

{d) When m people are seated around m~—2 tables there are two cases to consider: (1) One
table with three occupants and m — 3 tables, each with one occupant — there are ('g‘) {2!)
such arrangements; and, (2) Two tables, each Wiﬁzh two occupants, and m — 4 tables each

with a single occupant -— there are (1/2) (’?)( ; ) of these arrangements. We then find

that (7)(@2)+1/2)(3) (") = (1/3)(m)(m—1)(m—2)+(1/2)[(1/2)(m)(m—1)][(1/2)(m
2)(m = 3)] = (m)(m — 1)(m = D)[(1/3) +(1/8)(m —3)] = (1/24)(m)(m — 1)(m—2)(3m —1).

(a) We know that s(m,n) counts the number of ways we can place m people — call
them py,p2,...,Pm — around n circular tables, with at least one occupant at each table.
These arrangements fall into two disjoint sets: (1) The arrangements where p; is alone:
There are s(m — 1,n — 1) such arrangements; and, (2) The arrangements where p; shares
a table with at least one of the other m — 1 people: There are s(m — 1,n) ways where
P2, P35+ -+ Pm can be seated around the n tables so that every table is occupied. Each
such arrangement determines a total of m — 1 locations (at all the n tables) where p;
can now be seated — this for a total of (m ~ 1)s(m — 1,n) arrangements. Consequently,
s(myny=(m—-1s(m~-1n)+s(m—-I,n—1),form>2n>1

ik

1
(b) For m = 2, we have s(m,2) = 1 = 1}{1/1) = (m - 1)} E - So the result is true in this

g2l
case; this establishes the basis step for a proof by mathematical induction. Assuming the
k-1 -
- 1 .
result for m = k(> 2) we have s(k,2) = (k — 1) T Using the result from part (a) we
faml

k-1 k-1
now find that s(k+1,2) = ks(k,2) +s(k, 1) = H(h—1)I3" -i;+(zg»-1): = KIS S (1R =
%

gl el

k
klz }» The result now follows for all m > 2 by the Principle of Mathematical Induction.

Py
Section 5.4

Here we find, for example, that
f(Fla,b),e) = fla,c} = ¢, while

fla, f(b,e)) = fla,b) = a, so f is net associative.

(a} Foralla,b& R, fla,b) = Ja+b] = [b+ a] = f(b,a), because the real numbers are
commutative under addition. Hence f is a commutative {closed} binary operation.
(b} This binary operation is nei associative. For example,

FF(3.2,4.7),6.4) = £([3.24+4.7],6.4) = F([7.9],6.4) = f(8,6.4) = [8+6.4] = [14.4] = 15,
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ii.

while,

F(3.2, f(4.7,6.4)) = £(3.2, [4.7+6.4]) = f(3.2, [11.1]) = £(3.2,12) = [3.2+12] = [15.2] = 16.

{c) There is no identity element. fa € R —Z thenfor any b€ R, Ja+b] € Z. So if
x were the identity element we would have a = f(a,z) = [a + z] with a € R — Z and
la+2z] € Z.

(a) flz,y)=2+y—zy=y+2z—yz= f(y,z), so the binary operation is commutative.
F(F, 20, y) = f(w,2)+y = F(w, 2)y = (o —wz) +y— (0 +2 —we)y = w+z+y
wE — wy — Y + wry.

Fuw, £(@9) = + £ ) = w- f(2,5) = w0+ (& +y—2y) — 0@+ —oy) =w+z+y-
wr — wy — TY + wry.

Since f(f(w,z),y) = flw, f(z,y)), the (closed) binary operation is associative.

(b}, (d) Commutative and associative

(¢) Neither commutative nor associative.

(a) The identity is z=0.
(d) The identity is z = 3.
{(b), (¢) Neither of these (closed) binary operations has an identity.

@) 25 (b) 5% (c) 5 (d) 51
) 5 o) 5

(c) 35, because neither a nor b can be an identity.

(d) 3-5°

(a) Yes ~ (b) Yes (¢} No

Each element in A is of the form 2 for some 1 < i < 5, and ged(2',2°) = 2 = ged(25,2),
so 2% = 32 is the identity element for f.

(a) |A] = (32)(38) = 1216.
(b} The identity element for f is p*l¢*".

For n € Z% let py,ps,...,pn be distinet primes and for each 1 € 7 < n let M; be a fixed
positive integer. If 4 = { H pii le; € N, 0 < < M;} define the closed binary operation
frAXA— A by fla, b} gﬂiw b).

Then A} = H{};&' + 1} and the identity element for f is H P

il FE

By the Well-Ordering Principle A has a least element and this same element iz the identity
for g. I A is finite then A will have a largest element and this same element will be the
identity for f. If A is infinite then f cannot have an identity.
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13.

14.

3.

4.

7.

8!

(a) ma(D)=[0,+00) wp(D)=R

(b) ma(D)=R wp(D) = [-1,1]

(¢} ma(D)=[-1,1 =p(D)=[-11]

(a) 5 (b) {(25,25,6), (25.2:4), (60,40,20), (25,40,10)}
{C) AHAZ

(a) 5

(b) {(1,4),(1,D),(1, E),(2,4),(2,D),(2, E}}; _
{(10060, 1, 100), (400, 1,100), (30, 1, 100), (4000, 1, 250), (400, 1, 250}, (15, 1,250)}
(C) Al x Az; A2 X Aﬁ; Ag x A.5 .

Section 5.5

Here the socks are the pigeons and the colors are the pigeonholes.

The result follows by the Pigeonhole Principle where the eight people are the pigeons and
the pigeonholes are the seven days of the week.

26%+ 1 =677

Subdivide the set S into the 14 subsets: {3}, {7,103}, {11, 99}, {15,95},...,{43,67},
{47,63},{51,59}, {565}. By the Pigeonhole Principle if we select at least 15 elements of S
then we must have the elements in one of the two-element subsets and these sum to 110,

{a) Foreach z € {1,2,3,...,300} wrote z = 2".m, where n >0 and ged(2,m) = 1.
There are 150 possibilities for m: namely, 1,3,5,...,299. In selecting 151 numbers from
{1,2,8,...,300} there must be two numbers of theform z=2"m, y=2"m. If 2 <y
then zly; otherwise y < 2 and yla.

(b) If n+1 integers are selected from the set {1,2,3,...,2n}, then there must be two
integers z,y in the selection where zly or yle.

Any selection of size 101 from § must contain two consecutive integers n, n+ 1 and
ged{n,n+1) =1,

{a) Here the pigeons are the integers 1,2,3,...,25 and the pigeonholes are the 13 sets:
{1,25},{2,24},...,{11,15}, {12, 14}, {13}. In selecting 14 integers we get the elements in
at least one two-clement subset, and these sum to 26.

(by ¥ §=1{1,2,3,...,2n+ 1}, for n a positive integer, then any subset of size n + 2
from § must contain two elements that sum to 2n 4+ 2,

(s} Since [§]> 3, 3z,y € § where 2,y are both even or both odd. In either case
x4y is even.
(b) 5(=22+41) (e} 9=22+1)
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() For ne Z* let §={(o1,03,...,0,)|a; € Z", 1 <i<n}. I |S]|>2"+1, then §
contains two ordered n-tuples (z{,23,...2.), (¥1,¥2,..-,¥s) such that z;-}y; is even
Vi<i<n.

{e) 5 - asin part (b).

(a) Foramy ¢ € {1,2,3,...,100},1 < v% < 10. Selecting 11 elements from {1,2,3,...,100}
there must be two, say z and y, where |/z| = |\ /F], so that 0 < |/ — /F] < 1.
(b) Let n€ Z* If n+1 elements are selected from {1,2,3,...,n%}, then there exist

two, say z and y, where 0 < [\/z — /y| < L.
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12,

13.

14.

15.

In triangle ABC, divide each side into three equal parts and form
the nine congruent triangles shown in the figure. Let R; be
the inferior of triangle ADE together with the points on segment
DE, excluding D,E. Region R, is the interior of triangle DFG
together with the points on segments DG, FG, excluding DF.

Regions Rs,..., Ry are defined similarly so that the interior of
£ ABC is the union of these nine regions and R; N R; = §, for
i3t j. Then if 10 points are chosen in the interior of A ABC, at
least two of these points are in R, for some 1 <17 <9, and these
two points are at a distance less than 1/3 from each other.

£ Divide the interior of the square into four smaller congruent squares
#p  @s shown in the figure. Each smaller square has diagonal length
1/v/2. Let region R; be the interior of square AEKH together
with the points on segment EK, excluding point E. Region R, is
& —# £ the interior of square EBFK together with the points on segment
FEK, excluding points F K. Regions Rj, Ry are defined in a sim-
¢ ilar way. Then if five points are chosen in the interior of square
Lo gf ' ABCD, at least two are in R; for some 1 < i < 4 and these
points are within 1/v/2 (units) of each other.

For any five-element subset £ of A wefind that 1 +24+34+4+5 =15 < s <115 <
21 4 22 + 23 + 24 + 25, so there are 116 possible values for such a sum sg. Since |[A] = 9,
there are (g) = 126 five-element subsets of A.

The result now follows by the Pigeonhole Principle where the 126 five-element subsets of
A are the pigeons and the 116 possible sums are the pigeonholes.

Consider the subsets A4 of § where 1 < |A] € 3. Since |S| = 5, there are (i’) +

(g) + (;) = 25 such subsets A. Let s, denote the sum of the elements in A. Then
184 <T7T+4+849 =24, So by the Pigeonhole Principle, there are two subsets of §
whose elements yield the same sum.

For 1 <¢ <42, let z; count the total number of resumés Brace has sent out from the
stert of his senior year to the end of the i-th day. Then I < z; < 23 < ... < 249 € 60, and
2y 423 < 24+ 23 < ... < 349+ 23 < 83, We have 42 distinet numbers 24, 29,. .., T4, and
42 other distinct numbers z; + 23,2, + 23, ..., 24 + 23, all between 1 and 83 inclusive.
By the Pigeonhole Principle z; = 2; + 23 for some 1 < j < i <425 2; —2; = 23.

For (0 £)T C S, wehave 1 K sp <m+{m—1)+ -+ {m—6) =Tm — 21. The set §
has 27 ~ 1 = 128 — 1 = 127 nonempty subsets. So by the Pigeonhole Principle we need to
have 127 > T — 21 or 148 > Tm. Hence 7 <m < 21.
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17.

18.

19.

20.

21.

22.

23.

Proof: Consider the k + 1 integers: (1) 3; (2) 33; (3)333; ...; and (k+ 1) 333...3,
where for all 1 <¢ < £+ 1, the ¢-th integer has ¢ digits — each of which is a 3. Since there
are k+1 integers, it follows from the Division Algorithm and the Pigeonhole Principle that
two of these integers, say ¢ and b, have the same remainder when divided by k. Suppose
that ¢ = gk +r, b = gak +r, and that e > b, Then a —b = {g; — @2}k, so k|{a — b) and the
only digits in @ — b are 0's and 3’s. [Note: The integer 3 is not special. The result is also
true if we replace 3 by any of the digits 1, 2, 4, 5, 6, 7, 8, 9. However, we cannot obtain
the result without using the digit 0.]

(a) 2,4,1,3

(b) 3,6,9,.2,58,1,4,7

(¢} For n > 2, there exists a sequence of n? distinct real numbers with no decreasing or
increasing subsequence of length n+1. For example, consider n,2n,3n,...,(n~1)n,n?, (n—
1),(2rn—1),...,(n*-1),(n—2),(2n-2),...,(n*-2),...,1,(n+1),(2n+1),...,(n=Dn+1.
(d) The result in Example 5.49 (for n > 2) is best possible — in the sense that we cannot
reduce the length of the sequence from n?+1 to n? and still obtain the desired subsequence
of length n + 1.

This follows from the result due to Paul Erdés and George Szekeres: A sequence of 50(=
72 4 1) distinct real numbers contains a decreasing or increasing subsequence of length

8(= 7+ 1).

Proof: If not each pigeonhole contains at most & pigeons — for a total of at most kn
pigeons. But we have kn + 1 pigeons. So we have a contradiction and the result then
follows.

(a) 7 (b) 13 (¢} 8(n—-1)+1

{a) 1001 {b) 2001

(¢) Let k,n € Z*. The smallest value for |S| (where § C Z*) so that there exist n
elements xy,%3,...,2, € § where all n of these integers have the same remainder upon
division by k is k{(n — 1} + 1.

Proof: If not, each pigeonhole contains at most {(m — 1)/n] pigeons - for a total of
ni{m—1)/n] < m—1 pigeons. But this contradicts the fact that we have m pigeons. The
result then follows.

[Note: This result is true even if m < n.]

Proof: If mot, then the number of pigeons roosting in the first pigeonhole is 2y < py—1, the
number of pigeons roosting in the second pigeonhole 18 24 < p; — 1,..., and the pumber
roosting in the n-th pigeonhele is z, < p, — 1. Hence the total number of pigeons is
i+ Tttt =Dttt =pdpt b p-n <
Py 4+ py o+ py — 4+ 1, the number of pigeons we started with. The result now follows
hecause of this contradiction.
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42

Section 5.8

(a) There are 7! bijective functions on A - of these, 6! satisfy f(1) = 1. Hence there
are 7! — 6! = 6(6!) bijective functions f:A4 -+ A where f(1)# L
) nl—{n—-1)=(n—1}n- 1}

{a) Here f,g have the same domain A and some codomain R, and for all 2 € A we find

that

20 -8 22’ —-4) 2z -2)(z+2)
z+2 z+2 (z +2)

Consequently, f = g.

{b) Here there is a problem and f # g. In fact for any nonempty subset Aof R,if -2 € A
then ¢ is not defined for A because g(—2} = 0/0. [We note that f: ;2“ =z — 2, for z # —2.]

g(z) = = 2(z — 2) = 2z — 4 = f(z).

922 —~ 9z + 3 = g(f(z)) =1 — (az + b} + (az + 8)? = a®2? + (2ab — a)z + (* ~ b+ 1). By
comparing coeflicients on like powers of z, e = 3,b= -1 or a = ~3,b= 2.

gof= {(}-s 4)9 (2, 6)» (3, 10)7 (41 14)}

g A) = g(TN(SUA)=TN(SUTN(SUA)]) =
TNASUT)NSUESUAD =TN[(SUT)N(SUA)] =
TASUTIN(SUA) =Tn(SUA) = g(A).

(fogXz)= fex+d)=alcx +d)+ b
(90 1)(e) = glaz +b) = c{az +b) + d
(fogiz)=(go fi{z) <> acz+ad+b=acz+bct+d <> ad+b=be+d

(2) (foge)=3z~1; (gof)z)=3(z—1)

0, zeven; 0, =z even;

(goh)z)= { 3: x mddA (hog)x) = { i: z odd

1, x even;

(Folgo @) = foomiey ={ 7y 2o

von ) (fog)0), zeven | —1, zeven
((Fogloh)a)= { (fog)l), zodd - { 2, zodd

(b) F(2) = F(f(2)) = 2% F(2) = o5 g'(z) = 92; g(e) = 2a; ¥ = b2 = h® =

{(a) ¥ cg C, there is an element a € 4 auch that {(go f){e) = c. Then g{f(a)) =c¢
with f(e) € B, so ¢ is onto.
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13.

(b) Let z,y € A flz)= fly) == g(f(2)) = 9(f(y)) => (go fYz) =(go f)y) =¥z =

y, since go f is one-to-one.

(a) f'{(z)=}(lnz~5)
(b} For z € R+,(f o fml}(x) = f(%{fn,g; — 5)} = oMK/ Dne—B1+5 .. lne—B+8 o olne z;
for z € R, (1o fiz)= fH ¥ = %[é’n{ez‘"’*f’} - 5] = %§2m 45— 5] =z

() Fl={{z,2y+32=T7} (b) f7r={(zylay+bz=c, b#0, a# 0}
() f1={(zyly=2cP}={(z,9)e =3}
(d) Here f(0) = f(~—1) = 0, so f is not one-to-one, and consequently f is not invertible.

f,g invertible == eachof f,g is both one-to-one and onto == go f is one-to-one and
onto == go f invertible. Since (go flo(frog ) =1¢c and (f~log M o(gof) =
14, f~ 0g~! is an inverse of go f. By uniqueness of inverses flog™ = (go f)L.

(a) f({2}) = {a € Alf(a) € {2}} = {a € A|f(a) =2} = {1}

() f1{{6}) = {a € Alf(a) € {6}} = {a € 4|f(a) = 6} = {2,3,5}

(¢) £71({6,8}) = {a € Alf(a) € {6,8}} = {a € A|f(a) = 6 or f(a) = 8} = {2,3,4,5,6},
because f(2) = f(3) = f(5) = 6 and f(4) = f(6) = 8.

(d) f”l({ﬁ,& 10}) = {2,3,4,5,6} = f’”l({ﬁ,g}) since f"‘({l()}) = §.

(e} f"”l{{ﬁ,& 10,12}) = {2,3,4,5,6, 7}

(f) £({10,12}) = {7}

() fFY~10)={reRiz<Wandz + 7= ~10} = {~17}
FHOY = {~7,5/2}
fi{4) = {~3,1/2,8}
FHe)={~1,7}
Y7y = {0,8}
fH8)= {9}

r [l
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1‘6.

17‘

by () FFIU~5,~1])={zeR|z2<0and ~-5<2+7<~1}U{zeR|0<2<3
and -5 < ~2z2+5 < ~1lU{zeR|3<zand -5 <z~-1<~1}={2eR|z <0
and ~12 <z < -8lU{e e R|[0<z<3and3 <z <5U{ze R |3 <z and
A< <0} =[-12, -8 UBUD =[-12, 8]

(i) f(-5,0]) =[~12,-7]U[5/2,3)

(i) fFFUYU24)={reR|2<0and ~2<24+7<4}U{zeR|0< 2 <3 and
~2< -2z +5<4}lU{zeR|3<zand -2<2~1<4}={zecR|z<0and
~<z< BlufzeRI0<z<3andl/2<2<T72lUu{z e R |3 <z and
~l1<z< 5} = {“91 ""3} U {1/233) U {315} = {-——9, ”3} U [1/255}

(v) F((5,10)) = (~2,0]U (6, 11)

vy F L)) ={reRlz<0and 11 <2+ 7<1T}U{z e R|0<
and 11 € ~224+56< 17}U{z e R|3<zandll <z~1<17}={zceR |z
and4 <z < Wlu{zeR|0<z<3and 6<e<-3lU{zeR|3<2
12 < <18} = BUBU[12,18) = [12,18)

(a) {-1,0,1} (b) {-1,0,1} () [-1,1] (d) (L1
(B) [*’2;2} (f) (~—3,—~2)Ul»l,O)U({),l}U(z,?;)

A A
[e PRS2

all

Since f71({6,7,8}) = {1,2} there are three choices for each of f{1} and f(2) - namely, 6,
7 or 8. Furthermore 3,4,5 ¢ f~1({6,7,8}) 50 3,4,5 € £-1({9,10,11,12}) and we have four
choices for each of f(3), f(4), and f(5). Therefore, it follows by the rule of product that
there are 3% - 4* = 576 functions f : 4 — B where f~1({6,7,8}) = {1, 2}.

(a) {0,2) (b) [-1,2) (c) [0,1) (d) [6,2)
(e) {"193) (f) I-170)U[2:4)

(a) Therangeof f ={2,3,4,...} =2Z% — {1}.
(b} Since 1 is not in the range of f the function is not onto.
(¢) Foral z,y € Z%, fz) = fly) = z+1=y+ 1=z =y, so f is one-to-one.
(d) The range of g is Z*.
(e} Since g(Z1) = Z*, the codomain of g, this function is onto.
(f} Here g{1) =1 = ¢(2), and 1 # 2, so g is not one-to-one.
(g) Forallz € Z*, (go f)z) = ¢(f(z)) = glz+1) = max{l,(z-+1)~1} = max{l,z} = =,
since z € %, Hence go f = lg4.
(h) (Fog)(2) = flamax{l,1}) = f(1) = 1 +1=2
(foa)(3) = flmax{1,2)) = f(2) =2+1=3
(F o 0)(4) = flmax{1,3)) = (3) =3+ 1 =4
(f 0 9)(7) = f(max{1,6}) = £(6) = 6+1 =1
(fog)12) = flmax{1,11}) = f(11) = 11 + 1 = 12
(Fog)25) = f(max{1,24}) = f(24) =24 + 1 =25
{i}) No, because the functions f, g are net inverses of each other. The calculations in part
{h) may suggest that fog = 1z since (fog)(z) = = for ¢ > 2. But we also find that

(Fo.g)(1) = F(max{1,0}) = £(1) =2, 50 (f 0 6)(1) # 1, and, consequently, f o g # 1+,
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19.

20.

21.

23.

() f(8,8)=0=F(8 {1}) and (8,8) # (8, {1}), so f is not one-to-one.
g({1},{2}) = {1,2} = ¢({1,2},{2}) and ({1}, {2}) # ({1,2},{2}), so g is not one-to-

h({1},{2}) = {1,2} = R{{2},{1}) and ({1}, {2}) # ({2}, {1}), so h is not one-to-one.
(b} For each subset A of Z%, f(4,4) = g(A,A) = h{(A,8) = A, so each of the three
functions f, ¢, and A, is an onto function.

(¢} From the results in part (a) it follows that none of these functions is invertible.

(d) The sets f~H0), R7Y8), 2 ({1}), A~Y{3}), F ({4, 7}), and RI({5,9}), are all
infinite.

(e) lg7*(B) = {(8,0)}, 50 [¢7'(B)] = 1.

g H{{2hH ={(,{2}), ({2},9), ({2}, {2}, so lg7*({2})I =3

lg1({8,12})] = 9.

(2) a€ f"HBiNB,) &= fla) € BiNBy &= f(a) € By and f(a) € By &> a € [~ By)
and a € f“lgg)@ (IEf_-lBl)nfml(B?)
(¢) a€ fUB)) <> fla) € Bi <= fla)¢ By <= a & f71{(By) &> ac€ f-1{B;)

(a) () flz)=2a (i) flz)=[=/2]
(b) No. The set Z is not finite.

one

(a) Suppose that z1,2, € Z and f(x;) = f(z2). Then either f(zy), f(z;) are both even or
they are both odd. If they are both even, then f(z;) = f(®3) = 22, = —22; = 2, = z,.
Otherwise, f(z;), f(z;) are both odd and f(z;) = f(z2) = 22; — 1 =2z, — 1 = 22; =
2z, => xy = zy. Consequently, the function f is one-to-one.

In order to prove that f is an onto function let n € N. If n is even, then (—n/2) € Z and
(-n/2) < 0, and f(—n/2) = —2(—n/2) = n. For the case where n is odd we find that
(n+1)/26Zand (n+1)/2>0,and f((n+1)/2)=2[(n+1)/2] ~1={(n+1)~1=n.

Hence f is onto.
(b) F*: N -+ Z, where

iy ) G+, £=1,3,57...
f (-TJ}_{ --—-;},'/2 s mm{},}zyzj:%ﬁ"“

It follows from Theorem 35.11 that there are 5! invertible functions f: 4 — B.

(a) Forallne N, (go fi{n} = (ko f){n) = (ko f}n} =n.

(b} The vesults in part (a) do not contradict Theorem 5.7. For slthough go f=ho f =
ko f == 1y, we note that

@ o) =f({13)=F(0)=3-0=0#1,50 fog#In;

() (Foh)(1) = F(12/3]) = F(©) =3-0=0£1,50 foh # Ly; and

Gi) (foR)(1) = F(3/3]) = (1) =3 1=3#1,50 fok # In.

Consequently, none of g, b, aud k, is the inverse of f. {After all, since f is not onto it is
not invertible. )
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Section 5.7

(a) fe€ 0(n) (b) feO(1) (¢} fe 0(n®)
(&) feo®@) () fe 0(n?) (f) fe on?)
(g) fe 0o(n?)

Let m = 1 and k = 1 in Definition 5.23. Then Vo > k [f(n)] =n < n + (1/n) = |g(n)], so
f € 0(g).

Nowlet m =2 and k=1 Then ¥n 2k [g(n)] = n 4+ (1/n) < n+n = 2n = 2{f(n),
and g € O(f).

(a) Forall n€Z*,0<log,n<n. Solet k=1 and m = 200 in Definition 5.23. Then
[F(n)] = 1001og, n = 100{(1/2) log, n) < 200((1/2)n) = 200{g(n)|, so f € O{g).

(b) For n =6, 2" = 64 < 3096 = 4096 — 1000 = 2°? — 1000 = 2%* — 1000. Assuming
that 2F < 22% — 1000 for n =k > 6, we find that 2 < 27 == 2(2%) < 2%(2% - 1000) <
2292 __ 1000, or 281 < 2¥k1) _ 1000, so f(n) < g(n) for all n > 6. Therefore, with
k=6 and m = 1 in Definition 5.23 we find that for n > % {f(n)] < mlg(n)] and
f € 0(g).

(¢) Forall n>4, n? <2 (A formal proof of this can be given by mathematical
induction.) Solet k =4 and m =3 in Definition 5.23. Then for n > k, |f(n)| = 3n? <
3(2") < 3(2" + 2n) = mig(n)| and f € O(g).

Let m =11 and k =1. Then Vn >k |f(n)| = n + 100 < 11n? = m|g(n)}, so f € O(y).
However, ¥Ym € R* Vk € Z* choose n > maxz{k,100 4+ m}. Then n? > (100 + m)n =
100n + mn > 100m + mn = m(100 + n) = m{f(n}|, so ¢ & O(f).

To show that f € O(g), let & =1 and m = 4 in Definition 5.23. Then for all
n>k [f(n)l =nf4n <P+ n? =20 <207 = 4(1/2)(n?)) = 4{g(n)|, and f is
dominated by g¢.

To show that ¢ & O{f), we follow the idea given in Example 5.66 — namely that

Vme RYVE€ 27 3n € Z7 [(n 2 k) A (Jg{n)] > mif(n)])].

So not matter what the values of m and %k are, choose n > maz{4m,k}. Then
lg(n)] = (1/2)n° > (1/2)(4m)n® = m(2n®) Z m(n® + n) = m|f(n)], so ¢ & O().

Vm € RY Vk € Z% choose n > maz{k,m} with n odd Then n=|f(n)l>m=m 1=
mig(n}l, so f & Oyg). In o similar way, Ym € RY V& € Z* now choose n > maz{k,m}
with n even. Then n = [g(n}{ > m=m- 1 =m|f(n}l, and g & O{f).

lg{n)] =log,n < n=m n=m|f(n). Hence ¢ € O(f).
To show that f € O{g) we first observe that lm,. . 55%5 = 400, {This can be
established by using L'Hospital’s Rule from the Calculus.) Since lm, .. o = oo we

Forall n > logan < n,so with & =1 and m = 1 in Definition 5.23 we have
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find that for every m € R* and k € Z* thereis an n € Z* such that et
[f(n)] = n > mlog,n = m|g(n)]. Hence f ¢ O(g}.

f € 0{g) = 3my € Rt 3y € Z% so that Vn 2 & [f(n)] < mylg(n)]. g € O(R) ==
dmg € RY Jk; € 27 so that ¥n > &y lg(n)} < malh(n)l. Therefore, ¥n > maz{ky, kq}
we have |f(n)| < mulg(n)] < mymylh(n)| and f € G(h).

Since f € O(yg), there exists m € R,k € Z* so that [f(n)] < mlg(n)} for all n > k.
But then [f(n)| < [m/icllleg(n)] for all n > &, so f € Ofcg).

{(a) Let k=1 and m =1 in Definition 5.23.

(b) If he O(f) and f € O(g), then h € O(g) by Exercise 8. Likewise, if h € O(g)
and ¢ € O(f) then h € O(f) - again by Exercise 8.

{c}) This follows from parts (a) and (b).

(a) For all n > 1, f(n) = 5n? + 3n > n? = g(n). So with M = 1 and k = 1, we have
1£(n)] > Mlg(n)] for all n > k and it follows that f € £(g).

(b) For all n > 1, g(n) = n® = (1/10)(5n* + 5n%) > (1/10)(5n% + 3n) = (1/10)f(n). So
with M = (1/10) and k = 1, we find that [g(n)] > M|f(n)| for all n > k and it follows
that g € §(f).

(¢) Foralln > 1, f(n) = 5n* +3n > n = h(n). With M = 1 and ¥ = 1, we have
[f(n)] > Mik(n)] for all n > k and so f € Q(h).

(d) Suppose that h € Q(f). If so, there exist M € R* and k € Z+ with n = |h(n)| >
M\f(n)] = M(5n* +3n)foralln > k. Then 0 < M < n/(5n%+3nr) = 1/(5n+3). But how
can M be a positive constant while 1/(5n + 3) approaches 0 as n (a variable) gets largex?
From this contradiction it follows that A ¢ Q(f).

Proof: Suppose that f € §(g). Then there exist M € R* and kt € Z'* such that
[f(n}] > Mlg(n)| for all n > k. Consequently, lg(n)| < (1/M)|f(n)| for all n > k, so
g € 0(f)

Conversely, ¢ € O(f) = Im € R* 3k € Z* Vn 2 k (lg(n)] < m|f(n)]) = Im € RY
3k € Z¥ Vn 2 k (If(p)] 2 (1/m)lg(r)]) = 3M € R* 3k € Z* Vn 2 k (|f(n)] 2
Mig(n)) = f € §¥{g). [Here M = 1/m.] [Note: Upon replacing each occurrence of = by
¢ we can establish this “if and only " proof without the first (separate) part in the first
paragraph.]

{a) Forn 21, fln) =0, i =nln+1)/2=(n*/2) + (n/2) > (n*/2). With k = 1 and
M = 1/2, we have |f(n)| = M|n®| for all n > k. Hence f € {n?).

b) T =142 4n? > 2P+ 4 n® > /214 + [0/21% = [(n +
1}/21[n/21? > n®/8. With & = 1 and M = 1/8, we have [g{n)] > M|n®| for all n > k.
Hence g € ((n®).

Alternately, for n > 1, g(n) = L5, % = n{n + 1)(2n + 1)/6 = (20° 4 3n® + n)/6 > n3/6.
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With k=1 and M = 1/6, we find that |¢(n)] > M|n®| for all n > k ~ s0 g € Q(n?).

(€) Toy i = T2 b > [0f2] bt = (/2] /2] = [(n+1)/2] /2] >
(nf2)*. With &k =1 and M = (1/2)"*?, we have |h(n}| > M|n**!| for all n > k. Hence
he Q(n“‘i),

Proof: f € ©(g) = Imy,my € R* Tk € Z7 Vn 2 k mylg(n)] < [f(n)] £ malg(n)] =
Imy € RY 3k € Z7 ¥n < k mylg(n)l < |f(n)l end 3my € RY 3k € ZY ¥n 2 k [f(n)| <
malg(n}| = f € Q(g) and f € O(g).

Conversely, f € Qg) = Imy € R* 3k € Z¥ Vn 2 ki malg(n)| < [f(n)]. Likewise,
F € 0(g)=3mg e RY Tk € Z7 Vn 2 ky [f(n)] € malg(n)]. Let k = max{ky, k;}. Then
for all n 2 k, malg(n)| < |f(n)] < malg(n)], so f € B(g).

Proof: f € ©(g)= f€ Qg)and f € O(g) (from Exercise 14 of this section) = ¢ € O(f)
and g € Q(f) (from Exercise 12 of this section) = g € 8(f).

Proof: Part (a} follows from Exercises 14 and 13(a) of this section and part (a) of Example
5.68.

The situation is similar for parts (b) and (c).

Section 5.8

(a) f€ 0(n?) (b) fe 0 (c) f€0(n?)
(d) fe€ Olog,n) (e} fe€ O(nlog,n)

(a) fe On) (b) f € O(n)

(a) For the following program segment the value of the integer n, and the values of the
array entries A[1], A[2], A[3],..., A[n] are supplied beforehand. Also, the variables ¢, Max,
and Location that are used here are integer variables.

Begin
Max := All};
Location = 1;
Ifn =1 then
Begin
Writeln ("The first ocourrence of the maxinmm )
Write {'entry in the array is at position 1.")
End;
Hao>1then
Begin
Fori:=2tonde
H Max < Ali] then
Begin
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Max = Ali];
Location =1
End;
Writeln (* The first occurrence of the maximum ’);
Write (’ entry in the array is at position ’, i:0, °.")
End
End;

(b) I, as in Exercise 2, we define the worst-case complexity function f(n) as the number
of times the comparison Max < A[i] is executed, then f(n) =n ~ 1 for all n € Z%, and
f € On).

(a) For the following program segment the value of the integer n, and the values of
the array entries A[l], A[2], A[3],..., Aln] are supplied earlier in the program. Also the
variables ¢, Max, and Min that are used here are integer variables.

Begin
Min := A[l];
Max := A[l};
Fori:=2toundo
Begin
I Ali} < Min then
Min := Ali];
I Afi] > Max then
Max := Ali};
End; :

Writeln (° The minimum value in the array is ’, Min :0);
Write (" and the maximum value is ’, Max:0, ’.")

End;

(b) Here we define the worst-case time-complexity function f(n) as the number of com-
parisons that are executed in the For loop. Consequently, f(rn} = 2(n — 1) for all n € Z*
and f € O(n).

{(a) Here there are five additions and ten multiplications.
{(b) For the general case there are n additions and 2n multiplications.

{a) For each iteration of the for loop there is one addition and one multiplication. There-
fore, in total, there are five additions and five multiplications.
{b) For the general case there are n additions and n multiplications.

Proof: Form = 1, we find that o, = 0 = |0] = {log, 1], so the result is true in this first
case.

Now assume the result {rue for all v = 1,2,3,..., %, where & > 1, and consider the cases
form=~Fk<+1
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(i) n=Fk+1=2" wherem € Z*: Here a, = 1+ a2) =1+ agma =1+ [log, 27| =
14 (m~1) =m= |log, 2" = |log, n]; and

(ii) n=Fk+1=2"+4r, wherem € Z* and 0 <r < 2™ Here 2™ < n < 27! 350 we have
(1) 271 < (nf2) < 2™;

(2) 271 = (271 < [n/2] < [2™] = 27; and

(3) m ~1=log, 2" <logy|n/2| < log, 2™ =m.

Consequently, [log,[n/2}| =m —1land a, = 1+ 0y = 1+ llogg|n/2]| =14+ (m~1)=
m = |log, nl.

Therefore it follows from the Alternative Form of the Principle of Mathematical Induction
that o, = [log, n] for all n € Z*.

We claim that a, = [logyn] for all n € Z*.

Proof: When n = 1 we have ¢; = 0 = [0] = [log, 1], and this establishes our basis step.
For the inductive step we assume the result truefor alln = 1,2,3,..., k (> 1) and consider
what happens at n =k + 1. h

(i) n=k+1=2" wherem € Z+: Here a, =1+ afm = 1+ agm-s = 1+ [log, 277%] =
14 (m—~ 1) =m = [log, 2™] = [log, n].

(i) n=k+1=2"4r, wherem € Z* and 0 < r < 2™ Here 2™ < n < 2™ and we
find that

(1) 271 < nf2 < 2™

(2) 2nt =271 < [n/2] < [2™] =2™; and

(3) m—1=log, 2™ < log,[n/2] <log, 2™ = m.

Therefore, [log,[n/2]] = m and a,, = 1+-ae) = 14 [log, [n/2]] = 1+m = [log, n], since
M <n< 2™ 5 log, 2™ =m <logan <m+1 =log, 2™ = m < [logyn] = m+ 1.
Consequently, it follows from the Alternative Form of the Principle of Mathematical In-
duction that a, = [log, n] for all n € Z*.

Here np = 3/4 and ¢ =1 —np = 1/4, so E(X) = np{n + 1)/2 + ng = (3/4)[{(n + 1)/2] +
(1/4)n = (3/8)n + (3/8) + (1/4)n = (5/8)n + (3/8).

Pr(X = i) = i/ln{n + 1)}, s0 T, Pr(X =) = Tk, i/In(n + 1)) =
(1/fn(n + DN iy i = (1/In(n + Dln(r +1)/2] = 1/2 and ¢ = 1 - (1/2) = 1/2.

B(X) = g ¥ /In(n + D] + (1/2)n = [/[n{n + 1)]] T, i + (1/2)n =
1 | n{nd i} {dnd1] + % e 2cbd B oo _5_{9: + é»
o

mlndil é 8 2
a) procedure LocateRepeat (n: positive integer; @1, 4da,83,. .., 0, integers)
begin
location == [
ti= 2
while ¢ < n and location = 0 do
begin

fu==1
while 7 < i and locetion = 0 do
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i.

if a; = a; then location =1
else j 1= 5 +1
end
end {location is the subscript of the first array entry that repeats a previous
array entry; location is 0 if the array contains n distinet integers}

b) For n > 2, let f(n} count the maximum number of times the second while loop is

executed, The second while loop is executed at most n -1 times for each value of ¢, where
2 < ¢ < n. Consequently, f(n) =14+2+34+--+{(n—1)=(n—1)}n)/2, which occurs
when the array consists of n distinct integers or when the only repeat is a,..1 and a,. Since

(n~1}(n)/2 = (1/2)(n* — n) we have f € O(n®).

a) procedure FirstDecrease (n: positive integer; a1, az, aa,...,a,: integers)
begin
location =0
g =2

while 1 < n and location = 0 do
if a; < a;_; then location =1
else i :=1 41
end {location is the subscript of the first array entry that is smaller than its
immediate predecessor; location is 0 if the n integers in the array
are in increasing order}

b) For n > 2, let f(n) count the maximum number of comparisons made in the while
loop. This is n — 1, which occurs if the integers in the array are in ascending order or if
@y < Gy < a3 < ... < Gy and a, < a,.3. Consequently, f € O(n}.

Supplementary Exercises

(a) If either A or B is § then A x B =@ = AN B and the result is true.
For A, B nopempty we find that:
{(z, ) (AxBIN(BxA)=(z,y)edxBand(z,y)eBx A= (zc Aandye B)
and(z e Bandyc A}z ANBandye ANB = (2,y) € (AN B)x{ANB); and
(z,y) e (ANBY)x(ANB)= (s ¢ Aandz € Bland(y € Aandy € B) = (z,y) € AxB
and (z,y) € Bx A= (z,y) € (A x B)N{B x A).
Consequently, (Ax BYN(B x Ay= (AN B)x (AN B).

(b} If either A or Bis § then A X B={ = B x A and the result follows,
I not, let (z,y) € (Ax ByU (B x A). Then
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(z,y9) e (AxB)U(BxA)={z,y)e AxBor(z,y) e(BxA)={z€ Aandy € B)
or{z€Bandyc A)=> (e € Aorzs e Bland{yc Aory€ B)=>z,y€ AUB =
(z,y) e (AUB)x (AU B).

(a) True (b) False: Let A= {1,2},B={z,y},f={(1,2),(2,y)}.

(c) False: Let f:Z — Z, f(z) = 2z. (d) True.

{e) False: Let A= {1,2},B={1,2,3},C ={1,2,3,4}, f = {(1,1),{(2,2}},
g=1{(1,1),(2,2),(3,3)}, h = {(1,1),(2,2),(3,4)}.

(f) False. Let A= {1,2,3,4},B={5,6},4, = {1,2}, 4, = {2,3,4},

{ )n {g:i”)’ (2,6),(3,5),(4,5)}. Then f(A:1N4,) = f(2) = {6}, but f(4)Nf(4z) = {5,6}.
g) True

(a) F(1)=f(1-1)=1-F(1)+1- F(1), 50 (1) = 0.

(b) f(0)=0

(¢) Proof (by Mathematical Induction): When @ = 0 the result is true, so consider a # 0.
For n = 1, f(a") = f(a) = 1-a°- f(a) = na™"'f(a), so the result follows in this first
case, and this establishes our basis step. Assume the result true for n = &(> 1) - that
is, f(a*) = ke*~' f(a). For n = k +1 we have f(a**') = f(a- d*) = af(a*) + a*f(a) =
aka** fa) + a* f(a) = ka* f(a) + a*f(a) = (k + 1)a*f(a). Consequently, the truth of the
result for n = k + 1 follows from the truth of the result for n = k. So by the Principle of
Mathematical Induction the result is true for all n € Z*.

QAXBl — 962 144 == [A x B| = 18 == [A| = 2,|B| =9 or |A| = 3,|B| = 6.

(z,y) e (ANB)x(CND) &> 2 € ANB,y e« CND &> (z € A,y € C) and
(zeByeD)={(z,y)e AxCand(z,y) € Bx Dt (z2,y) e (AxC)n(B x D)

(a) 5! (b) 4!

FO0<z<1,then |2] =0 and 2% = 1/2. So z = 1//2.

¥1<z<2, then (2] =1 and 2° = 3/2. Soz::\/i‘iﬁ.

ForkeZtand k2 2,if k €2 <k-+1,then |2] = k and if z satisfies the given equation
we have z? = k 4 (1/2). But for k > 2 we find that k{(k — 1) > 0,80 k{k —~ 1) > 1 > 1/2,
and &% ~ & > 1/2. Now %% > 2+ (1/2) = k > Jk+(1/2) = ¢ and we do not have
E<z<k+1.

Finally, let k£ € Z% and consider ~k < 2 < ~k+ 1. Then 2% — |z} = 2* — (k) = 2% 4+ k,
and 2% ~ |2] = 1/2 = 2% = ~k 4+ 1/2 < 0, s0 = capnot be a real number.

Consequently, there are only two real numbers that satisly the equation 2% — 2] = 1/2 —

namely, z = 1/v/2 and z = /3/2.

Proof: First we show that the result holds for the first part of the recursive definition.
Sinee 21 = 2 > 1 we find the result true in part (1). In order to complete the proof we
need to verify that every ordered pair (s,t) in R that results from part (2) of the definition
satisfies the condition 2s > §. We consider three cases:
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11.

(i) (a+1,b) with (a,b) € R: Here we have 2a > b, and since a + 1 > a it follows that
2€a+1)22a> b

(i) (e+1,b+1) with (a,b) € R: Nowwefindthat 2a 2 b=>2a+22b+1=> 2(a+1} 2>
b+ 1; and

(i) {(e+ 1,5+ 2) with (a,b) € R: In this last case it follows that 2a > b= 20 +2 >
b+2=>2a+1)2b+2

Consequently, for all (g, ) € R we have 2¢ > b.

() fA(z)= F(f(2)) = a(f(z) + b) — b= al(alz +b) — b) + b] — b= a®(z + b) — b
A z) = f(f(z)) = fla*(z+b) - b) = af(a®(z +B) —b) + D] ~b=a*(z + b) - b

(b) Conjecture: For n € Z*, f*(z) = a™(z + b) — b. Proof (by Mathematical Induction}:
The formula is true for n = 1 — by the definition of f(z). Hence we have our basis step.
Assume the formula true for n = k(> 1) - that is, f%(2) = a*(z + b) — b. Now consider
n = k+1. We find that f*(z) = f(f*(z)) = f(a*(z +b) —b) = a(a*(z + b) ~ b) +b] ~ b =
a**(z + b) — b. Since the truth of the formula at n = k implies the truth of the formula
at n = k <+ 1, it follows that the formula is valid for all n € Z* - by the Principle of
Mathematical Induction.

Let n = |A]~]4,]. Since |B|" is the number of ways to extend f to A and |B|" = 6" = 218,
then n = 3 and |A| = 8.

(a) (7T x 6 x5 x4x3)/(7°%) =0.15.
(b) For the computer program the elements of B are replaced by {1,2,3,4,5,6,7}.

10 Random

20 Dim F(5)

30 Forl=1Tob

40 F(I) = Int(Rad*7 + 1)
50 Nextl

60 ForJ=2Tob

70 ForK=1ToJ-1

80 H F(J) = F(K) then GOTO 120
g0 Next K

100 Next J

1 GOTO 140

120 C=C+ 1

130 GOTO 10

0 C=0C+41

150 Print “After 7; C; “ generations the resulting”
160 Print “function is one-to-one.”

17¢  Priot “The one-to-one function is given as:”
180 Forl=1Tob

E‘SG Pxim 6&{?‘}; 1; “”ﬁ’; 1{;‘!{}}; éi}ﬁ
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12.

13.

14.

15.

16.

17,

18.

19.

20.

200 Next l
210 End

For each subset A of 5, let s4 denote the sum of the elements of A. Consider only those
nonempty subsets A of 5 where |A] < 5. There are 27 — 1 — 1 — 7 = 119 such subsets and
here 1 < 54 < 20421422423 424 = 110. The result follows by the Pigeonhole Principle
for there are 119 subsets {pigeons) and 110 possible sums (pigeonholes).

For 1 < ¢ £ 10, let z; be the number of letters typed on day ¢. Then oy + 2o+ 23+ ... +
Xy + Tg + Ty = 84, or T3+ ... + 2z = H4. Suppose that 2, + 25 + 23 < 25,29 + 23 + 24 <
25,. gt Es o < 25. Then zq + 224 +3($3+ R :L‘g) + Zag 4 215 < 8(25) == 20@, or
3(xs + ...+ xe) < 160. Counsequently, 54 = z3 + ... + zg < (160}/3 = 53 1/3.

If two elements in {z;,23,...,27} have the same units digit then their difference is di-
visible by 10. If this does not happen consider the ten possible units digits as follows:
{0}, {1,9},{2,8},{3,7},{4,6},{5} - these are the pigeonholes for the problem. When the
seven pigeons {zi,23,...,2r} go to the pigeonholes where their units digits are located,
at least one two-element subset is filled and those two numbers (pigeons) will sum to a
multiple of 10.

For [T¢_;(k —11) to be odd, (k —1)) must be odd for all 1 <k < n, i.e., one of £, i must be
even and the other odd. Since n isodd, n = 2m + 1 and in the list 1,2,...,n, there are m
even integers and m + 1 odd integers. Let 1,3,5,...,n be the pigeons and #;,%3,%5,...,12,
the pigeonholes. At most m of the pigeonholes can be even integers, so (k — i;) must be
even for at least one k = 1,3,5,...,n. Consequently, [Ti.,(k — ix) is even.

(a) The answer is the number of onto functions f : A — B where |A] = 10 (weekly
chores) and |B| = 3 (for the three young men). There are 3!5(10, 3} such functions.

{b) 215(9,2) (Thomas only mows the lawn) +315(9, 3) (Thomas does more than just mow
the lawn).

Let the n distinct objects be 2y,23,...,2,. Place 2, in & container. Now there are two
distinct containers. For each of #;,24,...,%,.; there are two choices and this gives 27!
distributions. Among these there is one where &3, %3,..., %,y are in the container with
T, 8¢ We remove this distribution and find $(n,2) = 271 —~ L.

@ (5) (b) 515(9,5)
(¢} 415(7,4) (Donald gets only the two books on basketball) + 5!5(7,5) (Donald gets the

two books on basketball and at least one other book.}

(a) and (b) mlS{n, m}

S(n,n —2) is the number of ways to place n distinct objects into n — 2 identical containers
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21.

22.

23.

24.

25.

26.

with no container left empty. There are two cases. One container contains three objects
L1

and the others one. This can happen in (3) ways. The other possibility is that two
containers each contain two objects and the others one. This happens in (1/2) (;) (”’;2) =
(nf)/[21212}(n — 4)!] = 3(}) ways.

Fix m = 1. For n = 1 the result is true. Assume fo f* = f¥ ¢ f and consider f o f*+.
foffl=fo(foff)=fo(ffofy=(foff)of=f""of Hence fofr=f"affor
all n € Z%. Now assume that for t > 1, flo f» = f" o f*. Then f* o f" = (fo fllo f* =
Fo(ffofy=Fo(frof)=(fof)of =(frofjof = o(fof)=fof, s
fmofr=frof" forallm,neZt,

(b) ¥ € f{hier 4i) &> y = f(a), for some z € s Ai =

y € f(A), for all i € T &= y € Mies f{Ai).

(¢) From part (b), f{MNier Ai) € Mier F{A:). For the opposite inclusion let y € Viey f(4;)-
Then y € f(A;) for alli € I, soy = f(=;),2; € A;, for each ¢ € I. Since f is one-to-one,
all of these z;’s, ¢ € I, yield only one element @ € N;e; Ai. Hence y = f(2) € f(her 4i),
50 er F(Ai) € f{Mher Ai) and the equality follows.

The proof for part (a) is done in a similar way.

Proof: let a € A. Then
fla) = g(f(f(a))) = Fg(F(F(f(e})))) = f(g 0 f*(a)).

From f(e) = g(f(f(a))) we have f*(a) = (f o f)(a) = f(g(f(f(a))). So f(a) =
fg o fa)) = fg(F(f(f(a))))) = F(f(a)) = fHg(f*(a))) = F(f(g(F(F(a))))) =
flg(£(a))) = g(a).

Consequently, f = g.

{2) ntx®) = n(n*) (b} ") () n()
d) Since |A] = n, there are n choices for each selection of size k, with repetitions allowed,
P
from the set A of size n. There are r = (”’"’2“}} possible selections and n” commutative

k-ary operations on A.

a) Note that 2 = 2! 16 = 2% 128 = 27 1024 = 2%, 8192 = 2" and 65536 = 2'°.
Consider the exponents on 2. If four numbers are selected from {1,4,7,10,13, 16}, there
iz at least one pair whose sum is 17, Hence if four numbers are selected from §, there are
two numbers whose product is 2'7 = 131072,

b) Let a,b,e,d,n € Z%. Let § = {b%,5°%, 522 po+~d} If [2] 41 numbers are selected
from S then there are at least two of them whose product is %74,

(8} xanB, X4 - x5 both have domain ¥/ and codomain {0,1}. For each z € U, y4ns(2z) =
1ifzc ANBill 2 € Aand z € Biff yu(2) =1 and xg(e) = 1. Also, yanplz} =
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27.

28Q

29.

30.

31.

32.

0iffz g ANBif e  Aorz & Biff xa(z) = 0 or xp(z) = 0iff x4 - xs{z) = 0. Hence
XAnB = XA " XB-

{b) The proof here is similar to that of part (a).

(€) xi(z) =1ifz € Aiff o & Aiff x4(z) = 0iff (1 — xa)(z) = 1. x4(z) = 0iff
cg Aif z € Aiff ya(z) = 1iff (1 — xa4)(z) = 0. Hence x5 =1~ xa.

fog={(z2),(v,y)(z2)hgo f={(z,2),(y,2), (2, 9)};
fwl = {(.’B? z)? (ya 1")3 (za y}}; gmi == {{55; 'y)1 (?17 '-’5')9 (Z, ,Z)};
(gofyt={(z2),(y,2),(z, )} = flogli97 o f = {{z,2), (y, ), (2, 2)}.

(a) F(8) = {al5e +3 =8} = {1},

b)jz* 43241 =1=2"+38z+1=1ora?+3z+1 = ~1 =2 2°+32z =0 or
2 +324+2=0== (z)(z2+3)=0o0r (z+2}z+1)=0=>z=0,-30or v = —1,-2,
Hence g~*(1) = {-3,-2,—1,0}.

(c) {-8/5,~8/3}

Under these conditions we know that £71({6,7,9}) = {2,4, 5,6, 9}. Consequently we have
(i) two choices for each of f(1), f(3), and f(7) - namely, 4 or 5;

(i1} two choices for each of f(8) and f(10) — namely, 8 or 10; and

(iii) three choices for each of f(2), f(4), f(3), f(6), and f(9) — namely, 6, 7, or 9.
Therefore, by the rule of product, it follows that the number of functions satisfying these
conditions is 2° - 2% . 3° = 7776.

Since f! = f and (f7')' = f~!, the result is true for n = 1. Assume the result for
n= k()T = (R Form o= k+1L,GP) = (Fo i = (F o (£ =
(F o (F) =(f o (f ) (by Exercise 21) = (f~1)**', Therefore, by the Principle
of Mathematical Induction, the result is true for all n € Zt.

(a) (moo)(z)=(con)z)==z
by a2} =2z —n;0™(z) =z +n(n > 2).
(Yn™z)y=z4+n0o"z)=2~n(n>2).

(@) r(n) = (e1 + 1}{e2 + 1) -~ (ex + 1)

(B e=2:7(2) = r(3) =7{(8) =2
E=3:7(2")=1r(3) =r(5*) =3
Ee=d:r(8)=r(8) =10} =4
k=51 T{:Z‘%} = ‘:*"(34?} b ?“{ﬁ*} =
k=61 r(12) = 7(18) = 7(20) = 6

{¢) Forall k > 1 and any prime p, 7(p*~) = k.

(d) Let a = szpgz ??’ and b = Q{Sgifg"'qg’t: where P12y o5 Pl @13y 0 oy e BXE k%—ﬁ

distinct primes, and ey, ey,..., ¢, fi, f2,.-. f; € Z%. Then
rlab) = (e, + ez + 1) (ex + (i + Y+ 1) (fi +1)
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33.

34.

35.

36'

37!

= [(es + 1)(e2 + 1) - (ex + DJ[(fs + D)(F2 + 1)+ - (fs + 1)] = 7(a)7(b).

{a) Here there are eight distinct primes and each subset A satisfying the stated property
determines a distribution of the eight distinct objects in X = {2,3,5,7,11,13,17,19} into
four identical containers with no container left empty. There are 5(8,4) such distributions.

(b) S{n,m)
Define f: Z* — R by f(n) = 1/n.

() Let m=1land k= 1. Thenfor all n 2 k,[f(n)] £ 2 < 3 < |g(n)] = mlg(n)|, so
f e 0(g).
(b) Letm=4and k=1. Thenforalln >k, jg(n)| <4 =4 1< 4{f(n)] = m|f(n)], so

g€ O(f).

(a)f € O(f1) => Imy € R* 3k, € Z7 such that |f(n)] < malfi(n)] Vn 2 k.

g € O(gy) => 3Imy € R* 3k, € Z* such that [g(n)] < mylgi(n)| Vr > k..

Let m = max{my,my}. Then for all n > maz{ky, ka}, [(f + 9)(n)| = |f(n) + g(n)}
()] + lg(n)] < miffiln)l + mafga(n)] £ m(li(n)] + lg1(n)]) = m|fi(n) + g:(n)]
mi(fy + @)(n)], so (f +9) € O(f1 + g1)-

(b) Let f, fi,9,01 : &t — R be defined by f(n) =n, fi(n) =1 -n,g(n) = 1,¢:(n) = n.

Hou

First note that if log, n = r, then n = a” and log, n = log,(a”) = r log, ¢ = (log, a){log, n).
Now let m = (logya) and k = 1. Then for all n > &, |¢g(n)| = log, n = (log, a)(log, n) =

m|f(n)], so g € O(f).
Finally, with m = (logya)™' = log, b and % = 1, we find that for all n > k,|f(n)| =

log, n = (log, b){log, n) = mg(n)|. Hence f € O(y).

166

www.youseficlass.ir



i0.

i1.

CHAPTER 6
LANGUAGES: FINITE STATE MACHINES

Section 6.1
(a) 25 125 (b) 2,5 = 3906
(a) 4 () ()@ () 3° (@) 3°+ (7)3°+ (5)3

12

(a) 0 (b} O (¢ 1 (d) 2
(e) 3 (f) 4 (8) 1 (b) o©
4 51’

(EN ]

There are 100 substrings of length 1: 24,24, ..., T100; 99 substrings of length 2:

Ty Tg, T2Z3,- .-, LopZr00; - - - ; 1 substring of length 100: z;2,...2500. So there are 100+
99+ ...+ 1 =351y = (100)(101)/2 == 5050 nonempty substrings in total.

(a) { 00,11, 000,111, 0000,1111}

(b) {0,1}

(c) *—{),00,11,000,111,0000,1111}

(d) {0,1, 00,11}

(e) T

(£) - {0, 1,00, 11} = {A,01,10} U {w| || w ||> 3}

(a) AB = {1000,101,1100,111}

(b} BA = {0010,0011,110,111}

(e} A®= {101016,101011,101110,111010,101131,111011,111110,111111}

(d) B? = {0000,001,100,11}.

(8) 2€ AC => x = ac, forsome a € A,¢c€C =32 € BD, since AC B, CCD.

by HAR A0 letz € A z € Al = z = yz, forsome y€ A,2 € 0. But z € § is
impossible. Hence 40 = 8. {In like manner #4 = §].

(a) AB = {zy,zyz} (b} BA = {zy,zzy} (c) B® = {A,¢,2% 2%}
(d) BY = {z"|n € Z*} {e) A* = (X, zy,eywy, ...} = {AJU {{zy)"n € 27}

For any alphabet 3, let B C }°. Then, if A = B*, it follows from part (f} of Theorem 6.2
that A* = (B*)* = B* = A,

167
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12.

13.

14.

15i

186.

1?"

18‘

(a) Yes (b} Yes {¢) Yes
{d} Yes {e)} No (f) Yes

{a} Here A* consists of all strings z of even length where if 2 $# A, then z starts with 0
and ends with 1, and the symbols (0 and 1} alternate.

(b} In this case A™ contains precisely those strings made up of 3n 0’s, for n € N.

(¢} Here astring « € A" if (and only if)

(i) zisastringof n 0’s, for n € N; or

(it) z is a string that starts and ends with 0, and has at least one 1 — but no consecutive
s,

(d) For this last case A* consists of the following:

(i) Any string of n 1’s, for n € N; and

(ii) Any string that starts with 1 and contains at least one 0, but no consecutive 0’s.

There are five possible choices:

(1) A={A}, B={01,000,0101,0111,01000,010111};
(2) A= {01,000,0101,0111,01000,010111}, B = {)};
(3) A= {0}, B={1,00,101,111,1000,10111},

(4) A={0,010}, B = {1,00,111}; and

(5) A= {)01}, B ={01,000,0111}.

Let 3~ be an alphabet with § # A C . f |A] = 1 and z € A, then zz = z since 4% = A.
But | zz =2z l=llzll=>llcll=0=> 2= A 4] > 1,let 2 € A where || z [|> 0 but
[l z || is minimal. Then z € A® = z = yz, for some y,2 € A. Since [z =]y | + | z ||,
if | y II,Il 2 ||> 0, then one of y,z is in A with length smaller than || z ||. Consequently,
oneof ffyflor| z]lis0,s0 A€ A

(8) PajsasT
(b) r,d are onto; p (") = {a} 3" s.(I7) = L7 {a}
(¢) r is invertible and r~! =,
(d) 25;125; 5™2 for n even, 5("+1/% for n odd.
(e} (dop(z) =2z =(rodorcs,)(z)
() »~YB) = {ea, ia, 0a, 00, oie, uuoie)}
77 B) = {e, 1,0}
5;(B) =1
}d-—ni{g}% == “.}m@ﬁ &“i{m}g = Z:;z‘&“B dwl(”"c} = EwéﬁB 5 == 6(5} = 30

i A= A? then it follows by mathematical induction that A = A" for all n € Z*. Hence
A = AY. From Exercise 15 we know that A = A% = A € 4, so 4 = A*.

Theorem 6.1{b}: z € (ABY &= 7 = (ab)ec, forsome ¢ € A,b€ B,ce C &=

® = (@yag ... ahiby. . bp)eier .. e,), where ; € 4,1 <4< b, € B,1<j<m,
€ C1<k<nez=aqay...ailby.. . bocics...c,, where g, € A,1<7<¥,
heB1<j<m, g eClikSnez={(aas...00){bb ... byucics...¢,), where
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19.

20.

21.

22.

;€A 1<i<LbeBlLjsm el 1<k<n<sze A(BC) Hence
{(ABYC = A(BC).

Theorem 6.2(b): For a € A,a = Aa with A € B*. Hence A C B*A.

Theorem 6.2(f): From Theorem 6.2(a) 4* € A*A*. Conversely, z € A*A* = z = yz
where y = @1a3. .. 8, 2 = @105 ... 0y, With a;,0; € 4, for 1 <1< m,;1 <7 <n. Hence
z € A*, so A*A* C A* and the equality follows.

Since (A*}* = UZo(A*)", it {follows that 4* C (4*)*. Conversely, if ¢ € (4*)*, then
T = Zy%3...2,, Where z; € A%, for 1 £ 1 < n. Each &; = anap...ay,, where
a; € A,1 <j <k Hence z € A%, so (A*)* € A" and (4A*)* = A™.

(A = U (A © Unlg(A*)® = (A")". H z € (A*), then z = #125...2,, Wwhere
x; € A*, for 1 S 2 _<__ n. Then z = @11912 00« O3y Q21022 - - BBy o o - Ol « « - Oy, € A* Q
Unsa (A7) = (A")*, so (A7) = (4")F.

Since AT C A*,(A%)* C (A*)* by part {d) of this theorem. For z € (A*)*, if z = A, then
z € (AT). If = # ), then as above z = 411012 .. G1, 821 .. - C2ky -+ - Gpy - .. G, € AT C
(A*)* and the result follows.

By Definition 6.11 AB = {abla € A,b € B}, and since it is possible to have a;b, = azb;
with ay,ay € A, a4y # ay, and b, b, € B, b; # by, it follows that |AB] < |4 x B| = |A}|B|.

(a) {y}*={y}* -~ (b) {yyre{yPe{y} (c) z{z,y}*
(d) {z,y}yzy (e) (z{z,y}) U ({2, ¥} yzy)
(f) [(z{z, y}) U ({z, v} yzy)] — l2{z, y}yey]

{a) The words 001 and 011 have length 3 and are in 4. The words 00011 and 00111 have
length 5 and they are also in 4.
(b) From step (1) we know that 1 € A. Then by applying step (2) three times we get

() 1€ A=>011€4

(it} 011 € A = 00111 € 4; and

(i) 00111 € A = 0001111 € A.
{c) I 00001111 were in A, then from step (2} we see that this word would have to be
generated from 000111 (in A). Likewise, 000111 in A = 0011 is in A = 0l is in A.
However, there are no words in 4 of length 2 — in fact, there are no words of even length
in A.
(a) (1} A€ A;and

(2) If 2 € A, then each of the following is also in 4:
(i) =1 (i) lz (iii) 00z (ivy =00 (v} 020
[And no other string of 0’s and s is in 4]

(b} (1) X€ 4; and
{2) For each z € A the strings 1z and 20 are also in A.
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23.

24'

25.

26,

27.

28.

(a) Steps Reasons

1. ()isin A Part (1) of the recursive definition

2. {(())isin A Step 1 and part (2(i1)) of the definition

3. (N )isin A Steps 1, 2, and part (2(i)) of the definition
(b) Steps Reasons

1. {)isin A Part (1) of the recursive definition

2. ({))isin A. Step 1 and part (2(ii)) of the definition

3. (( )X )isin A Steps 1, 2, and part (2(i)) of the definition

4. (N )isin A Steps 1, 3, and part (2(i)) of the definition
{c) Steps Reasons

1. ()isin A Part (1) of the recursive definition

2. (X )isin A Step 1 and part (2(1)) of the definition

3. () ))isin A Step 2 and part (2(ii}) of the definition

4. (H( ¥} ))isin A Steps 1, 3, and part (2(3)} of the definition

(1) heAdandse€ Aforalls€X; and
(2) For each x € A and s € I, the string szs is also in A.
[No other string from £* is in A.]

Length 3: (g') + (z)

Length 4 () )+
Length 5:

Length 6: () ()+(4

are no 0s; the summand (i) counts the strings where we arrange the symbols 1,1,1,1,00;

) =2
+ () =8

\-——’x""\/“‘\

+ ( ) = 13 [Here the summand ( ) counts the strings where there

the summand (’;) is for the arrangements of 1,1, 00, 00; and the summand (g) counts the
arrangements of 00, 00,00.]

[Here (g) counts the arrangements for one 111 and eight 00’s; (2) counts the arrangements
for three 111’s and five 00's; and (;) is for the arrangements of five 111’s and two 00’s.]

A: (1) A4
(2) Waec A, then 0al,001,1a0, lal € A

B: (1) 0,1¢ A
{2} Hac A, then 0a0,0a1,1a0,1cl € 4.

Ofthe 3-3-3:3 = 3% = 81 words in ¥%, there are 3-3-3-2 = 27 - 2 = 54 words that
start with one of the letters g, b, or ¢ and end with a different letter. Consequently, one
must select at least 54 + 2 = 56 words from }.* to guarantee that at least two start and
end with the same letter.

www.youséfiélass.ir



3.

Section 6.2

{a) 0010101; 5, (b) 0000000; 54 (c) 001000000; so

Because of the first output of 1 we must be at state s; when the third input is read. This
then forces the first three inputs to be 1,0,1. To get the second output of 1 we must be
at state s, when the fifth input is read. This forces the remaining two inputs to be 0,1.
Hence z = 10101.

(a) 010110 (b)
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4. § = {50 < < 5}, where at state s;, the machine remembers the insertion of a total of 5¢
cents,
I={5¢, 10¢ , 25¢, B,W}
0 = {n {(nothing), P(peppermint), S(spearmint}, 5¢, 10¢, 15¢, 204, 25¢}

v w

5 104 25¢ B W 5¢ 10¢ 25/ B W
8018 83 8 83 S ln n o n o n
3318 8 8 & &in n 3¢ n n
S318 84 S5 83 Sln n 104 o n
8318 S8 8 sy s|/n n 15 n =0
S48 95 S5 83 s3ln B¢ 20 n n
85 |85 S5 85 Sp so | 5¢ 106 25¢ S P

5. (a) 010000;s,  (b) (s,)100000;5, (55)0000005s; (s3)110010;s,

(c)

v w
6 110 1
8g | S¢ & 0 0
Sy 18 811 1
89 | 83 89 g ¢
sals 830 1
sg 18 8310 1
(d) s (e) z = 101 (unique)

6. (a) The machine recognizes (with an output of 1} every 0 (in an input string z) that is
preceded by another 0.
(b} State s; remembers that at least one 0 has been supplied from an input string z.
(C) A= {1}*53 = {(}Q}

7. (a) (i) 15 (ii) 35 (iii) 215 (b) 615
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8. (a)

Input ¢ 1 1 0 1 1 1 0 1 1
Qutput ¢ 0 0 0 0 0 ¢ 0 1 ©
(b)
¥ ol
6 110 1
Sag 1 % & g 0O
s118 810 0
83 | 89 83 0 0
83 | 83 S84 g 0
84 B4 Bp g 0
85 185 810 1

(c) w(z, o) = 0000001 for z = (1)1111101;(2)1111011;(3)1110111; (4)1101111;
(5)1011111; and (6)0111111

(d) The machine recognizes the occurrence of a sixth 1, a 12¢h 1,... in an input z.

9.
(a) v w

g 110 1
sglsy 8|0 O
81 | 83 83 0 ¢
89 | 83 82 6 1
&g | 83 83 g @
8518 $310 0
8g 1 85 83 1 8

(b) There are only two possibilities: z = 1111 or z = 0000.
(¢) A={111}{1}*u{o00}{0}*
(d) Here A = {11111}{1}* U {00000} {0}".
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Section 6.3

1. (a) (b}
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(b} (1) Input 111
1.1 Output 011
(i} Input 1010
Cutput 0101
(itiy Input 00011
Cutput 00001

(¢} The machine outputs & 0 followed by the first n — 1 symbols of the n symbol input
string z. Hence the machine is a unit delay.

{d) The machine here performs the same tasks as the one in Fig. 6.13 (and has only two
states.)
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3.

4.

Suppose the contrary and let the machine have n states, for some n € Z*. Consider the
input string 0"v11". We expect the output here to be 0**11". As the (’s in this input string
are processed we obtain n + 1 states sy, 82,...,8,, 8p41 from the function v. Consequently,
by the Pigeonhole Principle, there are two states s;,8; where ¢ < j but s; = s;. So if
the states s,,, for ¢ + 1 < m < 7, arve removed, along with their inputs of 0, then this

machine will recognize the sequence 0"*1~U~217 where n 41— (j —1) < n. But the string
grti-l-ijin g A.

{a) The transient states are sg,s;. State s4 is a sink state. {s1,83,93,384, 35}, {34},
{82, 83,85} {with the corresponding restrictions on the given function v) constitute subma-
chines. The strongly connected submachines are {s4} and {s;, s3, s5}.

(b) States 33,53 are transient. The only sink state is s5. The set {sq, 51,33, 84} provides
the states for a submachine; {sq, 81}, {84} provide strongly connected submachines.

(¢} Here there are no transient states. State sq is a sink state. There are three subma-
chines: {ss, 33, 84, 95, 36}, 193, 54, 85, 96}, and {s¢}. The only strongly connected submachine

is {sg}.

Either 110 or 111 provides a transfer sequence from 35 to s;.

Supplementary Exercises
(2) True (b) False (¢} True
(d) True (e} True (f) True
No. Let z € 3_ with A = {z,22}, B = {z}. Then A* = B* = {a"|n > 0}, but A € B.
Let 2 € ¥ and A = {z}. Then A? = {z?} and (A%} = {A, 2%, 2%,...}. However 4* =
(A, z,2%,...} and (4*) = A*, so (4*)? # (A?)".
(a) A* C B*. [For example, 111 € B* but 111 ¢ 4>
(b) A" =(C".
Oy : Starting at sg we can return to sg for any input from {1,00}*. To finish at state s,
requires an input of 0. Hence O = {1,00}*{0}
Oy : {0}{1,00}"{0}
Oy : 9

Ooa : {1,00}* — {1}
Oy ¢ {1}{1,00}" U {10}{1,00}*
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6.

10.

(a)

0 1

Sg | g &
83 ¢ 81 $3
83 | 83 83
83 1 83 S

2o 0 i T vo BN e B I ot
b OD 0 CD e

(b) For any input string z, this machine recognizes (with output 1) the occurrence of
every fourth 1 in z.

(c) (2) + (2) e (g) = 72. (The first summand is for the sequence of eight 1’s, the second
summand for the sequences of four 1's and four 0’s, and the last summand for the sequence
of eight 0’s.)

For || z ||= 12, there are Gg) + (3‘;) + (12) + (12> = 992 such sequences.

4 0

(a) By the Pigeonhole Principle there is a first state s that is encountered twice. Let y
be the output string that resulted since s was first encountered until we reach this state a
second time. Then from that point on the output is yyy .. ..

(b) =n () n

z =110
¥ t
g0 1410 1
Ep ! 8y S 01
& | 83 B i 0
&g ¢ By By i 4@
85 | 8 8p g 1

Here the table for w is obtained from Table 6.15 by reversing 0 and 1 (and, 1 and 0} for
the columns under § and 1.

18 .
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11.

12.

0 1

(30,33) {50, 34) (81,83)
(302 34) (Sm 33) (31334)
(s1,83) | (81,83} (s2,84)
(81,%4) | (s1,84) (82,3a)
(s2,53) | (52,83) (50,84)
(327 34) (527 34) ('397 33)

ok pead b Bed D fed | O
Y pent pod sk bed boot | et

(b) w((s0,83), 1101) = 1111; M is in state sp and M; is in state sy.

The following program determines the output for the input string 1000011000.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
176
180
156
200
210
220

Dim A(3,2), B(3,2)
Mat Read A,B
Data 2,1,3,1,3,1,0,0,0,0,1,1
Dim P(100), S(100)
Read N
ForI=1toN
Read X
HI<>1Then 120
i X = 0 Then P(1) = B{1,1) Else P(1) = B(1,2)
¥ X =0 Then S(1) = A(1,1) Else S(1) = A(1,2)
Go To 140
Y=X+41
P(I) = B(S(I-1}Y) : (I} = A(S(I-1),Y)
Next 1
Dats 10,1,0,0,0,0,1,1,0,0,0
Print “The output is”;
For[=1To N1
Print P(I);
Next 1
Print P(N)
Print “The machine is now in state”; S(N)
End
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CHAPTER 7
RELATIONS: THE 5ECOND TIME AROUND

Section 7.1

Lo (a) {(1,1))(2,2),(3,3),(4,4),(1,2),(2,1),(2,3},(3,2)}
(b)  {(1,1),(2,2),(3,3),(4,4),(1,2)}
(e} {(1,1).42,2),(1,2),(2,1)}

2. -9,~-2,5,12,19

3. (a) Let fi, fa, fa € F with fi(n) =n+1, fa(n) = 5n, and f3(n) =4n +1/n.
(b} Let g1,92,95 € F with g1(n} = 3, g3(n) = 1/n, and fo(rn) =sinn.

4. (a) The relation R on the set 4 is
(i) reflexiveif Vz € A(z,2) € R
(ii) symmetric if Vo,y € A [(2,y) € R => (y,2) € R]
(i) transitive if Vz,y,2z € 4 [(2,y),(y,2z) € R == (z,2) € R}
(iv) antisymmetric if Vz,y € 4 [(z,¥),(y,2) € R =2 2 =y

(b) The relation R on the set A is

(i) not reflexiveif Jz € A (z,2) ¢ R

(ii) not symmetric if Iz, y € Al{{z,y) E RA(y,2) ¢ R]
(i) not transitive if Jz,y,z € A [(2,y),(y,2) € RA(2,2) € R]
(iv) not antisymmetric if z,y € A [(2,y},(v,z) e RAz # y].

(a) reflexive, antisymmetric, transitive

{(b) transitive

{¢) reflexive, symmetric, transitive

{d} symmetric

(e} ({(odd): symmetric

(f) (even): reflexive, symmetric, transitive
(g) reflexive, symmetric

{h) reflexive, transitive

on

6. The relation in part (a) is a partial order. The relations in parts (¢} and (f) are equivalence
relations.

7. (a) Forallz € A,(z,2) € Ry, Ry, 50 (2,2) € Ry N'R; and Ry NR; is reflexive.

179
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10.

{(b) Al of these results are true. For example if Ry, Ry are both transitive and (z,y), (y,2) €
Ry N R, then (z,y),(y,2) € Ry, Ry, 5o (z,2) € Ry, R, (transitive property) and (z,2) €
Ri NR,. [The proofs for the symmetric and antisymmetric properties are similar.]

(a) Forall z € A, (z,2) € Ry, Rs € Ry U Ry, so if either Ry or Ry is reflexive, then
R4 U R4 is reflexive.

(b) (i) ¥ az,y € A and (z,y) € R: UR,, assume without loss of generality, that
(z,y) € Ry. (z,¥) € Ry and Ry symmetric = (y,z} € R; => (y,2) € Ri URz, so
Ri U R, is symmetric.
(i) False: Let A = {1,2}, Ry = {(1,1),(1,2)},R; = {(2,1)}. Then (1,2),(2,1) €
RiUR,, and 1 # 2, so By UR,; is not antisymmetric.
(iii) False: Let 4 = {1,2,3},R; = {(1,1),(3,2)},R2 = {(2,3)}. Then (1,2),(2,3) €
Ry URg, but (1,3) € Ry UR,, so Ry UR; is not transitive.

(a) False: Let A= {1,2} and R = {(1,2),(2,1)}.
(b} (i) Reflexive: True
(ii) Symmetric: False. Let A = {1,2}, R, = {(1, D}, R = {(1,1),(1,2)}.
(i) Antisymmetric & Transitive: False. Let A = {1,2}, R, = {(1,2)},
Ry = {(112)3(2? })}

(c) (i) Reflexive: False. Let A = {1,2},R: = {(1,1)},Rs = {(1,1),(2,2)}.
(ii) Symmetric: False. Let 4 = {1,2}, R, = {(1,2)}, R = {(1,2),(2,1}}.
(iii) Antisymmetric: True
(iv) Transitive: False. Let A = {1,2}, R; = {(1,2),(2, 1)}, R, = {(1,1),(1,2),

(2,1),(2,2)}.
(d}) True
(a) 2% (b) (29)(2%) =2'° (c} 2°
(d) 2% (e) (29)(2°)=2° £y 2¢.3°
(g) 2¢-8° by (2% @ 1

@ () =) =3=a

(f) Since 18,860 = 2%.3%.5-7-11, it follows that R contains <3’5§“’3)2<%§”1)3 = @)2@}3 =
(36)(27) = 972 ordered pairs.
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12.

13.

14*

15.

16.

17.

18.

Since 5880 = 6*2“1) (4+§~1) ((k+1)2+2-—1)
D) (5 = @)A0E)k + 2)(k +1),
we find that 56 = (k+2)k+ 1) and k = 6.
For n = pip2p§ there are (5 + 1)(3 + 1)}{(6 + 1) = (6)(4)(7) = 168 positive integer divisors,
so |A] = 168.

There may exist an element a € A such that for all b € B neither (a, b) nor (b,a) € R.

There are n ordered pairs of the form (z,z),2 € A. For each of the (n? — n)/2 sets
{{z,y),(y,2)} of ordered pairs where z,y € A, x # y, one element is chosen. This results
in a maximum value of n + (n* — n}/2 = (n® + n)/2.

The number of antisymmetric relations that can have this size is 200 -n)/2,

r — n counts the elements in R of the form (a,b}),a # b. Since R is symmetric, r — n is
even.

(a) aRy if =z < y.
(b) For example, suppose that R satisfies conditions (i) and (iii). Since R # @, let
(z,y) € R, for z,y € A. Since R is symmetric, it follows that (y,z) € R. Then by the
transitive property we have (z,2) € R (and (y,y) € R). But if {(z,2) € R the relation R
is not irreflexive.

(C) Z(nzun); 2n3 — 2(2(n2wn))

© (E+OE -+

® ()G +EE)+0)E)

(a) Let A; = f~Y(z), Ay = f~*(y), and 43 = f~1(z). Then R = (A; X A1) U (43 X 4) U

(Ag bt Ag), SO iﬁi s }.{}2 +- 102 -+ 52 = 225.
(b) ni +nd +n5+nj

Section 7.2

Rod8 = {{1,3),(1,4} 8+ R = {{1,2),(1,8),(1,4),(2,4)};
R? = R? == {{1,4),(2,4),{4, 4}
§% = 5% = {(1,1),(1,2),(1,3),(1,4)}.

Let z € A. R reflexive = (z,2) € R. {z,2) € R,(z,2) E R == (z,2) e Ro R = R%L

(a,d) € (RyoR3) o Ry == (a,¢) € Ryo Ry,{c,d) € Rs for some ¢ € C =% (q,b) €
Ri,(b,c) € Ry, (c,d) € R for some b € B,c € C == (a,b) € Ry,{(b,d) € Ry 0Rp =
(Q?S,t{) & %1 & {Rg ﬁ?{«g}i, and {R} 9R3}9R3 Q R} O(Rg Q(Rg}.
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10.

1}(‘

{3) Ri o (,R'ﬁ U Rf‘l) = Ri Q {(ws 4’}3 (wa 5}& ("Ev 6}3 (ya 4}% {ya 5)3 {ya 6)}
== {(:laé‘)v (19 5)? (31 4)3 (31 5)= (2, 6)’ (i: 6)}

{Ri ¥ Rz) U (R} G ’Rg)

= {(1,5),(3,5),(2,6),(1,4),(1,6)} U {(1,4),(1,5),(3,4),(3,5)}

= {(1?4)3 (1: 5): (1> 6): (21 6)'.- (35 4): (37 5)}

(b) Rio(ReNR3)=Ryo{{w,5)}={(1,5),(3,5)}
(Ri o R2) n (Rl & 723) = {(17 5)7 (3$ 5)9 (29 6)1 (114)3 {Ia 6)} n {(274)'1(17 5)7 (33 4}% (3’5}} =
{(1,4),(1,5),(3,5)}.

RI e (RZ n %3) = R2 G {(m’3}’(m) 4}} = {(173)a (194)}
(RioRa)N(RyeRa) ={(1,3),(1,4)} n{(1,3),(1,4)} = {{1,3), (L, 4)}.

(a) (#,2) € Rio(RyUR3) <= for some y € B,(z,y) € Ry,(y,2) € RaURy & for
some € B, ((z,5) € Ruy (3,7) € Ry) ot ((2,5) € Ru, (42) € Ro) == (2,7) € Ry 0 Ry or
(z,2) € RioR; &= (z,2) € (R10RJU(R10R3), s0 Ryo(R30R3) € (Ry0R)U(R 0 R3).
For the opposite inclusion, (z,2) € (R 0o Ry)U(R1o0R3) = (2,2) E R1o Ry or (z,2) €
Ry o Rs. Assume without loss of generality that (z,2) € Ry ¢ Ry. Then there exists an
element y € B so that {z,y) € R; and (y,2) € R,. But {y,2) € Ry == (y,2) € Ry U Ra,
so (z,z) € Ry 0 (R3UR3), and the result follows.

(b) The proof here is similar to that in part (a}). To show that the inclusion can be
proper, let A = B = C = {1,2,3} with R, = {(1,2),(1,1)}, R = {(2,3)},Rs = {(1,3)}.
Then Rl o (Rg O R;:;) = Rl o @ = @, but (Ri G Rz) o (RI © 'R,g) e {(1,3)}

This follows by the Pigeonhole Principle. Here the pigeons are the 2% 41 integers between
0 and 2%, inclusive, and the pigeonholes are the 2% relations on A.

Let § = {(1,1),(1,2),(L,4)} and T = {(2,1),(2,2),(1,4)}.

Here there are two choices for each a;;,1 < ¢ < 6. For each pair a;;,¢;,1 <i < j <6,
there are two choices, and there are (36 — 6}/2 = 15 such pairs. Consequently there are
(25)(21%) = 2%! such matrices.

For each 0 in E the matrix F can have either 0 or 1 {the other eniries in F are 1}. Since
theve are seven ('s in E there are 27 possible matrices F. There are 2° possible matrices G.

Cousider the entry in the i-th row and j-th column of M(R; ¢ R,). If this entry is a 1 then
there exists by € B where 1 < & < n and (6, 8:) € Ry, (bi,¢;) € Ry. Consequently, the
entry in the i-th row and k-th column of M{R,) is 1 and the eniry in the k-th row and
j-th column of M{R;) is 1. This results in a 1 in the i-th row and j-th column in the
product M(R,}- M(R;).

Should the entry in row i and column j of M{R; o R;) be 0, then for each 5,1 < k < n,
either {a;, by) & Ry or (b, ¢;) & Re. This means that in the matrices M{R, )}, M(R;), if the
entry in the i-th row and k-th column of M (R, ) is 1 then the entry in the k-th row and j-th
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12.

13’

column of M({R;) is 0. Hence the entry in the i-th row and j-th column of M(R;)  M(R,)
is 0.

(a) f M(R) =0, then Vz,y € 4 (2,y) ¢ R. Hence R = §. Conversely, if M(R) # 0,
then Jz,y € A where 2Ry. Hence (2,y) € R and R # §.

(¢) For m = 1, we have M(R') = M(R) = [M(R)}]}, so the result is true in this
case. Assuming the truth of the statement for m = k we have M(R*) = [M(R)}*. Now
consider m = k + 1. M(R*!) = M(R o RF) = M(R) - M(R*) (from Exercise 11)
= M(R) - [M(R)]* = [M(R)}**!. Consequently this result is true for all mm > 1 by the
Principle of Mathematical Induction.

(a) R reflexive <= (z,2) € R, forall z € 4 &> m,, = 1 in M = (my;)uxn, for all
zE A= I, <M.

(b) R symmetric <= [Vz,y € A (2,y) E R =3 (y,2) ER] &> [Vz,y € A m,, =1in
M =>my, =1in M] &> M = M".

www.yousefiglass.ir



14.

10
20!
30!
40!
50!
60
70
80
80
100
110
120
130
140
150
160
170

180
190
200
210
226
230
240
250
260
270
280

300
310
320
330
340
350
360
370

380

THIS PROGRAM MAY BE USED TO DETERMINE IF A RELATION
ON A SET OF SIZE N, WHERE N <= 20, IS AN

EQUIVALENCE RELATION. WE ASSUME WITHOUT LOSS OF
GENERALITY THAT THE ELEMENTS ARE 1,2.3,...,N.

INPUT “N ="; N
PRINT “ INPUT THE RELATION MATRIX FOR THE RELATION”
PRINT “BEING EXAMINED BY TYPING A(I,J) = 1 FOR EACH”
PRINT “1 <= I<=N, 1 <= J <= N, WHERE (1,J) IS IN”
PRINT “THE RELATION. WHEN ALL THE ORDERED PAIRS HAVE”
PRINT “BEEN ENTERED TYPE 'CONT’
STOP
DIM A(20,20), C(20,20), D(20,20)
FORK =1TON
T=T + AK,K)
NEXT K
IF T = N THEN &
PRINT “R IS REFLEXIVE”; X = 1: GO TO 190
PRINT “R IS NOT REFLEXIVE”
FORI=1TON
FORJ=1+1TON
IF A(L,J) <> A(J,]) THEN GO TO 260
NEXT J
NEXT I
PRINT “R IS SYMMETRIC”: Y = 1
GO TO 270
PRINT “R IS NOT SYMMETRIC”
MATC = A
MAT D = A*C
FORI=1TON
FOR J=1TON
IF D(LJ) > 0 AND A(LJ) = 6 THEN GO TO 360
NEXT J
NEXT I
PRINT “R IS TRANSITIVE™; Z = 1
GO TO 370
PRINT “R IS NOT TRANSITIVE”
IFX+Y+7%=3THEN &
PRINT “R IS AN EQUIVALENCE RELATION" &
ELSE PRINT “R IS NOT AN EQUIVALENCE RELATION”
END
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E d f
b e
c
(b)
s x
t - y
w *:
16. (a) True (b) True {¢) True {d) False

17. (1) R = {{a, &), (b, a), {2, e}, (e, 0}, (b, ¢}, (c, b}, (b,d), (4, b), (b, ), (e, b), (d, e}, (e, d), (d, F}, (], di}

(a} (8) (c}{d){e} (f)

@ fo10010

@ litoe1110
@ lo10000
MR = lo100 11
@l110100

() loooioo

For parts (it), (iil}, and (iv), the rows and columns of the relation matrix are indexed as
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. /s
in part (i).

{ﬂ} R = {{aa b}? (i)'; 8}, {dv b)a (d7 c}a (87 f}}

M(R) =

(i) R = {(a,a),(a,b),(b,a),(c,d),{d,c),{d,e),

M(R) =

(iv) R ={{(b,a),(b,c),(c,b),(b,e),(c,d},(e,d

M(R) =

g

-

[ Bk u i v [ o B wov

0

L B e B e T o

[on T i B e S T S S e

o et D LD ke

0

Ll oY o i oo B e B S

[T T oo B SO e B <

)

P S oo T son- T S S v A oot O

foe T o T S S o B o B o]

}

oo 2 D D et D

0
0
0
0
0
0
d

e, d),

ok e T3 ped O3 00

Co okt O b OO

o ey G e W b D

et OO et ODOCD D

DD e O

d,

y,  E D DD D

(), (e £ (Fy )}

P

[ B O T+ Bl e B ]
%

oo oo

18. (a) R={(v,w),(v,2),(w,v),(w,z),(w,y),(w,2),(z,2),(y,2)}

W
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{b} R = ’é(”v wh (v, z), {v,¥), {w% v}, {w,z}, (=, 2;3}? {z, w), {z,2),(y,v), (¥, 2), (2, m}v (2, ¥}

20. (a) () (3)
(ii) Each directed path corresponds to a subset of {2,3,4,5,6}. There are 2° subsets of
{2,8,4,5,6} and, consequently, 2° directed paths in G from 1 to 7.
(®) @) (5) =B}
(i1} There are 2"~ directed paths in G from 1 to n.
{iii) There are 21413 = 9b-3-1 directed paths in G from @ to b,
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21.
22.

23.

24.

25.

26.

225; (25)(2&6) e 215
225; (25)(210) - 215

(a) Ry Ry

G G0 D e
S e
e SR R N I v
e I )
CD D S ped ped
m@w;—a‘w
[T e T O R R
LR e s T o o
L o Y o T e R i

(b) Given an equivalence relation R on a finite set A, list the elements of A so that
elements in the same cell of the partition (See Section 7.4.) are adjacent. The resulting
relation matrix will then have square blocks of 1’s along the diagonal (from upper left to
lower right).

GG B

(a) Let k€Z*. Then R® = {(1,1),(2,2),(3,3),(4,4), (5,5), (6,6), (7,7)} and R+ =
R. The smallest value of 1 > 1 such that R* = R is n = 13. For all multiples of 12 the
graph consists of all loops. When n = 3,(5,5),(6,6),(7,7) € R?, and this is the smallest
power of R that contains at least one loop.

(b) When n =2, we find (1,1),(2,2)in R. Forall k € Z+*,R* = {(z,2)lz € Z*,1 <
z < 10} and R¥¥* = R, Hence R is the smallest power of R (for n > 1) where R® = R.
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27.

1.

(¢} Let R be a relation on set A where |A| = m. Let G be the directed graph associated
with R ~ each component of (G is a directed cycle C; on m; vertices, with 1 < 7 < k.
(Thus m; + mg + ... + mg = m.} The smallest power of R where loops appear is R', for
t = nun{m;ll <i<k}

Let s = lem{my,mg,...,m). Then R™ = the identity (equality) relation on A and
R+ == R, for all r € Z*. The smallest power of R that reproduces R ig s+ 1.

(z) =703 = n =38

Section 7.3

K
{1.23) {1.2.4) {1.3.4} {2.3.4}
{1.2) { "3); (1.4) (2.3) {2.4) {3.4)
{1) {2) {3} {4}

T

189
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6/?8\9
vl
N,

2

Forall a € A,b € B,aR;a and bR,yb so (a,b)R(a,b), and R is reflexive. Next

(a,b)R{c, d),(c,d)R{a,b) = aRic,eRya and bRLd, dR3b =% a = ¢,b = d = (a,b) =
(¢,d), so R is antisymmetric. Finally, (q,b)R(¢,d),(c,d)R{e, f) == aRic,cRie and
bRod, dRyf == aRye,bRyf == (a,b)R{e, f), and R is transitive. Consequently, R is
a partial order.

No. Let A = B = {1,2} with each of Ry, Ry the usual “is less than or equal {o” relation.
Then R is a partial order but it is not a total order for we cannot compare (1,2) and (2,1).

8 < {1} < {2} < {3} < {1,2} < {1,38} <« {2,3} < {1,2,3}. (There are other possibilities.)

(2) (a) By (g (3 (e)
() T1 1 1 1 17

) |0 1 0 1 1

M(R)= (¢ 0 0 1 1 1

{(d) ] 0 0 1 1
(e} | O 0 0 0 1]

(b)

(ca<b<e<d<e or a<e<bade

1‘%0 .
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10.

i1.

12.

13.

14.

1s.

(a) /‘ . (b)3<2<l<iord<l<2<4

S\3/ (c) 2

Suppose that z,y € A and that both are least elements. Then zRy since z is a least
element, and YRz since y is a least element. With R antisymmetric we have z = y.

Let z,y both be greatest lower bounds. Then Ry since x is & lower bound and y is a
greatest lower bound. By similar reasoning yRz. Since R is antisymmetric, z = y. [The
proof for the lub is similar.]

Let 4 = {1,2,3,4}. Let A be the collection of all proper subsets of I, partially ordered
under set inclusion. Then {1,2,3}, {1,2,4}, {1,3,4}, and {2,3,4} are all maximal elements.

Let U = {1,2}, A = P(U), and R the inclusion relation. Then {4, R) is a poset but not a
total order. Let B = {#, {1}}. Then (B x B)N R is a total order.

For all vertices z,y € A,z # y, there is either an edge (z,y) or an edge (y,z), but not
both. In addition, if (z,y),(y,2) are edges in G then (z,z) is an edge in G. Finally, at
every vertex of the graph there is a loop.

n -+ (;‘)
n -+ (’2‘)

(2) The n elements of A are arranged along a vertical line. For if A = {a;,4a,...4,},
where a;Ra;Ra;R ... Ra,, then the diagram can be drawn as
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16.

17.

18.

19.

G,
Gy
(LT

.

e

&
a3
Gg
ay

(b) n!

(a) Let a € A with a minimal. Then for 2 € 4, 2Ra =% z = a. So if M(R) is the
relation matrix for R, the column under ‘a’ has all 0’s except for the one 1 for the ordered

pair (a,a).
(b) Let b € A, with b a greatest element. Then the column under ‘6’ in M(R) has all 1’s.
If ¢ € A and c is a least element, then the row of M(R) determined by ‘c’ has all 1’s.

lub glb lub glb lub glb
(a) {12} 0 () {12} @ (e) {123} ¢
(b) {1,23} 0 (d) {1,2,3} {1}

(a) (i) Only one such upper bound — {1,2,3}. (ii) Here the upper bound has the form
{1,2,3,2} where ¢ € & and 4 < z < 7. Hence there are four such upper bounds. (iii)

There are (‘;} upper bounds of B that contain five elements from I.

) @)+ () +C)+ )+ () =2=10
(¢) ubB={1,2,3}

(d) One ~ namely @

(e) glbB=19

For each a € Z it follows that aRa because a — ¢ = 0, an even nonnegative integer. Hence

R is reflexive. If a, b, c € Z with aRb and dRc then

g — b= 2m, for some m € N

b — ¢ = 2n, for some n € N,
and ¢ —c = {a — b} + (b — ¢) = 2(m + n), where m + n € N. Therefore, aRc and R is
transitsve. Finally, suppose that aRb and bRa for some g,b € 4. Thena ~band b~ ga
are both nonnegative integers. Since this can only occur for ¢ — b = b — a, we find that
[aRb A bRa] = a = b, so R is antisymmeitric.
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20.

21.

22.

23.

Consequently, the relation R is a partial order for Z. But it is not a total order. For
example, 2,3 € Z and we have neither 2R3 nor 3R2, because neither -1 nor 1, respectively,
is a nonnegative even integer.

(a) For all (a,8) € A, a = a and b < b, s0 (a,b)R(a,b) and the relation is reflexive. If
{a, b),{c,d) € A with {a, b)R(c,d) and {¢,d)R{q, b), then if a # ¢ we find that
{(a,0)R{c,d} = a < ¢, and
(e,dyR{a,b} = ¢ < a,
and we obtain a < a. Hence we have ¢ = ¢.
And now we find that
(a,b)R{c,d) = b < d, and
(e, YR(a,b) = d < b,
so b = d. Therefore, (a,5)R(c,d) and (¢,d)R(a,b) = (a,b) = (¢, d), so the relation is
antisymametric. Finally, consider (a, 8}, (c,d), (e, f) € A with (g, 5)R{e, d) and (¢, d)R(e, ).
Then
(i) a<ecor(il) e=cand b < d; and
(@Y c<eor(iify c=eandd < f.
Consequently,
(iY'a<eor (ii)) e =e¢and b < f — so0, (a,b)R(e, f) and the relation is transitive.
The preceding shows that R is a partial order on A.

b) & ¢} There is only one minimal element — namely, (0,0). This is also the least element
for this partial order.

The element (1,1) is the only maximal element for the partial order. It is also the greatest
element.

d) This partial order is a total order. We find here that
(0,0)R(0, HR(1,0)R(1,1).

{a} The reflexive, antisymmetric, and transitive properties are established as in the pre-
vious exercise.

{b) & (¢} Here the least element {and only minimal element) is (0,0). The element (2,2)
is the greatest element (and the only maximal element).

{d} Once agein we obtain a total order, for

(0,0)R(0, 1IR(0, )R(1, OYR(L, LYR(1, R(2, OYR(2, 1)R(2, 2).

Here |X|=n+1, [4] = (n + 1) and [R = (n + 1) + ("),

{(a) False, Let U = {1,2}, A = P{U)}, and R be the inclusion relation. Then (4, R)is a
lnttice where for all 8,7 € A, Wb{S, T} = SUT and ¢lb{S5,T} = SNT. However, {1}
and {2} are not related, so (4, R) is not a total order.

193
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24.

25.

26.

27'

28,

28.

3& &

(b) I (A,R)is a total order, then for all z,y € A, 2Ry or yRz. For 2Ry, lublz,y} =y
and glb{z, y} = z. Consequently, (4, R) is a lattice.

Since A is finite, A has a maximal element, by Theorem 7.3. If 2,y (& # y) are both
maximal elements, since z, yRiub{z, y}, then lub{z, y} must equal either z or y. Assume
lub{z,y} = z. Then yRz, so y cannot be a maximal element. Hence A has a unique
maximal element z. Now for each a € A, ¢ # z, if lubla,z} # z, then we contradict z
being a maximal element. Hence aRx for all @ € 4, so z is the greatest element in A.
[The proof for the least element is similar.]

(a) a (b} @ (¢ ¢ (d) e (e} =z £) e (g) v
(A, R) is a lattice with z the greatest (and only maximal) element and a the least (and
only minimal) element.

a) 5 byandc) n+1
d) 10 ejandf) n+{n—-1)+---+24+1=n(n+1)/2

Consider the vertex p°¢*r°, 0 < a <« m, 0 < b < n, 0 < ¢ < k. There are mnk such
vertices; each determines three edges — going to the vertices p®*igbre, pogt*tire, pogbrett,
This accounts for 3mnk edges.

Now consider the vertex p™¢'r, 0 < b < n, 0 < ¢ < k. There are nk of these vertices;
each detemines two edges — going to the vertices p™¢*tre, pmgbret'. This accounts for
2nk edges. And similar arguments for the vertices p*¢"r°(0 < a < m,0 < ¢ < k) and
p*¢"r*(0 < @ < m,0 < b < n) account for 2mk and 2mn edges, respectively.

Finally, each of the k vertices p™¢"r°, 0 < ¢ < k, determines one edge (going to p™g¢"r°™!)
and so these vertices account for k new edges. Likewise, each of the n vertices p™¢’r¥,
0 < b < n, determines one edge (going to p™¢**'r¥), and so these vertices account for n
new edges. Lastly, each of the m vertices p®¢™r*, 0 < a < m, determines one edge (going

to p*tig"r¥) and these vertices account for m new edges.

The preceding results give the total number of edges as (m+n+k)+2(mn4mk+nk)+3mnk.

a) 24 = 2%.3. There are 4 - 2 = 8 diviscrs for this partial order and they can be totally
ordered in %ﬁ) = 14 ways.

b) 75 = 3 - 5% There are 2- 3 = 6 divisors for this partial order and they can be totally
ordered in «:;:(g} = B ways.

¢} 1701 = 3% 7. Here the 12 divisors can be totally ordered in é(;@ = 132 ways.

429 = %}(?} so k = 6, and there are 2 - 7 = 14 positive integer divisors of piq.

For the (0, 1}-matrix E = (€;;)mxn We have ¢;; = ey, s0 ¢;; < ¢y, forall 1 < ¢ < m,
1 <j < n. Consequently, E < F and the “precedes” relation is reflexive,

194
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i.

Now let E = (€;)mxns F = (fij)mxn be (0,1)}-matrices, with E < F and F < E. Then,
foraﬁigégm?i§jfi_n,céjﬁfg-jandﬁj§eg}-x&egﬁxfij,ssEmF»andthe
“precedes” relation is antisymmetric.

Finally, suppose that E = (€ )mun, F = {fijJmxn, 80d G = {gi;}mxn are (0, 1)-matrices,
with E< Fand F <G. Then,forall1 <i<m, 1 <7< n, ey £ fjand fi; < gy =
ei; < ¢i5, so E < G ~ and the “precedes” relation is transitive.

In so much as the “precedes” relation is reflexive, antisymmetric, and transitive, it follows
that this relation is a partial order — making A into a poset.

Section 7.4

(a} Here the collection A, Ag, A3 provides a partition of A.
(b) Although A4 = A; U Ay U A3 U Ay, we have A; N A; 5 B, so the collection A;, Ap, As,
A, does not provide a partition for A.

{(a) There are three choices for placing 8 — in either 4,, 4,, or A3;. Hence there are three
partitions of A for the conditions given.

(b) There are two possibilities with 7 € 4;, and two others with 8 € 4;. Hence there are
four partitions of A under these conditions.

{c) I we place 7,8 in the same cell for a partition we obtain three of the possibilities. If
not, there are three choices of cells for 7 and two choices of cells for 8 — and six more
partitions that satisfy the stated restrictions. In total — by the rules of sum and product
— there are 3 + (3)}(2) = 3 + 6 = 9 such partitions.

R =1{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4),(5,5)}.

(2) [} ={1,2} = [2];[3] = {3}
(b) A={1,2}U{3}U{4,5}U {6}.

R is not transitive since 1R2, 2R3 but 17&3.

(a) For all (z,y) € A, since z = z, it follows that (z,y)R(z,y), so R is reflexive. If
{21, 31 ), (22, 1) € A and (21, 11)R{x2, 3}, then 21 = 29, 50 73 = 2y and (24,2 R(21, 1 ).
Hence R is symmetric. Finally, let {(z1,11), (22, 1), (23, 43) € A with (21,5 )R(z2, y2)
and (29, y2 ) R{(®s, ¥3}- (1, JR(Z3, %) = 21 = 235 (23, 12 )R(23,¥3) = 23 = z3. With
2y = Ty, Ty = Ty, it follows that z; = 23, s0 (21, 11 )R{zs, ) and R is transitive.

(b} Each equivalence class consists of the points on a vertical line. The collection of these
vertical lines then provides a partition of the real plane,

{a) Forall (z, y €Az t+y=z+y==(z,y)R(z,y)
(1,1 )R (23, 10) => C1+ W = a3+ => T3+l = 21 + 1 =
{za, )R (21, 1) (21,90 )R{22, 12), (23, y2 ) R{x3, ys) ==>
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14,

il.

Ty + Y1 = T3+ Yo, T2 + Yo = Tz + ¥, 50 Ty + Yy = T3 + Yz and (21, 41)R{(23,y3). Since R is
reflexive, symmetric and transitive, it is an equivalence relation.

(b) [(1,3)] = {(1,3),(2,2),(3,1)};
[(2,4)] = {(1,5),(2,4),(3,3),(4,2),(5,1)}; [(1,1)] = {(1,1)}.

() A={(1,1}U{(1,2),(2, 1D} U{(1,3),(2,2),(3, 1)}
{(1,4),(2,3),(3,2),(4, 1)} U{(1,5),(2,4),(3,3),(4,2), (5, N}
{(2,5),(3,4),(4,3),(5,2) U{(3,5),(4,4),(5,3)} U {(4,5), (5,9} U {(5,5)}.

(a) Foralla € Aja—a = 3.0, so R is reflexive. For a,b € A,a ~ b = 3¢, for some
c€Z=3b—a=3(~c}, for —c€Z, s0 aRb=> bRa and R is symmetric. If a,b,c € A
and aRb, bRc, then a — b =3m,b~¢c=3n, forsome mn € Z = {a-b)+(b~¢c)=
3m + 3n =2 a — ¢ = 3(m + n}, so aRe. Consequently, R is traunsitive.

(b) 1] = [4] = [7] = {1,4,7};[2] = [5] = {2,5};[3] = [6] = {3,6}.
A={1,4,7}U{2,5} U{3,6).

(a) For all (a,b) € A we have ab = eb, so (a, 5)R{a, b) and R is reflexive. To see that R is
symmetric, suppose that (e, b), (¢,d) € 4 and that (a, 8)R(c,d). Then (a,b)R(¢,d) = ad =
be = ¢b = da = (¢,d)R{a, b}, so R is symmetric. Finally, let (a,b), (¢, d),{e, f) € 4 with
(a, 5YR(c,d) and (e, d)R{e, f). Then (a,b)R{c,d) = ad = bc and (¢, d)R{e, f) = cf = de,
80 adf = bcf = bde and since d # 0, we have af = be. But af = be = (a,b)R{e, f), and
consequently R is transitive.

It follows from the above that R is an equivalence relation on A.

(b) [(2,14)] = {(2,14)}
{(—3,~9)] = {(~3,-9),(~1,-8),(4,12)}
[(49 8)} = {("2& "”4)7 (1, 2)3 (3, 6)’ (4’ 8)}

{¢) There are five cells in the partition — in fact,

A =[(-4, 20U [(-3, -9 U [(-2, -] U [(-1, -11)] U [(2, 14)].

(a) Porall X € 4, BNX = BNX, so XRX and R is reflexive. f X,V C 4, then
XRY = XNB=YNB=YNEB=XNEB==YRX, soR is symmetric. And finally,
HFW XYV CAwith WRX and ARY ,then WnNB8=XNBand XNB=YNBH. Hence
WnNB=YnNB, so WRY and R is transitive. Consequently R is an equivalence relation
on P{A)}.

(b) {8, B1ru{{in L3 u {{2h 2,3 u {{1,2}, {1, 2,3}}
() [X1={{1,3},1{1,8,4},{1,3,5},{1,3,4,5}}
{d} 8 - one for each subset of B.

(a) (%}@} ~ The factor (1) is needed because each selection of size 3 should account for
only one such equivalence relation, not two. For example, if {4,5, ¢} is selected we get

1?5 .
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12,

13.

14.

18.

16'

17.

the partition {a,b,c} U {d,e, f} that corresponds with an equivalence relation. But the
selection {d, ¢, f} gives us the same partition and corresponding equivalence relation.

(b) (g) 143 = 4@) - After selecting 3 of the elements we can partition the remaining 3
in

(i) 1 way into three equivalence classes of size 1; or
(i1} 3 ways into one equivalence class of size 1 and one of size 2.

(© (i+1=2()
@ HE+@)+20)+ )+

(a) 2'° = 1024 (b) 35021 8(5,1) = 1+ 15+ 25 + 10+ 1 = 52
(c) 1024 — 52 = 972 (d) §(5,2) =15
(&) oA, 5(4,0)=14+7+6+1=15 () 5L.5(3,i)=14+3+1=35
(g) T S(3,i)=1+43+1=5 (b) (T 5(3,4)) - (E?ml 5(2,1)) =3
300
(a) Not possible. With R reflexive, |R| > 7.

(b) R={(z,2)lz€Z,1<z<7}.

{c) Not possible. With R symmetric, |R| — 7 must be even.

(d) R={(z,2)jx e Z,1 <2< T}U{(1,2),(2,1)}.

(e) R={{z,2)le e Z,1 < <7T}U{(1,2),(2, 1)} U{(3,4),(4,3)}.
(f) and (h) Not possible with r — 7 odd.

(g) and (i) Not possible. See the remark at the end of Section 7.4.

Let {A;}ics be a partition of a set A. Define R on A by 2Ry if for some i € I,z,y € A,.
Foreach z € A,z,z € 4, for some ¢ € I, so 2Rz and R is reflexive. 2Ry = z,y € 4;,
forsome i € I =2 y,z € A;, for some s € I = yRaz, so R is symmetric. If 2Ry and yRz2,
then z,y € A; and y,2 € A; for some 4,7 € I. Since A4; N A; contains y and {A;}icris a
partition, from A; N A; = § it follows that A; = A;, s0 ¢ = j. Hence 7,2 € 4;, s0 2Rz and
R is transitive.

Let P = Ui A; be a partition of A. Then E = U;g{4; x A;) is an equivalence relation
and f(E} = P, so f is oniea.

Now let By, E; be two equivalence relations on 4. If Ey # E,, then there exists z,y € A
where (z,y) € E; and (2,y) € E;. Hence if f(E,) = P, = Ujerd; and f(E) = P, =
Ujsead;, then (2,y) € By = 2,y € A;, T € I, while (a,y) ¢ By =

VieJ{z ¢ A; Vy & A;). Consequently, Py # P, and f is one-to-one.

Proof: Since {B;,B,, Ba,..., B,} is a partition of B, we have B = B;UB, UBa U, . . UB,.
Therefore A = f~YB) = f~B;U...UB,) = f~Y(B)U...UfYB,) [by generalizing part
(b} of Theorem 5.10). For 1 i< j <n, fFFUBINfHB;) = f~YUB:NB;) = f1(§) = 0.
Consequently, {f~1(B:}|1 <i < n, f7Y(B;) # 8} is a partition of A.

1?? .
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3.

Note: Part (b} of Example 7.55 is a special case of this result.

Section 7.3

(ﬂ-} P {31;34}7{325 83,4 55}

(v(s1,0) = 34)Ey(v(34,0) = 83} but (¥(s1,1) = .s;))?;(r/(sh 1} = 83}, so 31é’254.

(1(32,1) = s3) By (v(s3,1) = 84) 50 83K} 35.

(v(82,0) = 33)E1(v(s5,0) = s3) and (#(s2,1) = 33)Ey{¥(55,1) = 83) 50 5,E85.

Since s 5,53 and 835,35, it follows that s;H5ss.

Hence P, is given by Py : {s1},{82,55}, {33, }, {84}, (¥(82,2) = 83)Eq(v(ss,2} = s3) for
z = 0,1. Hence s3F3s5 and Py = Py,

Consequently, states s; and s; are equivalent.
(b) States s, and s; are equivalent.
(c) States s; and s, are equivalent; s3 and s4 are equivalent.

(a)

P4 : {S}! {329 37}: {53,& 34}1 {56}

i)

Py: {sssh {saerh, {sssd, (ss}

1,0

Pz:

{se}
/

B {81’82’83’34535,}1 {3}

10,1

Consequently, 1100 is a distinguishing sequence since w{s;,1100) = 0000 # 0001 =
w{sy, 1100},

(b) 100 (c) 00

{8} 8, and sy are equivalent; s4 and sy are equivalent.

(b) (i) 0000 Gi) 0 (i) 00

198 :
www.youseficlass.ir



v W
M:10 1 10 1
8y 8y & 10
Sg 8y 83 1 0
83 18 811 0
8 83 B4 6 0
&g 83 & 1 0

Supplementary Exercises

(a) False. Let A = {1,2},7 = {1,2}, R, = {{1,1)}, Rz = {(2,2)}. Then U;e;R; is reflexive
but neither Ry nor R; is reflexive. Conversely, however, if R; is reflexive for all (actually
at least one) 2 € I, then U;erR; is reflexive.

(b) True. Nig/R; reflexive &= (a,a) € Nig;Rforalla € A &= (a,a) e R;forallac A
and all ¢+ € I <> R, is reflexive for all 7 € [,

(i) (a) False. Let A= {1,2},R; = {(1,2)}, R = {(2,1)}. Then R; UR; is symmetric
although neither R; nor R, is symmetric.

Conversely, however, if each R;,1 € I, is symmetric and (z,¥) € UjerR;, then (z,y) € R;
for some ¢ € I. Since R; is symmetric, (y,z) € Ry, so (y,z) € U;erR; and U;grR; is
symumetric.

(b) H (z,y) € MRy, then (z,y) € Ry, for all ¢ € I. Since each R; is symmetric,
(y,z) € R;, forall ¢ € I, so {y,z) € MierR; and Nie/R; is symmetric.

The converse, however, is false. Let A = {1,2,3}, with Ry = {(1,2),(2,1),(1,3)} and R, =
{(1,2),(2,1),(3,2)}. Then neither Ry nor R, is symmetric, but Ry N Rz = {(1,2),(2,1)}
is symmetric,

(i) (a) Let 4 = {1,2,3} with Ry = {{1,2)} and R; = {{2,1)}. Then both R, R, are
transitive but B, U R, 18 not transitive.

Conversely, for 4 = {1,2,3} and Ry = {(1,3)}, Rz = {(1,2),(2,3)}, R U Ry =
{(1,2),(2,3),(1,3)} is transitive although R, is not transitive.

(b} K {(z,9)(y,2) € Nigs Ty, then (2,y),(y,2) € R; for all § € I. With each Ry,1 € I,
transitive, it follows that (z, 2} € Ry, so (2, 2} € MRy and Mg/ R, is transitive.
Conversely, however, {(1,2},(2,3}} = Ry and R; = {(1,2)] result in the transitive relation
Ry 1 Rg = {(1,2)} even though R, is not transitive.

{ii}) The results for part (ii) follow in a similar manner.

{a,¢) € RyoRy = for some b € 4,(a.b) € Ry, {(d,¢c) € R;. With R, R, synunetric,
{bya) € Ry, {c,b) € Ry, 50 (c,a) € RioRy € RyoRy. {e,0) € R0 Ry = {¢,d) €
Rq,(d,a) € Ry, for some d € A. Then (d,¢) € Ry, (a,d) € Ry by symmetry, and {(a,¢c) €
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4.

10.

Ry o Rq, 50 RyoRy € Ry0oRy and the result follows.

{(a) Reflexive, symmetric.

(b) Equivalence relation. Each equivalence class is of the form A, = {t € T'| the area of
t=r,r € R*}. Then T = U,er+ A..

(¢) Reflexive, antisymmetric. (d) Symmetric.

(e) Equivalence relation. [(1,1)] = {(1,1),(2,2),(3,3}, (4,4} };

[(1,2)] = {(1,2),(2,1),(2,3),(3,2),(3,4), (4, 3)};

i(iv 3)} = {(lsﬁ)a (39 1)7(25 4),{4, 2»? {(174)} = {(174)7(47 1)}
A=, DU, 2] U3V, 4]

{¢c,a) € (R0 Ry)° &= (a,¢) € Ri 0 Ry &> (a,b) € Ry, (b, ¢c) € Ry, for some b € B <>
{(e,b) € RS, (b,a) € RS, for some b € B <=3 (c,a) € R0 RS,

(a) If P is a partition of A then P < P, so R is reflexive. For partitions P,, P; of 4
if P, < Pj and P; < P, then P; = P; and R is antisymmetric. Finally, if P, P;, P, are
partitions of A and ;R P, PyR Py, then F; < Pj and P; < Py, so each cell of P; is contained
in a cell of Py, and & < . Hence K is transitive and is a partial order.

(b) b
N,
N,

Py

Py

Let i = {1,2,8,4,5}, 4 = PU) — {i4,0}. Under the inclusion relation 4 is a poset with
the five minimal elements {z},1 < 2z < 5, but no least element. Also, A has five maximal
elements — the five subsets of I/ of size 4 — but no greatest element.

(b) (L1} = {(LU} [(2,2)] = {(1,4),(2,2),(4,1)};
[(3,2)] = {(1,6),(2,3),(3,2),(6,1)}; [(4:3)] = {(2,6),(3,4),(4,3),(6,2)}.

n = 10

(a) Foreach f € F,|f(n)] £ l{f(n)l foralln 2 1, so fRf, and R is reflexive. Second,
if f,g € F, then fRg == (f € Olg)and g € O(f)) == (g € O{f) and § € O{g)) =
gRf, so R is symmetric. Finally, let f,g,% € F with fRg,9Rf, gRA, and ARg. Then
there exist my,me € R*Y, and ky, by € Z7 so that [f(n)] € mulg{n)] for all n > &,
and lg{n}] <€ malh(n}l for all n > k. Consequently, for all n > maz{k, b3} we have
H(n)] € mylg(n)| < mymylh{n)] so f € O(h). And in a similar manner & € O(f). So fRA
and R is transitive.

(b} Foreach f € F, f is dominated by itself, so [f]5]f] and § is reflexive. Secé)ﬁd, if

{g], [h] € F' with [¢|S[h] and [h]S]g], then gRA (as in part (a)), and [g] = [h]. Consequently,

§ is antisymmetric. Finally, if [f], ¢], [h] € 7' with [f]5]g] and {¢]S[h], then f is dominated
200
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by ¢ and g is dominated by k. So, as in part (a), f is dominated by h and [f]§]h], making
S transitive.

{(c) Let f, f1, f2 € Fwith f(n) = n, i{n) = n+3, and fr(n) = 2~n. Then (fi+ f1)(n} = 5,
and f; + fa € [f], because f is not dominated by fi + f5.

Adjafcency Infiex Adjacency | Index Adjaf:ency Infiex
List List List List List List
1 2 111 i 3 T 1 2 111
2 3 212 9 3 9l 9 2 3 212
(a)| 3 1 3131 (b 3 X - (¢) 13 1 313
4 4 418 4 5 4l 4 4 4 416
5 5 516 5 4 515 5 5 517
6 3 61 8 6l 6 6 1 618
7 3 7 4
201
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12.

130

i4.

(a) For each v € V,v = v so vRv. I vRw then there is a path from v to w. Since the
graph (3 is undirected, the path from » to w is also a path from w to v, so wRv and R is
symmetric. Finally, if vRw and wRz, then a subset of the edges in the paths from v to
w and w to x provide a path from v to z. Hence R is transitive and R is an equivalence
relation.

(b) The cells of the partition are the (connected) components of G.

(a) P {81,83,87}, {62, 84, 85, 85, 33}
Py {31,331 37}7 {823 85y 38}7 {54736}

Py {31}, {83,517}, {52, 95,88}, 154}, {36}

Py = Pj
14 W
M:j0 110 1
8y 83 3¢ 1 0
s3 |8 s3]0 O
8a &3 83 1 0
S 8 83 0 0
ss |34 810 0

(b)
Py {3}}9{5375?}9{829353 38}7{34}';{36}

///;@

e
Fﬁ . ‘%31, 83,&3}, {‘2‘; 555‘?’3}7{549 55}

0,0

8,0 0,0

» 845 35y Say 3&}

PI . {31?5393}& {

61 |00
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Hence w{sy,000) = 001 5 000 = w(ss, 000), so 000 is a distinguishing string for s, and se.

15. One possible orderis 10,3, 8,6, 7, 9, 1, 4, 5, 2, where program 10 is run first and program

2 last.
16. (a) (i)n=2: (i)n=4: (i) n=16:
4 8
2
I - 2 2 3
1 1 1
{iv}n=8: (vin=12: {vi) n=16:
. i6
8
12 8
4
1 4 6 A
$ 2 2 3 2
@ 1
1 3
{viii} n = 24 {ix) » = 32
32
24
16
8 12 8
4 6 4
2 3 2
1
1

{b) For2 £ n < 36, n can be written in one of the following nine forms: (i) p; (i) p%
() pg; () % (v) PPg (vi) P (vil) pPq;  (vili) pgr;  (ix) p°, where p,g,v denote
distinct primes. The Hasse diagrams for these representations are given by the structures
in part (a).

For n = 36 = 2° . 3%, we must introduce a new structure,

{c} The converse is false. 7{24} = 8 = (30} but the Hasse diagrams in (vii) and (viii} of
part {a} are not the same.

{d} This follows from the definitions of the ged and lem and the result of Example 4.45.

17, (b) [(03,0.7] = {(03,0.1)}  [05,0)]={(050}  [(0:4,1)] = {(041)}
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18.

19.

20.

21.

22.

23.

24.

[(0,0.6)] = {(0,0.6),(1,0.6)} [(1,0.2)] = {(0,0.2),(1,0.2)}
In general, if 0 < e < 1, then [(a, b)] = {(a, b)}; otherwise, [(0, ¥)] = {(0,8),(1,b)} = [(1,5)].
{¢) The lateral surface of a cylinder of height 1 and base radius 1/27.

(a) HCCU,then0 <|C] <3. For 0 <k <3 there are {2) subsets C of I where
IC] = k; each such subset € determines 2% subsets B C C. Hence the relation R contains

()20 + (2" + ()22 + (3)2° = (1 + 2)° = 8 = 27 ordered pairs.

(b) ForU = {1,2,3,4} the number of ordered pairs in R is (3) 20+ ('f) 2'+ (‘;) 224 (;) 2°+
(N2t = +2)* =3 =81

{¢) ForU = {1,2,3,...,n}, where n > 1, there are 3" ordered pairs in the relation R.

Sinece JU| = n, |P(U| = 2" and so there are (2")(2") = 4" ordered pairs of the form (A4, B)
where A, B C Y. From Exercise 18 (above) there are 3" order pairs of the form (A, B)
where A C B. [Note: If (4,B) € R, then so is (B, A).] Hence there are 3" 4 3~ — 2"
ordered pairs (A4, B) where either A C B or B C A, or both. We subtract 2* because we
have counted the 2* ordered pairs (A, B), where A = B, twice. Therefore the number of
ordered pairs in this relation is 4" — (2- 3" - 2"} = 4" — 2. 3" 4 2%,

(a) There are 2™ equivalence classes — one for each subset of B.

(b) 27°™
(a) (i) BRARC; (i) BRCRF

BRARCRF is a maximal chain. There are six such maximal chains.

(b) Here 11 R 385 is a maximal chain of length 2, while 2 R 6 R 12 is one of length 3.
The length of a longest chain for this poset is 3.
() @)0C{1}C{1,2} C{1,23) C¥;

()P C {2} C {23} C {123} C Ut
There are 4! = 24 such maximal chains.
(d) nl
If ¢y is not & minimal element of {4, R), then there is an element o € A with aRe¢;. But
then this contradicts the maximality of the chain (C, R')
The proof for ¢, maximal in {4, R) is similar,
Let a;RasR ... Ra,..;Ra, be a longest {maximal) chain in (4, R). Then a, is 2 maximal
element in (A4, R) and 0, Ra,R ... Ra,.; is a maximal chain in (B, R'}. Hence the length
of a longest chain in (B, R’} is at least n — 1. If there is a chain HyR&R’ ... R, in (B, R")

of length », then this is also a chain of length » in (4, R). But then b, must be a maximal
element of {4, R), and this contradicts b, € B.

(a) 42,3,5}; {56,7,11}; {2,3,5,7,11}
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25.

26.

270

(b) {{152}3{314}}5 {{1r273}7 {273;4}}5 4

(¢) Consider the set M of all maximal elements in (4, R). If this set is not an antichain
then there are two elements o, b € M where aRb or bRa. Assume, without loss of generality,
that aRb. If this is so, then a is nof a maximal element of (4, R). Hence (M, (M xM)NR)
is an antichain in (4, R).

The proof for the set of all minimal elements is similar.

If n=1, thenforall z,y€ A, if 25y then zRy and yRez. Hence (A, R) isan
antichain, and the result follows.

Now assume the result truefor n=k > 1, and let (A, R) be a poset where the length of
a longest chain is £+ 1. f M is the set of all maximal elements in (A, R), then M #§
and M is an antichain in {4, R). Also, by virtue of Exercise 23 above, (A — M, R},
for RI=((A~M)x(A—-M)NR,is aposet with &k the length of a longest chain. So
by the induction hypothesis 4 — M = C;UC U ... U, a partition into %k antichains.
Consequently, A=C;UC,U...UCy UM, a partition into &+ 1 antichaips.

(a) Sinee 96 = 2° - 3, there are -}(?) = 132 ways to totally order the partial order of 12
positive integer divisors of 96.

(b} Here we have 96 > 32 and must now totally order the partial order of 10 positive
integer divisors of 48. This can be done in %(153) = 42 ways.

(c) Aside from 1 and 3 there are ten other positive integer divisors of 96. The Hasse
diagram for the partial order of these ten integers — namely, 2,4,6,8,12,16,24,32,48,96 — is
structurally the same as the Hasse diagram for the partial order of positive integer divisors
of 48. So as in part (b) the answer is 42 ways.

(d) Here there are 14 such total orders.

{a) There are n edges — namely, (0,1),(1,2),(2,3),...,(n - 1,n}.

(b) The number of partitions, as described here, equals the number of compositions of n.
So the answer is 271,

(c) The number of such partitions is 231 . 25-1 = 64, for there are 2°~! compositions of 3
and 2°~ compositions of 5(= 12 ~ 7).
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CHAPTER 8
THE PRINCIPLE OF INCLUSION AND EXCLUSION

Section 8.1

Let z € § and let n be the number of conditions (from among ¢, ¢3, ¢35, ¢4) satisfied by a:
(n = 0): Here z is counted once in N(&€3%4) and once in N(5;%3Cs)-

(n = 1): If z satisfles ¢; (and not ¢;,¢3, ¢4), then z is counted once in N(;¢3¢4) and once
in ]\7{0162'6354).

If z satisfies ¢;, for 1 # 1, then z is not counted in any of the three terms in the equation.
(n = 2,3,4): If = satisfies at least two of the four conditions, then z is not counted in any
of the three terms in the equation.

The preceding observations show that the two sides of the given equation count the same
elements from §, and this provides a combinatorial proof for the formula N(€;%:8,) =
N(C;Egzgz,g) -+ N(616253.54).

Proof (By the Principle of Mathematical Induction):

If ¢t = 1, then we have N = N(€;) = the number of elements in S that do not satisfy
condition ¢; = N — N{cy). This is the basis step for the proof.

Now assume the result true for k& conditions, where k (> 1} is fixed but arbitrary, and for
any finite set §. That is, N(2:866...%) = N — [N{e1) + N(ez)} + N(ea) + -+ + N{cp)] +
[N(cica)+N{crea)+- -+ N{eser )+ N{cses )+ -+ Negep )+ - -+ N{eacp )+ - -+ N{cryer)}—
IN(ereges) + -+ + NleroaCaror)) + -+ (~1)*N{eiepes. .. ).

Now consider the case for ¢ = k + 1 conditions. From the induction hypothesis we have
N(&%; ... Ghcwpr) = N{eppr) ~ [N{crcosr) + N{cacrsn ) + N{escpp1) + -+ + N(cperar)]
+N(eresehsn) + N{creatupa) + - -+ N{ercsepin ) + N{eaescpaa) + - + N{caciCisn)

b b N{eacsCagr) + oo 4 N{ceacrepa J} — [V{ereaeacpps ) + o0+

N{cipCh-1€hpr )] + -+ (~1VN{e1cpes . . . cxCipr ).

Subtracting this last equation from the one given in the induction hypothesis we find that
N{ggﬁﬁag s Ek%&@g) e mwéégﬁgzg o E}J b N(Eg:ég:ég “ve E@@gg@g‘}

@ ﬁr’ e gﬁwy{ﬂ’g} e ,N'{Cg} S = J’%‘?(Cg}é g gN(ﬂgﬁfg} o ﬁ{-{)g(}a} g v e b hrgé’igéﬁk} S ﬁ%%ﬂ?gﬂg}
dorod N{cgep) 4o+ N{cser)+ -+ N{cpmrex)] — [N{erc3e3) +- - -+ N{epoacrsea)] +- -+
(=1 N{ereses . . . cx)—N{egpr )+ N (er6ep1 )+ N{€atrsn ) + -+ N{czepi )]~ [N {ereserpn )+
N{creackan) + - + N{cgrcrcppn)] + - + (1) N(erezes. . cocrpr) =

209
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N = [N(e) + N(ea) +--+ N(e) + N(ewa ) + [V {erea) + -+ Ncaes) + N(ereu) 4o+
N(ew-16r41) + N{ewcrpa)] ~ [N(crcaes) + - + N(cpoaChrcr) + -+ N{chosereip )]+ +
(—~1)F* I N(cicocs - .. cxCiagr )

So the Principle of Inclusion and Exclusion is true for any given finite set § and any number
t (> 1) of conditions — by the Principle of Mathematical Induction.

N = 100

N{es) = 35; N{cp) = 30; N(ez) = 30; N(cq) =41

N{ereg) = 9; N{ciez) = 115 N{creq) = 185 N{caes) = 10; N{caey) = 14; N{esey) = 10.
N{cyeges) = 8; N{ercaeq) = 8; N{cyescq) = 6; N{caezeq) =6

N(616263C4) = 4

(&) N(Elb’gm&;) = N(E]Ezag) b N(E}EQZ;;E,;}

N(51€2§4) = N — [AT(C}} + N(Cg) + N{C.@)]

+iN(61(32) -+ N(C]C4) -+ N(6264)1 - ﬁr(616204) = 100 — §35 + 30 -+ 4}.} “f- {9 -+ 13 4 14] - 6
= 100 — 106 + 36 ~ 6 = 24

N{(%1€,€384) = 12 (as shown in Example 8.3)
So N(E;Egc;;ag) =24 ~ 12 =12

Alternately,

N(E18:8) = N — [N(c1) + N{ea) + N{ca)] + [N{c1c2) + N(crca) + N{caes)] — N{ciez¢4), s0
N(E;Ezc;gag) e N(Cg) - {N(Clﬂa) -+ N(CgCg) -4 N(C3C4)] -+ [N(C;CQC;;) + N(C}Cgc,;) -+ N(C2C3C4)}
~N{eicoeacy) =30~ {11+ 104+ 10} + [54+6+6] -4 =30-31+ 17 -4 = 12.

(b) N(&@&) = N — [N(er) + N(cs)] + N{creq), so N(Breaesls) = N(eyes) — [N(ereaes) +
N{ecgeses)] + N{ereaeses) = 10 — [5 4 6] + 4 = 3.

cy: Staff member brings hot dogs

¢z Staff member brings fried chicken

ex: Staff member brings salads

cq: Staff member brings desserts

N = 66

N{ey) = 21; N{eg) = 35; N{cz) = 28; N(cq) =32

N{cieg) = 13; N{eyes) = 10; N{cies) = §; N{eacs) = 12; N{caeq) = 17; N{cges) = 14
N{cyeaea) = 4; N{cyepes) = 6; N{ereaeq) = 5; N{cgeaeq) =7

N{Cg!ﬁgﬂgﬂ@} = 2.

() N(38;658,) = 65— [21+35-+ 28+ 32} -+ {13+ 10494+ 12+17 4 14] - [4 464+ 54+ T+ 2=
65 ~1164+ 75~ 22+2=4.

(b}‘ N{Egﬁ;;&g} = N - gN((’ﬁg) o ..N{C;a) o N(&;}} 4 {N(Cg(ﬁg} +N((ﬁ~;¢€4} & ﬁ‘?(cgifié}i e N{6283C4}, 8O
N{eyBy83Ts) = Nlcy ) — [N{eyeo) + Nlcieg)+ N{eyeg)] 4 [N{cicaea) + N{cyepey) + Nieyese, )| —
N{ciegeses) =21~ {13+ 104+ 9] +[44+6+45]-2=21~324+16~2=2,

{C} N(EgCg53€4} = ﬁ‘?(ﬁg} i EN{c;sg} E N{Cg(ﬁg) + 3’37{63!34}} . {.N'(Cfgﬂgc:i} - f\"’{{:}.ﬂzﬁg} -
Nlcgeses)] — N{ereaeaes) = 35— {134+ 12417+ 4464+ 7]~ 2=35-424+17T-2=8
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N{(&18ye2%4) = N{es)—[N{cres) +N(exes)+ N{cses)] + [N {cregea) + N{cyeses) + N{egeaeq ) —
N{ciegcacy) = 28 —~ (104 12+ 14]+ 4+ 54 7] —2=28—-36+16-2=6.

AT(61526364} = N{Cg) - EN(C;C;;) + N(Czc.g} +N{C;§C4)1§ -+ {N{ciczcé} +JV(6163C4) +N(Cz€364 )] -
N{cicocses) =32~ [94 174+ 14] + [6+54T]~2=32~40+18~-2=8.

So the answer is 2+ 8+ 6 + 8 = 24.

(a) ¢: npumber n is divisible by 2
cg: number n is divisible by 3
¢5: number n is divisible by 5
N{ey) = |2000/2] = 1000, N{c;) = |2000/3] = 666,
N(es) = |2000/3] = 400, N{cicz) = [2000/(2)(3}] = 333,
N{cges) = |2000/(3)(5)} = 133, N({cica) = [2000/(2)(5)] = 200,
N{ejeaes) = [2000/(2)(3)(5)] = 66.
N(&&,8;) = 2000 — (1000 + 666 + 400) + (333 + 200 + 133) — 66 = 534
(b) Let ¢1,¢3,¢3 be asin part (a). Let ¢4 denote the number n is divisible by 7. Then
N{ecs) = 285, N(crca) = 142, N{eoeq) = 95, N{czeq) = 57, N{ciezeq) = 47, N{cicaeq) =
28, N(CQC"}C,;) = 19, N(61826364) = 8, N(Elagagé.;) = 2000 — (1080 -+ 666 + 400 -+ 285) +
(333 + 200 + 133 + 142+ 95 + 57) — (66 + 47+ 28 4+ 19) + 9 = 458
{c) 534458 =T6.

Ty + xg + 23+ x4 = 18,

(a) 0<a,1<i<4 (87 = (%)

(b) For 1<i<4 let ¢;12; 2 8.

N(¢j): ey + a2 +wa+ze=11: (“’ﬁ"l) = (ff), 1<i<4
N{cie;): z1+ 22+ za+oa=3: (4+§~1) = (g), 1<i<j<4
N(@@ee) =N -5+ S = () —4(j1) +6(})

(¢) The number of solutions for #; + z;+ 23+ 24 = 19 where 0 < 2; €85, 0 <23 <
8, 3<2; <7, 3< x4 <8 equals the number of solutions for z; + 2, + 23+ 24 = 13 with
0<2, <5 0<2,<6, 0< 23 <4, 0< 24 <5, Define the conditions ¢;, 1 <1 <4, as
follows: ¢y: T3 2 6; a1 22> T 3 23> 55 cu: o4 26,

W= () = (9)
N(es)h Nied): sp+zptas+za=T7: (") =(¥)
Ne): st at s =0: (1) = ()
N{ca): e1+ @+ zs+zg=8: ("5 = (1
N(ere) = 1

3
83

N{Q;iﬁg} S By b Zo b 2y TR 2. {é+;m1} == {2}
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7.

8'

10.

Nicieq): zy+zgtas+ay=1: {4+§~1> = {ﬁ
,-N{CgCg, = {i}, N(@z&%} =1, N{CSC‘J = (g>
Wsemed = () - (5) + () + (D+20+ () + Q)

Let ¢, denote the condition where an arrangement of these 11 letters contains two occur-
rences of the consecutive pair IN. Define similar conditions c¢g, ¢3, ¢4, ¢5, and cg, for the
consecutive pairs NI, I0, OI, NO, and ON, respectively. Then

N = 8y = 111/{2)%

N(ex) = 01/(2)%, $1 = (§)191/(2)7;

N{eiea) = N{eie3) = N{eses) = N(caes) = N{eaes) = N{caes) = N{caes) = N{cges) =
Neses) = 0, N(cyeq) = 71/2!, and 83 = (6)[7!/2!]; and

532547-‘”55525350.

Consequently, the number of arrangements under the given restrictions is N(¢;€,83C4C5¢) =
8o — Sy + Sy = [111/(2Y)°] - (‘f) [91/(2h? + (8){7!/2!] = 4,989,600 — 544,320 + 15,120 =
4, 460, 400.

The number of integer solutions for @y 4+ a2+ 23+ 24 =19, -5 <2, €10, 1 £¢ £ 4,
equals the number of integer solutions for y + 2+ ya + 91 =39, 0 <y <15,
For 1<i<4,let ¢;: y; > 16.

N(e), 1Si<4: y+mtuys+ya=23: (V57 = (%)
N{ciey), 1€i<j<4: ptmtmtuu=7: (") =(¥)
Naeesa) = (5) - () @) + G) (7)
Let z be written (in base 10) as 2;73...2;. Then the answer to the problem is the

number of nonnegative integer solutions to zy + 22+ ...+ 2y =31, 0 < 2; <9 for

1<i<T

H 1<j5 <7 ket ¢; denote the condition that z,2;,...,27 is an integer solution of

Tyt Tt +rr=3,0<2, 1< <7, but z; >9 (or z; > 10).

N{e;) is the number of integer solutions for g + 2+ 23+ ...+ 27 =21, 0 <y, 0< =
. v f 7

for 2<i<7. Here N{ey) = gz) and Sy = {Z) {§z>°

N{eyey) is the number of integer solutions for y+yp+as+.. 4er =11, 0 <y, 40, 0 < 2

for 3<: <7 Onefinds Ny = {é;} and 5 = {?} {“)u

FTARE!
In a similar way we oblain 53 = ( ;} {;} and Sqm= S = S5 = 8 =0. Sinee N = 8; =

(5), we bave Neta..en) = (3) - () + () - Q)
Here we are working with uniis of 5 credits. So we are seeking the number of credit

assignments where each question receives at least 2, but not more than 5, units (of §
credits). Hence the answer is the number of {nonnegative) integer solutions to 2y + 2 +

212
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1L

12.

13.

i4.

i5.

i86.
i7.

23 4 ...+ 212 = 16 (units of 5 credits) where 0 € z; < 3 forall 1 £ ¢ < 12. We find
the answer to be (1%3‘;54) " {z}a) (12«1-13.224) + (122) (12@5-—1) - (132) (124—4@4) + (142) (12«-;)—-1} -
12 {19 12} (15 12\ {11

@;) - (112) (ﬁ) + (22} (ls) - (32) (4) + (4)(0)

For each distribution of the 15 plants there are 18! arrangements. Consequently, in order
{0 answer this question we need to know the number of positive integer solutions for

Ty + Zg+ Tz + T4+ x5 = 15, where 1 < z; K4 forall1 < <6

This is equal to the number of nonnegative integer solutions for

yi+ys+yatys+ys =10, where 0 <y < 3foralll €4 <5 [Here yy+ 1 = & for all
1<4<5]

For 1 € i < 5 let ¢; denote the condition that ¥ + y2 + ys + yg + ys = 10 where y; 2 4
{ory; >3)and y; 2 0for 1 £ j <5 andj#i. Then N(c) is the number of nonnegative

integer solutions for

2+ 22+ 23+ 25+ 25 = 6. [Here 2y +4 = 3, and z; = y; for all 2 < ¢ < 5.] This is
(4653 2 i), w05, = () (1.

Fi1<i<j <5, N (eie;) is the number of nonnegative integer solutions for
wy+wy+wyt+ws+ws =2, [Here w; +4 =y, w;+4 =y; and wp =y for all 1 < k <5,
k#i,5.]

This is (5“";'1) = (g) and so S; = (2) (2)

Similar calculations show us that S3 = S, = S5 = 0, and so N{€:€,€3¢4Cs) = So— S1+ 52 =
5410-1 10 5\ (6) _ (14 16 5\ (6

é ) - (ll)(e) +(3) 6 =Gs) - (1)(6) +(3) (2)

onsequently, Flo can arrange these 25 plants, according to the restrictions given, in
5\ {10
si((is) — () (5) + (3) ()1 wavs.
The answer is the number of integer solutions for 3+ 20+t as+24=9,0<2;, €3, 1 <
i <4, For 1<i<4 let ¢; denote that z,,z,,23,24 is a solution with z; > 4. Then

Naeme) = (3) - (1) @) + () €)
Let ¢; denote that the arrangement contains the pattern spin. Likewise, let ¢3,¢3, ¢4

denote this for the patterns game, path, and net, respectively. N{,8,8;8,) = 26!—[3(23)+
241 — (20! 4+ 214

Let a,b,ec,d, e, f denote the six villages. For 1 <4¢ <6, let ¢ be the condition that a
system of two-way roads isolates village @, b,¢,d, e, f, respectively.

Ne) =2, 8 = ($)2'% N{cien) = 2%, Sy = )26 N(creses) = 2°, 55 = (§) 2
N{ejegeneq) = 21, 8y = {g}w 3 Nicyegegeses) = 29, S = {ﬁ}%ﬁ Gg = 1.

N(8,8,8584858) = 2% — {J?w o {g?ﬁ {3} 24 (Q (a} 24 {Q{i}.
o0 = (3)5* + ()4 - (9)3° + ()2 - (/e
10° - (3)(8%) + (3)(8%) ~ ) (7).

Let ey @ the three z's are together; ¢;: the three y’s are together; and c3: the three
#’s are together.
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18.

19.

N =9/[(81"]  Ner) = N(es) = N(ea) = !/[(31)?]
N(Cgﬁj) == (5%/(3‘), 1 §§ i < j S 3 N(61C933} = 3!
N(&1628s) = 91/[(31)%] — 3[71/1(31)2)] + 3(5¢/3!) — 3!

Here we need the number of integer solutions for
Ty + 23+ 23+ e —7"-58..

where 1 <z; <20 fori=1,2,3,4.

——

This is the same as the number of integer solutions for
Yty +ys +ys = 46, (*)
where 0 <y; <19 for:=1,2,3,4.

Let 5 be the set of integer solutions for equation (*) where 0 < y; for 1 < ¢ < 4. Then
N=S=|8= (4+:2“1) = (:2). So define conditions ¢, ¢3, ¢3, ¢4 on the elements of § as
follows:
G- (ylmy%y&y&) € S but Y > 19 (2 20}7 L= 1:25394' Then
Ne)= ("% =) 1sis4
N(cie))= (") = (), 1<i<i<4
Necicjer) = 0,1 <1 <j <k £4; and N(ejcoezes) = 0. Consequently,
N(@#Est) = So— Si+ 52— Ss+ S = (1) - (D (&) + (1) )
= 18424 — (4)(3654) + (6)(84) = 4312.
So the probability the selection includes at least one boy from each of the four troops is
4312/ (%) = 4312/18424 = 0.234.

Here we need to know the number of integer solutions for
T3t Ty L+ T+ 25 320,

where 1 <p; <6for 1 <¢ <35
This is equal to the number of integer solutions for

1+ Yyt ys+ys +ys = 15,

with 0 <y, <Bforl<¢<5.
1 €¢ <35 then let ¢; denote the condition that yy, ys, ¥z, ¥4, ¥s is a solution for yy + ya +
Ys+ys+ys = 15, where 0 < y; for 1 < j <5 and j 5 4, but y; > 6. Then the number of
integer solutions for

Y1+ Y2+ Y3+ ya s = 15,

N: Here N counts the number of nonnegative integer solutions for ¥, +yo +ya4+ys+ys = 15.
This number is 5*;:”’1) = Gg) [Hence Sy = G?)}
N{ey): To determine N{e;) we need to find the nurnber of nonnegative integer solutions
for

b 2gbzg oz by =8,
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20.

21.

22.

23.
24.

25.

26.

27.

28.

where z; = y; fori # 1, and y; = 2,+6. Consequently, N(¢;) = (54»34) = (]éf )v and S =

@ ():

N{ciez): Now we need to count the number of nonnegative integer solutions for
Wy + Wo + wa b Wy + wy = 3,

where w; = y;, for ¢ = 3,4, 5; 1 = w; + 6, and y; = wy + 6. This number is (5+§—-1) = G),
and, as & result, we have §; = {z) {;")

Since Sy = Sy = S5 = 0, it follows that N(&:%@ses) = So— S1 + Sz = (15) — () (%) +
() (3) = 3876 — (5)(715) + (10)(35) = 3876 — 3575 + 350 = 651.

The sample space here is § = {{y,2q, 23,24, 25)]1 < 2; €6, for 1 < i < 5}. And since
IS] = 6% = 7776, it follows that the probability that the sum of Zachary’s five rolls is 20
equals 651/7776 == 0.08372.

For 1 <:¢<7,let ¢; denote the situation where the :-th friend was at lunch with Sharon.

Then N(&:&,...a) = 84~ (])(35)+ (1)(16)- ()&)+ (@) - @+ (1) - ) =0.

Consequently, Sharon always had company at lunch.
(a) 32 (b) 96 (c) 3200

(2) 5186 = (2)(2593), and $(5186) = (5186)(1/2)(2592/2593) = 2592.

(b) 5187 = (3)(7)(13)(19), so $(5187) = (5187)(2/3)(6/7)(12/13)(18/19) =
(2)(6)(12)(18) = 2592.

(c) 5188 = (22)(1297), and $(5188) = (5188)(1/2)(1296/1297) = 2592.
Hence ¢(5186) = ¢(5187) = $(5188).

(a) 2»77 (b) 2¢(p~1)
#(n) odd = n =2

(a) A(6000) = $(2* - 3-5%) = 6000(1 — (1/2))(1 — (1/3))(1 — (1/5)) = 1600.
(b) 6000 - 1600 — 1 (for 6000) = 4399.

. ‘ 1 X . .
Proof: ¢(n™) = (n") [[ (1~ };} But for every prime p it follows from Lemma 4.3 that if
pln™

pjn™ then pln. Therefore,

Lr WS T 1, IS RV ¢ 1 Bl f,
pin™y=(n") [~ ;5 = (" el - 533 = 0™ h{n).
pin

pla™

$(17) = $(32) = ${48) = 18.

For ¢{n) to be a power of 2 we must have one of the following:
(1) n=2F for k 2> 1;
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29.

i.

2.

(2) n = pyp;---ps, where t > 1 and each prime p; has the form 2% +1,for 1 <i < t;0r
(3) n = 2%ppy-+-py, where £ 2 1, ¢ > 1, and each prime p; has the form 2% + 1, for
1< <t

If 4 divides ¢{n) then one of the following must hold:

(1) n is divisible by 8;

{2} n is divisible by two (or more ) distinct odd primes;

{(8) n is divisible by an odd prime p (such as §, 13, and 17) where 4 divides p - 1; and
{(4) n is divisible by 4 (and not 8) and at least one odd prime.

For 1 < ¢ € b let condition ¢; denote the situation where the seating arrangement has

Here Sy is the number of ways one can arrange 15 distinct objects around a circular table.
This is (15 — 1) = 14!

N{e;) = 6(13 — 1) = 6(12!), for there are (13 — 1}! = 12! ways to arrange 13 distinct
objects [family 1 (considered as one object) and the other 12 people] and 6 ways to seat
the three members of family 1 so that they are side by side. Consequently, §; = (i’) 6(12!).
Similar reasoning leads us to
N(eie:) = 62(10)  S; = (3)6%(101) N(crees) = 6*(8)) S5 = (3)6%(8!)
Nciczeses) = 64(6!) Sy = (5)64(6) N(cicaescacs) = 6%(41) S5 = (7)6%(4).

Therefore, N(21%:T5ETs) = So— Si+ 52— Ss + Sa— 85 = Tho(—1)(})61(14 — 20)! =
87,178, 291,200~ 14, 370, 048,000+ 1, 306, 368, 000 — 87,091, 200 + 4, 665, 600 — 186,624 =
74,031,998, 976.

Section 8.2

5
3 E;=1024=N.

G

{a) Let ¢ denote the condition that the two A’s are together in an arrangement of
ARRANGEMENT. Conditions c¢g,63,¢4 ave defined similarly for the two E's, N's, and
R’s, respectively.

N = (11)/{(21)] = 2494800

For 1<i <4, N(c) = (100)/[(2)] = 453600.

For 1<1i<j <4, Nge;) = (OH/[(21)%] = 90720,

Nciesep) = (81)/(21) = 20160, 1 <1< j <k <4

ﬁif{ﬁ}ﬁgﬂg(}‘i) = ?f = 5040

Sy = (£)(453600) = 1814400 Sy = (3)(90720) = 544320

www.youseéficlass.ir



S5 = (3)(20160) = 80640 Su = (})(5040) = 5040

() Er= S~ (3)8s+ (1) S = 544320 — (3)(80640) + (6)(5040) = 332640
(i) Lz =S5~ (2)8s+ (3) S = 398160

(b) (i) Bs= 85— (¥)Ss=60480 (i) Ls= S5~ (3)Ss = 65520

Let ¢; denote the presence of consecutive E’s in the arrangement. Likewise, ¢y, ¢3,¢4,
and ¢ are defined for consecutive N’s, O’s, R’'s, and S's, respectively.

(a) N = (140)/(21f°

N(e;) = (131)/(20% 51 = (5)I(131/(2H*]

N(eie)) = (120)/(20% 5 = (5)[(12)/(2)%]

N{eiees) = (11D)/(20)% S5 = (§)1(110/(2)7]

N{cicacaeq) = 101/2Y  Si = (5)(20/2))

N(01626364C5) = 9 = 55

N(&,&,E8485) = 1,286,046, 720

(b) Er=8-3 )Sg +( )S,, ~ ()85 = 350,179,200

(¢) Las= 8~ (3)Sa+ (3)Ss = 74,753,280

For 1 <i<7 let ¢ denote the condition that 7 is not in the range of f. Then the
number of functions f: A — B where |f(A)l=4 is E3= 53— ( )54-{» ( )5’5 ( )Ss+

()= @)= () 3+ () ()2 - () o+ (I (7)o = 28648200.

Note: Uﬂing Stirling numbers of the second kind the result is (D 415(10,4) = 28648200.
Lo =55~ (3)Se+ (3)Ss = () Se+ ()5 = (4 - (D ()3 + Q) ()2 - () ()1

Here 4 = {1,2,3,...,10}, B = {1,2,3,4}. Using the ideas in the first part (of Exercise
4) for |f(A)] =2 we find that E, = 6132. For |f(A)] £ 2 we find that L, = 6136.

For 1 <i<10 let ¢; denote a replacement where card ¢ is placed in its correct place.

N{Ciﬁzﬂa%) = Bl 54 = (1;) (6!)

In like manner, §; = {w}{@?} for 5 < <10

Ey= 5~ {1}5& + (;}5& - {?}S’z 4 &}&1 (5)59 + @G)Sw»
Lam5u- (95 + (50— 50+ (50— 5+ (5

For 1<i<4,let ¢ denote a voidin (i = 1) clubs, (i = 2) diamonds, (i = 3) hearts, and
(¢ = 4) spades.

"V{cﬁ}m{ } 1<a<’4 ﬁ(égg}méq) 1<y <4 ﬁ:{cgcjck}még} 1€e<j<ks
4: N(C}Cg(,aag)

N(eieas) = {i’i} - ()6 + B - O
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The probability that the 13 cards include at least one card from each suit is N{€,8,8364)/ (i;‘;) .
(b) E,=85~ (?) Sq + (‘;’}53 - (g) Ss = (‘f} ?ﬁ) - 2(3) (fi) e 3(;} Gg) ~ . The probability

of exactly one void is E,;/ @; .

(¢) Ep= S~ (f} Sa = (4) (%) - 3(;) Gg) . The probability of exactly two voids is E,/ (iz)

2/ \13
(b) Eix= 51 —~18; Liy = L+ By
(¢) Limi=Li+ B 1=8+85,1-1t85=81--1)5 = 5.~ (i:;)Sﬁ
(d) Ly = Lm-ﬁwl + B
(8) Lt = St
Loy = S4eq ~ (::;) S,
Assume Lk+l e Sk.g_; - (kil)gk.*.z ~+ (kzZ} Sk+3 T & ("_l)t-—k—'I (i‘;l) Sg
Ly = Lypy + By = [Sep1 — (k}:l)sm + (ktz) Sk4z — ...+
(=0 (ST + 18 = (*37) Sewn + (*37) Skvz — o+ (1R (1) S)
For 1< r <t—k, the coefficient of Sy, is (—1)1 (k+;—-1) +(=1) (kj”) = (—1)"H(k +
r DR — D] = (R + )/ (ElrD)] = (1) Hr(k+r+ I — (B 4+ )]/ (Rrl) = (1) Yk +
r— DI(=k)}/(krt) = (~1) (*771).
Consequently, Ly = S — (.5 ) Sk + ({1]) Surz — ...+ (-1*(}73) 50

Section 8.3

For 1 <i<35 let ¢; be the condition that 2i is in position 2.
N=10l N{g)=9, 1<i<5; Nge;) =8, 1 << j<55... ; Nleyeaogeaes) = 5l
N(@resestacs) = 100 - (591 + (§)81 - (§) 7t + (56! - ()8!

{a} There are only two derangements with this property: 23154 and 31254.
(b} Here there are four such derangements:
() 231546 (i) 231645 (i) 312546 (iv) 312645

The mumber of derangements for 1,2,3,4,5 is BI[1 — 1+ (1/21) — (1/30) + (31 /4!) — (1/8D)] =
Si(1/20 — (1730 + (1/4D) — (1/8D)] = (8){4)3) ~ (B} (4) + 8~ 1 =60~ 204 5 — 1 = 44.

There are 7! = 5040 permutations of 1,2,3,4,5,6,7. Among these there are

THI — 14 (172D — (1/3Y) + (1/41) — (1/8Y) + (1/6Y) — (1/71)] = 1854 derangements. Con-
sequently, we have 5040 — 1854 = 3186 permutations of 1,2,3.4,5,6,7 that are not derange-
ments.

5. {(a) Tl—dy (dr = (et (b) dao = (260)e

3 .
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8.

10‘

11.

12.

13.

Eé$

() There are {d;)? = 9% = 81 such derangements.
(b) In this case we get (4!)® = 24 = 576 derangements.

Let n = 5 4+ m. Then 11,660 = ds - d,, = 44(d,.), and so d,, = 265 = dg. Consequently,
n=11.

(a) (4)d, = (4)?e? (b) and (c) (2)(32)(6)/](4!)%e~]
(100 do = (1012 (™)

(@) @) dufn! (i) n(dp-1)/n! (iii) 1- (du/n!) (i) () da-s)/n!
(b} () et (ii) e? (i) 1—e™? (iv) (1/rhe™?
(a) (diw)?

(b) For 1< <10 let ¢ denote that woman ¢ gets back both of her possessions.
N = (1007 N(¢) = (9%, 1 <3 < 10; N(ee;) =(81)%, 1 < i < j <10; ete.

N(&& ... &) = (1007 — ()07 + (V) (8)2 — ... + (=1)°(7) (o).

(a) (120)dys (b) (121)(%F)de

For each n € Z*, n! counts the total number of permutations of 1,2,3,...,n. Each
such permutation will have k elements that are deranged (that is, there are k elements
T1,%3,...,25 10 {1,2,3,...,n} where z, is not in position z,, z; is notf in position z,,...,
and xz, is not in position z;) and n — k elements are fixed (that is, the n — k elements
Y1y Y2y e e -2 Yn—k i {1,2,3,...,n} — {21, 22,..., 2} arve such that y is in position yi, ¥ is
in position ¥, ..., and y,.; is in position ¥, x).

The n — k fixed elements can be chosen in Tfk) ways and the remaining & elements
can then be permuted (that is, deranged) in d; ways. Hence there are (T:‘_ k) dy = (Z)dk
permutations of 1,2,3,...,n with n — k fixed elements (and k deranged elements). As k
varies from 0 to n we count all of the n! permutations of 1,2,3,...,n according to the
number k of deranged elements.

Consequently,

n ) n " e in
nt = (gjd@»&- é};}ﬂ% + (2}524»...4- {ﬂ}éﬁn = ;%{J&k,

(a) For 1<i<n~1lei ¢ denote the occurrence of the pattern (i +1) in the linear
arrangernent

Ne)=(mn-1), 1<i<n~—1
N{ge)=h-2)! 1<i<j<n~1
N{cggjc&}m(nwii)?, I<i<j<ksn~1,...,
Nicieg...epuq)={(n—{n -1}

21P :
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15.

16.

6.

N(&E. . Gua) =nl= (") = 1)1+ () =2 = ("5 ) (n =)+ ..+
() =B (1) T (R = (= 1)

(b) dy+dpey = [l = (Tn =11+ () =D~ + (1) (D) (n ~ n)l]+
=1 = ("7 =2+ () =B =+ O () (- D = (e - 1)
The coefficient of (n — k)l in dy +daq s (1) + (=11 (301) =

(=14 {[(n= 1)}/ (k=) =k )T}~ [t/ (B~ R)) = (=1 {[k(n— 1)t =l /LBl — )]} =
(=1 (n = DHCk = n)/ (R — )T} = (=140 — DYkl = & = 1)1 = (~1P(737).

B~ = =2+ G (=8~ .+~ (2 )00 + (1) (2)
(a) (11,088)/(101) = 0.003 (b) (13,264)/(10!) = 0.004

Sections 8.4 and 8.5

These results follow by counting the possible locations for the desired numbers of rooks on
each chessboard.

Counsider a chessboard made up of 10 squares arranged in a diagonal so that in each row
and column there is only one square,

@ (@) +(se+ )61+ ()E-7-00 + ()E-7-6-5)at +... + ((8Da* =
3 (?)P(Sai)ﬂ?i- {b) Tio (”)P(n i)t

r(Cr,z) = 1 + 4z + 32 = r(Cy, 2)

(a) (1) (14 2e) (i) 14 8z + 142? + 423

(i) 1+ 92 + 257+ 212° (iv) 148z + 162% + T2°
(b} If the board C consists of n steps, and each step has % blocks, then r(C,2z) =
(14 kay".

(a} Select the k row positions in ("’;’2 ways. As we go from row 1 torow 20 ... torow
m, for the first row countaining a rook there are n column choices. For the second such
row there are n — 1 column choices, ..., and for the row containing the k-th rook there
are n— k41 column choices. Hence we can arrange the & identical nontaking rooks on

C in (‘“}(n)(ﬂ -1}e{n—k41)= {?c*}( :}( } wWays.

(b) r(C,2) = 14+ (mnjz + (’;*}(n}(n - 1)z? + {m){w}(n ~1)n~ 22>+ + (f;}(n}(n -

Mr—2)(n—m+1)™ = ’;} + (*;‘}m: + (’;‘)(%}{n - 1}a® -+ (’g){n}(n ~1¥r - 2)z® +
+ (D)) r = Dn =2 (p=m+ 1™ = T (T)()p = 1)(n = 2) -+ (n—i+ sl =

w2 (e
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(1) Jeanne
(2) Charles
(3) Todd
(4) Pau B
(8) Bandra | S

r(C,z) = (1 + 4z + 327)(1 + 4z + 22%) = 1 + 8z + 212* + 202° + 62*
For 1 <i<5 let ¢; be the condition that an assignment is made with person (i) assigned
to a language he or she wishes to avoid.

8. The factor (6!) is needed because we are counting ordered sequences.
9. (a) 20 (b} 3/10

10, 1 8 2 4 6 3

r(Cz)=(1+42+22%) - (1+3z+2%) - (1+2)=
1+ 8z + 222% + 252> + 122* + 22°.

For 1 <i<86,let ¢; denote the condition where,
having rolled the dice six times, all six values ocecur
, on both the red die and green die, but ¢ on the red
6 ' ‘ die is paired with one of the forbidden numbers on
the green die.

N{B,8y ... 8) = [6] — B(Bl} 4 22(41) — 25(3!) + 12(2!) — 2(1!) + 0(0Y)] = 160.

The probability that every value came up on both the red die and the green die is
(61)(160)/{(28)¢] = 0.00024.

F-

My My Mg M, Wy s
Wy ‘
r{C,z) = {1452+ 42 )1 + 42 +32%) = 149z +
W 20z* + 312° + 122°,
3 Faor 1 <1 <4, let ¢ denote the condition where
wg each of the four women has been matched with one
of the six men but woman i is paired with an incom-
g , ® yputible partner. Then

N{éyabaty) = (6-5-4-3) ~ 9(6-4-3) + 27(4- 3) — 31(3) + 12 = 63,
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12.

1.

Consider the chessboard € of shaded squares.

(%54

Here r(C,z) = 1 + 8z -+ 20a? + 172° 4 42*. For any one-to-one function f : A — B, let
¢1, €3, Ca, ¢4 denote the conditions:

&: f(l)=vorw ca: f(8) ==

¢: f(2)=uvorw cs: f(4)=wv,z,0ry
The answer to this problem is N{¢,2,83¢) = 6! — 8(5!) + 20(4!) — 17(3!) + 4(2!) = 146. So
there are 146 one-to-one functions f : A — B where

f() #v,w f3)#=

f(2) # w,w f(4) # v,z,y.

Supplementary Exercises

We need only consider the divisors 2,3, and 5. Let ¢; denote divisibility by 2, ¢,
divisibility by 3, and ¢ divisibility by 5.

N = B00; N{ey) = [B00/2] = 250; N(cy) = [500/3] = 166; N{cs) = |500/5] =
100; N{cicy) = [500/6] = 83; N{cycs) = [500/10] = 50; N{cpes) = |500/15] = 33;
N{C}C;ﬁg) == %_5{}{},!3{}} = 16.

N{18,83) = 500 — (250 + 166 + 100) + (83 + 50 + 33) — 16 = 134.

Let 5 = nyngnangngng, where § <n; < 8for 1 <1 € 6. We want n;+ngbngdngdng-tng <

37. Hence the answer to this problem is the number of nonnegative integer solutions for
ny -+ 1y + Ny 4 ng + ng + ng + ny = 37,

where 0 < n; €9 for 1 <1 <6, and 0 < ny (L 37).
For 1 < i < 6 define the condition ¢; as follows: n4,n4, ns, ng, ns, ng, 77 is a nonnegative
integer solution for

iy + 1+ ...+ 0y = 37
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3.

but n; > 9 {or n; 2 10).
T4+37-—1 43
= N o= =
o ( 37 ) (37)
N{ey) is the number of nonnegative integer solutions for z; + 23 + 23 + ... + &y = 27 —
here z; +10 =y, and z; = n; for 2<i < 7. So N{ey) = (7"”27‘1) = ("‘3> and 5; = (f) ("3)

27 27 27
N{eycy) is the number of nonnegative integer solutions for yy +ya + s + ... +yp = 17

—here y; +10=mn;, y3 + 10 =ny, and y; =n; for 3 <i < 7. This is (”i;"l) = (?3), and
s 5, = (3)(37)-

N{eyeaes) counts the number of nonnegative integer solutions for z; + 23+ za+. ..+ 27 = 7,
where z; + 10 =n,; for 1 <2 <3, and z; = n; for 4 <i < 7. So N{cyeae3) = (H;") = (13)

and 5= (9(3). ’
Since Sy == S5 = 36 = {, the answer to this problem is

N(&8yG3...%) =S5 — S1+ 52— S5+ Sy — S5 + S = (32) - (f) (2?) +- (2) (f?) - (g) (1,;3) =
930, 931.

For each distribution of the 24 balls (among the four shelves) there are (24!)/(6!)* possible
arrangements. Hence we need to know in how many ways the boys can distribute the balls
for the given restrictions. This is the number of integer solutions for

$3+$2+$3+$4$Z4,

where 2 <z; <T7forall1 <i <4.
This equals the number of integer solutions for

v+t ys+y = 16,

where 0 < y; <5forall 1 €i <4 [Herey; +2=1z; foreach 1 <1< 4]
For 1 < : € 4 define ¢; to be the condition that y, yo, ¥3, ¥4 is & solution of

Y1 + Y2 + ¥s + ya = 16,

where y; > 5 (or y; > 6) and y; > O for all 1 € 5 < 4, j # i. Then, for example, N{¢;) is
the number of nonnegative integer solutions for

Wy + we + Wi + wy = 10.

[Here w; +8 = 3 and w; = y; for ¢ = 2,3,4.] Sﬁﬁ({fi}m{é+§§m>m }ﬁﬂ{igi {}{ }

Similar arguments show us that N(ciep) = (““*‘fé”*) = (z} and 8, = (‘;} (@; and
53 = Sé == {J.

Therefore the number of distributions for the given restrictions is

weses=(2)- (3 (2)+ () )
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and Joseph and Jeffrey can arrange the 24 balls in
19 4\ (13 4\ (7
i N4l -
snro|(ig) - (1) (o) + () 2]

Here § = {1,2,3,...,1000} and N = Sg = 1000. We define the conditions ¢;, ¢;, ¢3 on the
elements of § as follows:
¢i: n € 5 and n is a perfect square;
c: n € § and n is a perfect cube; and
cs: n € § and n is a perfect fourth power.
Then N(ﬂ}) = 31, N(Cg} = 10? N‘{Cg} = 5,
Nleyey) =3, N{eies) = N{ea) =8, N{czea) =1, and
N{eyeges) = N{czes) = 1. Consequently,
N(Elﬁzfa) = Sg - 51 -+ 32 - 53 =
1000~ [31+10+5]4+3+5+1]—1=1000—-46+9— 1= 962.

Ways.

Let ¢; denote the occurrence of the pattern (i +1) for 1 <i<T.
The occurrence of the pattern 81 is denoted by c¢s.

For 1<i<8, N(¢;) =Tl N{eie;) =61, 1 <1< j <8 etc.
N(&y...5) = 81— ()71 + (5)6! = (3)5!+ ...+ (=17 (5)1! = 14832,

(a) Label the walls of the room (clockwise) as 1,2,3,4, and 5. Let ¢; denote that walls 1,2
have the same color. Condition ¢; denotes that walls 2,3 have the same color. In a similar
way we define conditions ¢z and ¢4, while ¢5 denotes that walls 5,1 have the same color.

N=k;Nc)=k1<1<8 N(ge)=k,1<i<j <5
Nicicie)) =k*1<i<j<l<5

Ncicjeem) == k,1 i < j <€ <m < 5; and Ncjeaeacqcs) = k.
So N(&&estats) =k — ()i + ()8 - ()2 + ()6~ ().
(b) For k= 1,2 this result is 0. For k = 3 the result is 30.

For 1 € i € 10, let ¢; denote the condition where student ¢ occupies the same chair before
and after the break. Then the answer to this exercise iz N{€;6;63...%0) =
So— 814+ 8~ 8+ + S

Here So = (14)10! = (14)(18)(12) - - (5).

N{ey) = (?}9? = (18)(12}---(5), and by symmetry N(¢;) = N{¢;) for 2 < ¢ < 10. So
S = {Eia} {if’} &

N{cier) = ()8l and 5, = () ()8!
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10.

11

In general for 0 < k <10,
10V /14— k&
= {
St (k)(m &)(10 k)t

and N(&%a. .. E10) = Dilo(—1)Sk = Ti%6(~1)* (¥} (157%) (10 ~ k) = 1,764,651, 461.

B = Sp = (") Spuat + () Sugs = ok (<1 (E) S — 4 (1) (1) 5.
Sy = ( )( )(wr) (802}') e (3*(‘~1}T) (n—2)*"", where ( ) is for the selection of the ¢ contain-

ers (from the n possible distinct containers), each of which will contain exactly r elements.
The product (r) (5?) e (""(’:1}') is for the selection of r distinct objects for each of the
¢ distinet containers. Finally, (n — i)*™"" appears because for each of the remaining s — ir
objects there are n — i containers to select from.

(:) (s:’r} (s.—;?r) L (8~(;;1)r) ;z G"»'Tff'”(?'”)"
(__l)imm(i) - (__1)£~m(t)(n> ﬁfﬁw(n _ ?:)8__,5,,

S\ & iT

= (V" e e (9
= (=128 [(~ 1) (n — ) 1/[( ~ m)i(n — )i(s — ir)(r!)]
and By, = (~1)" % T (1) oty
The total number of arrangements is T = (131)/[(21)°].
() S5 = (3)1(101)/(21)?]
= (3)ie)/(2)]
= (3)(8Y
By =[S~ ($)Su+ (5)Ss)/T

(b) Es=[Ss— (})Ss] Es=S;
The answer is [T ~ (E; + E)}/T.

Let ¢; denote that the arrangement contains a consecutive guadruple of (3 = 1) w’s; (§ = 2)
2's; (i = 3) y's; and (¢ = 4) 2’s.

N = 1@”{49}% »N{{ii} = 13!;!(43}3,3. < i < 4; ,N(Cgcjs) = 1&5/’{45}2,1 < < j < 4; N(c,:cj;ck) =
?E‘/i“%:g}‘, H ﬂ ) “:j = k 5 4.; ﬂ?{CQQQC;gﬁgg} B ‘ﬁ

N(&g858,) = [18/(at)y] ~ (1317409 + (iot/al? — () (n/an + (e

(= Gn) = (7)
(b) Let A= {21,22,..., 85, Yms1,---,¥n}. For 1 <i < m let ¢; denote that r elements
are selected from 4 with r > m and 2; is not in the selection.

(=0 Ne)=(7)1sigm 5= ()(7)
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13.

14.

15.

N(eey) = ("), 1 i <j<m; S = (3)("7%), ete.
(i) = N(@e- - 6n) = Tla(-1F(7) (7).

{2} Define conditions ¢;,1 <1 < 5, as follows:
c;: 2 and b have the same color.
ey b and ¢ have the same color.
¢3: b and e have the same color.
cs: ¢ and e have the same color.
cs: ¢ and d have the same color.

N=A;N(e)) = AL 1 <i <5 Nee)) =21 <i<j<5

N{egeses) = A%, N{eicje) = A% for all other 1 <4< j < k < 5;

N(eyeseacs) = N{cgeseqcs) = A2, N(ereyeacs) == N{eyeaeqcs) =

N{ejeseqes) = A N{cyeaeszeqcs) = A

N(E:8,8384T5) = A = BAYVF 100% — (A3 90 + (2X¥ 4+30) — A = A5 = BA* 4+ 903 — 7A? 4 2.

For X = 1,2, this result is 0. When X = 3 the result is positive and so the chromatic
number is 3.

(b) Draw a graph with a vertex for each room. If two rooms share a common doorway
draw an edge connecting their corresponding vertices.

The result is the graph in part (a) and the answer is 6° — 5(6*) 4+ 9(6°) — 7(6%)+ 2(6) = 3000.

Consider the derangements of the symbols L,A ,P;,T,0,P;. There are dg such arrangements.

Of these there are
i} d4 arrangements where P, is in position 3 and P, is in poesition 6;
£

{ii} ds arrangements where Py is in position 6 and P; is not in position 3; and,
(iii) ds arrangements where P; is in position 3 and P; is not in position 6.

There are dg — 2d; — dy such arrangements of L,AP,,T,0,P,. Hence there are (1/2)[ds ~
2ds — da) = (1/2)[265 — 2(44) — 9] = 84 ways to arrange the letiers in LAPTOP so that
none of L,A,T,0 is in its original position and P is not in the third or sixth position. [Why
the 1/27 Because we do not distinguish arrangements such as P; LAP; TOand P, L A
Py T O]

Proof: Let n = gm where ¢ is prime and m > 1. Then é{n) = nﬂ e (1-{(1/p)) <

n{l — (1/¢)). Consequently, n — 1 = ¢(n) < n~(nf¢},or 1 > ‘;’zg’g =m>1-—a
contradiction!

(8) S = {1,5,7,11,13,17} Ss = {2,4,8,10, 14, 16}
S;s = {3, 15} Ss = {6, 12}
S = {9} Sig = {18}
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i6.

17’

18,

(b) 15| =6=¢(18) 53] = 2 = $(86) 1S5 = 1= ¢(2)
iszi = = @(9) !Sﬂi = 2 = ¢(3) ISiel =1 = ¢(1)

(a) Let k € Z*,1 £ & £ m. Then ged(k,m) =d < m, for somed € D,. Ik ¢
Sayy 54, then dy = ged(k,m) = dy. So the collection S,,d € D,,, provides a partition of
{1,2,3,4,...,m —1,m}.

{(b) Recall that ged(n,m) = d if and only if ged{n/d,m/d) = 1, so {Sy4| = [{n|0 < n <
m and ged(n,m) = d}| = |[{n|0 < n/d < m/d and ged(n/d, m/d) = 1}| = $(m/d).

Proof:
{a) I nis even then by the Fundamental Theorem of Arithretic (Theorem 4.11) we may
write n = 2*m, where k > 1 and m is odd. Then 2n = 2%"'m and ¢(2n) =

(211 = $)é(m) = 2°¢(m) = 22*)()g(m) = 2[2°(1 - J)é(m)] = 2[$(2"m)] = 24(n).
(b) When n is odd we find that ¢(2n) = (2n)(1 - HJJ(1 — ;), where the product is taken

pin
1
over all (odd) primes dividing n. (If n = 1 then [J(1- -I;) is 1.} But (2n)(1-H]J(1~ %) =
pin pin
n]I(1 '") = ¢(n).
rin

Proof:
Let a = py**p3? - pff“ and b = p'ph? - - py*, where py,ps,...,p: are distinct primes, and
My, M, ..., My, N1, Mg, ..., Ny & N. Then ¢ = ged(a, b) = pmn{m"m} min{mana} ~pf"n{m"m’}.
So g(ab)g(c) =

Wiy 3 TH g 47 SRR 1
gt (= =)= T AR ) and

. Agige
mm{mg x’h}#o

15&(: J z<e<: P ﬁm
s 20 %y 0

For 1 € ¢ £ ¢ we shall verify that we get the same factors involving the prime p; for both
¢lab)p{c) and ¢(a)é{b)c. This will then establish that ¢(ab}é(c) = d{a}é(b)c. We consider
the following cases:

(1) mind{m;,n;} =0 Say 0 = m; < n;. (The same type of argument applies if § = n; <
m;.) Then in ¢{abd)g(c) we find p(1 — }5 and in ¢{a}g(b)e the term is also p(1 — w}
(2) min{my,n;} = m; > O (The same tjme of argument applies if 0 < n; < my.) Here
we find the term pl"¥™(1 ~ & p, (1 1) in ¢{ab)¢(c), while the corresponding term in

%é{ﬁ}{ﬁ‘(b}(« s P {1 - 5:) {1 ;‘;‘ p:nt == py’é:‘*’?h(l — i\: p:&h{i sncne '3‘;).

227
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19. a) d,(121)
b) (¢)da(121)
C) d4((i}2)4

22}5 :
www.youseficlass.ir



ﬁ‘

CHAPTER ¢
GENERATING FUNCTIONS

Section 9.1

The number of integer solutions for the given equations is the coefficient of

(&) 22 in (1+z+2+...+2")

(b) 2 in (I+a+z?+. . +2 1+ 22+t + ... +2%) or
A+z+22+. )1+ + 2+ .02

() ¥ in P+ 2%+ 2N+t +.. .+ 284

(d) 22 in (I+z+22+.. .+l + 22 + 2+ ...+ 2%)-
(z+2*+2°+...+2®) or
(+e+22+.. P Q+22+2'+ . Hez+22+25+..0).

(d) A+z+22+...+2%)° or l+z+2?+...)°

(b) (z+2*+...+2%P or 21 +z+22+...)°

(¢) (2*+2*+...+2%) or 29142+ +. .7

(d) Q+z+2°+... +2¥)2®+ 2+ ... +2%) or
(1+z+4+22+. M2+ 2 +22 4. )

(e) (z®+2+ ... +2¥P0d+z+2+...+2%) or
(242 +. Ptz 424008

(a) The generating function is either (1+o+2*+2°+...+2% or (14 + 22 +23+.. )%
[The number of ways to select 10 candy bars is the coefficient of % in either case.]

(b) The generating function is either (1+z+2*+2%+.. 4z or (1+z 422 +2%+.. )"
[The number of selections of r objects is the coefficient of 27 in either case.]

{a} The first factor counts the pennies; the nickels are counted by the second factor.
b)) fle)=0+z+22+.. )1+ +20+. )1 +2¥0+2%04+..)

¢y + ¢+ €2ty '“:2%5 —3 f}: €1y L2y méﬂ €3 f‘é 53 0 S. €y
(B+e)+(3+c)+(B+ea)tes=31

®y b Ty b By b By = 31, g = Ly Lgy Lyg, g = £y < 10,

Consequently, the answer is the coefficient of 2% in the generating fupction
(A+z4+z24+.. P04z +2°4+.. 42

(a) (I+4+ax)(1+b2)(1+4cz) - (14rz)(l+sa)l+ic)
(b) (1+az+ a2z +a®2%)(1 4+ bo + B22% + B22%) - - (1 + o + 227 + 32%).

229
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10.

Section 9.2

(&) (1+=)° (b) 8(1+z)y (o) (I+a2)
(d) 62*/(1+z) (e) (1-2% (f) 2*/(1-ax)
(a) —27,54,-36,8,0,0,0,. .. (b} 0,0,0,0,1,1,1,1,1,...

() fx)=a*f1l-a¥)y=2*l+a’+a*+a®+.. |=22+" +a" +2°+ .. 50 f(2)
generates the sequence 0,0,0,1,0,1,0,1,0,1,...

(d) fl2) =1/(1+32) = 14 (~3z)-+(=3z)* +(-3z)° +..., so f(z) generates the sequence
1,-3,3% -8%...

(&) f(2)=1/3—2)=(/3)/Q~(z/3))] = (1/3)[1 +(z/3) + (&/3)* + (/3] +. . ], 50
f(z) generates the sequence 1/3,(1/3)%,(1/3)%,(1/3)%...

) fle)=1/1-2)+3z" -1l =(1+z+2?+2°+...)+3c" — 11,50 f(z) generates
the sequence ag, @1,8s, ..., where ag = —10, a7 = 4, and a; = 1 for all 4 #£ 0, 7.

(1) ox) = £(2) ~ ase” + 32
(b) g(z) = f(z) — asz®+ 32° — azz” + T2’
(c) g(z)=2f(z) — 2a1z + = — 2az2> + 32°
(@) ¢(z)=2f(z) +[5/(1 —2)] + (1 ~ 2a; — B)x + (3 — 245 ~ 5)2° + (7 — 2a7 — 5)z”
(155) (35)(239)
(@ (30 = ()= (7)
(b) (_7"’)(«1)7 = (=1)7 (n+;~l)(”1)7 — (n»;-ﬁ)
()= PR = (5)
G- O E)Er+GE) =6 - 06 +6)
@ ()+@+C) ®) (@) +6)+ ()
() (?) + (rix} + {rfz}
(@) 0 b Z)02 =50 = () - 562)
@ G+ (ORI D+ G0+ OG-
G+ O+ Q6+ O+
(a) @+t 4. Y=l +z+a”+.. ) =21~ z)™* The coefficient of z'* in
(1—z)* is @:ﬁmz}w . {»3}”(**22“%@1}” - (i;}

(b) (242t +...+ 2% = 2?1 +z+2°+. .. +2%)%. The coefficient of z'* in{(1—=z)"/(1—
D = (1=-a")i-z) ™ = =4+ A2 () o+ (G (G ()
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12.

13.

14.

15.

16.

is () + GED=@ED0) + () = (o) - 40)-

Consider each package of 25 envelopes a3 one unit. Then the answer to the problem is
the coefficient of 2'* in (2% + 27 + vt 2P 4 2 = 21+ 2 4.+ 2, This
is the same as the coefficient of 2% in [Q -2}/l —~2)]! = 1 -3 (1 -2)* =

§2~4x%+6$m-...+x34@}§( )«é— +g\%)( )4, +< )(—«m)ﬁ‘+...+(;g)(wm}96+

Consequently the answer is (;2} {»1}96 - 4(;?)(“1}& 'i”ﬁ(;;)(“"l}m = (gﬁ) - 4(§f +6(§g)'

(a) The coefficient of z** in (22 +2°+.. P =21+ +22+.. P =201 -2) =
g;iﬁ[ﬁ)) g;»ﬁ)( x)+( )( zP4..] is (;f)(~1)14 m<~§)14(5+14 1)( M= (i)‘ This
is the pumber of ways to dzstmbuie the 24 bottles of one type of soft drink among the

surveyors so that each gets at least two bottles. Since there are two types, the two cases

& ® 3 v - % 2
can be distributed according to the given restrictions in Gf) ways.

() Th coicint of 5% i (224244 i (3) o the noweris (2)5)

o

(z+22 2%+ 2+ 2%+ 2%)12 = 217[(1—2) /(1 — 2)[V? = 22((1— 2))2((37) + (1) (~2) +
(“; 2)(~$)2+. ... The numerator of the answer is the coefficient of z'® in (1 -—:1:6)12[(?) +
()2 + - d =11 (Pt + (D)2 = (D ..+ 2™U(F) + (P (~2)+.. ] and
s e ()1 () ()04 (- () = (- ()

(122) (1;3?) - (1:;‘?) . The final answer is obtained by dividing the last result by 6%, the size of

the sample space.

(224 2% + 2 + 2522 + 219 = 2%(1 + 2 + 2% + 2%)3(1 + 2°)?, s0 we need the coefficient
of zM in [(1-2Y/(1-2)P1+22° 42 = (1 -2’1 - 2) 31 + 22° + 2% =
1+ (=29 + () =+ + (2 + () o)+ (F) (-2 +. J@+207 +29).

This coeflicient is {";4)( 1M 4 (';f)(~1)9 (“ )( 1) - (3 {("3){ 1}194_2(;3)(»1)54_

(1 + QUE) 0+ 2001 = (IE)ES = 16 +2(2) + (1= Oi6) +
( ) ( ) (2) (m + ‘3’( )} {8>( ) This result is then divided by (43)(2%), the size of

the sample space, in order to determine the probability.

Here we need the coefficient of 2 in (I+a+e?+22+.. P 1+2+24+..) =
(/-2 -2%9) = (/1 - 2%/ + ff:))
Using & partial fraction decomposition, - {3%}3 = gﬁ% + {zf_ Z}; + éfﬁ; + {?k":;ﬂ

where the coefficient of z" is (~1)"{(1/8)+ (1/8)+ {i[«%){ ){ -1} 4 {1/2}{ ){ 1" ==
/8 + (=171 + @/ (1) + @/2(7F).

For the hamburgers we need the coefficient of 2'% in (z+ 2+ .. Y 2? + 2%+ .. P =

231
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17.

18.

19.

zﬂ!

£7(1/(1 — z))*. This is the coefficient of 2* in (1 -2z}, ie, {"?) (—1)° = (?).

For the hot dogs we need the coefficient of 2'% in (#®+2*+.. Wi+ +z*+.. . +25P =
21/ -2l - xﬁ)‘ﬁl —2))%, This is the coefficient of z*® in (1-2%P(1-2z) =1~

)+ Q=) - (it i (= Q)07+ () (D~
@ -0E+ G0
By the rule of product the total number of distributions for the prescribed conditions is

-+

(1-zx—2"—2°—z2*~2° —~2% =1~ (z+2* +2° +2* +2° + 2%)]°

-1+(.r+x+ A2 H (22t 4. +x6)‘*’+(z+x+ A+ 2%+

one rg}l two rolls three rolls

where the 1 takes care of the case where the die is not rolled.

(1 —4z)"? = {(“tﬂ) 4 ('"11'(2)(——450) 4 (»;{2)(w4$)2 + ...J. The coefficient of z" is
GHICOE

(-1/2)—n+1)((-1/2) —n+2)---((-1/2) — 1)("1/2)(m4)n _

n!

(142n—2}{1+2n—4)---(1+2)(1)
n!

(2”’ o 1){272 - 3) cU (5)(3)(}-)(2)11 —

n!

@y =

[(2n —1)(2n — 3)---(B)BYHN(2")n!) _ (2a)! _ (Zn,)‘

nin! T nind

{a) There are 25~! = 27 compositions of 8 and 2!3/% = 24 palindromes of 8. Assuming each
composition of 8 has the same probability of being generated, the probability a palindrome
of 8 is generated is 24/27 = 1/8.

(b} Assuming each composition of n has the same probability of being generated, the
probability a palindrome of n is generated is 207/ 201 o Qle/2-ntl o 9i-Tn/3}

{a) I & palindrome of 11 starts with 1, then that palindrome ends in 1. Upon removing
‘14" from the start and ‘41’ from the end of the palindrome, we find a palindrome of 9.
And there are 2I%% = 2¢ == 16 palindromes of 9.

Similar arguments tells us that there are 2U/% = 8 palindromes of 11 that 